1
|
Nagashima H, Shayne J, Jiang K, Petermann F, Pękowska A, Kanno Y, O'Shea JJ. Remodeling of Il4-Il13-Il5 locus underlies selective gene expression. Nat Immunol 2024; 25:2220-2233. [PMID: 39567762 DOI: 10.1038/s41590-024-02007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
The type 2 cytokines, interleukin (IL)-4, IL-13 and IL-5 reside within a multigene cluster. Both innate (ILC2) and adaptive T helper 2 (TH2) lymphocytes secrete type 2 cytokines with diverse production spectra. Using transcription factor footprint and chromatin accessibility, we systemically cataloged regulatory elements (REs) denoted as SHS-I/II, KHS-I/II, +6.5kbIl13, 5HS-I(a, b, c, d, e), 5HS-II and 5HS-III(a, b, c) across the extended Il4-Il13-Il5 locus in mice. Physical proximities among REs were coordinately remodeled in three-dimensional space after cell activation, leading to divergent compartmentalization of Il4, Il13 and Il5 with varied combinations of REs. Deletions of REs revealed no single RE solely accounted for selective regulation of a given cytokine in vivo. Instead, individual RE differentially contribute to proper genomic positioning of REs and target genes. RE deletions resulted in context-dependent dysregulation of cytokine expression and immune response in tissue. Thus, signal-dependent remodeling of three-dimensional configuration underlies divergent cytokine outputs from the type 2 loci.
Collapse
Affiliation(s)
| | - Justin Shayne
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Franziska Petermann
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
- NGS Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Aleksandra Pękowska
- Genomics and Immunity Section, NIAMS, NIH, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Liu S, Cao Y, Cui K, Ren G, Zhao T, Wang X, Wei D, Chen Z, Gurram RK, Liu C, Wu C, Zhu J, Zhao K. Regulation of T helper cell differentiation by the interplay between histone modification and chromatin interaction. Immunity 2024; 57:987-1004.e5. [PMID: 38614090 PMCID: PMC11096031 DOI: 10.1016/j.immuni.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tingting Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuezheng Wang
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Davis MJ, Martin RE, Pinheiro GM, Hoke ES, Moyer S, Ueno K, Rodriguez-Gil JL, Mallett MA, Khillan JS, Pavan WJ, Chang YC, Kwon-Chung KJ. Inbred SJL mice recapitulate human resistance to Cryptococcus infection due to differential immune activation. mBio 2023; 14:e0212323. [PMID: 37800917 PMCID: PMC10653822 DOI: 10.1128/mbio.02123-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Cryptococcosis studies often utilize the common C57BL/6J mouse model. Unfortunately, infection in these mice fails to replicate the basic course of human disease, particularly hampering immunological studies. This work demonstrates that SJL/J mice can recapitulate human infection better than other mouse strains. The immunological response to Cryptococcus infection in SJL/J mice was markedly different from C57BL/6J and much more productive in combating this infection. Characterization of infected mice demonstrated strain-specific genetic linkage and differential regulation of multiple important immune-relevant genes in response to Cryptococcus infection. While our results validate many of the previously identified immunological features of cryptococcosis, we also demonstrate limitations from previous mouse models as they may be less translatable to human disease. We concluded that SJL/J mice more faithfully recapitulate human cryptococcosis serving as an exciting new animal model for immunological and genetic studies.
Collapse
Affiliation(s)
- M. J. Davis
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - R. E. Martin
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - G. M. Pinheiro
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - E. S. Hoke
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - S. Moyer
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - K. Ueno
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - J. L. Rodriguez-Gil
- Genomics, Development and Disease Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - M. A. Mallett
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - J. S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - W. J. Pavan
- Genomics, Development and Disease Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Y. C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - K. J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
4
|
Bhat S, Rotti H, Prasad K, Kabekkodu SP, Saadi AV, Shenoy SP, Joshi KS, Nesari TM, Shengule SA, Dedge AP, Gadgil MS, Dhumal VR, Salvi S, Satyamoorthy K. Genome-wide DNA methylation profiling after Ayurveda intervention to bronchial asthmatics identifies differential methylation in several transcription factors with immune process related function. J Ayurveda Integr Med 2023; 14:100692. [PMID: 37018893 PMCID: PMC10122039 DOI: 10.1016/j.jaim.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/13/2022] [Accepted: 02/01/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The Indian traditional medicinal system, Ayurveda, describes several lifestyle practices, processes and medicines as an intervention to treat asthma. Rasayana therapy is one of them and although these treatment modules show improvement in bronchial asthma, their mechanism of action, particularly the effect on DNA methylation, is largely understudied. OBJECTIVES Our study aimed at identifying the contribution of DNA methylation changes in modulating bronchial asthma phenotype upon Ayurveda intervention. MATERIALS AND METHODS In this study, genome-wide methylation profiling in peripheral blood DNA of healthy controls and bronchial asthmatics before (BT) and after (AT) Ayurveda treatment was performed using array-based profiling of reference-independent methylation status (aPRIMES) coupled to microarray technique. RESULTS We identified 4820 treatment-associated DNA methylation signatures (TADS) and 11,643 asthma-associated DNA methylation signatures (AADS), differentially methylated [FDR (≤0.1) adjusted p-values] in AT and HC groups respectively, compared to BT group. Neurotrophin TRK receptor signaling pathway was significantly enriched for differentially methylated genes in bronchial asthmatics, compared to AT and HC subjects. Additionally, we identified over 100 differentially methylated immune-related genes located in the promoter/5'-UTR regions of TADS and AADS. Various immediate-early response and immune regulatory genes with functions such as transcription factor activity (FOXD1, FOXD2, GATA6, HOXA3, HOXA5, MZF1, NFATC1, NKX2-2, NKX2-3, RUNX1, KLF11), G-protein coupled receptor activity (CXCR4, PTGER4), G-protein coupled receptor binding (UCN), DNA binding (JARID2, EBF2, SOX9), SNARE binding (CAPN10), transmembrane signaling receptor activity (GP1BB), integrin binding (ITGA6), calcium ion binding (PCDHGA12), actin binding (TRPM7, PANX1, TPM1), receptor tyrosine kinase binding (PIK3R2), receptor activity (GDNF), histone methyltransferase activity (MLL5), and catalytic activity (TSTA3) were found to show consistent methylation status between AT and HC group in microarray data. CONCLUSIONS Our study reports the DNA methylation-regulated genes in bronchial asthmatics showing improvement in symptoms after Ayurveda intervention. DNA methylation regulation in the identified genes and pathways represents the Ayurveda intervention responsive genes and may be further explored as diagnostic, prognostic, and therapeutic biomarkers for bronchial asthma in peripheral blood.
Collapse
Affiliation(s)
- Smitha Bhat
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Harish Rotti
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sushma P Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kalpana S Joshi
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Tanuja M Nesari
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sushant A Shengule
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Amrish P Dedge
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Maithili S Gadgil
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Vikram R Dhumal
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sundeep Salvi
- Department of Pulmonary Medicine, Chest Research Foundation, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
5
|
Lee GR. Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization. Immune Netw 2023; 23:e4. [PMID: 36911803 PMCID: PMC9995992 DOI: 10.4110/in.2023.23.e4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 03/07/2023] Open
Abstract
Th cells, which orchestrate immune responses to various pathogens, differentiate from naïve CD4 T cells into several subsets that stimulate and regulate immune responses against various types of pathogens, as well as a variety of immune-related diseases. Decades of research have revealed that the fate decision processes are controlled by cytokines, cytokine receptor signaling, and master transcription factors that drive the differentiation programs. Since the Th1 and Th2 paradigm was proposed, many subsets have been added to the list. In this review, I will summarize these events, including the fate decision processes, subset functions, transcriptional regulation, metabolic regulation, and plasticity and heterogeneity. I will also introduce current topics of interest.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea
| |
Collapse
|
6
|
Panganiban RA, Lu Q. A Long Non-Coding RNA "lnc"ed to Asthma Genetics. Am J Respir Cell Mol Biol 2022; 66:243-244. [PMID: 35030310 PMCID: PMC8937238 DOI: 10.1165/rcmb.2021-0534ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ronald A Panganiban
- Harvard University T H Chan School of Public Health, 1857, Boston, Massachusetts, United States
| | - Quan Lu
- Harvard University T H Chan School of Public Health, 1857, Boston, Massachusetts, United States;
| |
Collapse
|
7
|
Li YK, Zhang XX, Yang Y, Gao J, Shi Q, Liu SD, Fu WP, Sun C. Convergent Evidence Supports TH2LCRR as a Novel Asthma Susceptibility Gene. Am J Respir Cell Mol Biol 2021; 66:283-292. [PMID: 34851809 DOI: 10.1165/rcmb.2020-0481oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asthma is a common complex disease with apparent genetic predispositions, and previous genome-wide association studies suggest that rs1295686 within the IL13 (interleukin 13) gene is significantly associated with asthma. Analysis of the data provided by the 1000 Genomes Project indicated that there are additional four SNPs in nearly complete linkage disequilibrium with rs1295686 in Caucasians. However, the causal SNPs and the associated mechanism remain unclear. To investigate this issue, functional genomics approaches were utilized to analyze the functions of these SNPs. Dual-luciferase assays indicated that the functional SNP is not rs1295686 but a haplotype consisting of other three SNPs, rs1295685, rs848 and rs847. Through chromosome conformation capture, it was found that the enhancer containing the three functional SNPs interacts with the promoter of TH2LCRR (T helper type 2 locus control region associated RNA), a recently identified long non-coding RNA. RNA-seq data analysis indicated that TH2LCRR expression is significantly increased in asthma patients and is dependent on the genotype at this locus, indicating that TH2LCRR is a novel susceptibility gene for asthma and that these SNPs confer asthma risk by regulating TH2LCRR expression. By chromatin immunoprecipitation, the related transcription factors that bind in the region surrounding these three SNPs were identified, and their interactions were investigated by functional genomics approaches. Our effort identified a novel mechanism through which genetic variations at this locus could influence asthma susceptibility.
Collapse
Affiliation(s)
- Yi-Kun Li
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Xin-Xin Zhang
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Yuan Yang
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Jing Gao
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Qiang Shi
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Shao-Dong Liu
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China
| | - Wei-Ping Fu
- Kunming Medical University First Affilliated Hospital, 36657, Kunming, China
| | - Chang Sun
- Shaanxi Normal University, 12401, College of Life Sciences, Xi'an, China;
| |
Collapse
|
8
|
Abstract
The regulatory circuits that define developmental decisions of thymocytes are still incompletely resolved. SATB1 protein is predominantly expressed at the CD4+CD8+cell stage exerting its broad transcription regulation potential with both activatory and repressive roles. A series of post-translational modifications and the presence of potential SATB1 protein isoforms indicate the complexity of its regulatory potential. The most apparent mechanism of its involvement in gene expression regulation is via the orchestration of long-range chromatin loops between genes and their regulatory elements. Multiple SATB1 perturbations in mice uncovered a link to autoimmune diseases while clinical investigations on cancer research uncovered that SATB1 has a promoting role in several types of cancer and can be used as a prognostic biomarker. SATB1 is a multivalent tissue-specific factor with a broad and yet undetermined regulatory potential. Future investigations on this protein could further uncover T cell-specific regulatory pathways and link them to (patho)physiology.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| |
Collapse
|
9
|
Gowthaman U, Chen JS, Eisenbarth SC. Regulation of IgE by T follicular helper cells. J Leukoc Biol 2020; 107:409-418. [PMID: 31965637 DOI: 10.1002/jlb.3ri1219-425r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
Allergies to food and environmental antigens have steeply grown to epidemic proportions. IgE antibodies are key mediators of allergic disease, including life-threatening anaphylaxis. There is now compelling evidence that one of the hallmarks of anaphylaxis-inducing IgE molecules is their high affinity for allergen, and the cellular pathway to high-affinity IgE is typically through sequential switching of IgG B cells. Further, in contrast to the previously held paradigm that a subset of CD4+ T cells called Th2 cells promotes IgE responses, recent studies suggest that T follicular helper cells are crucial for inducing anaphylactic IgE. Here we discuss recent studies that have enabled us to understand the nature, induction, and regulation of this enigmatic antibody isotype in allergic sensitization.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Gowthaman U, Chen JS, Zhang B, Flynn WF, Lu Y, Song W, Joseph J, Gertie JA, Xu L, Collet MA, Grassmann JDS, Simoneau T, Chiang D, Berin MC, Craft JE, Weinstein JS, Williams A, Eisenbarth SC. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 2019; 365:science.aaw6433. [PMID: 31371561 PMCID: PMC6901029 DOI: 10.1126/science.aaw6433] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
Cross-linking of high-affinity immunoglobulin E (IgE) results in the life-threatening allergic reaction anaphylaxis. Yet the cellular mechanisms that induce B cells to produce IgE in response to allergens remain poorly understood. T follicular helper (TFH) cells direct the affinity and isotype of antibodies produced by B cells. Although TFH cell-derived interleukin-4 (IL-4) is necessary for IgE production, it is not sufficient. We report a rare population of IL-13-producing TFH cells present in mice and humans with IgE to allergens, but not when allergen-specific IgE was absent or only low-affinity. These "TFH13" cells have an unusual cytokine profile (IL-13hiIL-4hiIL-5hiIL-21lo) and coexpress the transcription factors BCL6 and GATA3. TFH13 cells are required for production of high- but not low-affinity IgE and subsequent allergen-induced anaphylaxis. Blocking TFH13 cells may represent an alternative therapeutic target to ameliorate anaphylaxis.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Biyan Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Yisi Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Magalie A Collet
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | - Tregony Simoneau
- The Asthma Center, CT Children's Medical Center, Hartford, CT 06106, USA
| | - David Chiang
- Jaffe Food Allergy Institute and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph E Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA. .,The Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
11
|
A conserved enhancer regulates Il9 expression in multiple lineages. Nat Commun 2018; 9:4803. [PMID: 30442929 PMCID: PMC6237898 DOI: 10.1038/s41467-018-07202-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cytokine genes are regulated by multiple regulatory elements that confer tissue-specific and activation-dependent expression. The cis-regulatory elements of the gene encoding IL-9, a cytokine that promotes allergy, autoimmune inflammation and tumor immunity, have not been defined. Here we identify an enhancer (CNS-25) upstream of the Il9 gene that binds most transcription factors (TFs) that promote Il9 gene expression. Deletion of the enhancer in the mouse germline alters transcription factor binding to the remaining Il9 regulatory elements, and results in diminished IL-9 production in multiple cell types including Th9 cells, and attenuates IL-9-dependent immune responses. Moreover, deletion of the homologous enhancer (CNS-18) in primary human Th9 cultures results in significant decrease of IL-9 production. Thus, Il9 CNS-25/IL9 CNS-18 is a critical and conserved regulatory element for IL-9 production. Interleukin-9 (IL-9) is important for allergy, autoimmunity and tumor immunity, but how its expression is regulated is unclear. Here the authors show the essential function of an enhancer, CNS-25 in mouse and CNS-18 in human, for IL-9 expression, with the deletion of this enhancer severely hampering IL-9 production in mice or human cells.
Collapse
|
12
|
Hwang SS, Jang SW, Lee KO, Kim HS, Lee GR. RHS6 coordinately regulates the Th2 cytokine genes by recruiting GATA3, SATB1, and IRF4. Allergy 2017; 72:772-782. [PMID: 27878828 DOI: 10.1111/all.13078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Asthma is a Th2 cell-driven inflammatory disease and a major public health concern. The cis-acting element Rad50 hypersensitive site 6 (RHS6) in the Th2 locus control region is essential for regulation of the Th2 cytokine genes; however, its role in allergic airway inflammation and underlying molecular mechanisms of the regulation by RHS6 are poorly understood. OBJECTIVE We sought to understand the role of RHS6 in the development of allergic airway inflammation and its molecular mechanism for Th2 cytokine expression. METHODS We used an ovalbumin-induced allergic inflammation model with RHS6-deficient mice to examine the role of RHS6 in this process. To examine molecular mechanism of RHS6 for Th2 cytokine expression, we used DNA affinity chromatography and mass spectrometry, quantitative RT-PCR, ELISA, intracellular cytokine staining, chromatin immunoprecipitation, and co-immunoprecipitation. RESULTS Deletion of RHS6 caused a dramatic resistance to allergic airway inflammation. RHS6 recruited transcription factors GATA3, SATB1, and IRF4, which play important roles in expression of all three Th2 cytokine genes. RHS6 deficiency caused inhibition of transcription factor-induced Th2 cytokine gene expression. CONCLUSION RHS6 is a critical regulatory element for allergic airway inflammation and for coordinate regulation of Th2 cytokine genes by recruiting GATA3, SATB1, and IRF4.
Collapse
Affiliation(s)
- S. S. Hwang
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| | - S. W. Jang
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| | - K. O. Lee
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| | - H. S. Kim
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| | - G. R. Lee
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| |
Collapse
|
13
|
Affiliation(s)
- C H Flayer
- Pulmonary, Critical Care and Sleep Medicine, Translational Lung Biology Center, University of California, Davis, Davis, CA, USA
| | - A Haczku
- Pulmonary, Critical Care and Sleep Medicine, Translational Lung Biology Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
14
|
Xia Y, Yang J, Wang G, Li C, Li Q. Age-Related Changes in DNA Methylation Associated with Shifting Th1/Th2 Balance. Inflammation 2017; 39:1892-1903. [PMID: 27650651 DOI: 10.1007/s10753-016-0425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study was conducted in order to explore age-related changes in the production of Th1 and Th2 cytokines and determine the corresponding status of DNA methylation. The plasma IL-4 and IFN-γ levels and expression of Th-related cytokines and transcription factors in CD4+ splenocytes were observed in mice at different weeks of age. The DNA methylation levels of IL-4 and IFN-γ promoters and the related regulatory regions in CD4+ splenocytes of mice at different weeks of age were analyzed. The DNA methyltransferase (DNMT) levels in CD4+ splenocytes of mice were analyzed. Changes in plasma IL-4 and IFN-γ levels after 5-AZA injection were evaluated. Plasma IL-4 and IL-4 expression in CD4+ splenocytes declined with increasing age, while the IFN-γ expression levels increased. Th-related transcription factors showed no differences in mice at different weeks of age. The DNMT1 and DNMT3b mRNA expression did not show significant changes in CD4+ splenocytes, whereas the DNMT3a mRNA expression increased with age. DNA methylation in the IL-4 promoter was increased, while DNA methylation in the IFN-γ promoter was decreased. The methylation of RSH7, CNS-1, and HSV increased significantly with age. Age-related changes in DNA methylation may be associated with the shift in Th1/Th2 balance.
Collapse
Affiliation(s)
- Yu Xia
- Department of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jun Yang
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, 518026, Guangdong, China
| | - Guobin Wang
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, 518026, Guangdong, China
| | - Chengrong Li
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, 518026, Guangdong, China.
| | - Qiu Li
- Department of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
15
|
Hwang SS, Jang SW, Lee GR. RHS6-mediated chromosomal looping and nuclear substructure binding is required for Th2 cytokine gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:383-391. [PMID: 28132936 DOI: 10.1016/j.bbagrm.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 12/24/2022]
Abstract
Subset-specific gene expression is a critical feature of CD4 T cell differentiation. Th2 cells express Th2 cytokine genes including Il4, Il5, and Il13 and mediate the immune response against helminths. The expression of Th2 cytokine genes is regulated by Rad50 hypersensitive site 6 (RHS6) in the Th2 locus control region; however, the molecular mechanisms of RHS6 action at the chromatin level are poorly understood. Here, we demonstrate that RHS6 is crucial for chromosomal interactions and nuclear substructure binding of the Th2 cytokine locus. RHS6-deficient cells had a marked reduction in chromatin remodeling and in intrachromosomal interactions at the Th2 locus. Deficiency of RHS6-binding transcription factors GATA3, SATB1, and IRF4 also caused a great reduction in chromatin remodeling and long-range chromosomal interactions involving the Th2 locus. RHS6 deficiency abrogated association of the Th2 locus with the nuclear substructure and RNA polymerase II. Therefore, RHS6 serves as a crucial cis-acting hub for coordinate regulation of Th2 cytokine genes by forming chromosomal loops and binding to a nuclear substructure.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sung Woong Jang
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
16
|
Bao K, Carr T, Wu J, Barclay W, Jin J, Ciofani M, Reinhardt RL. BATF Modulates the Th2 Locus Control Region and Regulates CD4+ T Cell Fate during Antihelminth Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:4371-4381. [PMID: 27798167 DOI: 10.4049/jimmunol.1601371] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022]
Abstract
The AP-1 factor basic leucine zipper transcription factor, ATF-like (BATF) is important for CD4+ Th17, Th9, and follicular Th cell development. However, its precise role in Th2 differentiation and function remains unclear, and the requirement for BATF in nonallergic settings of type-2 immunity has not been explored. In this article, we show that, in response to parasitic helminths, Batf-/- mice are unable to generate follicular Th and Th2 cells. As a consequence, they fail to establish productive type-2 immunity during primary and secondary infection. Batf-/- CD4+ T cells do not achieve type-2 cytokine competency, which implies that BATF plays a key role in the regulation of IL-4 and IL-13. In contrast to Th17 and Th9 cell subsets in which BATF binds directly to promoter and enhancer regions to regulate cytokine expression, our results show that BATF is significantly enriched at Rad50 hypersensitivity site (RHS)6 and RHS7 of the locus control region relative to AP-1 sites surrounding type-2 cytokine loci in Th2 cells. Indeed, Batf-/- CD4+ T cells do not obtain permissive epigenetic modifications within the Th2 locus, which were linked to RHS6 and RHS7 function. In sum, these findings reveal BATF as a central modulator of peripheral and humoral hallmarks of type-2 immunity and begin to elucidate a novel mechanism by which it regulates type-2 cytokine production through its modification of the Th2 locus control region.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Tiffany Carr
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - William Barclay
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Jingxiao Jin
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Maria Ciofani
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - R Lee Reinhardt
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
17
|
Hwang SS, Kim LK, Lee GR, Flavell RA. Role of OCT-1 and partner proteins in T cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:825-31. [PMID: 27126747 DOI: 10.1016/j.bbagrm.2016.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 135-720, South Korea
| | - Gap Ryol Lee
- Department of Life-Science, Sogang University, Baekbeom-ro, Seoul 121-742, South Korea
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Kim K, Kim N, Lee GR. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region. PLoS One 2016; 11:e0148576. [PMID: 26840450 PMCID: PMC4740509 DOI: 10.1371/journal.pone.0148576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
The T helper type 2 (Th2) locus control region (LCR) regulates Th2 cell differentiation. Several transcription factors bind to the LCR to modulate the expression of Th2 cytokine genes, but the molecular mechanisms behind Th2 cytokine gene regulation are incompletely understood. Here, we used database analysis and an oligonucleotide competition/electrophoretic mobility shift assays to search for transcription factors binding to RHS5, a DNase I hypersensitive site (DHS) within the Th2 LCR. Consequently, we demonstrated that GATA-binding protein-3 (GATA-3), E26 transformation-specific protein 1 (Ets-1), octamer transcription factor-1 (Oct-1), and Oct-2 selectively associate with RHS5. Furthermore, chromatin immunoprecipitation and luciferase reporter assays showed that Oct-1 and Oct-2 bound within the Il4 promoter region and the Th2 LCR, and that Oct-1 and GATA-3 or Oct-2 synergistically triggered the transactivational activity of the Il4 promoter through RHS5. These results suggest that Oct-1 and GATA-3/Oct-2 direct Th2 cytokine gene expression in a cooperative manner.
Collapse
Affiliation(s)
- Kiwan Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Najung Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
19
|
Regulation of IL-4 Expression in Immunity and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:31-77. [PMID: 27734408 DOI: 10.1007/978-94-024-0921-5_3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-4 was first identified as a T cell-derived growth factor for B cells. Studies over the past several decades have markedly expanded our understanding of its cellular sources and function. In addition to T cells, IL-4 is produced by innate lymphocytes, such as NTK cells, and myeloid cells, such as basophils and mast cells. It is a signature cytokine of type 2 immune response but also has a nonimmune function. Its expression is tightly regulated at several levels, including signaling pathways, transcription factors, epigenetic modifications, microRNA, and long noncoding RNA. This chapter will review in detail the molecular mechanism regulating the cell type-specific expression of IL-4 in physiological and pathological type 2 immune responses.
Collapse
|
20
|
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 2015; 75:25-37. [PMID: 26073683 DOI: 10.1016/j.cyto.2015.05.008] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States
| | - R Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
21
|
Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75:14-24. [PMID: 26044597 DOI: 10.1016/j.cyto.2015.05.010] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these "type 2 immune response-related" cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Rodríguez E, Weidinger S. [Genetics of atopic eczema. An update]. Hautarzt 2015; 66:84-9. [PMID: 25648547 DOI: 10.1007/s00105-014-3565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Eczema is a typical multifactorial disease which is based on an individual hereditary predisposition that becomes manifested by environmental and lifestyle factors. The heritability of eczema is estimated to be 70-80 %. The possibilities for deciphering inherited risk factors have significantly increased during recent years. As a result various genetic risk factors have been successfully identified and first insights into epigenetic changes have been obtained. With the growing knowledge about the constitutionally determined variability new disease models have been developed, which imply temporal and developmental interactions between genetic and environmental factors. Strategies for individualized prediction, prevention and therapy are conceivable.
Collapse
Affiliation(s)
- E Rodríguez
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Schittenhelmstraße 7, 24105, Kiel, Deutschland
| | | |
Collapse
|
23
|
Bégin P, Nadeau KC. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol 2014; 10:27. [PMID: 24932182 PMCID: PMC4057652 DOI: 10.1186/1710-1492-10-27] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/18/2014] [Indexed: 01/18/2023] Open
Abstract
Epigenetics of asthma and allergic disease is a field that has expanded greatly in the last decade. Previously thought only in terms of cell differentiation, it is now evident the epigenetics regulate many processes. With T cell activation, commitment toward an allergic phenotype is tightly regulated by DNA methylation and histone modifications at the Th2 locus control region. When normal epigenetic control is disturbed, either experimentally or by environmental exposures, Th1/Th2 balance can be affected. Epigenetic marks are not only transferred to daughter cells with cell replication but they can also be inherited through generations. In animal models, with constant environmental pressure, epigenetically determined phenotypes are amplified through generations and can last up to 2 generations after the environment is back to normal. In this review on the epigenetic regulation of asthma and allergic diseases we review basic epigenetic mechanisms and discuss the epigenetic control of Th2 cells. We then cover the transgenerational inheritance model of epigenetic traits and discuss how this could relate the amplification of asthma and allergic disease prevalence and severity through the last decades. Finally, we discuss recent epigenetic association studies for allergic phenotypes and related environmental risk factors as well as potential underlying mechanisms for these associations.
Collapse
Affiliation(s)
- Philippe Bégin
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| | - Kari C Nadeau
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| |
Collapse
|
24
|
Lee GR. Transcriptional regulation of T helper type 2 differentiation. Immunology 2014; 141:498-505. [PMID: 24245687 DOI: 10.1111/imm.12216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Considerable progress has been made in recent years towards our understanding of the molecular mechanisms of transcriptional regulation of T helper type 2 (Th2) cell differentiation. Additional transcription factors and chromatin-modifying factors were identified and shown to promote Th2 cell differentiation and inhibit differentiation into other subsets. Analyses of mice lacking several cis-regulatory elements have yielded more insight into the regulatory mechanism of Th2 cytokine genes. Gene deletion studies of several chromatin modifiers confirmed their impact on CD4 T-cell differentiation. In addition, recent genome-wide analyses of transcription factor binding and chromatin status revealed unexpected roles of these factors in Th2-cell differentiation. In this review, these recent findings and their implication are summarized.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
25
|
Kim LK, Esplugues E, Zorca CE, Parisi F, Kluger Y, Kim TH, Galjart NJ, Flavell RA. Oct-1 regulates IL-17 expression by directing interchromosomal associations in conjunction with CTCF in T cells. Mol Cell 2014; 54:56-66. [PMID: 24613343 PMCID: PMC4058095 DOI: 10.1016/j.molcel.2014.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022]
Abstract
Interchromosomal associations can regulate gene expression, but little is known about the molecular basis of such associations. In response to antigen stimulation, naive T cells can differentiate into Th1, Th2, and Th17 cells expressing IFN-γ, IL-4, and IL-17, respectively. We previously reported that in naive T cells, the IFN-γ locus is associated with the Th2 cytokine locus. Here we show that the Th2 locus additionally associates with the IL-17 locus. This association requires a DNase I hypersensitive region (RHS6) at the Th2 locus. RHS6 and the IL-17 promoter both bear Oct-1 binding sites. Deletion of either of these sites or Oct-1 gene impairs the association. Oct-1 and CTCF bind their cognate sites cooperatively, and CTCF deficiency similarly impairs the association. Finally, defects in the association lead to enhanced IL-17 induction. Collectively, our data indicate Th17 lineage differentiation is restrained by the Th2 locus via interchromosomal associations organized by Oct-1 and CTCF.
Collapse
Affiliation(s)
- Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Enric Esplugues
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cornelia E Zorca
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fabio Parisi
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tae Hoon Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Niels J Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Zeng WP. 'All things considered': transcriptional regulation of T helper type 2 cell differentiation from precursor to effector activation. Immunology 2013; 140:31-8. [PMID: 23668241 DOI: 10.1111/imm.12121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 02/02/2023] Open
Abstract
T helper type 2 (Th2) cells are critical to host defence against helminth infection and the pathogenesis of allergic diseases. The differentiation of Th2 cells from naive CD4 T cells is controlled by intricate transcriptional mechanisms. At the precursor stage of naive CD4 T cells, transcriptional mechanisms maintain the potential and in the meantime prevent spontaneous differentiation to Th2 fate. In addition, intrachromosomal interactions important for co-ordinated expression of Th2 cytokines pre-exist in naive CD4 T cells. Upon T-cell receptor (TCR) engagement, naive CD4 T cells are induced by polarizing signals of the interleukin-4/Stat6 and Jagged/Notch pathways to up-regulate the expression of GATA-3. Once up-regulated, GATA-3 drives Th2 and suppresses Th1 differentiation in a cell autonomous fashion. In this stage of differentiation, the Th2 cytokine locus, as well as the interferon-γ locus, undergoes chromatin remodelling and epigenetic modifications that contribute to the somatic memory of Th2 cytokine gene expression pattern. Once differentiated, Th2 effector cells promptly produce Th2 cytokines upon TCR stimulation, which is regulated by concerted actions of GATA-3, TCR signalling, enhancers and the Th2 locus control region. This review provides a detailed account of the transcriptional regulatory events at these different stages of Th2 differentiation.
Collapse
Affiliation(s)
- Wei-ping Zeng
- Department of Biochemistry and Microbiology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, USA.
| |
Collapse
|