1
|
Lerga-Jaso J, Novković B, Unnikrishnan D, Bamunusinghe V, Hatorangan MR, Manson C, Pedersen H, Osama A, Terpolovsky A, Bohn S, De Marino A, Mahmoud AA, Bircan KO, Khan U, Grabherr MG, Yazdi PG. Tracing human genetic histories and natural selection with precise local ancestry inference. Nat Commun 2025; 16:4576. [PMID: 40379651 PMCID: PMC12084304 DOI: 10.1038/s41467-025-59936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/06/2025] [Indexed: 05/19/2025] Open
Abstract
Local ancestry inference is crucial for unraveling demographic histories, discovering selection signals, and including admixed individuals in genomic studies for improved equity and portability. To date, the precision and resolution of local ancestry inference were limited by technical and dataset issues. To address them, we present Orchestra, a model we train on over 10,000 single-origin individuals from 35 worldwide populations that demonstrates superior accuracy in benchmarking analyzes. We employ Orchestra to shed light on the demographic history of Latin Americans, finding trace ancestries supported by historical records. We then deploy it to offer insight on the debated Ashkenazi Jewish origins, highlighting their South European heritage. Finally, Orchestra enables us to map selection signatures, identifying trace Scandinavian ancestry in British samples and unveiling an immune-rich region linked to respiratory infections passed down from the Viking conquests. Our work significantly advances the field of local ancestry inference, highlighting its use in admixed populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alex Osama
- Research & Development, Omicsedge, Miami, FL, USA
| | | | - Sandra Bohn
- Research & Development, Omicsedge, Miami, FL, USA
| | | | | | | | - Umar Khan
- Research & Development, Omicsedge, Miami, FL, USA
| | | | - Puya G Yazdi
- Research & Development, Omicsedge, Miami, FL, USA.
| |
Collapse
|
2
|
Oteo-Garcia G, Silva M, Foody MGB, Yau B, Fichera A, Alapont L, Justeau P, Rodrigues S, Monteiro R, Gandini F, Rovira Gomar ML, Ribera I Lacomba A, Pascual Beneyto J, Mattiangeli V, Bradley DG, Edwards CJ, Pala M, Richards MB. Medieval genomes from eastern Iberia illuminate the role of Morisco mass deportations in dismantling a long-standing genetic bridge with North Africa. Genome Biol 2025; 26:108. [PMID: 40296056 PMCID: PMC12036142 DOI: 10.1186/s13059-025-03570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The Islamic influence on the Iberian Peninsula left an enduring cultural and linguistic legacy. However, the demographic impact is less well understood. This study aims to explore the dynamics of gene flow and population structure in eastern Iberia from the early to late medieval period through ancient DNA. RESULTS Our comprehensive genomic analysis uncovers gene flow from various Mediterranean regions into Iberia before the Islamic period, supporting a pre-existing pan-Mediterranean homogenization phenomenon during the Roman Empire. North African ancestry is present but sporadic in late antiquity genomes but becomes consolidated during the Islamic period. We uncover one of the earliest dated Islamic burials in Spain, which shows high levels of consanguinity. For the first time, we also demonstrate the persistence of North African ancestry in a Christian cemetery until the seventeenth century, in addition to evidence of slave trafficking from North Africa. CONCLUSIONS This study reveals the complex interaction between political events and cultural shifts that influenced the population of eastern Iberia. It highlights the existence of a slave trade, underscores the low impact of the Reconquista in the genetic landscape, and shows the lasting impact of post-medieval events, such as the Expulsion of the Moriscos in 1609 CE, on the region's genetic and cultural landscape, through mass population displacement and replacement.
Collapse
Affiliation(s)
- Gonzalo Oteo-Garcia
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy.
- Centre for Palaeogenetics & Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.
| | - Marina Silva
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - M George B Foody
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Bobby Yau
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Alessandro Fichera
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Llorenç Alapont
- Department of Prehistory, Archaeology and Ancient History, University of Valencia, Valencia, Spain
| | - Pierre Justeau
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Simão Rodrigues
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Rita Monteiro
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Francesca Gandini
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | | | | | | | - Valeria Mattiangeli
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Daniel G Bradley
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Ceiridwen J Edwards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Maria Pala
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Martin B Richards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
3
|
Benzine H, Lhousni S, Rkain M, Ouarzane M, Boulouiz R, Bellaoui M, Charif M. Clinical and Molecular Spectrum of Wilson Disease in the Arab World: A Systematic Review. Biochem Genet 2025; 63:1198-1218. [PMID: 39922954 DOI: 10.1007/s10528-025-11042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025]
Abstract
Wilson disease is a rare monogenic disease characterized by copper overload in various organs, mainly the liver, the brain and the eyes. It has a prevalence ranging between 1/30,000 and 1/50,000, and it is caused by pathogenic variants in the ATP7B gene, which encodes a copper-transporting ATPase essential for regulating liver copper levels by directing copper to the secretory pathway and exporting excess copper into bile. It is a fatal disease if left untreated; however early diagnosis and effective treatment enable patient's outcome improvement. Unfortunately, in the Arab world there is no collective data on Wilson disease. This systematic review presents an explicit overview on the clinical and molecular spectrum of Wilson disease in the Arab world. A literature search was conducted on five databases from their inception until April 2024, using a combination of words related to the genetics of Wilson disease in the Arab world. The search resulted in 48 relevant studies carried out in 13 Arab countries, in which 802 Wilson disease patients were reported, with a high rate of consanguinity, and a slight male predominance. Hepatic presentations were the most frequent features in patients, and a total of 92 variants were identified with a detection rate of 61.2%. Genotype-phenotype correlations were not established for the majority of variants. This review revealed a clinical and molecular heterogeneity of Wilson disease in the Arab world. Efforts from health authorities, clinicians and geneticists are recommended to improve diagnosis, reduce disease incidence and give more insights into the present-day understanding of Wilson disease in the Arab world.
Collapse
Affiliation(s)
- Halima Benzine
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Saida Lhousni
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
- BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Maria Rkain
- Department of Pediatrics, Faculty of Medicine and Pharmacy, Mohammed VI University Hospital Center, University Mohammed Premier, Oujda, Morocco
| | - Meryem Ouarzane
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
- BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Redouane Boulouiz
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
- BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mohammed Bellaoui
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco.
- BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco.
| | - Majida Charif
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco.
- BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco.
- Genetics and Immuno-Cell Therapy Team, University Mohammed Premier, 60000, Oujda, Morocco.
| |
Collapse
|
4
|
Gyllenhaal EF, Andersen MJ, Moyle RG, Manthey JD. Island size shapes genomic diversity in a great speciator (Aves: Zosterops). Biol Lett 2025; 21:20240692. [PMID: 40037528 PMCID: PMC11879625 DOI: 10.1098/rsbl.2024.0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
Islands have long represented natural laboratories for studying many aspects of ecology and evolutionary biology, from speciation to community assembly. One aspect that has been well documented is the correlation between island size and taxonomic diversity, likely due to decreased complexity and population size on small islands. This same logic can apply to genetic diversity, which should predictably decrease with effective population size. The island size-diversity correlation has received support over the years but often focuses on single metrics of genetic diversity. Here, we use Zosterops white-eyes in the Solomon Islands to study the correlation between island size and various metrics related to genetic diversity, including runs of homozygosity and fixation of transposable elements. We find that almost all these metrics strongly correlate with island size, and in turn with each other. We infer that island size is independently correlated with these different variables, demonstrating that population size impacts genomic metrics of diversity in a variety of ways across temporal and hierarchical scales.
Collapse
Affiliation(s)
| | - Michael J. Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Robert G. Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Joseph D. Manthey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
5
|
Nóvoa-Medina Y, Marcelino-Rodriguez I, Suárez NM, Barreiro-Bautista M, Rivas-García E, Sánchez-Alonso S, González-Martínez G, Quinteiro-González S, Domínguez Á, Cabrera M, López S, Pavlovic S, Flores C, Wägner AM. Does HLA explain the high incidence of childhood-onset type 1 diabetes in the Canary Islands? The role of Asp57 DQB1 molecules. BMC Pediatr 2024; 24:569. [PMID: 39243072 PMCID: PMC11378579 DOI: 10.1186/s12887-024-04983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
The Canary Islands inhabitants, a recently admixed population with significant North African genetic influence, has the highest incidence of childhood-onset type 1 diabetes (T1D) in Spain and one of the highest in Europe. HLA accounts for half of the genetic risk of T1D. AIMS To characterize the classical HLA-DRB1 and HLA-DQB1 alleles in children from Gran Canaria with and without T1D. METHODS We analyzed classic HLA-DRB1 and HLA-DQB1 alleles in childhood-onset T1D patients (n = 309) and control children without T1D (n = 222) from the island of Gran Canaria. We also analyzed the presence or absence of aspartic acid at position 57 in the HLA-DQB1 gene and arginine at position 52 in the HLA-DQA1 gene. Genotyping of classical HLA-DQB1 and HLA-DRB1 alleles was performed at two-digit resolution using Luminex technology. The chi-square test (or Fisher's exact test) and odds ratio (OR) were computed to assess differences in allele and genotype frequencies between patients and controls. Logistic regression analysis was also used. RESULTS Mean age at diagnosis of T1D was 7.4 ± 3.6 years (46% female). Mean age of the controls was 7.6 ± 1.1 years (55% female). DRB1*03 (OR = 4.2; p = 2.13-13), DRB1*04 (OR = 6.6; p ≤ 2.00-16), DRB1* 07 (OR = 0.37; p = 9.73-06), DRB1*11 (OR = 0.17; p = 6.72-09), DRB1*12, DRB1*13 (OR = 0.38; p = 1.21-05), DRB1*14 (OR = 0.0; p = 0.0024), DRB1*15 (OR = 0.13; p = 7.78-07) and DRB1*16 (OR = 0.21; p = 0.003) exhibited significant differences in frequency between groups. Among the DQB1* alleles, DQB1*02 (OR: 2.3; p = 5.13-06), DQB1*03 (OR = 1.7; p = 1.89-03), DQB1*05 (OR = 0.64; p = 0.027) and DQB1*06 (OR = 0.19; p = 6.25-14) exhibited significant differences. A total of 58% of the studied HLA-DQB1 genes in our control population lacked aspartic acid at position 57. CONCLUSIONS In this population, the overall distributions of the HLA-DRB1 and HLA-DQB1 alleles are similar to those in other European populations. However, the frequency of the non-Asp-57 HLA-DQB1 molecules is greater than that in other populations with a lower incidence of T1D. Based on genetic, historical and epidemiological data, we propose that a common genetic background might help explain the elevated pediatric T1D incidence in the Canary Islands, North-Africa and middle eastern countries.
Collapse
Affiliation(s)
- Yeray Nóvoa-Medina
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Asociación Canaria para la Investigación Pediátrica (ACIP canarias), Las Palmas, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Itahisa Marcelino-Rodriguez
- Preventive Medicine and Public Health Area, University of La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Nicolás M Suárez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marta Barreiro-Bautista
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Eva Rivas-García
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Santiago Sánchez-Alonso
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gema González-Martínez
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sofía Quinteiro-González
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ángela Domínguez
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - María Cabrera
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sara López
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Svetlana Pavlovic
- Servicio de Pediatría Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
6
|
Padilla-Iglesias C, Blanco-Portillo J, Pricop B, Ioannidis AG, Bickel B, Manica A, Vinicius L, Migliano AB. Deep history of cultural and linguistic evolution among Central African hunter-gatherers. Nat Hum Behav 2024; 8:1263-1275. [PMID: 38802540 PMCID: PMC11272592 DOI: 10.1038/s41562-024-01891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Human evolutionary history in Central Africa reflects a deep history of population connectivity. However, Central African hunter-gatherers (CAHGs) currently speak languages acquired from their neighbouring farmers. Hence it remains unclear which aspects of CAHG cultural diversity results from long-term evolution preceding agriculture and which reflect borrowing from farmers. On the basis of musical instruments, foraging tools, specialized vocabulary and genome-wide data from ten CAHG populations, we reveal evidence of large-scale cultural interconnectivity among CAHGs before and after the Bantu expansion. We also show that the distribution of hunter-gatherer musical instruments correlates with the oldest genomic segments in our sample predating farming. Music-related words are widely shared between western and eastern groups and likely precede the borrowing of Bantu languages. In contrast, subsistence tools are less frequently exchanged and may result from adaptation to local ecologies. We conclude that CAHG material culture and specialized lexicon reflect a long evolutionary history in Central Africa.
Collapse
Affiliation(s)
- Cecilia Padilla-Iglesias
- Human Evolutionary Ecology Group, Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland.
| | | | - Bogdan Pricop
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
| | | | - Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lucio Vinicius
- Human Evolutionary Ecology Group, Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Andrea Bamberg Migliano
- Human Evolutionary Ecology Group, Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland.
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Snead AA, Tatarenkov A, Taylor DS, Marson K, Earley RL. Centrality to the metapopulation is more important for population genetic diversity than habitat area or fragmentation. Biol Lett 2024; 20:20240158. [PMID: 39044630 PMCID: PMC11267237 DOI: 10.1098/rsbl.2024.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Drift and gene flow affect genetic diversity. Given that the strength of genetic drift increases as population size decreases, management activities have focused on increasing population size through preserving habitats to preserve genetic diversity. Few studies have empirically evaluated the impacts of drift and gene flow on genetic diversity. Kryptolebias marmoratus, henceforth 'rivulus', is a small killifish restricted to fragmented New World mangrove forests with gene flow primarily associated with ocean currents. Rivulus form distinct populations across patches, making them a well-suited system to test the extent to which habitat area, fragmentation and connectivity are associated with genetic diversity. Using over 1000 individuals genotyped at 32 microsatellite loci, high-resolution landcover data and oceanographic simulations with graph theory, we demonstrate that centrality (connectivity) to the metapopulation is more strongly associated with genetic diversity than habitat area or fragmentation. By comparing models with and without centrality standardized by the source population's genetic diversity, our results suggest that metapopulation centrality is critical to genetic diversity regardless of the diversity of adjacent populations. While we find evidence that habitat area and fragmentation are related to genetic diversity, centrality is always a significant predictor with a larger effect than any measure of habitat configuration.
Collapse
Affiliation(s)
- Anthony A. Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL35487, USA
- Department of Biology, New York University, New York, NY10003, USA
| | - Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697, USA
| | - D. Scott Taylor
- The Environmentally Endangered Lands (EEL) Program, Brevard County, Melbourne, FL32904, USA
| | - Kristine Marson
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL35487, USA
| | - Ryan L. Earley
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL35487, USA
| |
Collapse
|
8
|
Puga M, Serrano JG, García EL, González Carracedo MA, Jiménez-Canino R, Pino-Yanes M, Karlsson R, Sullivan PF, Fregel R. El Hierro Genome Study: A Genomic and Health Study in an Isolated Canary Island Population. J Pers Med 2024; 14:626. [PMID: 38929847 PMCID: PMC11204744 DOI: 10.3390/jpm14060626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
El Hierro is the smallest and westernmost island of the Canary Islands, whose population derives from an admixture of different ancestral components and that has been subjected to genetic isolation. We established the "El Hierro Genome Study" to characterize the health status and the genetic composition of ~10% of the current population of the island, accounting for a total of 1054 participants. Detailed demographic and clinical data and a blood sample for DNA extraction were obtained from each participant. Genomic genotyping was performed with the Global Screening Array (Illumina). The genetic composition of El Hierro was analyzed in a subset of 416 unrelated individuals by characterizing the mitochondrial DNA (mtDNA) and Y-chromosome haplogroups and performing principal component analyses (PCAs). In order to explore signatures of isolation, runs of homozygosity (ROHs) were also estimated. Among the participants, high blood pressure, hypercholesterolemia, and diabetes were the most prevalent conditions. The most common mtDNA haplogroups observed were of North African indigenous origin, while the Y-chromosome ones were mainly European. The PCA showed that the El Hierro population clusters near 1000 Genomes' European population but with a shift toward African populations. Moreover, the ROH analysis revealed some individuals with an important portion of their genomes with ROHs exceeding 400 Mb. Overall, these results confirmed that the "El Hierro Genome" cohort offers an opportunity to study the genetic basis of several diseases in an unexplored isolated population.
Collapse
Affiliation(s)
- Marta Puga
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Javier G. Serrano
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - Elsa L. García
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Mario A. González Carracedo
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands (IUETSPC), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Rubén Jiménez-Canino
- Genomics Service, Servicio General de Apoyo a la Investigación, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rosa Fregel
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| |
Collapse
|
9
|
Vilà-Valls L, Abdeli A, Lucas-Sánchez M, Bekada A, Calafell F, Benhassine T, Comas D. Understanding the genomic heterogeneity of North African Imazighen: from broad to microgeographical perspectives. Sci Rep 2024; 14:9979. [PMID: 38693301 PMCID: PMC11063056 DOI: 10.1038/s41598-024-60568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The strategic location of North Africa has led to cultural and demographic shifts, shaping its genetic structure. Historical migrations brought different genetic components that are evident in present-day North African genomes, along with autochthonous components. The Imazighen (plural of Amazigh) are believed to be the descendants of autochthonous North Africans and speak various Amazigh languages, which belong to the Afro-Asiatic language family. However, the arrival of different human groups, especially during the Arab conquest, caused cultural and linguistic changes in local populations, increasing their heterogeneity. We aim to characterize the genetic structure of the region, using the largest Amazigh dataset to date and other reference samples. Our findings indicate microgeographical genetic heterogeneity among Amazigh populations, modeled by various admixture waves and different effective population sizes. A first admixture wave is detected group-wide around the twelfth century, whereas a second wave appears in some Amazigh groups around the nineteenth century. These events involved populations with higher genetic ancestry from south of the Sahara compared to the current North Africans. A plausible explanation would be the historical trans-Saharan slave trade, which lasted from the Roman times to the nineteenth century. Furthermore, our investigation shows that assortative mating in North Africa has been rare.
Collapse
Affiliation(s)
- Laura Vilà-Valls
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Amine Abdeli
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté Des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Marcel Lucas-Sánchez
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Traki Benhassine
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté Des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
10
|
Yousfi FZE, Haroun AE, Nebhani C, Belayachi J, Askander O, Fahime EE, Fares H, Ennibi K, Abouqal R, Razine R, Bouhouche A. Prevalence of the protective OAS1 rs10774671-G allele against severe COVID-19 in Moroccans: implications for a North African Neanderthal connection. Arch Virol 2024; 169:109. [PMID: 38658463 PMCID: PMC11043147 DOI: 10.1007/s00705-024-06038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
The clinical presentation of COVID-19 shows high variability among individuals, which is partly due to genetic factors. The OAS1/2/3 cluster has been found to be strongly associated with COVID-19 severity. We examined this locus in the Moroccan population for the occurrence of the critical variant rs10774671 and its respective haplotype blocks. The frequency of single-nucleotide polymorphisms (SNPs) in the cluster of OAS immunity genes in 157 unrelated individuals of Moroccan origin was determined using an in-house exome database. OAS1 exon 6 of 71 SARS-CoV-2-positive individuals with asymptomatic/mild disease and 74 with moderate/severe disease was sequenced by the Sanger method. The genotypic, allelic, and haplotype frequencies of three SNPs were compared between these two groups. Finally, males in our COVID-19 series were genotyped for the Berber-specific marker E-M81. The prevalence of the OAS1 rs10774671-G allele in present-day Moroccans was found to be 40.4%, which is similar to that found in Europeans. However, it was found equally in both the Neanderthal GGG haplotype and the African GAC haplotype, with a frequency of 20% each. These two haplotypes, and hence the rs10774671-G allele, were significantly associated with protection against severe COVID-19 (p = 0.034, p = 0.041, and p = 0.008, respectively). Surprisingly, in men with the Berber-specific uniparental markers, the African haplotype was absent, while the prevalence of the Neanderthal haplotype was similar to that in Europeans. The protective rs10774671-G allele of OAS1 was found only in the Neanderthal haplotype in Berbers, the indigenous people of North Africa, suggesting that this region may have served as a stepping-stone for the passage of hominids to other continents.
Collapse
Affiliation(s)
- Fatima Zahra El Yousfi
- Laboratory of Human Genetics, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Abbas Ermilo Haroun
- Laboratory of Biostatistics, Clinical and Epidemiological Research, Department of Public Health, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Laboratory of Community Health, Department of Public Health, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Chaimae Nebhani
- Laboratory of Human Genetics, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Jihane Belayachi
- Laboratory of Biostatistics, Clinical and Epidemiological Research, Department of Public Health, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Acute Medical Unit, Ibn Sina University Hospital, Rabat, Morocco
| | - Omar Askander
- Faculty of Medical Science, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Elmostafa El Fahime
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, Rabat, Morocco
| | - Hakima Fares
- Intensive Care Department, Cheikh Zaid International Universitary Hospital, Rabat, Morocco
| | - Khalid Ennibi
- Virology, Infectious and Tropical Diseases Center, Hopital Militaire d'Instruction Mohammed V, Rabat, Morocco
| | - Redouane Abouqal
- Laboratory of Biostatistics, Clinical and Epidemiological Research, Department of Public Health, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Laboratory of Community Health, Department of Public Health, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Rachid Razine
- Laboratory of Biostatistics, Clinical and Epidemiological Research, Department of Public Health, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Laboratory of Community Health, Department of Public Health, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Ahmed Bouhouche
- Laboratory of Human Genetics, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco.
- Genomic Center of the Cheikh Zaid Foundation, Abulcasis International University of Health Sciences, Rabat, Morocco.
| |
Collapse
|
11
|
Moots HM, Antonio M, Sawyer S, Spence JP, Oberreiter V, Weiß CL, Lucci M, Cherifi YMS, La Pastina F, Genchi F, Praxmeier E, Zagorc B, Cheronet O, Özdoğan KT, Demetz L, Amrani S, Candilio F, De Angelis D, Gasperetti G, Fernandes D, Gao Z, Fantar M, Coppa A, Pritchard JK, Pinhasi R. A genetic history of continuity and mobility in the Iron Age central Mediterranean. Nat Ecol Evol 2023; 7:1515-1524. [PMID: 37592021 DOI: 10.1038/s41559-023-02143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/30/2023] [Indexed: 08/19/2023]
Abstract
The Iron Age was a dynamic period in central Mediterranean history, with the expansion of Greek and Phoenician colonies and the growth of Carthage into the dominant maritime power of the Mediterranean. These events were facilitated by the ease of long-distance travel following major advances in seafaring. We know from the archaeological record that trade goods and materials were moving across great distances in unprecedented quantities, but it is unclear how these patterns correlate with human mobility. Here, to investigate population mobility and interactions directly, we sequenced the genomes of 30 ancient individuals from coastal cities around the central Mediterranean, in Tunisia, Sardinia and central Italy. We observe a meaningful contribution of autochthonous populations, as well as highly heterogeneous ancestry including many individuals with non-local ancestries from other parts of the Mediterranean region. These results highlight both the role of local populations and the extreme interconnectedness of populations in the Iron Age Mediterranean. By studying these trans-Mediterranean neighbours together, we explore the complex interplay between local continuity and mobility that shaped the Iron Age societies of the central Mediterranean.
Collapse
Affiliation(s)
- Hannah M Moots
- Stanford Archaeology Center, Stanford University, Stanford, CA, USA
- Department of Anthropology, Stanford University, Stanford, CA, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Margaret Antonio
- Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | | | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Clemens L Weiß
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michaela Lucci
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Yahia Mehdi Seddik Cherifi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Cardiolo-Oncology Research Collaborative Group (CORCG), Faculty of Medicine, Benyoucef Benkhedda University, Algiers, Algeria
- Molecular Pathology, University Paul Sabatier Toulouse III, Toulouse, France
| | | | - Francesco Genchi
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
- Department of Oriental Studies, Sapienza University of Rome, Rome, Italy
| | - Elisa Praxmeier
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of History and Art History, Utrecht University, Utrecht, the Netherlands
| | - Lea Demetz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Selma Amrani
- LBEIG, Population Genetics and Conservation Unit, Department of Cellular and Molecular Biology-Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | | | - Daniela De Angelis
- Museo Nazionale Etrusco di Tarquinia, Direzione Generale Musei Lazio, Rome, Italy
| | - Gabriella Gasperetti
- Soprintendenza Archeologia, belle arti e paesaggio per le province di Sassari e Nuoro, Sassari, Italy
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ziyue Gao
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Mounir Fantar
- Département des Monuments et des Sites Antiques-Institut National du Patrimoine INP, Tunis, Tunisia
| | - Alfredo Coppa
- Department of Biology, Stanford University, Stanford, CA, USA
- Dipartimento di Storia Antropologia Religioni Arte Spettacolo, Sapienza Università di Roma, Rome, Italy
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Genetics, Harvard Medical School, Cambridge, MA, USA.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Boukhalfa W, Jmel H, Kheriji N, Gouiza I, Dallali H, Hechmi M, Kefi R. Decoding the genetic relationship between Alzheimer's disease and type 2 diabetes: potential risk variants and future direction for North Africa. Front Aging Neurosci 2023; 15:1114810. [PMID: 37342358 PMCID: PMC10277480 DOI: 10.3389/fnagi.2023.1114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and Type 2 diabetes (T2D) are both age-associated diseases. Identification of shared genes could help develop early diagnosis and preventive strategies. Although genetic background plays a crucial role in these diseases, we noticed an underrepresentation tendency of North African populations in omics studies. Materials and methods First, we conducted a comprehensive review of genes and pathways shared between T2D and AD through PubMed. Then, the function of the identified genes and variants was investigated using annotation tools including PolyPhen2, RegulomeDB, and miRdSNP. Pathways enrichment analyses were performed with g:Profiler and EnrichmentMap. Next, we analyzed variant distributions in 16 worldwide populations using PLINK2, R, and STRUCTURE software. Finally, we performed an inter-ethnic comparison based on the minor allele frequency of T2D-AD common variants. Results A total of 59 eligible papers were included in our study. We found 231 variants and 363 genes shared between T2D and AD. Variant annotation revealed six single nucleotide polymorphisms (SNP) with a high pathogenic score, three SNPs with regulatory effects on the brain, and six SNPs with potential effects on miRNA-binding sites. The miRNAs affected were implicated in T2D, insulin signaling pathways, and AD. Moreover, replicated genes were significantly enriched in pathways related to plasma protein binding, positive regulation of amyloid fibril deposition, microglia activation, and cholesterol metabolism. Multidimensional screening performed based on the 363 shared genes showed that main North African populations are clustered together and are divergent from other worldwide populations. Interestingly, our results showed that 49 SNP associated with T2D and AD were present in North African populations. Among them, 11 variants located in DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, CST9, and PLCG1 genes display significant differences in risk allele frequencies between North African and other populations. Conclusion Our study highlighted the complexity and the unique molecular architecture of North African populations regarding T2D-AD shared genes. In conclusion, we emphasize the importance of T2D-AD shared genes and ethnicity-specific investigation studies for a better understanding of the link behind these diseases and to develop accurate diagnoses using personalized genetic biomarkers.
Collapse
Affiliation(s)
- Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Mariem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
13
|
Cheffi K, El Khair A, Dahbi N, Talbi J, Hilali A, El Ossmani H. Genetic analysis based on 15 autosomal short tandem repeats (STRs) in the Chaouia population, western center Morocco, and genetic relationships with worldwide populations. Mol Genet Genomics 2023; 298:931-941. [PMID: 37162566 DOI: 10.1007/s00438-023-02028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/29/2023] [Indexed: 05/11/2023]
Abstract
The complex demographic history of human populations in North Africa has resulted in a high degree of genetic heterogeneity across the region. However, little is known about the pattern of these genetic variations in its current populations. The present study provides new data on the genetic background of Chaouia, an Arabic-speaking North African population in the western center of Morocco. A random sample of 150 unrelated healthy individuals from Chaouia was assessed using the AmpFLSTR Identifiler kit. The most polymorphic markers were D21S11 and D18S51, with 23 and 22 alleles, respectively. After Bonferroni's correction, two loci (TH01 and D18S51) deviated from Hardy-Weinberg equilibrium. The phylogeny analysis separated North African populations into northeastern and northwestern groups. The Chaouia population was clustered with northwestern Africans. It was the closest to the Berbers of Azrou. The Chaouia shared close genetic affinities with populations from North Africa, the Middle East, and Europe, particularly Iberians, and to a lesser extent with sub-Saharan populations. The pattern of genetic admixture varied across North African populations without a clear correlation between their geographic (northeastern or northwestern) or linguistic identities (Arab or Berber), however, genetic heterogeneity among Berbers was observed. These findings suggest that the diversity observed in North African populations extends geographical and linguistic boundaries. It is further linked to each population's unique and complex demographic history. Human North African population genetics seems to present an intriguing landscape for future studies in the region and its surrounding populations to trace the origins of the genetic heterogeneity observed in these populations.
Collapse
Affiliation(s)
- Khadija Cheffi
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco.
| | - Abderrazak El Khair
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Noura Dahbi
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Jalal Talbi
- General Directorate of National Security, National Laboratory of the Scientific and Technical Police, Casablanca, Morocco
| | - Abderraouf Hilali
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Hicham El Ossmani
- Institut de Criminalistique de la Gendarmerie Royale, Rabat, Morocco
| |
Collapse
|
14
|
Wilke F, Herrick N, Matthews H, Hoskens H, Singh S, Shaffer JR, Weinberg SM, Shriver MD, Claes P, Walsh S. Exploring regional aspects of 3D facial variation within European individuals. Sci Rep 2023; 13:3708. [PMID: 36879022 PMCID: PMC9988837 DOI: 10.1038/s41598-023-30855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Facial ancestry can be described as variation that exists in facial features that are shared amongst members of a population due to environmental and genetic effects. Even within Europe, faces vary among subregions and may lead to confounding in genetic association studies if unaccounted for. Genetic studies use genetic principal components (PCs) to describe facial ancestry to circumvent this issue. Yet the phenotypic effect of these genetic PCs on the face has yet to be described, and phenotype-based alternatives compared. In anthropological studies, consensus faces are utilized as they depict a phenotypic, not genetic, ancestry effect. In this study, we explored the effects of regional differences on facial ancestry in 744 Europeans using genetic and anthropological approaches. Both showed similar ancestry effects between subgroups, localized mainly to the forehead, nose, and chin. Consensus faces explained the variation seen in only the first three genetic PCs, differing more in magnitude than shape change. Here we show only minor differences between the two methods and discuss a combined approach as a possible alternative for facial scan correction that is less cohort dependent, more replicable, non-linear, and can be made open access for use across research groups, enhancing future studies in this field.
Collapse
Affiliation(s)
- Franziska Wilke
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA
| | - Noah Herrick
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA
| | - Harold Matthews
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Hanne Hoskens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Sylvia Singh
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Susan Walsh
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Browning SR, Waples RK, Browning BL. Fast, accurate local ancestry inference with FLARE. Am J Hum Genet 2023; 110:326-335. [PMID: 36610402 PMCID: PMC9943733 DOI: 10.1016/j.ajhg.2022.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Local ancestry is the source ancestry at each point in the genome of an admixed individual. Inferred local ancestry is used for admixture mapping and population genetic analyses. We present FLARE (fast local ancestry estimation), a method for local ancestry inference. FLARE achieves high accuracy through the use of an extended Li and Stephens model, and it achieves exceptional computational performance through incorporation of computational techniques developed for genotype imputation. Memory requirements are reduced through on-the-fly compression of reference haplotypes and stored checkpoints. Computation time is reduced through the use of composite reference haplotypes. These techniques allow FLARE to scale to datasets with hundreds of thousands of sequenced individuals and to provide superior accuracy on large-scale data. FLARE is open source and available at https://github.com/browning-lab/flare.
Collapse
Affiliation(s)
- Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | - Ryan K Waples
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Brian L Browning
- Department of Biostatistics, University of Washington, Seattle, WA, USA; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Sieber KS, García-Donas JG. Population affinity estimation on a Spanish sample: Testing the validity and accuracy of cranium and mandible online software methods. Leg Med (Tokyo) 2023; 60:102180. [PMID: 36442310 DOI: 10.1016/j.legalmed.2022.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Population affinity estimation is an important step in the identification of unknown individuals. To ensure accurate results, validation studies of newly developed methods must be performed using different target populations and skeletal elements. This research aimed to determine the accuracy and reliability of population affinity estimation on a modern Spanish sample using two online software applications. The sample consisted of 114 adult individuals (51 males, 63 females) using 38 measurements and one angle from the skull and mandible. AncesTrees was used for craniometric measurements and (hu)MANid for mandibular variables with different classification models and probability thresholds being evaluated. The required parameters were inputted for each individual and statistics were generated to assess the accuracy of the estimation. AncesTrees performed with the greatest accuracy as the program correctly classified the sample as Southwestern European or European, with highest accuracies being 54.56% (trial 1), 86.05% (trial 2), 82.61% (trial 3), 34.55% (trial 4) and 100% (trial 5). (hu)MANid correctly classified the sample as being from white origin with accuracies ranging from 70.59% to 80% without considering correct sex estimation, while accuracy ranged between 62.75% and 80% accounting for estimated sex. Population affinity estimation may determine subsequent methods used in the construction of the biological profile. Our results demonstrated varying accuracy rates depending on the element and method, offering a critical view in relation to software applicability and validity. Reference populations and intrinsic and extrinsic factors can potentially influence the method accuracy and reliability. Future research should focus on the inclusion of underrepresented groups.
Collapse
Affiliation(s)
- Katie S Sieber
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Julieta Gómez García-Donas
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
17
|
García-Olivares V, Rubio-Rodríguez LA, Muñoz-Barrera A, Díaz-de Usera A, Jáspez D, Iñigo-Campos A, Rodríguez Pérez MDC, Cabrera de León A, Lorenzo-Salazar JM, González-Montelongo R, Cabrera VM, Flores C. Digging into the admixture strata of current-day Canary Islanders based on mitogenomes. iScience 2022; 26:105907. [PMID: 36647378 PMCID: PMC9840145 DOI: 10.1016/j.isci.2022.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
The conquest of the Canary Islands by Europeans began at the beginning of the 15th century and culminated in 1496 with the surrender of the aborigines. The collapse of the aboriginal population during the conquest and the arrival of settlers caused a drastic change in the demographic composition of the archipelago. To shed light on this historical process, we analyzed 896 mitogenomes of current inhabitants from the seven main islands. Our findings confirm the continuity of aboriginal maternal contributions and the persistence of their genetic footprints in the current population, even at higher levels (>60% on average) than previously evidenced. Moreover, the age estimates for most autochthonous founder lineages support a first aboriginal arrival to the islands at the beginning of the first millennium. We also revealed for the first time that the main recognizable genetic influences from Europe are from Portuguese and Galicians.
Collapse
Affiliation(s)
- Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain,Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Antonio Iñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - Antonio Cabrera de León
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain,Área de Medicina Preventiva y Salud Pública, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain,Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain,Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain,Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain,Corresponding author
| |
Collapse
|
18
|
Developing CIRdb as a catalog of natural genetic variation in the Canary Islanders. Sci Rep 2022; 12:16132. [PMID: 36168029 PMCID: PMC9514705 DOI: 10.1038/s41598-022-20442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
The current inhabitants of the Canary Islands have a unique genetic makeup in the European diversity landscape due to the existence of African footprints from recent admixture events, especially of North African components (> 20%). The underrepresentation of non-Europeans in genetic studies and the sizable North African ancestry, which is nearly absent from all existing catalogs of worldwide genetic diversity, justify the need to develop CIRdb, a population-specific reference catalog of natural genetic variation in the Canary Islanders. Based on array genotyping of the selected unrelated donors and comparisons against available datasets from European, sub-Saharan, and North African populations, we illustrate the intermediate genetic differentiation of Canary Islanders between Europeans and North Africans and the existence of within-population differences that are likely driven by genetic isolation. Here we describe the overall design and the methods that are being implemented to further develop CIRdb. This resource will help to strengthen the implementation of Precision Medicine in this population by contributing to increase the diversity in genetic studies. Among others, this will translate into improved ability to fine map disease genes and simplify the identification of causal variants and estimate the prevalence of unattended Mendelian diseases.
Collapse
|
19
|
Fedorova L, Khrunin A, Khvorykh G, Lim J, Thornton N, Mulyar OA, Limborska S, Fedorov A. Analysis of Common SNPs across Continents Reveals Major Genomic Differences between Human Populations. Genes (Basel) 2022; 13:genes13081472. [PMID: 36011383 PMCID: PMC9408407 DOI: 10.3390/genes13081472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Common alleles tend to be more ancient than rare alleles. These common SNPs appeared thousands of years ago and reflect intricate human evolution including various adaptations, admixtures, and migration events. Eighty-four thousand abundant region-specific alleles (ARSAs) that are common in one continent but absent in the rest of the world have been characterized by processing 3100 genomes from 230 populations. Also computed were 17,446 polymorphic sites with regional absence of common alleles (RACAs), which are widespread globally but absent in one region. A majority of these region-specific SNPs were found in Africa. America has the second greatest number of ARSAs (3348) and is even ahead of Europe (1911). Surprisingly, East Asia has the highest number of RACAs (10,524) and the lowest number of ARSAs (362). ARSAs and RACAs have distinct compositions of ancestral versus derived alleles in different geographical regions, reflecting their unique evolution. Genes associated with ARSA and RACA SNPs were identified and their functions were analyzed. The core 100 genes shared by multiple populations and associated with region-specific natural selection were examined. The largest part of them (42%) are related to the nervous system. ARSA and RACA SNPs are important for both association and human evolution studies.
Collapse
Affiliation(s)
| | - Andrey Khrunin
- Institute of Molecular Genetics of National Research Centre, “Kurchatov Institute”, 123182 Moscow, Russia
| | - Gennady Khvorykh
- Institute of Molecular Genetics of National Research Centre, “Kurchatov Institute”, 123182 Moscow, Russia
| | - Jan Lim
- CRI Genetics LLC, Santa Monica, CA 90404, USA
| | | | | | - Svetlana Limborska
- Institute of Molecular Genetics of National Research Centre, “Kurchatov Institute”, 123182 Moscow, Russia
| | - Alexei Fedorov
- CRI Genetics LLC, Santa Monica, CA 90404, USA
- Department of Medicine, University of Toledo, Toledo, OH 43606, USA
- Correspondence: ; Tel.: +1-419-383-5270
| |
Collapse
|
20
|
Population interconnectivity over the past 120,000 years explains distribution and diversity of Central African hunter-gatherers. Proc Natl Acad Sci U S A 2022; 119:e2113936119. [PMID: 35580185 PMCID: PMC9173804 DOI: 10.1073/pnas.2113936119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We combined ethnographic, archaeological, genetic, and paleoclimatic data to model the dynamics of Central African hunter-gatherer populations over the past 120,000 years. We show, against common assumptions, that their distribution and density are explained by changing environments rather than by a displacement following recent farming expansions, and that they have maintained large population sizes and genetic diversity, despite fluctuations in niche availability. Our results provide insights into the evolution of genetic and cultural diversity in Homo sapiens. The evolutionary history of African hunter-gatherers holds key insights into modern human diversity. Here, we combine ethnographic and genetic data on Central African hunter-gatherers (CAHG) to show that their current distribution and density are explained by ecology rather than by a displacement to marginal habitats due to recent farming expansions, as commonly assumed. We also estimate the range of hunter-gatherer presence across Central Africa over the past 120,000 years using paleoclimatic reconstructions, which were statistically validated by our newly compiled dataset of dated archaeological sites. Finally, we show that genomic estimates of divergence times between CAHG groups match our ecological estimates of periods favoring population splits, and that recoveries of connectivity would have facilitated subsequent gene flow. Our results reveal that CAHG stem from a deep history of partially connected populations. This form of sociality allowed the coexistence of relatively large effective population sizes and local differentiation, with important implications for the evolution of genetic and cultural diversity in Homo sapiens.
Collapse
|
21
|
Hernandez-Beeftink T, Marcelino-Rodríguez I, Guillen-Guio B, Rodríguez-Pérez H, Lorenzo-Salazar JM, Corrales A, Díaz-de Usera A, González-Montelongo R, Domínguez D, Espinosa E, Villar J, Flores C. Admixture Mapping of Sepsis in European Individuals With African Ancestries. Front Med (Lausanne) 2022; 9:754440. [PMID: 35345767 PMCID: PMC8957104 DOI: 10.3389/fmed.2022.754440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is a severe systemic inflammatory response to infections that is accompanied by organ dysfunction. Although the ancestral genetic background is a relevant factor for sepsis susceptibility, there is a lack of studies using the genetic singularities of a recently admixed population to identify loci involved in sepsis susceptibility. Here we aimed to discover new sepsis loci by completing the first admixture mapping study of sepsis in Canary Islanders, leveraging their distinctive genetic makeup as a mixture of Europeans and African ancestries. We used a case-control approach and inferred local ancestry blocks from genome-wide data from 113,414 polymorphisms genotyped in 343 patients with sepsis and 410 unrelated controls, all ascertained for grandparental origin in the Canary Islands (Spain). Deviations in local ancestries between cases and controls were tested using logistic regressions, followed by fine-mapping analyses based on imputed genotypes, in silico functional assessments, and gene expression analysis centered on the region of interest. The admixture mapping analysis detected that local European ancestry in a locus spanning 1.2 megabases of chromosome 8p23.1 was associated with sepsis (lowest p = 1.37 × 10−4; Odds Ratio [OR] = 0.51; 95%CI = 0.40–0.66). Fine-mapping studies prioritized the variant rs13249564 within intron 1 of MFHAS1 gene associated with sepsis (p = 9.94 × 10−4; OR = 0.65; 95%CI = 0.50–0.84). Functional and gene expression analyses focused on 8p23.1 allowed us to identify alternative genes with possible biological plausibility such as defensins, which are well-known effector molecules of innate immunity. By completing the first admixture mapping study of sepsis, our results revealed a new genetic locus (8p23.1) harboring a number of genes with plausible implications in sepsis susceptibility.
Collapse
Affiliation(s)
- Tamara Hernandez-Beeftink
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - David Domínguez
- Department of Anesthesiology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Elena Espinosa
- Department of Anesthesiology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jesús Villar
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
African Genomic Medicine Portal: A Web Portal for Biomedical Applications. J Pers Med 2022; 12:jpm12020265. [PMID: 35207753 PMCID: PMC8879570 DOI: 10.3390/jpm12020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Genomics data are currently being produced at unprecedented rates, resulting in increased knowledge discovery and submission to public data repositories. Despite these advances, genomic information on African-ancestry populations remains significantly low compared with European- and Asian-ancestry populations. This information is typically segmented across several different biomedical data repositories, which often lack sufficient fine-grained structure and annotation to account for the diversity of African populations, leading to many challenges related to the retrieval, representation and findability of such information. To overcome these challenges, we developed the African Genomic Medicine Portal (AGMP), a database that contains metadata on genomic medicine studies conducted on African-ancestry populations. The metadata is curated from two public databases related to genomic medicine, PharmGKB and DisGeNET. The metadata retrieved from these source databases were limited to genomic variants that were associated with disease aetiology or treatment in the context of African-ancestry populations. Over 2000 variants relevant to populations of African ancestry were retrieved. Subsequently, domain experts curated and annotated additional information associated with the studies that reported the variants, including geographical origin, ethnolinguistic group, level of association significance and other relevant study information, such as study design and sample size, where available. The AGMP functions as a dedicated resource through which to access African-specific information on genomics as applied to health research, through querying variants, genes, diseases and drugs. The portal and its corresponding technical documentation, implementation code and content are publicly available.
Collapse
|
23
|
Gingell G, Bergemann AD. Disrupting Essentialism in Medical Genetics Education. MEDICAL SCIENCE EDUCATOR 2022; 32:255-262. [PMID: 35154900 PMCID: PMC8814072 DOI: 10.1007/s40670-021-01458-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Many traditional practices in medical genetics education need review to counteract messages of essentialism, or the belief in an underlying natural structure differentiating social categories. While genomics research increasingly disproves a genetic foundation for race, research from educational scholars demonstrates that current medical genetics instruction may actually reinforce racial bias in learners. In this monograph, we outline seven recommendations for medical educators to actively counteract essentialism, racial, and otherwise, in the genetics classroom. In particular, we emphasize the importance of engaging learners in nuanced discussions around stereotyping and its negative consequences for both accurate diagnoses and promoting health equity.
Collapse
Affiliation(s)
- Gareth Gingell
- Department of Medical Education, Dell Medical School at The University of Texas at Austin, Austin, TX USA
| | - Andrew D. Bergemann
- Department of Medical Education, Dell Medical School at The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
24
|
Suarez-Pajes E, Díaz-García C, Rodríguez-Pérez H, Lorenzo-Salazar JM, Marcelino-Rodríguez I, Corrales A, Zheng X, Callero A, Perez-Rodriguez E, Garcia-Robaina JC, González-Montelongo R, Flores C, Guillen-Guio B. Targeted analysis of genomic regions enriched in African ancestry reveals novel classical HLA alleles associated with asthma in Southwestern Europeans. Sci Rep 2021; 11:23686. [PMID: 34880287 PMCID: PMC8654850 DOI: 10.1038/s41598-021-02893-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Despite asthma has a considerable genetic component, an important proportion of genetic risks remain unknown, especially for non-European populations. Canary Islanders have the largest African genetic ancestry observed among Southwestern Europeans and the highest asthma prevalence in Spain. Here we examined broad chromosomal regions previously associated with an excess of African genetic ancestry in Canary Islanders, with the aim of identifying novel risk variants associated with asthma susceptibility. In a two-stage cases-control study, we revealed a variant within HLA-DQB1 significantly associated with asthma risk (rs1049213, meta-analysis p = 1.30 × 10-7, OR [95% CI] = 1.74 [1.41-2.13]) previously associated with asthma and broad allergic phenotype. Subsequent fine-mapping analyses of classical HLA alleles revealed a novel allele significantly associated with asthma protection (HLA-DQA1*01:02, meta-analysis p = 3.98 × 10-4, OR [95% CI] = 0.64 [0.50-0.82]) that had been linked to infectious and autoimmune diseases, and peanut allergy. HLA haplotype analyses revealed a novel haplotype DQA1*01:02-DQB1*06:04 conferring asthma protection (meta-analysis p = 4.71 × 10-4, OR [95% CI] = 0.47 [0.29- 0.73]).
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Claudio Díaz-García
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ariel Callero
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Eva Perez-Rodriguez
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jose C Garcia-Robaina
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- Department of Health Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
25
|
Whole-exome analysis in Tunisian Imazighen and Arabs shows the impact of demography in functional variation. Sci Rep 2021; 11:21125. [PMID: 34702931 PMCID: PMC8548440 DOI: 10.1038/s41598-021-00576-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Human populations are genetically affected by their demographic history, which shapes the distribution of their functional genomic variation. However, the genetic impact of recent demography is debated. This issue has been studied in different populations, but never in North Africans, despite their relevant cultural and demographic diversity. In this study we address the question by analyzing new whole-exome sequences from two culturally different Tunisian populations, an isolated Amazigh population and a close non-isolated Arab-speaking population, focusing on the distribution of functional variation. Both populations present clear differences in their variant frequency distribution, in general and for putatively damaging variation. This suggests a relevant effect in the Amazigh population of genetic isolation, drift, and inbreeding, pointing to relaxed purifying selection. We also discover the enrichment in Imazighen of variation associated to specific diseases or phenotypic traits, but the scarce genetic and biomedical data in the region limits further interpretation. Our results show the genomic impact of recent demography and reveal a clear genetic differentiation probably related to culture. These findings highlight the importance of considering cultural and demographic heterogeneity within North Africa when defining population groups, and the need for more data to improve knowledge on the region's health and disease landscape.
Collapse
|
26
|
Allele frequency differentiation at height-associated SNPs among continental human populations. Eur J Hum Genet 2021; 29:1542-1548. [PMID: 34267339 PMCID: PMC8484658 DOI: 10.1038/s41431-021-00938-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Methods to detect polygenic adaptation have recently been shown to be sensitive to uncorrected stratification in GWAS, thereby casting doubts on whether polygenic adaptation is prevalent among humans. Consistent with a signal of adaptation at human height loci, the mean FST among African, East Asian, and European populations was shown to be significantly higher at height-associated SNPs than that at non-associated SNPs. This conclusion was reached, however, using height-associated SNPs ascertained from a GWAS design impacted by residual confounding due to uncorrected stratification. Specifically, we show here that the estimated effect sizes are significantly correlated with population structure across continents, potentially explaining the elevated differentiation previously reported. We alleviated these concerns of confounding by ascertaining height-associated SNPs from two biobank GWAS (UK Biobank, UKB, and Biobank Japan, BBJ), where measures to control for confounding in GWAS are more effective. Consistent with a global signature of polygenic adaptation, we found that compared to non-associated SNPs, frequencies of height-associated SNPs are indeed significantly more differentiated among continental populations from both the 1000 Genomes Project (p = 0.0012 for UKB and p = 0.0265 for BBJ), and the Human Genome Diversity Project (p = 0.0225 for UKB and p = 0.0032 for BBJ). However, we found no significant difference among continental populations in polygenic height scores. Through simulations, we found that polygenic score-based statistics could lose power in detecting polygenic adaptation in presence of independent converging selections, thereby potentially explaining the inconsistent results based on FST and polygenic scores.
Collapse
|
27
|
Silva M, Oteo-García G, Martiniano R, Guimarães J, von Tersch M, Madour A, Shoeib T, Fichera A, Justeau P, Foody MGB, McGrath K, Barrachina A, Palomar V, Dulias K, Yau B, Gandini F, Clarke DJ, Rosa A, Brehm A, Flaquer A, Rito T, Olivieri A, Achilli A, Torroni A, Gómez-Carballa A, Salas A, Bryk J, Ditchfield PW, Alexander M, Pala M, Soares PA, Edwards CJ, Richards MB. Biomolecular insights into North African-related ancestry, mobility and diet in eleventh-century Al-Andalus. Sci Rep 2021; 11:18121. [PMID: 34518562 PMCID: PMC8438022 DOI: 10.1038/s41598-021-95996-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/27/2021] [Indexed: 01/26/2023] Open
Abstract
Historical records document medieval immigration from North Africa to Iberia to create Islamic al-Andalus. Here, we present a low-coverage genome of an eleventh century CE man buried in an Islamic necropolis in Segorbe, near Valencia, Spain. Uniparental lineages indicate North African ancestry, but at the autosomal level he displays a mosaic of North African and European-like ancestries, distinct from any present-day population. Altogether, the genome-wide evidence, stable isotope results and the age of the burial indicate that his ancestry was ultimately a result of admixture between recently arrived Amazigh people (Berbers) and the population inhabiting the Peninsula prior to the Islamic conquest. We detect differences between our sample and a previously published group of contemporary individuals from Valencia, exemplifying how detailed, small-scale aDNA studies can illuminate fine-grained regional and temporal differences. His genome demonstrates how ancient DNA studies can capture portraits of past genetic variation that have been erased by later demographic shifts-in this case, most likely the seventeenth century CE expulsion of formerly Islamic communities as tolerance dissipated following the Reconquista by the Catholic kingdoms of the north.
Collapse
Affiliation(s)
- Marina Silva
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - Gonzalo Oteo-García
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Rui Martiniano
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - João Guimarães
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - Ali Madour
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Tarek Shoeib
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- Department of Forensic Science, Faculty of Biomedical Science, University of Benghazi, P.O. Box: 1308, Benghazi, Libya
| | - Alessandro Fichera
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Pierre Justeau
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - M George B Foody
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Krista McGrath
- BioArCh, Department of Archaeology, University of York, York, UK
- Department of Prehistory and Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Amparo Barrachina
- Servei d'Investigacions Arqueològiques i Prehistòriques - Museu Belles Arts de Castelló, Av. Germans Bou, 28, 12003, Castellón, Spain
| | - Vicente Palomar
- Museo Municipal de Arqueología y Etnología de Segorbe, Calle Colón, 98, 12400, Segorbe, Castellón, Spain
| | - Katharina Dulias
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- BioArCh, Department of Archaeology, University of York, York, UK
- Institut für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, 38106, Braunschweig, Germany
| | - Bobby Yau
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Francesca Gandini
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Douglas J Clarke
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Alexandra Rosa
- Faculty of Life Sciences, University of Madeira, Campus of Penteada, 9000-390, Funchal, Portugal
- Human Genetics Laboratory, University of Madeira, Campus of Penteada, 9000-390, Funchal, Portugal
| | - António Brehm
- Human Genetics Laboratory, University of Madeira, Campus of Penteada, 9000-390, Funchal, Portugal
| | - Antònia Flaquer
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU University, Munich, Germany
| | - Teresa Rito
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani, Università di Pavia, 27100, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani, Università di Pavia, 27100, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani, Università di Pavia, 27100, Pavia, Italy
| | - Alberto Gómez-Carballa
- Grupo de Investigacion en Genetica, Vacunas, Infecciones y Pediatria (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Galicia, Spain
| | - Antonio Salas
- Grupo de Investigacion en Genetica, Vacunas, Infecciones y Pediatria (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Jaroslaw Bryk
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Peter W Ditchfield
- School of Archaeology, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK
| | | | - Maria Pala
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Pedro A Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ceiridwen J Edwards
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Martin B Richards
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
28
|
Padakanti S, Tiong KL, Chen YB, Yeang CH. Genotypes of informative loci from 1000 Genomes data allude evolution and mixing of human populations. Sci Rep 2021; 11:17741. [PMID: 34493766 PMCID: PMC8423758 DOI: 10.1038/s41598-021-97129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 08/13/2021] [Indexed: 11/11/2022] Open
Abstract
Principal Component Analysis (PCA) projects high-dimensional genotype data into a few components that discern populations. Ancestry Informative Markers (AIMs) are a small subset of SNPs capable of distinguishing populations. We integrate these two approaches by proposing an algorithm to identify necessary informative loci whose removal from the data deteriorates the PCA structure. Unlike classical AIMs, necessary informative loci densely cover the genome, hence can illuminate the evolution and mixing history of populations. We conduct a comprehensive analysis to the genotype data of the 1000 Genomes Project using necessary informative loci. Projections along the top seven principal components demarcate populations at distinct geographic levels. Millions of necessary informative loci along each PC are identified. Population identities along each PC are approximately determined by weighted sums of minor (or major) alleles over the informative loci. Variations of allele frequencies are aligned with the history and direction of population evolution. The population distribution of projections along the top three PCs is recapitulated by a simple demographic model based on several waves of founder population separation and mixing. Informative loci possess locational concentration in the genome and functional enrichment. Genes at two hot spots encompassing dense PC 7 informative loci exhibit differential expressions among European populations. The mosaic of local ancestry in the genome of a mixed descendant from multiple populations can be inferred from partial PCA projections of informative loci. Finally, informative loci derived from the 1000 Genomes data well predict the projections of an independent genotype data of South Asians. These results demonstrate the utility and relevance of informative loci to investigate human evolution.
Collapse
Affiliation(s)
- Sridevi Padakanti
- Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Taipei, Taiwan
| | - Khong-Loon Tiong
- Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Taipei, Taiwan
| | - Yan-Bin Chen
- Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Taipei, Taiwan
| | - Chen-Hsiang Yeang
- Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Taipei, Taiwan.
| |
Collapse
|
29
|
Ioannidis AG, Blanco-Portillo J, Sandoval K, Hagelberg E, Barberena-Jonas C, Hill AVS, Rodríguez-Rodríguez JE, Fox K, Robson K, Haoa-Cardinali S, Quinto-Cortés CD, Miquel-Poblete JF, Auckland K, Parks T, Sofro ASM, Ávila-Arcos MC, Sockell A, Homburger JR, Eng C, Huntsman S, Burchard EG, Gignoux CR, Verdugo RA, Moraga M, Bustamante CD, Mentzer AJ, Moreno-Estrada A. Paths and timings of the peopling of Polynesia inferred from genomic networks. Nature 2021; 597:522-526. [PMID: 34552258 PMCID: PMC9710236 DOI: 10.1038/s41586-021-03902-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Polynesia was settled in a series of extraordinary voyages across an ocean spanning one third of the Earth1, but the sequences of islands settled remain unknown and their timings disputed. Currently, several centuries separate the dates suggested by different archaeological surveys2-4. Here, using genome-wide data from merely 430 modern individuals from 21 key Pacific island populations and novel ancestry-specific computational analyses, we unravel the detailed genetic history of this vast, dispersed island network. Our reconstruction of the branching Polynesian migration sequence reveals a serial founder expansion, characterized by directional loss of variants, that originated in Samoa and spread first through the Cook Islands (Rarotonga), then to the Society (Tōtaiete mā) Islands (11th century), the western Austral (Tuha'a Pae) Islands and Tuāmotu Archipelago (12th century), and finally to the widely separated, but genetically connected, megalithic statue-building cultures of the Marquesas (Te Henua 'Enana) Islands in the north, Raivavae in the south, and Easter Island (Rapa Nui), the easternmost of the Polynesian islands, settled in approximately AD 1200 via Mangareva.
Collapse
Affiliation(s)
- Alexander G Ioannidis
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
- National Laboratory of Genomics for Biodiversity (LANGEBIO)-Advanced Genomics Unit (UGA), CINVESTAV, Irapuato, Guanajuato, Mexico.
| | - Javier Blanco-Portillo
- National Laboratory of Genomics for Biodiversity (LANGEBIO)-Advanced Genomics Unit (UGA), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Karla Sandoval
- National Laboratory of Genomics for Biodiversity (LANGEBIO)-Advanced Genomics Unit (UGA), CINVESTAV, Irapuato, Guanajuato, Mexico
| | | | - Carmina Barberena-Jonas
- National Laboratory of Genomics for Biodiversity (LANGEBIO)-Advanced Genomics Unit (UGA), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Adrian V S Hill
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Juan Esteban Rodríguez-Rodríguez
- National Laboratory of Genomics for Biodiversity (LANGEBIO)-Advanced Genomics Unit (UGA), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Keolu Fox
- Department of Anthropology, University of California San Diego, La Jolla, CA, USA
| | - Kathryn Robson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Consuelo D Quinto-Cortés
- National Laboratory of Genomics for Biodiversity (LANGEBIO)-Advanced Genomics Unit (UGA), CINVESTAV, Irapuato, Guanajuato, Mexico
| | | | - Kathryn Auckland
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Tom Parks
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Abdul Salam M Sofro
- Department of Biochemistry, Faculty of Medicine, Yayasan Rumah Sakit Islam (YARSI) University, Cempaka Putih, Jakarta, Indonesia
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research (LIIGH), UNAM Juriquilla, Queretaro, Mexico
| | - Alexandra Sockell
- Center for Computational, Evolutionary and Human Genomics (CEHG), Stanford University, Stanford, CA, USA
| | - Julian R Homburger
- Center for Computational, Evolutionary and Human Genomics (CEHG), Stanford University, Stanford, CA, USA
| | - Celeste Eng
- Program in Pharmaceutical Sciences and Pharmacogenomics, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Program in Pharmaceutical Sciences and Pharmacogenomics, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Esteban G Burchard
- Program in Pharmaceutical Sciences and Pharmacogenomics, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christopher R Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO, USA
| | - Ricardo A Verdugo
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Translational Oncology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mauricio Moraga
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Anthropology, Faculty of Social Sciences, University of Chile, Santiago, Chile
| | - Carlos D Bustamante
- Center for Computational, Evolutionary and Human Genomics (CEHG), Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO)-Advanced Genomics Unit (UGA), CINVESTAV, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
30
|
Graves JL. Human biological variation and the "normal". Am J Hum Biol 2021; 33:e23658. [PMID: 34342914 DOI: 10.1002/ajhb.23658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
Anatomically modern human being is a relatively young species (~300 000 years old) with small amounts of genetic variation contained within them. The vast majority of its existence was spent in Eastern Africa, migration out of the region began around 100 000 YBP. Sub-Saharan African populations have the greatest amount of human genetic variation. However, migration allowed populations to accumulate genomic variation associated with living in the arctic, higher altitudes, disease resistance, living on high fat or starchy foods, surviving toxic arsenic-rich environments, lactase persistence, changing skin pigmentation, gaining thicker hair, and changing height and body mass index. Understanding these aspects of human evolution forces us to reconsider our notion of the "normal." Thus, normal for our species includes having dark melanic skin, brown eyes, and brown tightly curled hair. Derived features include lighter skin (~10 000 YBP), blue eyes (~6000 YBP), and blond straight hair (~6000 YBP). Yet in reality, "normal" has no meaning for a species that inhabits such a broad geographic range. Natural selection and genetic drift have genetically differentiated human populations in ways that impact our morphological and physiological traits. The genomic differentiation is small and does not allow any unambiguous classification of human populations into biological races. Despite these now well-established facts of human variation, significant confusion associated with Eurocentric notions of the normal still persist in both the lay public and various professions such as biomedical research and clinical practice.
Collapse
Affiliation(s)
- Joseph L Graves
- Joint School of Nanosciences & Nanoengineering, North Carolina A&T State University, UNC Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
31
|
Ferreiro D, Núñez-Estévez B, Canedo M, Branco C, Arenas M. Evaluating Causes of Current Genetic Gradients of Modern Humans of the Iberian Peninsula. Genome Biol Evol 2021; 13:6219947. [PMID: 33837782 PMCID: PMC8086631 DOI: 10.1093/gbe/evab071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
The history of modern humans in the Iberian Peninsula includes a variety of population arrivals sometimes presenting admixture with resident populations. Genetic data from current Iberian populations revealed an overall east–west genetic gradient that some authors interpreted as a direct consequence of the Reconquista, where Catholic Kingdoms expanded their territories toward the south while displacing Muslims. However, this interpretation has not been formally evaluated. Here, we present a qualitative analysis of the causes of the current genetic gradient observed in the Iberian Peninsula using extensive spatially explicit computer simulations based on a variety of evolutionary scenarios. Our results indicate that the Neolithic range expansion clearly produces the orientation of the observed genetic gradient. Concerning the Reconquista (including political borders among Catholic Kingdoms and regions with different languages), if modeled upon a previous Neolithic expansion, it effectively favored the orientation of the observed genetic gradient and shows local isolation of certain regions (i.e., Basques and Galicia). Despite additional evolutionary scenarios could be evaluated to more accurately decipher the causes of the Iberian genetic gradient, here we show that this gradient has a more complex explanation than that previously hypothesized.
Collapse
Affiliation(s)
- David Ferreiro
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Bernabé Núñez-Estévez
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Mateo Canedo
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Catarina Branco
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Miguel Arenas
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| |
Collapse
|
32
|
Hernández CL, Pita G, Cavadas B, López S, Sánchez-Martínez LJ, Dugoujon JM, Novelletto A, Cuesta P, Pereira L, Calderón R. Human Genomic Diversity Where the Mediterranean Joins the Atlantic. Mol Biol Evol 2021; 37:1041-1055. [PMID: 31816048 PMCID: PMC7086172 DOI: 10.1093/molbev/msz288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Throughout the past few years, a lively debate emerged about the timing and magnitude of the human migrations between the Iberian Peninsula and the Maghreb. Several pieces of evidence, including archaeological, anthropological, historical, and genetic data, have pointed to a complex and intermingled evolutionary history in the western Mediterranean area. To study to what extent connections across the Strait of Gibraltar and surrounding areas have shaped the present-day genomic diversity of its populations, we have performed a screening of 2.5 million single-nucleotide polymorphisms in 142 samples from southern Spain, southern Portugal, and Morocco. We built comprehensive data sets of the studied area and we implemented multistep bioinformatic approaches to assess population structure, demographic histories, and admixture dynamics. Both local and global ancestry inference showed an internal substructure in the Iberian Peninsula, mainly linked to a differential African ancestry. Western Iberia, from southern Portugal to Galicia, constituted an independent cluster within Iberia characterized by an enriched African genomic input. Migration time modeling showed recent historic dates for the admixture events occurring both in Iberia and in the North of Africa. However, an integrative vision of both paleogenomic and modern DNA data allowed us to detect chronological transitions and population turnovers that could be the result of transcontinental migrations dating back from Neolithic times. The present contribution aimed to fill the gaps in the modern human genomic record of a key geographic area, where the Mediterranean and the Atlantic come together.
Collapse
Affiliation(s)
- Candela L Hernández
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruno Cavadas
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Saioa López
- UCL Cancer Institute, London, United Kingdom
| | - Luis J Sánchez-Martínez
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Jean-Michel Dugoujon
- CNRS UMR 5288 Laboratoire d'Anthropologie Moléculaire et d'Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | - Pedro Cuesta
- Centro de Proceso de Datos, Universidad Complutense, Madrid, Spain
| | - Luisa Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
33
|
Exploring the Western Mediterranean through X-chromosome. Int J Legal Med 2021; 135:787-790. [PMID: 33392656 DOI: 10.1007/s00414-020-02498-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
In this study, we investigate the forensic and population genetics properties of 21 X-chromosome markers (9 X-Alu insertions and 12 X-STRs) in a dataset composed of 716 individuals from 11 Western Mediterranean populations. The high values of combined forensic parameters indicate that this 21 X-loci panel can complement autosomal or uniparental markers in kinship analysis and complex deficient paternity testing in the populations studied. Population analyses revealed a lower differentiation between Western Mediterranean human groups for X-STRs than for X-Alu insertion polymorphisms. Moreover, X-chromosome markers suggest a sex-biased migration rate, confirming the predominance of patrilocality in this area.
Collapse
|
34
|
Fregel R, Ordóñez AC, Serrano JG. The demography of the Canary Islands from a genetic perspective. Hum Mol Genet 2020; 30:R64-R71. [PMID: 33295602 DOI: 10.1093/hmg/ddaa262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
The establishment of European colonies across the world had important demographic consequences because it brought together diverse and distant civilizations for the first time. One clear example of this phenomenon is observed in the Canary Islands. The modern Canarian population is mainly the result of the admixture of natives of North African origin and European colonizers. However, additional migratory flows reached the islands due to the importation of enslaved Africans to cultivate sugarcane and the intense commercial contact with the American continent. In this review, we evaluate how the genetic analysis of indigenous, historical and current populations has provided a glimpse into the Canary Islands' complex genetic composition. We show that each island subpopulation's characterization is needed to fully disentangle the demographic history of the Canarian archipelago. Finally, we discuss what research avenues remain to be explored to improve our knowledge of the impact that the European colonization had on its native population.
Collapse
Affiliation(s)
- Rosa Fregel
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Alejandra C Ordóñez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain.,Departamento Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Javier G Serrano
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
35
|
Lucas-Sánchez M, Serradell JM, Comas D. Population history of North Africa based on modern and ancient genomes. Hum Mol Genet 2020; 30:R17-R23. [PMID: 33284971 DOI: 10.1093/hmg/ddaa261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023] Open
Abstract
Compared with the rest of the African continent, North Africa has provided limited genomic data. Nonetheless, the genetic data available show a complex demographic scenario characterized by extensive admixture and drift. Despite the continuous gene flow from the Middle East, Europe and sub-Saharan Africa, an autochthonous genetic component that dates back to pre-Holocene times is still present in North African groups. The comparison of ancient and modern genomes has evidenced a genetic continuity in the region since Epipaleolithic times. Later population movements, especially the gene flow from the Middle East associated with the Neolithic, have diluted the genetic autochthonous component, creating an east to west gradient. Recent historical movements, such as the Arabization, have also contributed to the genetic landscape observed currently in North Africa and have culturally transformed the region. Genome analyses have not shown evidence of a clear correlation between cultural and genetic diversity in North Africa, as there is no genetic pattern of differentiation between Tamazight (i.e. Berber) and Arab speakers as a whole. Besides the gene flow received from neighboring areas, the analysis of North African genomes has shown that the region has also acted as a source of gene flow since ancient times. As a result of the genetic uniqueness of North African groups and the lack of available data, there is an urgent need for the study of genetic variation in the region and its implications in health and disease.
Collapse
Affiliation(s)
- Marcel Lucas-Sánchez
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jose M Serradell
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
36
|
Crooks L, Cooper-Knock J, Heath PR, Bouhouche A, Elfahime M, Azzouz M, Bakri Y, Adnaoui M, Ibrahimi A, Amzazi S, Tazi-Ahnini R. Identification of single nucleotide variants in the Moroccan population by whole-genome sequencing. BMC Genet 2020; 21:111. [PMID: 32957965 PMCID: PMC7507649 DOI: 10.1186/s12863-020-00917-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Large-scale human sequencing projects have described around a hundred-million single nucleotide variants (SNVs). These studies have predominately involved individuals with European ancestry despite the fact that genetic diversity is expected to be highest in Africa where Homo sapiens evolved and has maintained a large population for the longest time. The African Genome Variation Project examined several African populations but these were all located south of the Sahara. Morocco is on the northwest coast of Africa and mostly lies north of the Sahara, which makes it very attractive for studying genetic diversity. The ancestry of present-day Moroccans is unknown and may be substantially different from Africans found South of the Sahara desert, Recent genomic data of Taforalt individuals in Eastern Morocco revealed 15,000-year-old modern humans and suggested that North African individuals may be genetically distinct from previously studied African populations. RESULTS We present SNVs discovered by whole genome sequencing (WGS) of three Moroccans. From a total of 5.9 million SNVs detected, over 200,000 were not identified by 1000G and were not in the extensive gnomAD database. We summarise the SNVs by genomic position, type of sequence gene context and effect on proteins encoded by the sequence. Analysis of the overall genomic information of the Moroccan individuals to individuals from 1000G supports the Moroccan population being distinct from both sub-Saharan African and European populations. CONCLUSIONS We conclude that Moroccan samples are genetically distinct and lie in the middle of the previously observed cline between populations of European and African ancestry. WGS of Moroccan individuals can identify a large number of novel SNVs and aid in functional characterisation of the genome.
Collapse
Affiliation(s)
- Lucy Crooks
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield,, S1 1WB, UK
| | - Johnathan Cooper-Knock
- Neuroscience (SITraN), Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Neuroscience (SITraN), Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | - Ahmed Bouhouche
- Neurology and Neurogenetics, Genomic of Human Pathlogies Center, Medical School and Pharmacy, Mohammed-V University, Rabat, Morocco
| | | | - Mimoun Azzouz
- Neuroscience (SITraN), Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | - Youssef Bakri
- Laboratory of human pathologies Biology BioPatH-Faculty of science-Center of human pathologies Genomics, GenoPatH- Faculty of Medicine- Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammed Adnaoui
- Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Lab (MedBiotech), Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Saaïd Amzazi
- Laboratory of human pathologies Biology BioPatH-Faculty of science-Center of human pathologies Genomics, GenoPatH- Faculty of Medicine- Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Tazi-Ahnini
- Medical School and Pharmacy, Mohammed V University, Rabat, Morocco.
- Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2RX, UK.
| |
Collapse
|
37
|
Arauna LR, Hellenthal G, Comas D. Dissecting human North African gene-flow into its western coastal surroundings. Proc Biol Sci 2020; 286:20190471. [PMID: 31039721 DOI: 10.1098/rspb.2019.0471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
North African history and populations have exerted a pivotal influence on surrounding geographical regions, although scant genetic studies have addressed this issue. Our aim is to understand human historical migrations in the coastal surroundings of North Africa. We built a refined genome-wide dataset of North African populations to unearth the fine-scale genetic structure of the region, using haplotype information. The results suggest that the gene-flow from North Africa into the European Mediterranean coast (Tuscany and the Iberian Peninsula) arrived mainly from the Mediterranean coast of North Africa. In Tuscany, this North African admixture date estimate suggests the movement of peoples during the fall of the Roman Empire around the fourth century. In the Iberian Peninsula, the North African component probably reflects the impact of the Arab expansion since the seventh century and the subsequent expansion of the Christian Kingdoms. By contrast, the North African component in the Canary Islands has a source genetically related to present-day people from the Atlantic North African coast. We also find sub-Saharan gene-flow from the Senegambia region in the Canary Islands. Specifically, we detect a complex signal of admixture involving Atlantic, Senegambian and European sources intermixing around the fifteenth century, soon after the Castilian conquest. Our results highlight the differential genetic influence of North Africa into the surrounding coast and show that specific historical events have not only had a socio-cultural impact but additionally modified the gene pool of the populations.
Collapse
Affiliation(s)
- Lara R Arauna
- 1 Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra , Barcelona , Spain
| | - Garrett Hellenthal
- 2 UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London , London , UK
| | - David Comas
- 1 Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra , Barcelona , Spain
| |
Collapse
|
38
|
Mapping co-ancestry connections between the genome of a Medieval individual and modern Europeans. Sci Rep 2020; 10:6843. [PMID: 32321996 PMCID: PMC7176696 DOI: 10.1038/s41598-020-64007-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/06/2020] [Indexed: 11/08/2022] Open
Abstract
Historical genetic links among similar populations can be difficult to establish. Identity by descent (IBD) analyses find genomic blocks that represent direct genealogical relationships among individuals. However, this method has rarely been applied to ancient genomes because IBD stretches are progressively fragmented by recombination and thus not recognizable after few tens of generations. To explore such genealogical relationships, we estimated long IBD blocks among modern Europeans, generating networks to uncover the genetic structures. We found that Basques, Sardinians, Icelanders and Orcadians form, each of them, highly intraconnected sub-clusters in a European network, indicating dense genealogical links within small, isolated populations. We also exposed individual genealogical links -such as the connection between one Basque and one Icelandic individual- that cannot be uncovered with other, widely used population genetics methods such as PCA or ADMIXTURE. Moreover, using ancient DNA technology we sequenced a Late Medieval individual (Barcelona, Spain) to high genomic coverage and identified IBD blocks shared between her and modern Europeans. The Medieval IBD blocks are statistically overrepresented only in modern Spaniards, which is the geographically closest population. This approach can be used to produce a fine-scale reflection of shared ancestry across different populations of the world, offering a direct genetic link from the past to the present.
Collapse
|
39
|
Guillen-Guio B, Hernández-Beeftink T, Marcelino-Rodríguez I, Rodríguez-Pérez H, Lorenzo-Salazar JM, Espinilla-Peña M, Corrales A, Pino-Yanes M, Callero A, Perez-Rodriguez E, Villar J, González-Montelongo R, Flores C. Admixture mapping of asthma in southwestern Europeans with North African ancestry influences. Am J Physiol Lung Cell Mol Physiol 2020; 318:L965-L975. [PMID: 32186396 DOI: 10.1152/ajplung.00344.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The prevalence of asthma symptoms in Canary Islanders, a southwestern European population from Spain, is almost three times higher than the country average. Because the genetic risks identified so far explain <5% of asthma heritability, here we aimed to discover new asthma loci by completing the first admixture mapping study in Canary Islanders leveraging their distinctive genetic makeup, where significant northwest African influences coexist in the European genetic diversity landscape. A 2-stage study was conducted in 1,491 unrelated individuals self-declaring having a Canary Islands origin for the 4 grandparents. Local ancestry estimates were obtained for the shared positions with reference data from putative ancestral populations from Europe, North Africa, and sub-Saharan Africa. Case-control deviations in local ancestry were tested for each ancestry separately using logistic regressions adjusted for principal components, followed by fine-mapping analyses based on imputed genotypes and analyses of the likely deleterious exonic variants. The admixture mapping analysis of asthma detected that local North African ancestry in a locus spanning 365 kb of chromosome 16q23.3 was associated with asthma risk at study-wide significance [lowest P = 1.12 × 10-4; odds ratio (OR) = 2.05; 95% confidence interval (CI) = 1.41-3.00]. Fine-mapping studies identified a variant associated with asthma, and results were replicated in independent samples (rs3852738, OR = 1.34; 95% CI = 1.13-1.59, P = 7.58 × 10-4). Whole exome sequencing data from a subset of individuals revealed an enrichment of likely deleterious variants among asthma cases in 16q23.3, particularly in the phospholipase Cγ2 (PLCG2) gene (P = 3.67 × 10-4). By completing the first mapping study of asthma in admixed populations from Europe, our results revealed a new plausible asthma locus.
Collapse
Affiliation(s)
- Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Marta Espinilla-Peña
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Pino-Yanes
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Ariel Callero
- Allergy Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Eva Perez-Rodriguez
- Allergy Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jesús Villar
- Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
40
|
González-Fortes G, Tassi F, Trucchi E, Henneberger K, Paijmans JLA, Díez-Del-Molino D, Schroeder H, Susca RR, Barroso-Ruíz C, Bermudez FJ, Barroso-Medina C, Bettencourt AMS, Sampaio HA, Grandal-d'Anglade A, Salas A, de Lombera-Hermida A, Fabregas Valcarce R, Vaquero M, Alonso S, Lozano M, Rodríguez-Alvarez XP, Fernández-Rodríguez C, Manica A, Hofreiter M, Barbujani G. A western route of prehistoric human migration from Africa into the Iberian Peninsula. Proc Biol Sci 2020; 286:20182288. [PMID: 30963949 DOI: 10.1098/rspb.2018.2288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Being at the western fringe of Europe, Iberia had a peculiar prehistory and a complex pattern of Neolithization. A few studies, all based on modern populations, reported the presence of DNA of likely African origin in this region, generally concluding it was the result of recent gene flow, probably during the Islamic period. Here, we provide evidence of much older gene flow from Africa to Iberia by sequencing whole genomes from four human remains from northern Portugal and southern Spain dated around 4000 years BP (from the Middle Neolithic to the Bronze Age). We found one of them to carry an unequivocal sub-Saharan mitogenome of most probably West or West-Central African origin, to our knowledge never reported before in prehistoric remains outside Africa. Our analyses of ancient nuclear genomes show small but significant levels of sub-Saharan African affinity in several ancient Iberian samples, which indicates that what we detected was not an occasional individual phenomenon, but an admixture event recognizable at the population level. We interpret this result as evidence of an early migration process from Africa into the Iberian Peninsula through a western route, possibly across the Strait of Gibraltar.
Collapse
Affiliation(s)
- G González-Fortes
- 1 Department of Life Science and Biotechnology, University of Ferrara , 44121 Ferrara , Italy
| | - F Tassi
- 1 Department of Life Science and Biotechnology, University of Ferrara , 44121 Ferrara , Italy
| | - E Trucchi
- 1 Department of Life Science and Biotechnology, University of Ferrara , 44121 Ferrara , Italy
| | - K Henneberger
- 2 Institute for Biochemistry and Biology, University of Potsdam , 14476 Potsdam OT Golm , Germany
| | - J L A Paijmans
- 2 Institute for Biochemistry and Biology, University of Potsdam , 14476 Potsdam OT Golm , Germany
| | - D Díez-Del-Molino
- 3 Department of Bioinformatics and Genetics, Swedish Museum of Natural History , 104 05 Stockholm , Sweden
| | - H Schroeder
- 4 Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen , 1353 Copenhagen K , Denmark
| | - R R Susca
- 1 Department of Life Science and Biotechnology, University of Ferrara , 44121 Ferrara , Italy
| | - C Barroso-Ruíz
- 5 Fundación Instituto de Investigación de Prehistoria y Evolución Humana (FIPEH) , 14900 Lucena, Córdoba , Spain
| | - F J Bermudez
- 5 Fundación Instituto de Investigación de Prehistoria y Evolución Humana (FIPEH) , 14900 Lucena, Córdoba , Spain
| | - C Barroso-Medina
- 5 Fundación Instituto de Investigación de Prehistoria y Evolución Humana (FIPEH) , 14900 Lucena, Córdoba , Spain
| | - A M S Bettencourt
- 6 Landscape, Heritage and Territory Laboratory-Lab2PT, Department of History, University of Minho , 4700-057 Braga , Portugal
| | - H A Sampaio
- 7 Landscape, Heritage and Territory Laboratory-Lab2PT, Department of Hospitality and Tourism, Polytechnic Institute of Cávado and Ave , Barcelos , Portugal
| | - A Grandal-d'Anglade
- 8 Universitary Institute of Geology, University of Coruña , A Coruña 15081 , Spain
| | - A Salas
- 9 Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB (IDIS-SERGAS) , Galicia , Spain
| | - A de Lombera-Hermida
- 10 Department of History GEPN-AAT, University of Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - R Fabregas Valcarce
- 10 Department of History GEPN-AAT, University of Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - M Vaquero
- 11 Department of History and History of Art, Rovira i Virgili University , 43002 Tarragona , Spain.,12 Institut Català de Paleoecologia Humana i Evolució Social (IPHES) , 43007 Tarragona , Spain
| | - S Alonso
- 11 Department of History and History of Art, Rovira i Virgili University , 43002 Tarragona , Spain.,12 Institut Català de Paleoecologia Humana i Evolució Social (IPHES) , 43007 Tarragona , Spain
| | - M Lozano
- 11 Department of History and History of Art, Rovira i Virgili University , 43002 Tarragona , Spain.,12 Institut Català de Paleoecologia Humana i Evolució Social (IPHES) , 43007 Tarragona , Spain
| | - X P Rodríguez-Alvarez
- 11 Department of History and History of Art, Rovira i Virgili University , 43002 Tarragona , Spain.,12 Institut Català de Paleoecologia Humana i Evolució Social (IPHES) , 43007 Tarragona , Spain
| | | | - A Manica
- 14 Department of Zoology, University of Cambridge , Cambridge CB2 3EJ , UK
| | - M Hofreiter
- 2 Institute for Biochemistry and Biology, University of Potsdam , 14476 Potsdam OT Golm , Germany
| | - G Barbujani
- 1 Department of Life Science and Biotechnology, University of Ferrara , 44121 Ferrara , Italy
| |
Collapse
|
41
|
Bandres-Ciga S, Ahmed S, Sabir MS, Blauwendraat C, Adarmes-Gómez AD, Bernal-Bernal I, Bonilla-Toribio M, Buiza-Rueda D, Carrillo F, Carrión-Claro M, Gómez-Garre P, Jesús S, Labrador-Espinosa MA, Macias D, Méndez-del-Barrio C, Periñán-Tocino T, Tejera-Parrado C, Vargas-González L, Diez-Fairen M, Alvarez I, Tartari JP, Buongiorno M, Aguilar M, Gorostidi A, Bergareche JA, Mondragon E, Vinagre-Aragon A, Croitoru I, Ruiz-Martínez J, Dols-Icardo O, Kulisevsky J, Marín-Lahoz J, Pagonabarraga J, Pascual-Sedano B, Ezquerra M, Cámara A, Compta Y, Fernández M, Fernández-Santiago R, Muñoz E, Tolosa E, Valldeoriola F, Gonzalez-Aramburu I, Sanchez Rodriguez A, Sierra M, Menéndez-González M, Blazquez M, Garcia C, Suarez-San Martin E, García-Ruiz P, Martínez-Castrillo JC, Vela-Desojo L, Ruz C, Barrero FJ, Escamilla-Sevilla F, Mínguez-Castellanos A, Cerdan D, Tabernero C, Gomez Heredia MJ, Perez Errazquin F, Romero-Acebal M, Feliz C, Lopez-Sendon JL, Mata M, Martínez Torres I, Kim JJ, Dalgard CL, The American Genome Center, Brooks J, Saez-Atienzar S, Gibbs JR, Jorda R, Botia JA, Bonet-Ponce L, Morrison KE, Clarke C, Tan M, Morris H, Edsall C, Hernandez D, Simon-Sanchez J, Nalls MA, Scholz SW, Jimenez-Escrig A, Duarte J, Vives F, Duran R, Hoenicka J, Alvarez V, Infante J, Marti MJ, Clarimón J, López de Munain A, Pastor P, Mir P, Singleton A. The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population-Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Mov Disord 2019; 34:1851-1863. [PMID: 31660654 PMCID: PMC8393828 DOI: 10.1002/mds.27864] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/08/2019] [Accepted: 08/25/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The Iberian Peninsula stands out as having variable levels of population admixture and isolation, making Spain an interesting setting for studying the genetic architecture of neurodegenerative diseases. OBJECTIVES To perform the largest PD genome-wide association study restricted to a single country. METHODS We performed a GWAS for both risk of PD and age at onset in 7,849 Spanish individuals. Further analyses included population-specific risk haplotype assessments, polygenic risk scoring through machine learning, Mendelian randomization of expression, and methylation data to gain insight into disease-associated loci, heritability estimates, genetic correlations, and burden analyses. RESULTS We identified a novel population-specific genome-wide association study signal at PARK2 associated with age at onset, which was likely dependent on the c.155delA mutation. We replicated four genome-wide independent signals associated with PD risk, including SNCA, LRRK2, KANSL1/MAPT, and HLA-DQB1. A significant trend for smaller risk haplotypes at known loci was found compared to similar studies of non-Spanish origin. Seventeen PD-related genes showed functional consequence by two-sample Mendelian randomization in expression and methylation data sets. Long runs of homozygosity at 28 known genes/loci were found to be enriched in cases versus controls. CONCLUSIONS Our data demonstrate the utility of the Spanish risk haplotype substructure for future fine-mapping efforts, showing how leveraging unique and diverse population histories can benefit genetic studies of complex diseases. The present study points to PARK2 as a major hallmark of PD etiology in Spain. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Sarah Ahmed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marya S. Sabir
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Astrid D. Adarmes-Gómez
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Inmaculada Bernal-Bernal
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Marta Bonilla-Toribio
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Dolores Buiza-Rueda
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Fátima Carrillo
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Mario Carrión-Claro
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Pilar Gómez-Garre
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Silvia Jesús
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Miguel A. Labrador-Espinosa
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Daniel Macias
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Carlota Méndez-del-Barrio
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Teresa Periñán-Tocino
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cristina Tejera-Parrado
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Laura Vargas-González
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Monica Diez-Fairen
- Fundació Docència i Recerca Mútua de Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Ignacio Alvarez
- Fundació Docència i Recerca Mútua de Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Juan Pablo Tartari
- Fundació Docència i Recerca Mútua de Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Mariateresa Buongiorno
- Fundació Docència i Recerca Mútua de Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Miquel Aguilar
- Fundació Docència i Recerca Mútua de Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Ana Gorostidi
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, San Sebastián, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Plataforma de Genomica, Instituto de Investigacion Biodonostia, San Sebastián, Spain
| | - Jesús Alberto Bergareche
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, San Sebastián, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Unidad de Trastornos de Movimiento, Departamento de Neurologia, Hospital Universitario de Donostia, San Sebastián, Spain
| | - Elisabet Mondragon
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, San Sebastián, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Unidad de Trastornos de Movimiento, Departamento de Neurologia, Hospital Universitario de Donostia, San Sebastián, Spain
| | - Ana Vinagre-Aragon
- Unidad de Trastornos de Movimiento, Departamento de Neurologia, Hospital Universitario de Donostia, San Sebastián, Spain
| | - Ioana Croitoru
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Javier Ruiz-Martínez
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, San Sebastián, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Unidad de Trastornos de Movimiento, Departamento de Neurologia, Hospital Universitario de Donostia, San Sebastián, Spain
| | - Oriol Dols-Icardo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Genetics of Neurodegenerative Disorders Unit, IIB Sant Pau, and Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Jaime Kulisevsky
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Juan Marín-Lahoz
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Javier Pagonabarraga
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Berta Pascual-Sedano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Mario Ezquerra
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Lab. of Parkinson disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Institut d’Investigacions Biomèdiques, Barcelona, Catalonia, Spain
- Unitat de Parkinson i Trastorns del Moviment. Servicio de Neurologia, Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain
| | - Ana Cámara
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Lab. of Parkinson disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Institut d’Investigacions Biomèdiques, Barcelona, Catalonia, Spain
- Unitat de Parkinson i Trastorns del Moviment. Servicio de Neurologia, Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain
| | - Yaroslau Compta
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Lab. of Parkinson disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Institut d’Investigacions Biomèdiques, Barcelona, Catalonia, Spain
- Unitat de Parkinson i Trastorns del Moviment. Servicio de Neurologia, Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain
| | - Manel Fernández
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Lab. of Parkinson disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Institut d’Investigacions Biomèdiques, Barcelona, Catalonia, Spain
- Unitat de Parkinson i Trastorns del Moviment. Servicio de Neurologia, Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain
| | - Rubén Fernández-Santiago
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Lab. of Parkinson disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Institut d’Investigacions Biomèdiques, Barcelona, Catalonia, Spain
- Unitat de Parkinson i Trastorns del Moviment. Servicio de Neurologia, Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain
| | - Esteban Muñoz
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Lab. of Parkinson disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Institut d’Investigacions Biomèdiques, Barcelona, Catalonia, Spain
- Unitat de Parkinson i Trastorns del Moviment. Servicio de Neurologia, Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain
| | - Eduard Tolosa
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Lab. of Parkinson disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Institut d’Investigacions Biomèdiques, Barcelona, Catalonia, Spain
- Unitat de Parkinson i Trastorns del Moviment. Servicio de Neurologia, Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain
| | - Francesc Valldeoriola
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Lab. of Parkinson disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Institut d’Investigacions Biomèdiques, Barcelona, Catalonia, Spain
- Unitat de Parkinson i Trastorns del Moviment. Servicio de Neurologia, Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain
| | - Isabel Gonzalez-Aramburu
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Servicio de Neurología, Hospital Universitario Marqués de Valdecilla (IDIVAL) and Universidad de Cantabria, Santander, Spain
| | - Antonio Sanchez Rodriguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Servicio de Neurología, Hospital Universitario Marqués de Valdecilla (IDIVAL) and Universidad de Cantabria, Santander, Spain
| | - María Sierra
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Servicio de Neurología, Hospital Universitario Marqués de Valdecilla (IDIVAL) and Universidad de Cantabria, Santander, Spain
| | - Manuel Menéndez-González
- Servicio de Neurología, Hospital Universitario Central de Asturias, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Marta Blazquez
- Servicio de Neurología, Hospital Universitario Central de Asturias, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Ciara Garcia
- Servicio de Neurología, Hospital Universitario Central de Asturias, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Esther Suarez-San Martin
- Servicio de Neurología, Hospital Universitario Central de Asturias, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Pedro García-Ruiz
- Departamento de Neurologia, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Juan Carlos Martínez-Castrillo
- Departamento de Neurologia, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Lydia Vela-Desojo
- Servicio de Neurologia, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Clara Ruz
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigacion Biomedica and Departamento de Fisiologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Francisco Javier Barrero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Servicio de Neurología, Hospital Universitario San Cecilio, Granada, Universidad de Granada, Spain
| | - Francisco Escamilla-Sevilla
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Servicio de Neurología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Adolfo Mínguez-Castellanos
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Servicio de Neurología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Debora Cerdan
- Servicio de Neurología, Hospital General de Segovia, Segovia, Spain
| | - Cesar Tabernero
- Servicio de Neurología, Hospital General de Segovia, Segovia, Spain
| | | | | | - Manolo Romero-Acebal
- Servicio de Neurología, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Cici Feliz
- Departamento de Neurologia, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Jose Luis Lopez-Sendon
- Departamento de Neurologia, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Marina Mata
- Departamento de Neurologia, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - Irene Martínez Torres
- Departamento de Neurologia, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Jonggeol Jeffrey Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Janet Brooks
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Rafael Jorda
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Juan A. Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
- Department of Molecular Neuroscience, UCL, Institute of Neurology, London, United Kingdom
| | - Luis Bonet-Ponce
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen E. Morrison
- Department of Neurology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Carl Clarke
- University of Birmingham, Birmingham, United Kingdom
- Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Manuela Tan
- Department of Clinical Neuroscience, University College London, London, United Kingdom
| | - Huw Morris
- Department of Clinical Neuroscience, University College London, London, United Kingdom
| | - Connor Edsall
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Javier Simon-Sanchez
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, and DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica International, Glen Echo, Maryland, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Department of Neurology, Johns Hopkins Medical Center, Baltimore, Maryland, USA
| | - Adriano Jimenez-Escrig
- Departamento de Neurologia, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Jacinto Duarte
- Servicio de Neurología, Hospital General de Segovia, Segovia, Spain
| | - Francisco Vives
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigacion Biomedica and Departamento de Fisiologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Raquel Duran
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigacion Biomedica and Departamento de Fisiologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Janet Hoenicka
- Laboratorio de Neurogenética y Medicina Molecular, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Victoria Alvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Asturias, Spain
| | - Jon Infante
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Servicio de Neurología, Hospital Universitario Marqués de Valdecilla (IDIVAL) and Universidad de Cantabria, Santander, Spain
| | - Maria José Marti
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Lab. of Parkinson disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Institut d’Investigacions Biomèdiques, Barcelona, Catalonia, Spain
- Unitat de Parkinson i Trastorns del Moviment. Servicio de Neurologia, Hospital Clínic de Barcelona and Institut de Neurociencies de la Universitat de Barcelona (Maria de Maetzu Center), Catalonia, Spain
| | - Jordi Clarimón
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
- Genetics of Neurodegenerative Disorders Unit, IIB Sant Pau, and Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Adolfo López de Munain
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, San Sebastián, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Neurociencias. UPV-EHU, Servicio de Neurología, Hospital Universitario Donostia, San Sebastián, Spain
| | - Pau Pastor
- Fundació Docència i Recerca Mútua de Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Pablo Mir
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Serra-Vidal G, Lucas-Sanchez M, Fadhlaoui-Zid K, Bekada A, Zalloua P, Comas D. Heterogeneity in Palaeolithic Population Continuity and Neolithic Expansion in North Africa. Curr Biol 2019; 29:3953-3959.e4. [DOI: 10.1016/j.cub.2019.09.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/02/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023]
|
43
|
Zhang C, Gao Y, Ning Z, Lu Y, Zhang X, Liu J, Xie B, Xue Z, Wang X, Yuan K, Ge X, Pan Y, Liu C, Tian L, Wang Y, Lu D, Hoh BP, Xu S. PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations. Genome Biol 2019; 20:215. [PMID: 31640808 PMCID: PMC6805450 DOI: 10.1186/s13059-019-1838-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/26/2019] [Indexed: 12/23/2022] Open
Abstract
Despite the tremendous growth of the DNA sequencing data in the last decade, our understanding of the human genome is still in its infancy. To understand the implications of genetic variants in the light of population genetics and molecular evolution, we developed a database, PGG.SNV ( https://www.pggsnv.org ), which gives much higher weight to previously under-investigated indigenous populations in Asia. PGG.SNV archives 265 million SNVs across 220,147 present-day genomes and 1018 ancient genomes, including 1009 newly sequenced genomes, representing 977 global populations. Moreover, estimation of population genetic diversity and evolutionary parameters is available in PGG.SNV, a unique feature compared with other databases.
Collapse
Affiliation(s)
- Chao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- Present Address: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Gao
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhilin Ning
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Xiaoxi Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiaojiao Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bo Xie
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Zhe Xue
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Xiaoji Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Kai Yuan
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Xueling Ge
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Yuwen Pan
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Chang Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Lei Tian
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Yuchen Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Dongsheng Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Boon-Peng Hoh
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- Faculty of Medicine and Health Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Collaborative Innovation Center of Genetics and Development, Shanghai, 200438, China.
| |
Collapse
|
44
|
Thami PK, Chimusa ER. Population Structure and Implications on the Genetic Architecture of HIV-1 Phenotypes Within Southern Africa. Front Genet 2019; 10:905. [PMID: 31611910 PMCID: PMC6777512 DOI: 10.3389/fgene.2019.00905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The interesting history of Southern Africa has put the region in the spotlight for population medical genetics. Major events including the Bantu expansion and European colonialism have imprinted unique genetic signatures within autochthonous populations of Southern Africa, this resulting in differential allele frequencies across the region. This genetic structure has potential implications on susceptibility and resistance to infectious diseases such as human immunodeficiency virus (HIV) infection. Southern Africa is the region affected worst by HIV. Here, we discuss advances made in genome-wide association studies (GWAS) of HIV-1 in the past 12 years and dissect population diversity within Southern Africa. Our findings accentuate that a plethora of factors such as migration, language and culture, admixture, and natural selection have profiled the genetics of the people of Southern Africa. Genetic structure has been observed among the Khoe-San, among Bantu speakers, and between the Khoe-San, Coloureds, and Bantu speakers. Moreover, Southern African populations have complex admixture scenarios. Few GWAS of HIV-1 have been conducted in Southern Africa, with only one of these identifying two novel variants (HCG22rs2535307 and CCNG1kgp22385164) significantly associated with HIV-1 acquisition and progression. High genetic diversity, multi-wave genetic mixture and low linkage disequilibrium of Southern African populations constitute a challenge in identifying genetic variants with modest risk or protective effect against HIV-1. We therefore posit that it is compelling to assess genome-wide contribution of ancestry to HIV-1 infection. We further suggest robust methods that can pin-point population-specific variants that may contribute to the control of HIV-1 in Southern Africa.
Collapse
Affiliation(s)
- Prisca K Thami
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
45
|
Guillen-Guio B, Lorenzo-Salazar JM, González-Montelongo R, Díaz-de Usera A, Marcelino-Rodríguez I, Corrales A, Cabrera de León A, Alonso S, Flores C. Genomic Analyses of Human European Diversity at the Southwestern Edge: Isolation, African Influence and Disease Associations in the Canary Islands. Mol Biol Evol 2019; 35:3010-3026. [PMID: 30289472 PMCID: PMC6278859 DOI: 10.1093/molbev/msy190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the genetic resemblance of Canary Islanders to other southern European populations, their geographical isolation and the historical admixture of aborigines (from North Africa) with sub-Saharan Africans and Europeans have shaped a distinctive genetic makeup that likely affects disease susceptibility and health disparities. Based on single nucleotide polymorphism array data and whole genome sequencing (30×), we inferred that the last African admixture took place ∼14 generations ago and estimated that up to 34% of the Canary Islander genome is of recent African descent. The length of regions in homozygosis and the ancestry-related mosaic organization of the Canary Islander genome support the view that isolation has been strongest on the two smallest islands. Furthermore, several genomic regions showed significant and large deviations in African or European ancestry and were significantly enriched in genes involved in prevalent diseases in this community, such as diabetes, asthma, and allergy. The most prominent of these regions were located near LCT and the HLA, two well-known targets of selection, at which 40‒50% of the Canarian genome is of recent African descent according to our estimates. Putative selective signals were also identified in these regions near the SLC6A11-SLC6A1, KCNMB2, and PCDH20-PCDH9 genes. Taken together, our findings provide solid evidence of a significant recent African admixture, population isolation, and adaptation in this part of Europe, with the favoring of African alleles in some chromosome regions. These findings may have medical implications for populations of recent African ancestry.
Collapse
Affiliation(s)
- Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Cabrera de León
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
46
|
Kamranjam M, Alaei M. Mutation Analysis of the IDUA Gene in Iranian Patients with Mucopolysaccharidosis Type 1: Identification of Four Novel Mutations. Genet Test Mol Biomarkers 2019; 23:515-522. [PMID: 31298590 DOI: 10.1089/gtmb.2019.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background and Purpose: Mucopolysaccharidosis 1 (MPS1) is an autosomal recessive disorder of a lysosomal enzyme called alpha-l-iduronidase caused by mutations in the IDUA gene. This enzyme is responsible for the degradation of the mucopolysaccharides, heparan sulfate, and dermatan sulfate. Based on clinical features and enzyme deficiency, MPS1 is divided into three subtypes, including a severe subtype (Hurler syndrome), an intermediate subtype (Hurler-Scheie syndrome), and an attenuated subtype (Scheie syndrome). The objective of this study was to characterize the mutation profiles of 17 Iranian patients with MPS1 and characterize the clinical features associated with their genotypes. Materials and Methods: Polymerase chain reaction-based sequencing of the IDUA gene was carried out for 10 patients with clinical diagnoses of MPS1 and 50 healthy controls. To estimate the impact of newly identified variants on the structure and function of the encoded alpha-l-iduronidase, in silico analyses was performed. Results: Eight genetic variations were detected, including five missense mutations (p.M1L, p.G51D, p.G134V, p.S157P, p.D301E), two nonsense mutations (p.W402* and p.Y343*), and one deletion (p.GFLNYY197-202), among which p.G134V, p.S157P, p.D301E, and p.GFLNYY197-202 were novel variations that had not been previously reported. Conclusion: After combining the results of the two previous IDUA gene studies performed on Iranian MPS1 patients and the results obtained from the current study, it is inferred that despite the presence of a number of previously known mutations, about half of the detected variations were unique in Iranian patients.
Collapse
Affiliation(s)
- Mana Kamranjam
- 1Department of Medical Genetics, Special Medical Center, Tehran, Iran
| | - Mohammadreza Alaei
- 2Department of Pediatric Endocrinology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Salter-Townshend M, Myers S. Fine-Scale Inference of Ancestry Segments Without Prior Knowledge of Admixing Groups. Genetics 2019; 212:869-889. [PMID: 31123038 PMCID: PMC6614886 DOI: 10.1534/genetics.119.302139] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/18/2019] [Indexed: 12/31/2022] Open
Abstract
We present an algorithm for inferring ancestry segments and characterizing admixture events, which involve an arbitrary number of genetically differentiated groups coming together. This allows inference of the demographic history of the species, properties of admixing groups, identification of signatures of natural selection, and may aid disease gene mapping. The algorithm employs nested hidden Markov models to obtain local ancestry estimation along the genome for each admixed individual. In a range of simulations, the accuracy of these estimates equals or exceeds leading existing methods. Moreover, and unlike these approaches, we do not require any prior knowledge of the relationship between subgroups of donor reference haplotypes and the unseen mixing ancestral populations. Our approach infers these in terms of conditional "copying probabilities." In application to the Human Genome Diversity Project, we corroborate many previously inferred admixture events (e.g., an ancient admixture event in the Kalash). We further identify novel events such as complex four-way admixture in San-Khomani individuals, and show that Eastern European populations possess [Formula: see text] ancestry from a group resembling modern-day central Asians. We also identify evidence of recent natural selection favoring sub-Saharan ancestry at the human leukocyte antigen (HLA) region, across North African individuals. We make available an R and C++ software library, which we term MOSAIC (which stands for MOSAIC Organizes Segments of Ancestry In Chromosomes).
Collapse
Affiliation(s)
| | - Simon Myers
- Dept. of Statistics, University of Oxford and Wellcome Trust Centre for Human Genetics, Oxford, UK
| |
Collapse
|
48
|
Pimenta J, Lopes AM, Carracedo A, Arenas M, Amorim A, Comas D. Spatially explicit analysis reveals complex human genetic gradients in the Iberian Peninsula. Sci Rep 2019; 9:7825. [PMID: 31127131 PMCID: PMC6534591 DOI: 10.1038/s41598-019-44121-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
The Iberian Peninsula is a well-delimited geographic region with a rich and complex human history. However, the causes of its genetic structure and past migratory dynamics are not yet fully understood. In order to shed light on them, here we evaluated the gene flow and genetic structure throughout the Iberian Peninsula with spatially explicit modelling applied to a georeferenced genetic dataset composed of genome-wide SNPs from 746 individuals belonging to 17 different regions of the Peninsula. We found contrasting patterns of genetic structure throughout Iberia. In particular, we identified strong patterns of genetic differentiation caused by relevant barriers to gene flow in northern regions and, on the other hand, a large genetic similarity in central and southern regions. In addition, our results showed a preferential north to south migratory dynamics and suggest a sex-biased dispersal in Mediterranean and southern regions. The estimated genetic patterns did not fit with the geographical relief of the Iberian landscape and they rather seem to follow political and linguistic territorial boundaries.
Collapse
Affiliation(s)
- João Pimenta
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Institute of Evolutionary Biology (CSIC-UPF). Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Faculty of Sciences, University of Porto, Porto, Portugal
- Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Angel Carracedo
- Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, CIBERER, Santiago de Compostela, Spain
| | - Miguel Arenas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310, Vigo, Spain
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - David Comas
- Institute of Evolutionary Biology (CSIC-UPF). Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
49
|
Badache H, Boussetta S, Elgaaeid AB, Cherni L, El-khil HK. Investigation of the genetic structure of Kabyle and Chaouia Algerian populations through the polymorphism of Alu insertion markers. Ann Hum Biol 2019; 46:150-159. [DOI: 10.1080/03014460.2019.1588994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hocine Badache
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Amel Benammar Elgaaeid
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Houssein Khodjet El-khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
- Department of Biomedical Sciences, College of Health Sciences Qatar University, Doha, Qatar
| |
Collapse
|
50
|
Hernández CL, Dugoujon JM, Sánchez-Martínez LJ, Cuesta P, Novelletto A, Calderón R. Paternal lineages in southern Iberia provide time frames for gene flow from mainland Europe and the Mediterranean world. Ann Hum Biol 2019; 46:63-76. [PMID: 30822152 DOI: 10.1080/03014460.2019.1587507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The geography of southern Iberia and an abundant archaeological record of human occupation are ideal conditions for a full understanding of scenarios of genetic history in the area. Recent advances in the phylogeography of Y-chromosome lineages offer the opportunity to set upper bounds for the appearance of different genetic components. AIM To provide a global knowledge on the Y haplogroups observed in Andalusia with their Y microsatellite variation. Preferential attention is given to the vehement debate about the age, origin and expansion of R1b-M269 clade and sub-lineages. SUBJECT AND METHODS Four hundred and fourteen male DNA samples from western and eastern autochthonous Andalusians were genotyped for a set of Y-SNPs and Y-STRs. Gene diversity, potential population genetic structures and coalescent times were assessed. RESULTS Most of the analysed samples belong to the European haplogroup R1b1a1a2-M269, whereas haplogroups E, J, I, G and T show lower frequencies. A phylogenetic dissection of the R1b-M269 was performed and younger time frames than those previously reported in the literature were obtained for its sub-lineages. CONCLUSION The particular Andalusian R1b-M269 assemblage confirms the shallow topology of the clade. Moreover, the sharing of lineages with the rest of Europe indicates the impact in Iberia of an amount of pre-existing diversity, with the possible exception of R1b-DF27. Lineages such as J2-M172 and G-M201 highlight the importance of maritime travels of early farmers who reached the Iberian Peninsula.
Collapse
Affiliation(s)
- Candela L Hernández
- a Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología , Universidad Complutense , Madrid , Spain
| | - Jean-Michel Dugoujon
- b CNRS UMR 5288 Laboratoire d'Anthropologie Moléculaire et d'Imagerie de Synthèse (AMIS) , Université Paul Sabatier Toulouse III , Toulouse , France
| | - Luis J Sánchez-Martínez
- a Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología , Universidad Complutense , Madrid , Spain
| | - Pedro Cuesta
- c Centro de Proceso de Datos , Universidad Complutense , Madrid , Spain
| | | | - Rosario Calderón
- a Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología , Universidad Complutense , Madrid , Spain
| |
Collapse
|