1
|
Pfann M, Ben-Tal Cohen E, Sela-Donenfeld D, Cinnamon Y. Application of the Magnet-Cre optogenetic system in the chicken model. Dev Biol 2025; 523:68-81. [PMID: 40187475 DOI: 10.1016/j.ydbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/03/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Chickens serve as an excellent model organism for developmental biology, offering unique opportunities for precise spatiotemporal access to embryos within eggs. Optogenes are light-activated proteins that regulate gene expression, offering a non-invasive method to activate genes at specific locations and developmental stages, advancing developmental biology research. This study employed the Magnet-Cre optogenetic system to control gene expression in developing chicken embryos. Magnet-Cre consists of two light-sensitive protein domains that dimerize upon light activation, each attached to an inactive half of the Cre recombinase enzyme, which becomes active upon dimerization. We developed an all-in-one plasmid containing a green fluorescent protein marker, the Magnet-Cre system, and a light-activated red fluorescent protein gene. This plasmid was electroporated into the neural tube of Hamburger and Hamilton (H&H) stage 14 chicken embryos. Embryo samples were cleared using the CUBIC protocol and imaged with a light sheet microscope to analyze optogenetic activity via red-fluorescent cells. We established a pipeline for Magnet-Cre activation in chicken embryos, demonstrating that a single 3-min exposure to blue light following incubation at 28 °C was sufficient to trigger gene activity within the neural tube, with increased activity upon additional light exposure. Finally, we showed a spatiotemporal control of gene activity using a localized laser light induction. This research lays the groundwork for further advancements in avian developmental biology and poultry research, enabling spatiotemporal control of genes in both embryos and transgenic chickens.
Collapse
Affiliation(s)
- Michael Pfann
- Department of Poultry and Aquaculture Science, Institute of Animal Sciences, Agricultural Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Enbal Ben-Tal Cohen
- Department of Poultry and Aquaculture Science, Institute of Animal Sciences, Agricultural Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Science, Institute of Animal Sciences, Agricultural Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
2
|
Yanagi T, Phen SF, Ayala J, Aydin DE, Jaramillo S, Truong DM. Termination sequence between an inducible promoter and ubiquitous chromatin opening element (UCOE) reduces gene expression leakage and silencing. J Biol Eng 2025; 19:29. [PMID: 40205378 PMCID: PMC11983960 DOI: 10.1186/s13036-025-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Inducible gene expression circuits enable precise control over target gene activation and are widely used in direct reprogramming. However, their usability is often compromised by DNA methylation-induced silencing, especially in iPSCs. This deactivates genetic circuits in engineered iPSCs preventing them from being used for long-term scalable expansion of desired cell types. A2-ubiquitous chromatin opening elements (A2UCOE) have been recognized for their anti-silencing properties, but they have not been used in human iPSCs with inducible systems for direct reprogramming. This study investigates the role of A2UCOE in inducible systems and identifies strategies to eliminate associated gene leakage enabling long-term use of engineered human iPSCs. RESULTS We developed a compact all-in-one gene circuit - containing a doxycycline-inducible Tet-On system, 863 bp of A2UCOE, and FOXN1, a transcription factor critical for thymic epithelial cell (TEC) differentiation - easily deployed to new genomic sites. However, we observed significant FOXN1 gene leakage even without doxycycline, which is a novel limitation of A2UCOE. This leakage resulted in premature differentiation of iPSCs into TECs, limiting its continued use. To further investigate the relationship between A2UCOE and gene leakage, we generated A2UCOE fragments of varying lengths (1337 bp, 749 bp, and 547 bp) and found that all fragments, regardless of length, caused significant gene leakage. To solve this issue, we tested different spacer sequences between A2UCOE and the inducible promoter and found that the SV40 poly-A terminator fully eliminated FOXN1 leakage, and we show this effect is not due to AT- or GC-content. Unexpectedly, this architecture further enhanced anti-silencing effects > 60% providing prolonged stability for at least 30 days. CONCLUSIONS This study reveals a novel limitation of A2UCOE in inducible systems, specifically its contribution to gene leakage, which compromise sensitive systems like direct reprogramming of iPSCs. The inclusion of an SV40 poly-A sequence provides a practical solution and genomic architecture to improve the functionality of A2UCOE-based circuits. It also suggests investigating how termination of transcription modulates gene silencing as a novel design parameter. These findings have significant implications for the design of robust gene circuits, particularly in applications involving iPSCs, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Tomoki Yanagi
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Shean Fu Phen
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
- Department of Biology, New York University (NYU) Graduate School of Arts and Sciences, New York, NY, USA
| | - Jonah Ayala
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Deniz Ece Aydin
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Susanna Jaramillo
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - David M Truong
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Liu G, Peng Y, Li Z, Zhu X, Sun H, Chen G, Zuo Q, Niu Y, Song J, Han W, Wei W, Li B, Jin K. An Inducible CYP19A1 Excision Model for Sexual Differentiation in Chicken ( Gallus gallus) via the CRSPIR/Cas9 System. Vet Sci 2025; 12:296. [PMID: 40284798 PMCID: PMC12031565 DOI: 10.3390/vetsci12040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Aromatase, a crucial enzyme for estrogen synthesis, plays a vital role in gender determination and differentiation. This study aimed to establish an inducible knockout model of the chicken CYP19A1 gene, which encodes aromatase, to support gender control in chickens. We selected the most efficient sgRNA target site and constructed an inducible knockout model based on the Tet-on system. The knockout efficiency reached 80% with 20 μg/mL DOX induction in vitro. The encapsulation of the plasmid with PEI and injection into eggs achieved a knockout efficiency of 45% in ovo. qRT-PCR analysis revealed a significant downregulation of female-related genes (CYP19A1, FOXL2, ESR1) and upregulation of male-related genes (DMRT1, SOX9, AMH) in female chicken embryos after induction. Western blotting showed decreased protein expression of CYP19A1 and FOXL2, and increased SOX9 expression in female embryos post-DOX induction. Elisa detection further confirmed lower estradiol levels in the gonads of induced female embryos compared to normal and non-induced females. These findings demonstrate the successful establishment of an inducible knockout system for the CYP19A1 gene in chickens, providing theoretical and technical support for the creation of new breeding materials for gender control.
Collapse
Affiliation(s)
- Guangzheng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yixiu Peng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Wei Han
- Jiangsu Institute of Poultry Sciences/Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China;
| | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Jiangsu Institute of Poultry Sciences/Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China;
| |
Collapse
|
4
|
Kim N, Yokobayashi Y. Scalable control of stem cell fate by riboswitch-regulated RNA viral vector without genomic integration. Mol Ther 2025; 33:1213-1225. [PMID: 39797398 PMCID: PMC11897756 DOI: 10.1016/j.ymthe.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/30/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Transgene expression in stem cells is a powerful means of regulating cellular properties and differentiation into various cell types. However, existing vectors for transgene expression in stem cells suffer from limitations such as the need for genomic integration, the transient nature of gene expression, and the inability to temporally regulate transgene expression, which hinder biomedical and clinical applications. Here we report a new class of RNA virus-based vectors for scalable and integration-free transgene expression in mouse embryonic stem cells (mESCs). The vector is equipped with a small molecule-regulated riboswitch and a drug selection marker that allow temporal regulation of transgene expression and stable maintenance of the vector in proliferating stem cells. We demonstrated the utility of the vector by maintaining the pluripotency of mESCs in a differentiation induction medium by expressing Nanog and inducing myogenic differentiation by triggering Myod1 expression, without altering the mESC genome.
Collapse
Affiliation(s)
- Narae Kim
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan.
| |
Collapse
|
5
|
Yokoyama K, Hiraoka Y, Abe Y, Tanaka KF. Visualization of myelin-forming oligodendrocytes in the adult mouse brain. J Neurochem 2025; 169:e16218. [PMID: 39233334 PMCID: PMC11657928 DOI: 10.1111/jnc.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs) is considered to result in two populations: premyelinating and myelinating OLs. Recent single-cell RNA sequence data subdivided these populations into newly formed (NFOLs), myelin-forming (MFOLs), and mature (MOLs) oligodendrocytes. However, which newly proposed population corresponds to premyelinating or myelinating OLs is unknown. We focused on the NFOL-specific long non-coding oligodendrocyte 1 gene (LncOL1) and sought to label NFOLs under the control of the LncOL1 promoter using a tetracycline-controllable gene induction system. We demonstrated that LncOL1 was expressed by premyelinating OLs and that the MFOL-specific gene, Ctps, was not, indicating that NFOLs correspond to premyelinating OLs and that MFOLs and MOLs correspond to myelinating OLs. We then generated a LncOL1-tTA mouse in which a tetracycline transactivator (tTA) cassette was inserted downstream from the LncOL1 transcription initiation site. By crossing the LncOL1-tTA mice with tetO reporter mice, we generated LncOL1-tTA::tetO-yellow fluorescent protein (YFP) double-transgenic (LncOL1-YFP) mice. Although LncOL1 is non-coding, YFP was detected in LncOL1-YFP mice, indicating successful tTA translation. Unexpectedly, we found that the morphology of LncOL1-tTA-driven YFP+ cells was distinct from that of LncOL1+ premyelinating OLs and that the labeled cells instead appeared as myelinating OLs. We demonstrated from their RNA expression that YFP-labeled OLs were MFOLs, but not MOLs. Using the unique property of delayed YFP induction, we sought to determine whether MFOLs are constantly supplied from OPCs and differentiate into MOLs, or whether MFOLs pause their differentiation and sustain this stage in the adult brain. To achieve this objective, we irradiated adult LncOL1-YFP brains with X-rays to deplete dividing OPCs and their progeny. The irradiation extinguished YFP-labeled OLs, indicating that adult OPCs differentiated into MOLs during a single period. We established a new transgenic mouse line that genetically labels MFOLs, providing a reliable tool for investigating the dynamics of adult oligodendrogenesis.
Collapse
Affiliation(s)
- Kiichi Yokoyama
- Division of Brain SciencesInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| | - Yuichi Hiraoka
- Laboratory of Molecular NeuroscienceMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Genome Editing for Biomedical ResearchMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yoshifumi Abe
- Division of Brain SciencesInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| | - Kenji F. Tanaka
- Division of Brain SciencesInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| |
Collapse
|
6
|
Komorizono R, Yoshizumi S, Tomonaga K. Development of an RNA virus-based episomal vector with artificial aptazyme for gene silencing. Appl Microbiol Biotechnol 2024; 108:491. [PMID: 39422780 PMCID: PMC11489216 DOI: 10.1007/s00253-024-13327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
RNA virus-based episomal vector (REVec), engineered from Borna disease virus, is an innovative gene delivery tool that enables sustained gene expression in transduced cells. However, the difficulty in controlling gene expression and eliminating vectors has limited the practical use of REVec. In this study, we overcome these shortcomings by inserting artificial aptazymes into the untranslated regions of foreign genes carried in vectors or downstream of the viral phosphoprotein gene, which is essential for vector replication. Non-transmissive REVec carrying GuaM8HDV or the P1-F5 aptazyme showed immediate suppression of gene expression in a guanine or theophylline concentration-dependent manner. Continuous compound administration also markedly reduced the percentage of vector-transduced cells and eventually led to the complete elimination of the vectors from the transduced cells. This new REVec is a safe gene delivery technology that allows fine-tuning of gene expression and could be a useful platform for gene therapy and gene-cell therapy, potentially contributing to the cure of many genetic disorders. KEY POINTS: • We developed a bornavirus vector capable of silencing transgene expression by insertion of aptazyme • Transgene expression was markedly suppressed in a compound concentration-dependent manner • Artificial aptazyme systems allowed complete elimination of the vector from transduced cells.
Collapse
Affiliation(s)
- Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan
| | - Shima Yoshizumi
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
7
|
Fujisaki K, Okazaki S, Ogawa S, Takeda M, Sugihara E, Imai K, Mizuno S, Takahashi S, Goitsuka R. B Cells of Early-life Origin Defined by RAG2-based Lymphoid Cell Tracking under Native Hematopoietic Conditions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:296-305. [PMID: 38874543 DOI: 10.4049/jimmunol.2400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
During the perinatal period, the immune system sets the threshold to select either response or tolerance to environmental Ags, which leads to the potential to provide a lifetime of protection and health. B-1a B cells have been demonstrated to develop during this perinatal time window, showing a unique and restricted BCR repertoire, and these cells play a major role in natural Ab secretion and immune regulation. In the current study, we developed a highly efficient temporally controllable RAG2-based lymphoid lineage cell labeling and tracking system and applied this system to understand the biological properties and contribution of B-1a cells generated at distinct developmental periods to the adult B-1a compartments. This approach revealed that B-1a cells with a history of RAG2 expression during the embryonic and neonatal periods dominate the adult B-1a compartment, including those in the bone marrow (BM), peritoneal cavity, and spleen. Moreover, the BCR repertoire of B-1a cells with a history of RAG2 expression during the embryonic period was restricted, becoming gradually more diverse during the neonatal period, and then heterogeneous at the adult stage. Furthermore, more than half of plasmablasts/plasma cells in the adult BM had embryonic and neonatal RAG2 expression histories. Moreover, BCR analysis revealed a high relatedness between BM plasmablasts/plasma cells and B-1a cells derived from embryonic and neonatal periods, suggesting that these cell types have a common origin. Taken together, these findings define, under native hematopoietic conditions, the importance in adulthood of B-1a cells generated during the perinatal period.
Collapse
Affiliation(s)
- Keiko Fujisaki
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuhei Ogawa
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miyama Takeda
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Eiji Sugihara
- Open Facility Center and Cancer Center, Fujita Health University, Aichi, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ryo Goitsuka
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
8
|
Li C, Yi Y, Ouyang Y, Chen F, Lu C, Peng S, Wang Y, Chen X, Yan X, Xu H, Li S, Feng L, Xie X. TORSEL, a 4EBP1-based mTORC1 live-cell sensor, reveals nutrient-sensing targeting by histone deacetylase inhibitors. Cell Biosci 2024; 14:68. [PMID: 38824577 PMCID: PMC11143692 DOI: 10.1186/s13578-024-01250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking. RESULTS We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1. CONCLUSIONS TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.
Collapse
Affiliation(s)
- Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yingyi Ouyang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chuxin Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yifan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
9
|
Harding J, Vintersten-Nagy K, Yang H, Tang JK, Shutova M, Jong ED, Lee JH, Massumi M, Oussenko T, Izadifar Z, Zhang P, Rogers IM, Wheeler MB, Lye SJ, Sung HK, Li C, Izadifar M, Nagy A. Immune-privileged tissues formed from immunologically cloaked mouse embryonic stem cells survive long term in allogeneic hosts. Nat Biomed Eng 2024; 8:427-442. [PMID: 37996616 PMCID: PMC11087263 DOI: 10.1038/s41551-023-01133-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/30/2023] [Indexed: 11/25/2023]
Abstract
The immunogenicity of transplanted allogeneic cells and tissues is a major hurdle to the advancement of cell therapies. Here we show that the overexpression of eight immunomodulatory transgenes (Pdl1, Cd200, Cd47, H2-M3, Fasl, Serpinb9, Ccl21 and Mfge8) in mouse embryonic stem cells (mESCs) is sufficient to immunologically 'cloak' the cells as well as tissues derived from them, allowing their survival for months in outbred and allogeneic inbred recipients. Overexpression of the human orthologues of these genes in human ESCs abolished the activation of allogeneic human peripheral blood mononuclear cells and their inflammatory responses. Moreover, by using the previously reported FailSafe transgene system, which transcriptionally links a gene essential for cell division with an inducible and cell-proliferation-dependent kill switch, we generated cloaked tissues from mESCs that served as immune-privileged subcutaneous sites that protected uncloaked allogeneic and xenogeneic cells from rejection in immune-competent hosts. The combination of cloaking and FailSafe technologies may allow for the generation of safe and allogeneically accepted cell lines and off-the-shelf cell products.
Collapse
Affiliation(s)
- Jeffrey Harding
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kristina Vintersten-Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Kit Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Shutova
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Eric D Jong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad Massumi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Tatiana Oussenko
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Zohreh Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Puzheng Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - ChengJin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Mohammad Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Hong J, Sohn KC, Park HW, Jeon H, Ju E, Lee JG, Lee JS, Rho J, Hur GM, Ro H. All-in-one IQ toggle switches with high versatilities for fine-tuning of transgene expression in mammalian cells and tissues. Mol Ther Methods Clin Dev 2024; 32:101202. [PMID: 38374964 PMCID: PMC10875299 DOI: 10.1016/j.omtm.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
The transgene toggling device is recognized as a powerful tool for gene- and cell-based biological research and precision medicine. However, many of these devices often operate in binary mode, exhibit unacceptable leakiness, suffer from transgene silencing, show cytotoxicity, and have low potency. Here, we present a novel transgene switch, SIQ, wherein all the elements for gene toggling are packed into a single vector. SIQ has superior potency in inducing transgene expression in response to tebufenozide compared with the Gal4/UAS system, while completely avoiding transgene leakiness. Additionally, the ease and versatility of SIQ make it possible with a single construct to perform transient transfection, establish stable cell lines by targeting a predetermined genomic locus, and simultaneously produce adenovirus for transduction into cells and mammalian tissues. Furthermore, we integrated a cumate switch into SIQ, called SIQmate, to operate a Boolean AND logic gate, enabling swift toggling-off of the transgene after the removal of chemical inducers, tebufenozide and cumate. Both SIQ and SIQmate offer precise transgene toggling, making them adjustable for various researches, including synthetic biology, genome engineering, and therapeutics.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Kyung-Cheol Sohn
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Hye-Won Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Hyoeun Jeon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Eunjin Ju
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Jae-Geun Lee
- Microbiome Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| |
Collapse
|
11
|
Lolicato F, Steringer JP, Saleppico R, Beyer D, Fernandez-Sobaberas J, Unger S, Klein S, Riegerová P, Wegehingel S, Müller HM, Schmitt XJ, Kaptan S, Freund C, Hof M, Šachl R, Chlanda P, Vattulainen I, Nickel W. Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space. eLife 2024; 12:RP88579. [PMID: 38252473 PMCID: PMC10945597 DOI: 10.7554/elife.88579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergGermany
- Department of Physics, University of HelsinkiHelsinkiFinland
| | | | | | - Daniel Beyer
- Heidelberg University Biochemistry CenterHeidelbergGermany
| | | | | | - Steffen Klein
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | | | | | - Xiao J Schmitt
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Shreyas Kaptan
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | | | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergGermany
| |
Collapse
|
12
|
O’Laughlin R, Tran Q, Lezia A, Ngamkanjanarat W, Emmanuele P, Hao N, Hasty J. A Standardized Set of MoClo-Compatible Inducible Promoter Systems for Tunable Gene Expression in Yeast. ACS Synth Biol 2024; 13:85-102. [PMID: 38079574 PMCID: PMC11283237 DOI: 10.1021/acssynbio.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Small-molecule control of gene expression underlies the function of numerous engineered gene circuits that are capable of environmental sensing, computation, and memory. While many recently developed inducible promoters have been tailor-made for bacteria or mammalian cells, relatively few new systems have been built for Saccharomyces cerevisiae, limiting the scale of synthetic biology work that can be done in yeast. To address this, we created the yeast Tunable Expression Systems Toolkit (yTEST), which contains a set of five extensively characterized inducible promoter systems regulated by the small-molecules doxycycline (Dox), abscisic acid (ABA), danoprevir (DNV), 1-naphthaleneacetic acid (NAA), and 5-phenyl-indole-3-acetic acid (5-Ph-IAA). Assembly was made to be compatible with the modular cloning yeast toolkit (MoClo-YTK) to enhance the ease of use and provide a framework to benchmark and standardize each system. Using this approach, we built multiple systems with maximal expression levels greater than those of the strong constitutive TDH3 promoter. Furthermore, each of the five classes of systems could be induced at least 60-fold after a 6 h induction and the highest fold change observed was approximately 300. Thus, yTEST provides a reliable, diverse, and customizable set of inducible promoters to modulate gene expression in yeast for applications in synthetic biology, metabolic engineering, and basic research.
Collapse
Affiliation(s)
- Richard O’Laughlin
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States; Present Address: Present address: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States (R.O.)
| | - Quoc Tran
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States; Present Address: Present address: Molecular Engineering & Sciences Institute, Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States (Q.T.)
| | - Andrew Lezia
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Wasu Ngamkanjanarat
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Philip Emmanuele
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Nan Hao
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States; Department of Molecular Biology, School of Biological Sciences and Synthetic Biology Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Jeff Hasty
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States; Department of Molecular Biology, School of Biological Sciences and Synthetic Biology Institute, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Jeong M, Choi JH, Jang H, Sohn DH, Wang Q, Lee J, Yao L, Lee EJ, Fan J, Pratelli M, Wang EH, Snyder CN, Wang XY, Shin S, Gittis AH, Sung TC, Spitzer NC, Lim BK. Viral vector-mediated transgene delivery with novel recombinase systems for targeting neuronal populations defined by multiple features. Neuron 2024; 112:56-72.e4. [PMID: 37909037 PMCID: PMC10916502 DOI: 10.1016/j.neuron.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/21/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
A comprehensive understanding of neuronal diversity and connectivity is essential for understanding the anatomical and cellular mechanisms that underlie functional contributions. With the advent of single-cell analysis, growing information regarding molecular profiles leads to the identification of more heterogeneous cell types. Therefore, the need for additional orthogonal recombinase systems is increasingly apparent, as heterogeneous tissues can be further partitioned into increasing numbers of specific cell types defined by multiple features. Critically, new recombinase systems should work together with pre-existing systems without cross-reactivity in vivo. Here, we introduce novel site-specific recombinase systems based on ΦC31 bacteriophage recombinase for labeling multiple cell types simultaneously and a novel viral strategy for versatile and robust intersectional expression of any transgene. Together, our system will help researchers specifically target different cell types with multiple features in the same animal.
Collapse
Affiliation(s)
- Minju Jeong
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jun-Hyeok Choi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hyeonseok Jang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Qingdi Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joann Lee
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Li Yao
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eun Ji Lee
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiachen Fan
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marta Pratelli
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric H Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christen N Snyder
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xiao-Yun Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sora Shin
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Aryn H Gittis
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Rahman MR, Kawabe Y, Suzuki K, Chen S, Amamoto Y, Kamihira M. Inducible transgene expression in CHO cells using an artificial transcriptional activator with estrogen-binding domain. Biotechnol J 2024; 19:e2300362. [PMID: 38161242 DOI: 10.1002/biot.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Biopharmaceuticals, including therapeutic antibodies, are rapidly growing products in the pharmaceutical market. Mammalian cells, such as Chinese hamster ovary (CHO) cells, are widely used as production hosts because recombinant antibodies require complex three-dimensional structures modified with sugar chains. Recombinant protein production using mammalian cells is generally performed with cell growth. In this study, we developed a technology that controls cell growth and recombinant protein production to induce recombinant protein production with predetermined timing. Expression of green fluorescent protein (GFP) gene and a single-chain antibody fused with the Fc-region of the human IgG1 (scFv-Fc) gene can be induced and mediated by the estrogen receptor-based artificial transcription factor Gal4-ERT2-VP16 and corresponding inducer drugs. We generated CHO cells using an artificial gene expression system. The addition of various concentrations of inducer drugs to the culture medium allowed control of proliferation and transgene expression of the engineered CHO cells. Use of 4-hydroxytamoxifen, an antagonist of estrogen, as an inducing agent yielded high gene expression at a concentration more than 10-fold lower than that of β-estradiol. When scFv-Fc was produced under inducing conditions, continuous production was possible for more than 2 weeks while maintaining high specific productivity (57 pg cell-1 day-1 ). This artificial gene expression control system that utilizes the estrogen response of estrogen receptors can be an effective method for inducible production of biopharmaceuticals.
Collapse
Affiliation(s)
- Md Rashidur Rahman
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Kozumi Suzuki
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Satoshi Chen
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Yuki Amamoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Nandy K, Babu D, Rani S, Joshi G, Ijee S, George A, Palani D, Premkumar C, Rajesh P, Vijayanand S, David E, Murugesan M, Velayudhan SR. Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Sci Rep 2023; 13:21953. [PMID: 38081875 PMCID: PMC10713686 DOI: 10.1038/s41598-023-42174-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/06/2023] [Indexed: 12/18/2023] Open
Abstract
The preferred method for disease modeling using induced pluripotent stem cells (iPSCs) is to generate isogenic cell lines by correcting or introducing pathogenic mutations. Base editing enables the precise installation of point mutations at specific genomic locations without the need for deleterious double-strand breaks used in the CRISPR-Cas9 gene editing methods. We created a bulk population of iPSCs that homogeneously express ABE8e adenine base editor enzyme under a doxycycline-inducible expression system at the AAVS1 safe harbor locus. These cells enabled fast, efficient and inducible gene editing at targeted genomic regions, eliminating the need for single-cell cloning and screening to identify those with homozygous mutations. We could achieve multiplex genomic editing by creating homozygous mutations in very high efficiencies at four independent genomic loci simultaneously in AAVS1-iABE8e iPSCs, which is highly challenging with previously described methods. The inducible ABE8e expression system allows editing of the genes of interest within a specific time window, enabling temporal control of gene editing to study the cell or lineage-specific functions of genes and their molecular pathways. In summary, the inducible ABE8e system provides a fast, efficient and versatile gene-editing tool for disease modeling and functional genomic studies.
Collapse
Affiliation(s)
- Krittika Nandy
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Dinesh Babu
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - Sonam Rani
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Gaurav Joshi
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Anila George
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Dhavapriya Palani
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - Chitra Premkumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - Praveena Rajesh
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - S Vijayanand
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Mohankumar Murugesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Tamil Nadu, Vellore, 632002, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
16
|
Fung HKH, Hayashi Y, Salo VT, Babenko A, Zagoriy I, Brunner A, Ellenberg J, Müller CW, Cuylen-Haering S, Mahamid J. Genetically encoded multimeric tags for subcellular protein localization in cryo-EM. Nat Methods 2023; 20:1900-1908. [PMID: 37932397 PMCID: PMC10703698 DOI: 10.1038/s41592-023-02053-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Cryo-electron tomography (cryo-ET) allows for label-free high-resolution imaging of macromolecular assemblies in their native cellular context. However, the localization of macromolecules of interest in tomographic volumes can be challenging. Here we present a ligand-inducible labeling strategy for intracellular proteins based on fluorescent, 25-nm-sized, genetically encoded multimeric particles (GEMs). The particles exhibit recognizable structural signatures, enabling their automated detection in cryo-ET data by convolutional neural networks. The coupling of GEMs to green fluorescent protein-tagged macromolecules of interest is triggered by addition of a small-molecule ligand, allowing for time-controlled labeling to minimize disturbance to native protein function. We demonstrate the applicability of GEMs for subcellular-level localization of endogenous and overexpressed proteins across different organelles in human cells using cryo-correlative fluorescence and cryo-ET imaging. We describe means for quantifying labeling specificity and efficiency, and for systematic optimization for rare and abundant protein targets, with emphasis on assessing the potential effects of labeling on protein function.
Collapse
Affiliation(s)
- Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yuki Hayashi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Veijo T Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Anastasiia Babenko
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Brunner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Sara Cuylen-Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
17
|
Ying B, Kawabe Y, Zheng F, Amamoto Y, Kamihira M. High-Level Production of scFv-Fc Antibody Using an Artificial Promoter System with Transcriptional Positive Feedback Loop of Transactivator in CHO Cells. Cells 2023; 12:2638. [PMID: 37998372 PMCID: PMC10670205 DOI: 10.3390/cells12222638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
With the increasing demand for therapeutic antibodies, CHO cells have become the de facto standard as producer host cells for biopharmaceutical production. High production yields are required for antibody production, and developing a high-titer production system is increasingly crucial. This study was established to develop a high-production system using a synthetic biology approach by designing a gene expression system based on an artificial transcription factor that can strongly induce the high expression of target genes in CHO cells. To demonstrate the functionality of this artificial gene expression system and its ability to induce the high expression of target genes in CHO cells, a model antibody (scFv-Fc) was produced using this system. Excellent results were obtained with the plate scale, and when attempting continuous production in semi-continuous cultures using bioreactor tubes with high-cell-density suspension culture using a serum-free medium, high-titer antibody production at the gram-per-liter level was achieved. Shifting the culture temperature to a low temperature of 33 °C achieved scFv-Fc concentrations of up to 5.5 g/L with a specific production rate of 262 pg/(cell∙day). This artificial gene expression system should be a powerful tool for CHO cell engineering aimed at constructing high-yield production systems.
Collapse
Affiliation(s)
| | | | | | | | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (B.Y.); (Y.K.); (F.Z.); (Y.A.)
| |
Collapse
|
18
|
Brothers WR, Ali F, Kajjo S, Fabian MR. The EDC4-XRN1 interaction controls P-body dynamics to link mRNA decapping with decay. EMBO J 2023; 42:e113933. [PMID: 37621215 PMCID: PMC10620763 DOI: 10.15252/embj.2023113933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Deadenylation-dependent mRNA decapping and decay is the major cytoplasmic mRNA turnover pathway in eukaryotes. Many mRNA decapping and decay factors are associated with each other via protein-protein interaction motifs. For example, the decapping enzyme DCP2 and the 5'-3' exonuclease XRN1 interact with the enhancer of mRNA-decapping protein 4 (EDC4), a large scaffold that has been reported to stimulate mRNA decapping. mRNA decapping and decay factors are also found in processing bodies (P-bodies), evolutionarily conserved ribonucleoprotein granules that are often enriched with mRNAs targeted for decay, yet paradoxically are not required for mRNA decay to occur. Here, we show that disrupting the EDC4-XRN1 interaction or altering their stoichiometry inhibits mRNA decapping, with microRNA-targeted mRNAs being stabilized in a translationally repressed state. Importantly, we demonstrate that this concomitantly leads to larger P-bodies that are responsible for preventing mRNA decapping. Finally, we demonstrate that P-bodies support cell viability and prevent stress granule formation when XRN1 is limiting. Taken together, these data demonstrate that the interaction between XRN1 and EDC4 regulates P-body dynamics to properly coordinate mRNA decapping with 5'-3' decay in human cells.
Collapse
Affiliation(s)
- William R Brothers
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Farah Ali
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Sam Kajjo
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Marc R Fabian
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
- Department of BiochemistryMcGill UniversityMontrealQCCanada
- Department of OncologyMcGill UniversityMontrealQCCanada
| |
Collapse
|
19
|
Onodera K, Tsuno Y, Hiraoka Y, Tanaka K, Maejima T, Mieda M. In vivo recording of the circadian calcium rhythm in Prokineticin 2 neurons of the suprachiasmatic nucleus. Sci Rep 2023; 13:16974. [PMID: 37813987 PMCID: PMC10562406 DOI: 10.1038/s41598-023-44282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Prokineticin 2 (Prok2) is a small protein expressed in a subpopulation of neurons in the suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals. Prok2 has been implicated as a candidate output molecule from the SCN to control multiple circadian rhythms. Genetic manipulation specific to Prok2-producing neurons would be a powerful approach to understanding their function. Here, we report the generation of Prok2-tTA knock-in mice expressing the tetracycline transactivator (tTA) specifically in Prok2 neurons and an application of these mice to in vivo recording of Ca2+ rhythms in these neurons. First, the specific and efficient expression of tTA in Prok2 neurons was verified by crossing the mice with EGFP reporter mice. Prok2-tTA mice were then used to express a fluorescent Ca2+ sensor protein to record the circadian Ca2+ rhythm in SCN Prok2 neurons in vivo. Ca2+ in these cells showed clear circadian rhythms in both light-dark and constant dark conditions, with their peaks around midday. Notably, the hours of high Ca2+ nearly coincided with the rest period of the behavioral rhythm. These observations fit well with the predicted function of Prok2 neurons as a candidate output pathway of the SCN by suppressing locomotor activity during both daytime and subjective daytime.
Collapse
Affiliation(s)
- Kaito Onodera
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
20
|
Ma Y, Budde MW, Zhu J, Elowitz MB. Tuning Methylation-Dependent Silencing Dynamics by Synthetic Modulation of CpG Density. ACS Synth Biol 2023; 12:2536-2545. [PMID: 37572041 PMCID: PMC10510725 DOI: 10.1021/acssynbio.3c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 08/14/2023]
Abstract
Methylation of cytosines in CG dinucleotides (CpGs) within promoters has been shown to lead to gene silencing in mammals in natural contexts. Recently, engineered recruitment of methyltransferases (DNMTs) at specific loci was shown to be sufficient to silence synthetic and endogenous gene expression through this mechanism. A critical parameter for DNA methylation-based silencing is the distribution of CpGs within the target promoter. However, how the number or density of CpGs in the target promoter affects the dynamics of silencing by DNMT recruitment has remained unclear. Here, we constructed a library of promoters with systematically varying CpG content, and analyzed the rate of silencing in response to recruitment of DNMT. We observed a tight correlation between silencing rate and CpG content. Further, methylation-specific analysis revealed a constant accumulation rate of methylation at the promoter after DNMT recruitment. We identified a single CpG site between TATA box and transcription start site (TSS) that accounted for a substantial part of the difference in silencing rates between promoters with differing CpG content, indicating that certain residues play disproportionate roles in controlling silencing. Together, these results provide a library of promoters for synthetic epigenetic and gene regulation applications, as well as insights into the regulatory link between CpG content and silencing rate.
Collapse
Affiliation(s)
- Yitong Ma
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Mark W. Budde
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Primordium
Labs, Arcadia, California 91006, United States
| | - Junqin Zhu
- Department
of Biology, Stanford University, Stanford, California 94305, United States
| | - Michael B. Elowitz
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Howard
Hughes Medical Institute, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
21
|
Hirschberg S, Ghazaani F, Ben Amor G, Pydde M, Nagel A, Germani S, Monica L, Schlör A, Bauer H, Hornung J, Voetz M, Dwai Y, Scheer B, Ringel F, Kamal-Eddin O, Harms C, Füner J, Adrian L, Pruß A, Schulze-Forster K, Hanack K, Kamhieh-Milz J. An Efficient and Scalable Method for the Production of Immunogenic SARS-CoV-2 Virus-like Particles (VLP) from a Mammalian Suspension Cell Line. Vaccines (Basel) 2023; 11:1469. [PMID: 37766145 PMCID: PMC10535180 DOI: 10.3390/vaccines11091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The rapid evolution of new SARS-CoV-2 variants poses a continuing threat to human health. Vaccination has become the primary therapeutic intervention. The goal of the current work was the construction of immunogenic virus-like particles (VLPs). Here, we describe a human cell line for cost-efficient and scalable production of immunogenic SARS-CoV-2 VLPs. The modular design of the VLP-production platform facilitates rapid adaptation to new variants. Methods: The N, M-, and E-protein genes were integrated into the genome of Expi293 cells (ExpiVLP_MEN). Subsequently, this cell line was further modified for the constitutive expression of the SARS-CoV-2 spike protein. The resulting cell line (ExpiVLP_SMEN) released SARS-CoV-2 VLP upon exposure to doxycycline. ExpiVLP_SMEN cells were readily adapted for VLP production in a 5 L bioreactor. Purified VLPs were quantified by Western blot, ELISA, and nanoparticle tracking analysis and visualized by electron microscopy. Immunogenicity was tested in mice. Results: The generated VLPs contained all four structural proteins, are within the size range of authentic SARS-CoV-2 virus particles, and reacted strongly and specifically with immunoserum from naturally infected individuals. The VLPs were stable in suspension at 4 °C for at least 10 weeks. Mice immunized with VLPs developed neutralizing antibodies against lentiviruses pseudotyped with the SARS-CoV-2 spike protein. The flexibility of the VLP-production platform was demonstrated by the rapid switch of the spike protein to a new variant of concern (BA.1/Omicron). The present study describes an efficient, scalable, and adaptable production method of immunogenic SARS-CoV-2 VLPs with therapeutic potential.
Collapse
Affiliation(s)
- Stefan Hirschberg
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Preclinics Certified Products GmbH, 14482 Potsdam, Germany
| | | | | | | | | | - Saveria Germani
- Preclinics Gesellschaft für Präklinische Forschung mbH, 14482 Potsdam, Germany
| | - Lara Monica
- Preclinics Gesellschaft für Präklinische Forschung mbH, 14482 Potsdam, Germany
| | | | | | | | | | - Yamen Dwai
- Preclinics Gesellschaft für Präklinische Forschung mbH, 14482 Potsdam, Germany
| | - Benjamin Scheer
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | | | | | - Christoph Harms
- Center for Stroke Research Berlin with Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany, 10117 Berlin, Germany
| | - Jonas Füner
- Preclinics Gesellschaft für Präklinische Forschung mbH, 14482 Potsdam, Germany
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | | | - Katja Hanack
- New/Era/Mabs GmbH, 14476 Potsdam, Germany
- Department of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Julian Kamhieh-Milz
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- DHS—Diagnostic HealthCare Solutions GmbH, 13347 Berlin, Germany
| |
Collapse
|
22
|
Wang X, Zhou X, Kang L, Lai Y, Ye H. Engineering natural molecule-triggered genetic control systems for tunable gene- and cell-based therapies. Synth Syst Biotechnol 2023; 8:416-426. [PMID: 37384125 PMCID: PMC10293594 DOI: 10.1016/j.synbio.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
The ability to precisely control activities of engineered designer cells provides a novel strategy for modern precision medicine. Dynamically adjustable gene- and cell-based precision therapies are recognized as next generation medicines. However, the translation of these controllable therapeutics into clinical practice is severely hampered by the lack of safe and highly specific genetic switches controlled by triggers that are nontoxic and side-effect free. Recently, natural products derived from plants have been extensively explored as trigger molecules to control genetic switches and synthetic gene networks for multiple applications. These controlled genetic switches could be further introduced into mammalian cells to obtain synthetic designer cells for adjustable and fine tunable cell-based precision therapy. In this review, we introduce various available natural molecules that were engineered to control genetic switches for controllable transgene expression, complex logic computation, and therapeutic drug delivery to achieve precision therapy. We also discuss current challenges and prospects in translating these natural molecule-controlled genetic switches developed for biomedical applications from the laboratory to the clinic.
Collapse
|
23
|
Ma Y, Budde MW, Zhu J, Elowitz MB. Tuning methylation-dependent silencing dynamics by synthetic modulation of CpG density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542205. [PMID: 37398290 PMCID: PMC10312471 DOI: 10.1101/2023.05.30.542205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Methylation of cytosines in CG dinucleotides (CpGs) within promoters has been shown to lead to gene silencing in mammals in natural contexts. Recently, engineered recruitment of methyltransferases (DNMTs) at specific loci was shown to be sufficient to silence synthetic and endogenous gene expression through this mechanism. A critical parameter for DNA methylation-based silencing is the distribution of CpGs within the target promoter. However, how the number or density of CpGs in the target promoter affects the dynamics of silencing by DNMT recruitment has remained unclear. Here we constructed a library of promoters with systematically varying CpG content, and analyzed the rate of silencing in response to recruitment of DNMT. We observed a tight correlation between silencing rate and CpG content. Further, methylation-specific analysis revealed a constant accumulation rate of methylation at the promoter after DNMT recruitment. We identified a single CpG site between TATA box and transcription start site (TSS) that accounted for a substantial part of the difference in silencing rates between promoters with differing CpG content, indicating that certain residues play disproportionate roles in controlling silencing. Together, these results provide a library of promoters for synthetic epigenetic and gene regulation applications, as well as insights into the regulatory link between CpG content and silencing rate.
Collapse
Affiliation(s)
- Yitong Ma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
| | - Mark W. Budde
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Primordium Labs, Arcadia, CA 91006, USA
| | - Junqin Zhu
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael B. Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
24
|
Sutyagina OI, Beilin AK, Vorotelyak EA, Vasiliev AV. Immortalization Reversibility in the Context of Cell Therapy Biosafety. Int J Mol Sci 2023; 24:7738. [PMID: 37175444 PMCID: PMC10178325 DOI: 10.3390/ijms24097738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Immortalization (genetically induced prevention of replicative senescence) is a promising approach to obtain cellular material for cell therapy or for bio-artificial organs aimed at overcoming the problem of donor material shortage. Immortalization is reversed before cells are used in vivo to allow cell differentiation into the mature phenotype and avoid tumorigenic effects of unlimited cell proliferation. However, there is no certainty that the process of de-immortalization is 100% effective and that it does not cause unwanted changes in the cell. In this review, we discuss various approaches to reversible immortalization, emphasizing their advantages and disadvantages in terms of biosafety. We describe the most promising approaches in improving the biosafety of reversibly immortalized cells: CRISPR/Cas9-mediated immortogene insertion, tamoxifen-mediated self-recombination, tools for selection of successfully immortalized cells, using a decellularized extracellular matrix, and ensuring post-transplant safety with the use of suicide genes. The last process may be used as an add-on for previously existing reversible immortalized cell lines.
Collapse
Affiliation(s)
- Oksana I. Sutyagina
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Laboratory of Cell Biology, Vavilov Str. 26, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
25
|
Terron HM, Maranan DS, Burgard LA, LaFerla FM, Lane S, Leissring MA. A Dual-Function "TRE-Lox" System for Genetic Deletion or Reversible, Titratable, and Near-Complete Downregulation of Cathepsin D. Int J Mol Sci 2023; 24:ijms24076745. [PMID: 37047718 PMCID: PMC10095275 DOI: 10.3390/ijms24076745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Commonly employed methods for reversibly disrupting gene expression, such as those based on RNAi or CRISPRi, are rarely capable of achieving >80-90% downregulation, making them unsuitable for targeting genes that require more complete disruption to elicit a phenotype. Genetic deletion, on the other hand, while enabling complete disruption of target genes, often produces undesirable irreversible consequences such as cytotoxicity or cell death. Here we describe the design, development, and detailed characterization of a dual-function "TRE-Lox" system for effecting either (a) doxycycline (Dox)-mediated downregulation or (b) genetic deletion of a target gene-the lysosomal aspartyl protease cathepsin D (CatD)-based on targeted insertion of a tetracycline-response element (TRE) and two LoxP sites into the 5' end of the endogenous CatD gene (CTSD). Using an optimized reverse-tetracycline transrepressor (rtTR) variant fused with the Krüppel-associated box (KRAB) domain, we show that CatD expression can be disrupted by as much as 98% in mouse embryonic fibroblasts (MEFs). This system is highly sensitive to Dox (IC50 = 1.46 ng/mL) and results in rapid (t1/2 = 0.57 d) and titratable downregulation of CatD. Notably, even near-total disruption of CatD expression was completely reversed by withdrawal of Dox. As expected, transient expression of Cre recombinase results in complete deletion of the CTSD gene. The dual functionality of this novel system will facilitate future studies of the involvement of CatD in various diseases, particularly those attributable to partial loss of CatD function. In addition, the TRE-Lox approach should be applicable to the regulation of other target genes requiring more complete disruption than can be achieved by traditional methods.
Collapse
Affiliation(s)
- Heather M Terron
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Derek S Maranan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Luke A Burgard
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Shelley Lane
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Al Kiey SA, Khalil AM, Kamel S. Insight into TEMPO-oxidized cellulose-based composites as electrochemical sensors for dopamine assessment. Int J Biol Macromol 2023; 239:124302. [PMID: 37011750 DOI: 10.1016/j.ijbiomac.2023.124302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
The diagnosis and treatment of many neurological and psychiatric problems depend on establishing simple, inexpensive, and comfortable electrochemical sensors for dopamine (DA) detection. Herein, 2,2,6,6 tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOC) were successfully loaded with silver nanoparticles (AgNPs) and/or graphite (Gr) and crosslinked by tannic acid, producing composites. This study describes a suitable casting procedure for the composite synthesis of TOC/AgNPs and/or Gr for the electrochemical detection of dopamine. Electrochemical impedance spectra (EIS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the TOC/AgNPs/Gr composites. In addition, the direct electrochemistry of electrodes treated with the prepared composites was examined using cyclic voltammetry. The TOC/AgNPs/Gr composite-modified electrode improved electrochemical performance towards detecting dopamine compared to TOC/Gr-modified electrodes. Upon employing amperometric measurement, our electrochemical instrument has a wide linear range (0.005-250 μM), a low limit of detection (0.0005 μM) at S/N = 3, and a high sensitivity (0.963 μA μM-1 cm-2). Additionally, it was demonstrated that DA detection seemed to have outstanding anti-interference characteristics. The proposed electrochemical sensors meet the clinical criteria regarding reproducibility, selectivity, stability, and recovery. The straightforward electrochemical method utilized in this paper may provide a potential framework for creating dopamine quantification biosensors.
Collapse
|
27
|
MYC2: A Master Switch for Plant Physiological Processes and Specialized Metabolite Synthesis. Int J Mol Sci 2023; 24:ijms24043511. [PMID: 36834921 PMCID: PMC9963318 DOI: 10.3390/ijms24043511] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The jasmonic acid (JA) signaling pathway plays important roles in plant defenses, development, and the synthesis of specialized metabolites synthesis. Transcription factor MYC2 is a major regulator of the JA signaling pathway and is involved in the regulation of plant physiological processes and specialized metabolite synthesis. Based on our understanding of the mechanism underlying the regulation of specialized metabolite synthesis in plants by the transcription factor MYC2, the use of synthetic biology approaches to design MYC2-driven chassis cells for the synthesis of specialized metabolites with high medicinal value, such as paclitaxel, vincristine, and artemisinin, seems to be a promising strategy. In this review, the regulatory role of MYC2 in JA signal transduction of plants to biotic and abiotic stresses, plant growth, development and specialized metabolite synthesis is described in detail, which will provide valuable reference for the use of MYC2 molecular switches to regulate plant specialized metabolite biosynthesis.
Collapse
|
28
|
Lane S, Turner TL, Jin YS. Glucose assimilation rate determines the partition of flux at pyruvate between lactic acid and ethanol in Saccharomyces cerevisiae. Biotechnol J 2023; 18:e2200535. [PMID: 36723451 DOI: 10.1002/biot.202200535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023]
Abstract
Engineered Saccharomyces cerevisiae expressing a lactic acid dehydrogenase can metabolize pyruvate into lactic acid. However, three pyruvate decarboxylase (PDC) isozymes drive most carbon flux toward ethanol rather than lactic acid. Deletion of endogenous PDCs will eliminate ethanol production, but the resulting strain suffers from C2 auxotrophy and struggles to complete a fermentation. Engineered yeast assimilating xylose or cellobiose produce lactic acid rather than ethanol as a major product without the deletion of any PDC genes. We report here that sugar flux, but not sensing, contributes to the partition of flux at the pyruvate branch point in S. cerevisiae expressing the Rhizopus oryzae lactic acid dehydrogenase (LdhA). While the membrane glucose sensors Snf3 and Rgt2 did not play any direct role in the option of predominant product, the sugar assimilation rate was strongly correlated to the partition of flux at pyruvate: fast sugar assimilation favors ethanol production while slow sugar assimilation favors lactic acid. Applying this knowledge, we created an engineered yeast capable of simultaneously converting glucose and xylose into lactic acid, increasing lactic acid production to approximately 17 g L-1 from the 12 g L-1 observed during sequential consumption of sugars. This work elucidates the carbon source-dependent effects on product selection in engineered yeast.
Collapse
Affiliation(s)
- Stephan Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Timothy L Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
29
|
Oishi M, Passlick S, Yamazaki Y, Unekawa M, Adachi R, Yamada M, Imayoshi I, Abe Y, Steinhäuser C, Tanaka KF. Separate optogenetic manipulation of Nerve/glial antigen 2 (NG2) glia and mural cells using the NG2 promoter. Glia 2023; 71:317-333. [PMID: 36165697 DOI: 10.1002/glia.24273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Nerve/glial antigen 2 (NG2) is a protein marker of NG2 glia and mural cells, and NG2 promoter activity is utilized to target these cells. However, the NG2 promoter cannot target NG2 glia and mural cells separately. This has been an obstacle for NG2 glia-specific manipulation. Here, we developed transgenic mice in which either cell type can be targeted using the NG2 promoter. We selected a tetracycline-controllable gene induction system for cell type-specific transgene expression, and generated NG2-tetracycline transactivator (tTA) transgenic lines. We crossed tTA lines with the tetO-ChR2 (channelrhodopsin-2)-EYFP line to characterize tTA-dependent transgene induction. We isolated two unique NG2-tTA mouse lines: one that induced ChR2-EYFP only in mural cells, likely due to the chromosomal position effect of NG2-tTA insertion, and the other that induced it in both cell types. We then applied a Cre-mediated set-subtraction strategy to the latter case and eliminated ChR2-EYFP from mural cells, resulting in NG2 glia-specific transgene induction. We further demonstrated that tTA-dependent ChR2 expression could manipulate cell function. Optogenetic mural cell activation decreased cerebral blood flow, as previously reported, indicating that tTA-mediated ChR2 expression was sufficient to impact cellular function. ChR2-mediated depolarization was observed in NG2 glia in acute hippocampal slices. In addition, ChR2-mediated depolarization of NG2 glia inhibited their proliferation but promoted their differentiation in juvenile mice. Since the tTA-tetO combination is expandable, the mural cell-specific NG2-tTA line and the NG2 glia-specific NG2-tTA line will permit us to conduct observational and manipulation studies to examine in vivo function of these cells separately.
Collapse
Affiliation(s)
- Mitsuhiro Oishi
- Division of Brain Sciences, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Passlick
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yoshihiko Yamazaki
- Department of Physiology, Yamagata University School of Medicine, Yamagata, Japan
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Ruka Adachi
- Division of Brain Sciences, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Yamada
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Itaru Imayoshi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshifumi Abe
- Division of Brain Sciences, Keio University School of Medicine, Tokyo, Japan
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kenji F Tanaka
- Division of Brain Sciences, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Duan Y, Tan Y, Wei X, Pei X, Li M. Versatile Strategy for the Construction of a Transcription Factor-Based Orthogonal Gene Expression Toolbox in Monascus spp. ACS Synth Biol 2023; 12:213-223. [PMID: 36625512 DOI: 10.1021/acssynbio.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gene expression is needed to be conducted in an orthogonal manner and controllable independently from the host's native regulatory system. However, there is a shortage of gene expression regulatory toolboxes that function orthogonally from each other and toward the host. Herein, we developed a strategy based on the mutant library to generate orthogonal gene expression toolboxes. A transcription factor, MaR, located in the Monascus azaphilone biosynthetic gene cluster, was taken as a typical example. Nine DNA-binding residues of MaR were identified by molecular simulation and site-directed mutagenesis. We created five MaR multi-site saturation mutagenesis libraries consisting of 10743 MaR variants on the basis of five cognate promoters. A functional analysis revealed that all five tested promoters were orthogonally regulated by five different MaR variants, respectively. Furthermore, fine gene expression tunability and high signal sensitivity of this toolbox are demonstrated by introducing chemically inducible expression modules, designing synthetic promoter elements, and creating protein-protein interaction between MaRs. This study paves the way for a bottom-up approach to build orthogonal gene expression toolboxes.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| |
Collapse
|
31
|
Liu C, Cao Y, Li L, Wang Y, Meng Q. Overexpression of miR-29ab1 Cluster Results in Excessive Muscle Growth in 1-Month-old Mice by Inhibiting Mstn. DNA Cell Biol 2023; 42:43-52. [PMID: 36576412 DOI: 10.1089/dna.2022.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle mass is closely related to strength and health. Multiple genes and signaling pathways are involved in the regulation of skeletal muscle hypertrophy. miR-29 can participate in various processes of skeletal muscle development through different target genes. However, studies are needed on the function of miR-29 in skeletal muscle during mouse puberty. We used mice in which overexpression of miR-29ab1 cluster could be induced specifically within skeletal muscle, and investigated the effects of miR-29 overexpression on skeletal muscle at 1 month of age. We found that the overexpression of miR-29ab1 cluster in juvenile mice caused skeletal muscle mass and myofiber cross-sectional area to increase. The study on the mechanism of miR-29 inducing skeletal muscle hypertrophy had found that miR-29 achieved its function by inhibiting the expression of Mstn. At the same time, injured myofibers were present within miR-29ab1 cluster overexpressing skeletal muscle. The damage of skeletal muscle may be due to the inhibition of the type IV collagen by miR-29. These results indicate that although the overexpression of miR-29ab1 cluster can induce skeletal muscle hypertrophy in mouse juvenile, it simultaneously causes skeletal muscle damage.
Collapse
Affiliation(s)
- Chuncheng Liu
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yuxin Cao
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing, China
| | - Lei Li
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing, China
| | - Yiting Wang
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qingyong Meng
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Carr S, Buan NR. Insights into the biotechnology potential of Methanosarcina. Front Microbiol 2022; 13:1034674. [PMID: 36590411 PMCID: PMC9797515 DOI: 10.3389/fmicb.2022.1034674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as serving as a vital component in the treatment of wastewater though this is only the tip of the iceberg with respect to their metabolic potential. In this review we will discuss how the efficient central metabolism of methanoarchaea could be harnessed for future biotechnology applications.
Collapse
Affiliation(s)
| | - Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
33
|
SARS-CoV-2 Virus-like Particles (VLPs) Specifically Detect Humoral Immune Reactions in an ELISA-Based Platform. Antibodies (Basel) 2022; 11:antib11040076. [PMID: 36546901 PMCID: PMC9774516 DOI: 10.3390/antib11040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
A key in controlling the SARS-CoV-2 pandemic is the assessment of the immune status of the population. We explored the utility of SARS-CoV-2 virus-like particles (VLPs) as antigens to detect specific humoral immune reactions in an enzyme-linked immunosorbent assay (ELISA). For this purpose, SARS-CoV-2 VLPs were produced from an engineered cell line and characterized by Western blot, ELISA, and nanoparticle tracking analysis. Subsequently, we collected 42 serum samples from before the pandemic (2014), 89 samples from healthy subjects, and 38 samples from vaccinated subjects. Seventeen samples were collected less than three weeks after infection, and forty-four samples more than three weeks after infection. All serum samples were characterized for their reactivity with VLPs and the SARS-CoV-2 N- and S-protein. Finally, we compared the performance of the VLP-based ELISA with a certified in vitro diagnostic device (IVD). In the applied set of samples, we determined a sensitivity of 95.5% and a specificity of 100% for the certified IVD. There were seven samples with an uncertain outcome. Our VLP-ELISA demonstrated a superior performance, with a sensitivity of 97.5%, a specificity of 100%, and only three uncertain outcomes. This result warrants further research to develop a certified IVD based on SARS-CoV-2 VLPs as an antigen.
Collapse
|
34
|
Garrood WT, Cuber P, Willis K, Bernardini F, Page NM, Haghighat-Khah RE. Driving down malaria transmission with engineered gene drives. Front Genet 2022; 13:891218. [PMID: 36338968 PMCID: PMC9627344 DOI: 10.3389/fgene.2022.891218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
The last century has witnessed the introduction, establishment and expansion of mosquito-borne diseases into diverse new geographic ranges. Malaria is transmitted by female Anopheles mosquitoes. Despite making great strides over the past few decades in reducing the burden of malaria, transmission is now on the rise again, in part owing to the emergence of mosquito resistance to insecticides, antimalarial drug resistance and, more recently, the challenges of the COVID-19 pandemic, which resulted in the reduced implementation efficiency of various control programs. The utility of genetically engineered gene drive mosquitoes as tools to decrease the burden of malaria by controlling the disease-transmitting mosquitoes is being evaluated. To date, there has been remarkable progress in the development of CRISPR/Cas9-based homing endonuclease designs in malaria mosquitoes due to successful proof-of-principle and multigenerational experiments. In this review, we examine the lessons learnt from the development of current CRISPR/Cas9-based homing endonuclease gene drives, providing a framework for the development of gene drive systems for the targeted control of wild malaria-transmitting mosquito populations that overcome challenges such as with evolving drive-resistance. We also discuss the additional substantial works required to progress the development of gene drive systems from scientific discovery to further study and subsequent field application in endemic settings.
Collapse
Affiliation(s)
- William T. Garrood
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Piotr Cuber
- Department of Molecular Biology, Core Research Laboratories, Natural History Museum, London, United Kingdom
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicole M. Page
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
35
|
Saunderson SC, Hosseini-Rad SMA, McLellan AD. Noise-Reduction and Sensitivity-Enhancement of a Sleeping Beauty-Based Tet-On System. Genes (Basel) 2022; 13:genes13101679. [PMID: 36292564 PMCID: PMC9602432 DOI: 10.3390/genes13101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Tetracycline-inducible systems are widely used control elements for mammalian gene expression. Despite multiple iterations to improve inducibility, their use is still compromised by basal promoter activity in the absence of tetracyclines. In a mammalian system, we previously showed that the introduction of the G72V mutation in the rtTA-M2 tetracycline activator lowers the basal level expression and increases the fold-induction of multiple genetic elements in a long chimeric antigen receptor construct. In this study, we confirmed that the G72V mutation was effective in minimising background expression in the absence of an inducer, resulting in an increase in fold-expression. Loss of responsiveness due to the G72V mutation was compensated through the incorporation of four sensitivity enhancing (SE) mutations, without compromising promoter tightness. However, SE mutations alone (without G72V) led to undesirable leakiness. Although cryptic splice site removal from rtTA did not alter the inducible control of the luciferase reporter gene in this simplified vector system, this is still recommended as a precaution in more complex multi-gene elements that contain rtTA. The optimized expression construct containing G72V and SE mutations currently provides the best improvement of fold-induction mediated by the rtTA-M2 activator in a mammalian system.
Collapse
Affiliation(s)
- Sarah C. Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| | - SM Ali Hosseini-Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Centre of Excellence in Immunology and Immune-Mediated Diseases, University of Chulalongkorn, Bangkok 10330, Thailand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
36
|
Chao G, Wannier TM, Gutierrez C, Borders NC, Appleton E, Chadha A, Lebar T, Church GM. helixCAM: A platform for programmable cellular assembly in bacteria and human cells. Cell 2022; 185:3551-3567.e39. [PMID: 36055250 PMCID: PMC9481732 DOI: 10.1016/j.cell.2022.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 08/11/2022] [Indexed: 01/26/2023]
Abstract
Interactions between cells are indispensable for signaling and creating structure. The ability to direct precise cell-cell interactions would be powerful for engineering tissues, understanding signaling pathways, and directing immune cell targeting. In humans, intercellular interactions are mediated by cell adhesion molecules (CAMs). However, endogenous CAMs are natively expressed by many cells and tend to have cross-reactivity, making them unsuitable for programming specific interactions. Here, we showcase "helixCAM," a platform for engineering synthetic CAMs by presenting coiled-coil peptides on the cell surface. helixCAMs were able to create specific cell-cell interactions and direct patterned aggregate formation in bacteria and human cells. Based on coiled-coil interaction principles, we built a set of rationally designed helixCAM libraries, which led to the discovery of additional high-performance helixCAM pairs. We applied this helixCAM toolkit for various multicellular engineering applications, such as spherical layering, adherent cell targeting, and surface patterning.
Collapse
Affiliation(s)
- George Chao
- Genetics Department, Harvard Medical School, Boston, MA 02115, USA.
| | | | - Clair Gutierrez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Evan Appleton
- Genetics Department, Harvard Medical School, Boston, MA 02115, USA
| | - Anjali Chadha
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tina Lebar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - George M Church
- Genetics Department, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Costa AJ, Oliveira RB, Wachilewski P, Nishino MS, Bassani TB, Stilhano RS, Cerutti JM, Nozima B, Porto CS, Pereira GJDS, Ramirez AL, Smaili SS, Ureshino RP. Membrane estrogen receptor ERα activation improves tau clearance via autophagy induction in a tauopathy cell model. Brain Res 2022; 1795:148079. [PMID: 36088959 DOI: 10.1016/j.brainres.2022.148079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent aging-associated neurodegenerative disease, with a higher incidence in women than men. There is evidence that sex hormone replacement therapy, particularly estrogen, reduces memory loss in menopausal women. Neurofibrillary tangles are associated with tau protein aggregation, a characteristic of AD and other tauopathies. In this sense, autophagy is a promising cellular process to remove these protein aggregates. This study evaluated the autophagy mechanisms involved in neuroprotection induced by 17β-estradiol (E2) in a Tet-On inducible expression tauopathy cell model (EGFP-tau WT or with the P301L mutation, 0N4R isoform). The results indicated that 17β-estradiol induces autophagy by activating AMPK in a concentration-dependent manner, independent of mTOR signals. The estrogen receptor α (ERα) agonist, PPT, also induced autophagy, while the ERα antagonist, MPP, substantially attenuated the 17β-estradiol-mediated autophagy induction. Notably, 17β-estradiol increased LC3-II levels and phosphorylated and total tau protein clearance in the EGFP-tau WT cell line but not in EGPF-tau P301L. Similar results were observed with E2-BSA, a plasma membrane-impermeable estrogen, suggesting membrane ERα involvement in non-genomic estrogenic pathway activation. Furthermore, 17β-estradiol-induced autophagy led to EGFP-tau protein clearance. These results demonstrate that modulating autophagy via the estrogenic pathway may represent a new therapeutic target for treating AD.
Collapse
Affiliation(s)
- Angelica Jardim Costa
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil
| | - Rafaela Brito Oliveira
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Biological Sciences, Diadema, SP, Brazil; Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, São Paulo, SP, Brazil
| | - Patrícia Wachilewski
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Biological Sciences, Diadema, SP, Brazil; Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, São Paulo, SP, Brazil
| | - Michelle Sayuri Nishino
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Biological Sciences, Diadema, SP, Brazil; Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, São Paulo, SP, Brazil
| | - Taysa Bervian Bassani
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Biological Sciences, Diadema, SP, Brazil; Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, São Paulo, SP, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Janete Maria Cerutti
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Morphology and Genetics, São Paulo, SP, Brazil
| | - Bruno Nozima
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Morphology and Genetics, São Paulo, SP, Brazil
| | - Catarina Segreti Porto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil
| | | | | | - Soraya Soubhi Smaili
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil
| | - Rodrigo Portes Ureshino
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Biological Sciences, Diadema, SP, Brazil; Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, São Paulo, SP, Brazil.
| |
Collapse
|
38
|
Schrevens S, Sanglard D. A novel Candida glabrata doxycycline-inducible system for in vitro/in vivo use. FEMS Yeast Res 2022; 22:6680246. [PMID: 36047937 PMCID: PMC9508828 DOI: 10.1093/femsyr/foac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Candida glabrata is an important pathogen causing superficial to invasive disease in human. Conditional expression systems are helpful in addressing the function of genes and especially when they can be applied to in vivo studies. Tetracycline-dependent regulation systems have been used in diverse fungi to turn-on (Tet-on) or turn-off (Tet-off) gene expression either in vitro but also in vivo in animal models. Up to now, only a Tet-off expression has been constructed for gene expression in C. glabrata. Here, we report a Tet-on gene expression system which can be used in vitro and in vivo in any C. glabrata genetic background. This system was used in a mice model of systemic infection to demonstrate that the general amino acid permease Gap1 is important for C. glabrata virulence.
Collapse
Affiliation(s)
- S Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - D Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
39
|
Mózsik L, Iacovelli R, Bovenberg RAL, Driessen AJM. Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Front Bioeng Biotechnol 2022; 10:901037. [PMID: 35910033 PMCID: PMC9335490 DOI: 10.3389/fbioe.2022.901037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are highly productive cell factories, many of which are industrial producers of enzymes, organic acids, and secondary metabolites. The increasing number of sequenced fungal genomes revealed a vast and unexplored biosynthetic potential in the form of transcriptionally silent secondary metabolite biosynthetic gene clusters (BGCs). Various strategies have been carried out to explore and mine this untapped source of bioactive molecules, and with the advent of synthetic biology, novel applications, and tools have been developed for filamentous fungi. Here we summarize approaches aiming for the expression of endogenous or exogenous natural product BGCs, including synthetic transcription factors, assembly of artificial transcription units, gene cluster refactoring, fungal shuttle vectors, and platform strains.
Collapse
Affiliation(s)
- László Mózsik
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A. L. Bovenberg
- DSM Biotechnology Center, Delft, Netherlands
- Department of Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
40
|
Lewis KT, Oles LR, MacDougald OA. Tetracycline response element driven Cre causes ectopic recombinase activity independent of transactivator element. Mol Metab 2022; 61:101501. [PMID: 35452876 PMCID: PMC9170755 DOI: 10.1016/j.molmet.2022.101501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Tamoxifen is widely used for inducible Cre-LoxP systems but has several undesirable side effects for researchers investigating metabolism or energy balance, including weight loss, lipoatrophy, and drug incorporation into lipid stores. For this reason, we sought to determine whether a doxycycline-inducible system would be more advantageous for adipocyte-specific Cre mouse models, but serendipitously discovered widespread ectopic tetracycline response element Cre (TRE-Cre) recombinase activity. METHODS Adipocyte-specific tamoxifen- and doxycycline-inducible Cre mice were crossed to fluorescent Cre reporter mice and visualized by confocal microscopy to assess efficiency and background activity. TRE-Cre mice were crossed to stop-floxed diphtheria toxin mice to selectively ablate cells with background Cre activity. RESULTS Tamoxifen- and doxycycline-inducible systems performed similarly in adipose tissues, but ectopic Cre recombination was evident in numerous other cell types of the latter, most notably neurons. The source of ectopic Cre activity was isolated to the TRE-Cre transgene, driven by the pTet (tetO7) tetracycline-inducible promoter. Ablation of cells with ectopic recombination in mice led to stunted growth, diminished survival, and reduced brain mass. CONCLUSIONS These results indicate that tamoxifen- and doxycycline-inducible adipocyte-specific Cre mouse models are similarly efficient, but the TRE-Cre component of the latter is inherently leaky. TRE-Cre background activity is especially pronounced in the brain and peripheral nerve fibers, and selective ablation of these cells impairs mouse development and survival. Caution should be taken when pairing TRE-Cre with floxed alleles that have defined roles in neural function, and additional controls should be included when using this model system.
Collapse
Affiliation(s)
- Kenneth T Lewis
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA
| | - Lily R Oles
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA
| | - Ormond A MacDougald
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA; University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
DiAndreth B, Wauford N, Hu E, Palacios S, Weiss R. PERSIST platform provides programmable RNA regulation using CRISPR endoRNases. Nat Commun 2022; 13:2582. [PMID: 35562172 PMCID: PMC9095627 DOI: 10.1038/s41467-022-30172-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Regulated transgene expression is an integral component of gene therapies, cell therapies and biomanufacturing. However, transcription factor-based regulation, upon which most applications are based, suffers from complications such as epigenetic silencing that limit expression longevity and reliability. Constitutive transgene transcription paired with post-transcriptional gene regulation could combat silencing, but few such RNA- or protein-level platforms exist. Here we develop an RNA-regulation platform we call "PERSIST" which consists of nine CRISPR-specific endoRNases as RNA-level activators and repressors as well as modular OFF- and ON-switch regulatory motifs. We show that PERSIST-regulated transgenes exhibit strong OFF and ON responses, resist silencing for at least two months, and can be readily layered to construct cascades, logic functions, switches and other sophisticated circuit topologies. The orthogonal, modular and composable nature of this platform as well as the ease in constructing robust and predictable gene circuits promises myriad applications in gene and cell therapies.
Collapse
Affiliation(s)
- Breanna DiAndreth
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Noreen Wauford
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eileen Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
42
|
Peng Y, Tsuno Y, Matsui A, Hiraoka Y, Tanaka K, Horike SI, Daikoku T, Mieda M. Cell Type-Specific Genetic Manipulation and Impaired Circadian Rhythms in ViptTA Knock-In Mice. Front Physiol 2022; 13:895633. [PMID: 35592033 PMCID: PMC9110775 DOI: 10.3389/fphys.2022.895633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
The suprachiasmatic nucleus (SCN), the central circadian clock in mammals, is a neural network consisting of various types of GABAergic neurons, which can be differentiated by the co-expression of specific peptides such as vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP). VIP has been considered as a critical factor for the circadian rhythmicity and synchronization of individual SCN neurons. However, the precise mechanisms of how VIP neurons regulate SCN circuits remain incompletely understood. Here, we generated ViptTA knock-in mice that express tetracycline transactivator (tTA) specifically in VIP neurons by inserting tTA sequence at the start codon of Vip gene. The specific and efficient expression of tTA in VIP neurons was verified using EGFP reporter mice. In addition, combined with Avp-Cre mice, ViptTA mice enabled us to simultaneously apply different genetic manipulations to VIP and AVP neurons in the SCN. Immunostaining showed that VIP is expressed at a slightly reduced level in heterozygous ViptTA mice but is completely absent in homozygous mice. Consistently, homozygous ViptTA mice showed impaired circadian behavioral rhythms similar to those of Vip knockout mice, such as attenuated rhythmicity and shortened circadian period. In contrast, heterozygous mice demonstrated normal circadian behavioral rhythms comparable to wild-type mice. These data suggest that ViptTA mice are a valuable genetic tool to express exogenous genes specifically in VIP neurons in both normal and VIP-deficient mice, facilitating the study of VIP neuronal roles in the SCN neural network.
Collapse
Affiliation(s)
- Yubo Peng
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayako Matsui
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shin-ichi Horike
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- *Correspondence: Michihiro Mieda,
| |
Collapse
|
43
|
Characterization of an immune-evading doxycycline-inducible lentiviral vector for gene therapy in the spinal cord. Exp Neurol 2022; 355:114120. [DOI: 10.1016/j.expneurol.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
|
44
|
Engineering of Synthetic Transcriptional Switches in Yeast. Life (Basel) 2022; 12:life12040557. [PMID: 35455048 PMCID: PMC9030632 DOI: 10.3390/life12040557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional switches can be utilized for many purposes in synthetic biology, including the assembly of complex genetic circuits to achieve sophisticated cellular systems and the construction of biosensors for real-time monitoring of intracellular metabolite concentrations. Although to date such switches have mainly been developed in prokaryotes, those for eukaryotes are increasingly being reported as both rational and random engineering technologies mature. In this review, we describe yeast transcriptional switches with different modes of action and how to alter their properties. We also discuss directed evolution technologies for the rapid and robust construction of yeast transcriptional switches.
Collapse
|
45
|
Kar S, Bordiya Y, Rodriguez N, Kim J, Gardner EC, Gollihar JD, Sung S, Ellington AD. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. PLANT METHODS 2022; 18:42. [PMID: 35351174 PMCID: PMC8966344 DOI: 10.1186/s13007-022-00867-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. RESULTS A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. CONCLUSIONS The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.
Collapse
Affiliation(s)
- Shaunak Kar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| | - Yogendra Bordiya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, TX, USA
| | - Nestor Rodriguez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Junghyun Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Sibum Sung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
46
|
Sparn C, Dimou E, Meyer A, Saleppico R, Wegehingel S, Gerstner M, Klaus S, Ewers H, Nickel W. Glypican-1 drives unconventional secretion of Fibroblast Growth Factor 2. eLife 2022; 11:75545. [PMID: 35348113 PMCID: PMC8986318 DOI: 10.7554/elife.75545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fibroblast Growth Factor 2 (FGF2) is a tumor cell survival factor that is transported into the extracellular space by an unconventional secretory mechanism. Cell surface heparan sulfate proteoglycans are known to play an essential role in this process. Unexpectedly, we found that among the diverse sub-classes consisting of syndecans, perlecans, glypicans and others, Glypican-1 (GPC1) is the principle and rate-limiting factor that drives unconventional secretion of FGF2. By contrast, we demonstrate GPC1 to be dispensable for FGF2 signaling into cells. We provide first insights into the structural basis for GPC1-dependent FGF2 secretion, identifying disaccharides with N-linked sulfate groups to be enriched in the heparan sulfate chains of GPC1 to which FGF2 binds with high affinity. Our findings have broad implications for the role of GPC1 as a key molecule in tumor progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Helge Ewers
- Institut für Chemie und Biochemie, Freie Universität Berlin
| | | |
Collapse
|
47
|
Jaako P, Faille A, Tan S, Wong CC, Escudero-Urquijo N, Castro-Hartmann P, Wright P, Hilcenko C, Adams DJ, Warren AJ. eIF6 rebinding dynamically couples ribosome maturation and translation. Nat Commun 2022; 13:1562. [PMID: 35322020 PMCID: PMC8943182 DOI: 10.1038/s41467-022-29214-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Protein synthesis is a cyclical process consisting of translation initiation, elongation, termination and ribosome recycling. The release factors SBDS and EFL1—both mutated in the leukemia predisposition disorder Shwachman-Diamond syndrome — license entry of nascent 60S ribosomal subunits into active translation by evicting the anti-association factor eIF6 from the 60S intersubunit face. We find that in mammalian cells, eIF6 holds all free cytoplasmic 60S subunits in a translationally inactive state and that SBDS and EFL1 are the minimal components required to recycle these 60S subunits back into additional rounds of translation by evicting eIF6. Increasing the dose of eIF6 in mice in vivo impairs terminal erythropoiesis by sequestering post-termination 60S subunits in the cytoplasm, disrupting subunit joining and attenuating global protein synthesis. These data reveal that ribosome maturation and recycling are dynamically coupled by a mechanism that is disrupted in an inherited leukemia predisposition disorder. Jaako et al. discover a conserved tier of translational control that dynamically couples ribosome assembly and recycling. This mechanism is corrupted in an inherited bone marrow failure disorder associated with an increased risk of blood cancer.
Collapse
Affiliation(s)
- Pekka Jaako
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Alexandre Faille
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Shengjiang Tan
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Chi C Wong
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - Norberto Escudero-Urquijo
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Pablo Castro-Hartmann
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Penny Wright
- Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK. .,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. .,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| |
Collapse
|
48
|
An operator-based expression toolkit for Bacillus subtilis enables fine-tuning of gene expression and biosynthetic pathway regulation. Proc Natl Acad Sci U S A 2022; 119:e2119980119. [PMID: 35263224 PMCID: PMC8931375 DOI: 10.1073/pnas.2119980119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A gene regulatory system is an important tool for the engineering of biosynthetic pathways of organisms. Here, we report the development of an inducible-ON/OFF regulatory system using a malO operator as a key element. We identified and modulated sequence, position, numbers, and spacing distance of malO operators, generating a series of activating or repressive promoters with tunable strength. The stringency and robustness are both guaranteed in this system, a maximal induction factor of 790-fold was achieved, and nine proteins from different organisms were expressed with high yields. This system can be utilized as a gene switch, promoter enhancer, or metabolic valve in synthetic biology applications. This operator-based engineering strategy can be employed for developing similar regulatory systems in different microorganisms. Genetic elements are key components of metabolic engineering and synthetic biological applications, allowing the development of organisms as biosensors and for manufacturing valuable chemicals and protein products. In contrast to the gram-negative model bacterium Escherichia coli, the gram-positive model bacterium Bacillus subtilis lacks such elements with precise and flexible characteristics, which is a great barrier to employing B. subtilis for laboratory studies and industrial applications. Here, we report the development of a malO-based genetic toolbox that is derived from the operator box in the malA promoter, enabling gene regulation via compatible “ON” and “OFF” switches. This engineered toolbox combines promoter-based mutagenesis and host-specific metabolic engineering of transactivation components upon maltose induction to achieve stringent, robust, and homogeneous gene regulation in B. subtilis. We further demonstrate the synthetic biological applications of the toolbox by utilizing these genetic elements as a gene switch, a promoter enhancer, and an ON-OFF dual-control device in biosynthetic pathway optimization. Collectively, this regulatory system provides a comprehensive genetic toolbox for controlling the expression of genes in biosynthetic pathways and regulatory networks to optimize the production of valuable chemicals and proteins in B. subtilis.
Collapse
|
49
|
Ashoti A, Limone F, van Kranenburg M, Alemany A, Baak M, Vivié J, Piccioni F, Dijkers PF, Creyghton M, Eggan K, Geijsen N. Considerations and practical implications of performing a phenotypic CRISPR/Cas survival screen. PLoS One 2022; 17:e0263262. [PMID: 35176052 PMCID: PMC8853573 DOI: 10.1371/journal.pone.0263262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Genome-wide screens that have viability as a readout have been instrumental to identify essential genes. The development of gene knockout screens with the use of CRISPR-Cas has provided a more sensitive method to identify these genes. Here, we performed an exhaustive genome-wide CRISPR/Cas9 phenotypic rescue screen to identify modulators of cytotoxicity induced by the pioneer transcription factor, DUX4. Misexpression of DUX4 due to a failure in epigenetic repressive mechanisms underlies facioscapulohumeral muscular dystrophy (FHSD), a complex muscle disorder that thus far remains untreatable. As the name implies, FSHD generally starts in the muscles of the face and shoulder girdle. Our CRISPR/Cas9 screen revealed no key effectors other than DUX4 itself that could modulate DUX4 cytotoxicity, suggesting that treatment efforts in FSHD should be directed towards direct modulation of DUX4 itself. Our screen did however reveal some rare and unexpected genomic events, that had an important impact on the interpretation of our data. Our findings may provide important considerations for planning future CRISPR/Cas9 phenotypic survival screens.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Cell Survival
- Gene Expression Regulation
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Muscle Cells/metabolism
- Muscle Cells/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Myoblasts/metabolism
- Myoblasts/pathology
Collapse
Affiliation(s)
- Ator Ashoti
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- * E-mail: (AA); (FL); (NG); (KE)
| | - Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University Cambridge, MA, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- * E-mail: (AA); (FL); (NG); (KE)
| | - Melissa van Kranenburg
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Anna Alemany
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Mirna Baak
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Judith Vivié
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- Single Cell Discoveries, Utrecht, The Netherlands
| | | | - Pascale F. Dijkers
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Menno Creyghton
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University Cambridge, MA, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- * E-mail: (AA); (FL); (NG); (KE)
| | - Niels Geijsen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- * E-mail: (AA); (FL); (NG); (KE)
| |
Collapse
|
50
|
Lusk SJ, McKinney A, Hunt PJ, Fahey PG, Patel J, Chang A, Sun JJ, Martinez VK, Zhu PJ, Egbert JR, Allen G, Jiang X, Arenkiel BR, Tolias AS, Costa-Mattioli M, Ray RS. A CRISPR toolbox for generating intersectional genetic mouse models for functional, molecular, and anatomical circuit mapping. BMC Biol 2022; 20:28. [PMID: 35086530 PMCID: PMC8796356 DOI: 10.1186/s12915-022-01227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The functional understanding of genetic interaction networks and cellular mechanisms governing health and disease requires the dissection, and multifaceted study, of discrete cell subtypes in developing and adult animal models. Recombinase-driven expression of transgenic effector alleles represents a significant and powerful approach to delineate cell populations for functional, molecular, and anatomical studies. In addition to single recombinase systems, the expression of two recombinases in distinct, but partially overlapping, populations allows for more defined target expression. Although the application of this method is becoming increasingly popular, its experimental implementation has been broadly restricted to manipulations of a limited set of common alleles that are often commercially produced at great expense, with costs and technical challenges associated with production of intersectional mouse lines hindering customized approaches to many researchers. Here, we present a simplified CRISPR toolkit for rapid, inexpensive, and facile intersectional allele production. RESULTS Briefly, we produced 7 intersectional mouse lines using a dual recombinase system, one mouse line with a single recombinase system, and three embryonic stem (ES) cell lines that are designed to study the way functional, molecular, and anatomical features relate to each other in building circuits that underlie physiology and behavior. As a proof-of-principle, we applied three of these lines to different neuronal populations for anatomical mapping and functional in vivo investigation of respiratory control. We also generated a mouse line with a single recombinase-responsive allele that controls the expression of the calcium sensor Twitch-2B. This mouse line was applied globally to study the effects of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on calcium release in the ovarian follicle. CONCLUSIONS The lines presented here are representative examples of outcomes possible with the successful application of our genetic toolkit for the facile development of diverse, modifiable animal models. This toolkit will allow labs to create single or dual recombinase effector lines easily for any cell population or subpopulation of interest when paired with the appropriate Cre and FLP recombinase mouse lines or viral vectors. We have made our tools and derivative intersectional mouse and ES cell lines openly available for non-commercial use through publicly curated repositories for plasmid DNA, ES cells, and transgenic mouse lines.
Collapse
Affiliation(s)
- Savannah J Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew McKinney
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jay Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andersen Chang
- Department of Statistics, Rice University, Houston, TX, USA
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Vena K Martinez
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut, Farmington, CT, USA
| | - Genevera Allen
- Department of Statistics, Computer Science, and Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Houston, TX, USA.
| |
Collapse
|