1
|
Liao G, Diekman CO, Bose A. Dynamics of phase tumbling and the reentrainment of circadian oscillators. Math Biosci 2025; 381:109381. [PMID: 39929435 DOI: 10.1016/j.mbs.2025.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
Circadian clocks are comprised of networks of cellular oscillators that synchronize to produce endogenous daily rhythms in gene expression and protein abundance. These clocks have evolved to align the physiology and behavior of organisms to the 24-h environmental cycles arising from Earth's rotation. Rapid travel across time zones causes misalignment between an organism's circadian rhythms and its environment, leading to sleep problems and other jet lag symptoms until the circadian system entrains to the external cycles of the new time zone. Experimental and modeling work has shown that phase tumbling, defined as desynchronizing networks of circadian oscillators prior to an abrupt phase shift of the light-dark cycle, can speed up the process of reentrainment. Here, we use a mathematical model of circadian oscillators and 2-D entrainment maps to analyze the conditions under which phase tumbling has a positive, neutral, or negative effect on reentrainment time. We find that whether or not phase tumbling is beneficial depends on the size of the external phase shift and the location of the perturbed oscillator with respect to the fixed points and invariant manifolds of the entrainment map.
Collapse
Affiliation(s)
- Guangyuan Liao
- Key Laboratory of Intelligent Analysis and Decision on Complex Systems, School of Science, Chongqing University of Posts and Telecommunications, Chongwen Road, Nan'an, 400065, Chongqing, China.
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States of America.
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States of America.
| |
Collapse
|
2
|
Xu Y, Gu C, Qu D, Wang H, Rohling JHT. Light-induced synchronization modulation: Enhanced in weak coupling and attenuated in strong coupling among suprachiasmatic nucleus neurons. Phys Rev E 2025; 111:014401. [PMID: 39972882 DOI: 10.1103/physreve.111.014401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/16/2024] [Indexed: 02/21/2025]
Abstract
Existing experiments demonstrated that constant light has either enhancing or diminishing effects on the behavioral rhythms of mammals, sparking our intense interest in the underlying mechanisms of this paradoxical phenomenon. The influence of constant light on behavioral rhythms involves the regulation of collective neuronal behavior. The robustness of behavioral rhythms stems from the synchronization of neurons. In mammals, the synchronization among neurons is regulated by the suprachiasmatic nucleus (SCN) located in the hypothalamus. Neurons within the SCN exhibit significant heterogeneity. The intrinsic frequency and coupling strength are two fundamental characteristics determining the internal dynamics of the SCN. In this study, the Poincaré model was employed to investigate the impact of constant light on SCN neuronal dynamics. We found that constant light can modulate neuronal synchronization, a phenomenon tightly linked to the critical threshold value of coupling strength among the neurons. Specifically, under weak coupling, constant light enhances neuronal synchronization. Under strong coupling, constant light weakens synchronization among oscillators. Furthermore, higher light intensity results in lengthened periods and reduced amplitudes. Our findings elucidate important underlying mechanisms by which constant light either enhances or diminishes mammalian behavioral rhythms, and provide a new perspective for understanding the complex regulation network of circadian rhythms.
Collapse
Affiliation(s)
- Yan Xu
- University of Shanghai for Science and Technology, Business School, Shanghai 200093, China
| | - Changgui Gu
- University of Shanghai for Science and Technology, Business School, Shanghai 200093, China
| | - Deqiang Qu
- Henan University of Science and Technology, School of Mathematics and Statistics, Luoyang 471023, China
| | - Haiying Wang
- University of Shanghai for Science and Technology, Business School, Shanghai 200093, China
| | - Jos H T Rohling
- Leiden University Medical Center, Department of Cell and Chemical Biology, 2300 RC Leiden, The Netherlands
| |
Collapse
|
3
|
Wegner S, Belle MDC, Chang P, Hughes ATL, Conibear AE, Muir C, Samuels RE, Piggins HD. Loss of neuropeptide signalling alters temporal expression of mouse suprachiasmatic neuronal state and excitability. Eur J Neurosci 2024; 60:6617-6633. [PMID: 39551976 PMCID: PMC11612845 DOI: 10.1111/ejn.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Individual neurons of the hypothalamic suprachiasmatic nuclei (SCN) contain an intracellular molecular clock that drives these neurons to exhibit day-night variation in excitability. The neuropeptide vasoactive intestinal polypeptide (VIP) and its cognate receptor, VPAC2, are synthesized by SCN neurons and this intercellular VIP-VPAC2 receptor signal facilitates coordination of SCN neuronal activity and timekeeping. How the loss of VPAC2 receptor signalling affects the electrophysiological properties and states of SCN neurons as well as their responses to excitatory inputs is unclear. Here we used patch-clamp electrophysiology and made recordings of SCN neurons in brain slices prepared from transgenic animals that do not express VPAC2 receptors (Vipr2-/- mice) as well as animals that do (Vipr2+/+ mice). We report that while Vipr2+/+ neurons exhibit coordinated day-night variation in their electrical state, Vipr2-/- neurons lack this and instead manifest a range of states during both day and night. Further, at the population level, Vipr2+/+ neurons vary the membrane threshold potential at which they start to fire action potentials from day to night, while Vipr2-/- neurons do not. We provide evidence that Vipr2-/- neurons lack a component of voltage-gated sodium currents that contribute to SCN neuronal excitability. Moreover, we determine that this aberrant temporal control of neuronal state and excitability alters neuronal responses to a neurochemical mimic of the light-input pathway to the SCN. These results highlight the critical role VIP-VPAC2 receptor signalling plays in the temporal expression of individual neuronal states as well as appropriate ensemble activity and input gating of the SCN neural network.
Collapse
Affiliation(s)
- Sven Wegner
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Mino D. C. Belle
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Pi‐Shan Chang
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| | - Alun T. L. Hughes
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
- School of Biological and Environmental ScienceLiverpool John Moores UniversityLiverpoolUK
| | | | - Charlotte Muir
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| | - Rayna E. Samuels
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Hugh D. Piggins
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
4
|
Yassine M, Hassan SA, Yücel LA, Purath FFA, Korf HW, von Gall C, Ali AAH. Hepatocellular Carcinoma in Mice Affects Neuronal Activity and Glia Cells in the Suprachiasmatic Nucleus. Biomedicines 2024; 12:2202. [PMID: 39457515 PMCID: PMC11504045 DOI: 10.3390/biomedicines12102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Chronic liver diseases such as hepatic tumors can affect the brain through the liver-brain axis, leading to neurotransmitter dysregulation and behavioral changes. Cancer patients suffer from fatigue, which can be associated with sleep disturbances. Sleep is regulated via two interlocked mechanisms: homeostatic regulation and the circadian system. In mammals, the hypothalamic suprachiasmatic nucleus (SCN) is the key component of the circadian system. It generates circadian rhythms in physiology and behavior and controls their entrainment to the surrounding light/dark cycle. Neuron-glia interactions are crucial for the functional integrity of the SCN. Under pathological conditions, oxidative stress can compromise these interactions and thus circadian timekeeping and entrainment. To date, little is known about the impact of peripheral pathologies such as hepatocellular carcinoma (HCC) on SCN. Materials and Methods: In this study, HCC was induced in adult male mice. The key neuropeptides (vasoactive intestinal peptide: VIP, arginine vasopressin: AVP), an essential component of the molecular clockwork (Bmal1), markers for activity of neurons (c-Fos), astrocytes (GFAP), microglia (IBA1), as well as oxidative stress (8-OHdG) in the SCN were analyzed by immunohistochemistry at four different time points in HCC-bearing compared to control mice. Results: The immunoreactions for VIP, Bmal1, GFAP, IBA1, and 8-OHdG were increased in HCC mice compared to control mice, especially during the activity phase. In contrast, c-Fos was decreased in HCC mice, especially during the late inactive phase. Conclusions: Our data suggest that HCC affects the circadian system at the level of SCN. This involves an alteration of neuropeptides, neuronal activity, Bmal1, activation of glia cells, and oxidative stress in the SCN.
Collapse
Affiliation(s)
- Mona Yassine
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Soha A. Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
- Department of Zoology, Faculty of Science, Suez University, P.O. Box 43221, Suez 43533, Egypt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lea Aylin Yücel
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Fathima Faiba A. Purath
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany;
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Ma C, Li H, Li W, Yang G, Chen L. Adaptive Differences in Cellular and Behavioral Responses to Circadian Disruption between C57BL/6 and BALB/c Strains. Int J Mol Sci 2024; 25:10404. [PMID: 39408733 PMCID: PMC11476807 DOI: 10.3390/ijms251910404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The regulation of the mammalian circadian clock is largely dependent on heredity. In model animals for circadian rhythm studies, C57BL/6 and BALB/c mice exhibit considerable differences in their adaptation to circadian disruption, yet deeper comparisons remain unexplored. Here, we have established embryonic fibroblast cells derived from C57BL/6 mice (MEF) and BALB/c (BALB/3T3) mice, which have been transfected with the Bmal1 promoter-driven luciferase (Bmal1-Luc) reporter gene. Next, dexamethasone was applied for various cyclic stimulations, which revealed that Bmal1 bioluminescence of MEF cells was entrained to 24 to 26 h cycles, whereas BALB/3T3 cells have a wider range (22 to 28 h) with lower amplitudes. Behaviorally, BALB/c mice swiftly adapted to a 6-h advance light/dark cycle, unlike C57BL/6 mice. Furthermore, we found the expression of the circadian rhythm gene Npas2 in BALB/c mice is significantly lower than that in C57BL/6 mice. This observation is consistent with the differentially expressed genes (DEGs) in the intestine and lung tissues of C57BL/6 and BALB/c mice, based on the RNA-seq datasets downloaded from the Gene Expression Omnibus (GEO). In summary, our study uncovers that BALB/c mice possess greater resilience in circadian rhythm than C57BL/6 mice, both cellular and behaviorally, identifying potential genes underlying this difference.
Collapse
Affiliation(s)
- Changxiao Ma
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.M.); (H.L.)
- Health Science Center, East China Normal University, Shanghai 200241, China;
| | - Haonan Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.M.); (H.L.)
| | - Wenyu Li
- Health Science Center, East China Normal University, Shanghai 200241, China;
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai 200241, China;
| |
Collapse
|
6
|
Wu W, Ma M, Ibarra AE, Lu G, Bakshi VP, Li L. Global Neuropeptidome Profiling in Response to Predator Stress in Rat: Implications for Post-Traumatic Stress Disorder. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1549-1558. [PMID: 37405781 PMCID: PMC11731200 DOI: 10.1021/jasms.3c00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Traumatic stress triggers or exacerbates multiple psychiatric illnesses, including post-traumatic stress disorder (PTSD). Nevertheless, the neurophysiological mechanisms underlying stress-induced pathology remain unclear, in part due to the limited understanding of neuronal signaling molecules, such as neuropeptides, in this process. Here, we developed mass spectrometry (MS)-based qualitative and quantitative analytical strategies to profile neuropeptides in rats exposed to predator odor (an ethologically relevant analogue of trauma-like stress) versus control subjects (no odor) to determine peptidomic alterations induced by trauma. In total, 628 unique neuropeptides were identified across 5 fear-circuitry-related brain regions. Brain-region-specific changes of several neuropeptide families, including granin, ProSAAS, opioids, cholecystokinin, and tachykinin, were also observed in the stressed group. Neuropeptides from the same protein precursor were found to vary across different brain regions, indicating the site-specific effects of predator stress. This study reveals for the first time the interaction between neuropeptides and traumatic stress, providing insights into the molecular mechanisms of stress-induced psychopathology and suggesting putative novel therapeutic strategies for disorders such as PTSD.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Angel Erbey Ibarra
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Vaishali P. Bakshi
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI 53719, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
7
|
Xie L, Xiong Y, Ma D, Shi K, Chen J, Yang Q, Yan J. Cholecystokinin neurons in mouse suprachiasmatic nucleus regulate the robustness of circadian clock. Neuron 2023:S0896-6273(23)00301-X. [PMID: 37172583 DOI: 10.1016/j.neuron.2023.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
The suprachiasmatic nucleus (SCN) can generate robust circadian behaviors in mammals under different environments, but the underlying neural mechanisms remained unclear. Here, we showed that the activities of cholecystokinin (CCK) neurons in the mouse SCN preceded the onset of behavioral activities under different photoperiods. CCK-neuron-deficient mice displayed shortened free-running periods, failed to compress their activities under a long photoperiod, and developed rapid splitting or became arrhythmic under constant light. Furthermore, unlike vasoactive intestinal polypeptide (VIP) neurons, CCK neurons are not directly light sensitive, but their activation can elicit phase advance and counter light-induced phase delay mediated by VIP neurons. Under long photoperiods, the impact of CCK neurons on SCN dominates over that of VIP neurons. Finally, we found that the slow-responding CCK neurons control the rate of recovery during jet lag. Together, our results demonstrated that SCN CCK neurons are crucial for the robustness and plasticity of the mammalian circadian clock.
Collapse
Affiliation(s)
- Lucheng Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yangyang Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Danyi Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwen Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiaoqiao Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
8
|
Kumpost V, Hilbert L, Mikut R. Noise facilitates entrainment of a population of uncoupled limit cycle oscillators. J R Soc Interface 2023; 20:20220781. [PMID: 36628527 PMCID: PMC9832296 DOI: 10.1098/rsif.2022.0781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Many biological oscillators share two properties: they are subject to stochastic fluctuations (noise) and they must reliably adjust their period to changing environmental conditions (entrainment). While noise seems to distort the ability of single oscillators to entrain, in populations of uncoupled oscillators noise allows population-level entrainment for a wider range of input amplitudes and periods. Here, we investigate how this effect depends on the noise intensity and the number of oscillators in the population. We have found that, if a population consists of a sufficient number of oscillators, increasing noise intensity leads to faster entrainment after a phase change of the input signal (jet lag) and increases sensitivity to low-amplitude input signals.
Collapse
Affiliation(s)
- Vojtech Kumpost
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Lennart Hilbert
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Systems Biology and Bioinformatics, Zoological Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shiftwork. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
10
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shift work. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
11
|
Gao J, Provencio I, Liu X. Intrinsically photosensitive retinal ganglion cells in glaucoma. Front Cell Neurosci 2022; 16:992747. [PMID: 36212698 PMCID: PMC9537624 DOI: 10.3389/fncel.2022.992747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Glaucoma is a group of eye diseases afflicting more than 70 million people worldwide. It is characterized by damage to retinal ganglion cells (RGCs) that ultimately leads to the death of the cells and vision loss. The diversity of RGC types has been appreciated for decades, and studies, including ours, have shown that RGCs degenerate and die in a type-specific manner in rodent models of glaucoma. The type-specific loss of RGCs results in differential damage to visual and non-visual functions. One type of RGC, the intrinsically photosensitive retinal ganglion cell (ipRGC), expressing the photopigment melanopsin, serves a broad array of non-visual responses to light. Since its discovery, six subtypes of ipRGC have been described, each contributing to various image-forming and non-image-forming functions such as circadian photoentrainment, the pupillary light reflex, the photic control of mood and sleep, and visual contrast sensitivity. We recently demonstrated a link between type-specific ipRGC survival and behavioral deficits in a mouse model of chronic ocular hypertension. This review focuses on the type-specific ipRGC degeneration and associated behavioral changes in animal models and glaucoma patients. A better understanding of how glaucomatous insult impacts the ipRGC-based circuits will have broad impacts on improving the treatment of glaucoma-associated non-visual disorders.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Guerrero-Vargas NN, Espitia-Bautista E, Escalona R, Lugo-Martínez H, Gutiérrez-Pérez M, Navarro-Espíndola R, Setién MF, Boy-Waxman S, Retana-Flores EA, Ortega B, Buijs RM, Escobar C. Timed restricted feeding cycles drive daily rhythms in female rats maintained in constant light but only partially restore the estrous cycle. Front Nutr 2022; 9:999156. [PMID: 36204367 PMCID: PMC9531653 DOI: 10.3389/fnut.2022.999156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Light at night is an emergent problem for modern society. Rodents exposed to light at night develop a loss of circadian rhythms, which leads to increased adiposity, altered immune response, and increased growth of tumors. In female rats, constant light (LL) eliminates the estrous cycle leading to a state of persistent estrus. The suprachiasmatic nucleus (SCN) drives circadian rhythms, and it interacts with the neuroendocrine network necessary for reproductive function. Timed restricted feeding (RF) exerts a powerful entraining influence on the circadian system, and it can influence the SCN activity and can restore rhythmicity or accelerate re-entrainment in experimental conditions of shift work or jet lag. The present study explored RF in female rats exposed to LL, with the hypothesis that this cyclic condition can rescue or prevent the loss of daily rhythms and benefit the expression of the estrous cycle. Two different feeding schedules were explored: 1. A 12-h food/12-h fasting schedule applied to arrhythmic rats after 3 weeks in LL, visualized as a rescue strategy (LL + RFR, 3 weeks), or applied simultaneously with the first day of LL as a preventive strategy (LL + RFP, 6 weeks). 2. A 12-h window of food intake with food given in four distributed pulses (every 3 h), applied after 3 weeks in LL, as a rescue strategy (LL + PR, 3 weeks) or applied simultaneously with the first day of LL as a preventive strategy (LL + PP, 6 weeks). Here, we present evidence that scheduled feeding can drive daily rhythms of activity and temperature in rats exposed to LL. However, the protocol of distributed feeding pulses was more efficient to restore the day–night activity and core temperature as well as the c-Fos day–night change in the SCN. Likewise, the distributed feeding partially restored the estrous cycle and the ovary morphology under LL condition. Data here provided indicate that the 12-h feeding/12-h fasting window determines the rest-activity cycle and can benefit directly the circadian and reproductive function. Moreover, this effect is stronger when food is distributed along the 12 h of subjective night.
Collapse
Affiliation(s)
- Natalí N. Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rene Escalona
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Haydée Lugo-Martínez
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Gutiérrez-Pérez
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raful Navarro-Espíndola
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Fernanda Setién
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastián Boy-Waxman
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Berenice Ortega
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruud M. Buijs
- Departamento de Fisiología Celular y Biología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Carolina Escobar,
| |
Collapse
|
13
|
The duper mutation reveals previously unsuspected functions of Cryptochrome 1 in circadian entrainment and heart disease. Proc Natl Acad Sci U S A 2022; 119:e2121883119. [PMID: 35930669 PMCID: PMC9371649 DOI: 10.1073/pnas.2121883119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Cryptochrome 1 (Cry1)-deficient duper mutant hamster has a short free-running period in constant darkness (τDD) and shows large phase shifts in response to brief light pulses. We tested whether this measure of the lability of the circadian phase is a general characteristic of Cry1-null animals and whether it indicates resistance to jet lag. Upon advance of the light:dark (LD) cycle, both duper hamsters and Cry1-/- mice re-entrained locomotor rhythms three times as fast as wild types. However, accelerated re-entrainment was dissociated from the amplified phase-response curve (PRC): unlike duper hamsters, Cry1-/- mice show no amplification of the phase response to 15' light pulses. Neither the amplified acute shifts nor the increased rate of re-entrainment in duper mutants is due to acceleration of the circadian clock: when mutants drank heavy water to lengthen the period, these aspects of the phenotype persisted. In light of the health consequences of circadian misalignment, we examined effects of duper and phase shifts on a hamster model of heart disease previously shown to be aggravated by repeated phase shifts. The mutation shortened the lifespan of cardiomyopathic hamsters relative to wild types, but this effect was eliminated when mutants experienced 8-h phase shifts every second week, to which they rapidly re-entrained. Our results reveal previously unsuspected roles of Cry1 in phase shifting and longevity in the face of heart disease. The duper mutant offers new opportunities to understand the basis of circadian disruption and jet lag.
Collapse
|
14
|
Liao G, Bose A. Entrainment within hierarchical circadian oscillator networks. Math Biosci 2022; 351:108883. [PMID: 35907509 DOI: 10.1016/j.mbs.2022.108883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Circadian rhythms are endogenous oscillations, widely found across biological species, that have the capability of entraining to the 24-h light-dark cycle. Circadian systems often consist of both central oscillators that receive direct light-dark input and peripheral oscillators that receive input from the central oscillators. In this paper, we address questions related to what governs the time to and pattern of entrainment of these hierarchical circadian systems after an abrupt switch in the light-dark phasing. For a network consisting of a single central oscillator coupled to a chain of N feed-forward peripheral oscillators, we introduce a systematic way to derive an N-dimensional entrainment map whose fixed points correspond to entrained solutions. Using the map, we explain that the direction of reentrainment can involve fairly complicated phase advancing and delaying behavior as well as reentrainment times that depend sensitively on the nature of the perturbation. We also study the dynamics of a hierarchical system in which the peripheral oscillators are mutually coupled. We study how reentrainment times vary as a function of the degree to which the oscillators are desynchronized at the time of the change in light-dark phasing. We show that desynchronizing the peripheral oscillators can, in some circumstances, speed up their ultimate reentrainment following perturbations.
Collapse
Affiliation(s)
- Guangyuan Liao
- Key Laboratory of Intelligent Analysis and Decision on Complex Systems, School of Science, Chongqing University of Posts and Telecommunications, Chongwen Road, Nan'an, 400065, Chongqing, China
| | - Amitabha Bose
- Department of Mathematical Sciences, NJIT, Newark, NJ, 07102, USA.
| |
Collapse
|
15
|
Gao J, Griner EM, Liu M, Moy J, Provencio I, Liu X. Differential effects of experimental glaucoma on intrinsically photosensitive retinal ganglion cells in mice. J Comp Neurol 2022; 530:1494-1506. [PMID: 34958682 PMCID: PMC9010357 DOI: 10.1002/cne.25293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022]
Abstract
Glaucoma is a group of eye diseases characterized by retinal ganglion cell (RGC) loss and optic nerve damage. Studies, including this study, support that RGCs degenerate and die in a type-specific manner following the disease insult. Here we specifically examined one RGC type, the intrinsically photosensitive retinal ganglion cell (ipRGC), and its associated functional deficits in a mouse model of experimental glaucoma. We induced chronic ocular hypertension (OHT) by laser photocoagulation and then characterized the survival of ipRGC subtypes. We found that ipRGCs suffer significant loss, similar to the general RGC population, but ipRGC subtypes are differentially affected following chronic OHT. M4 ipRGCs, which are involved in pattern vision, are susceptible to chronic OHT. Correspondingly, mice with chronic OHT experience reduced contrast sensitivity and visual acuity. By comparison, M1 ipRGCs, which project to the suprachiasmatic nuclei to regulate circadian rhythmicity, exhibit almost no cell loss following chronic OHT. Accordingly, we observed that circadian re-entrainment and circadian rhythmicity are largely not disrupted in OHT mice. Our study demonstrates the link between subtype-specific ipRGC survival and behavioral deficits in glaucomatous mice. These findings provide insight into glaucoma-induced visual behavioral deficits and their underlying mechanisms.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Erin M. Griner
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Mingna Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Joanna Moy
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Zeitzer JM, Lok R. Circadian photoreception: The impact of light on human circadian rhythms. PROGRESS IN BRAIN RESEARCH 2022; 273:171-180. [PMID: 35940715 DOI: 10.1016/bs.pbr.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light is the preeminent external influence in determining the position of the internal circadian clock relative to the outside world. In this chapter, we discuss the different parameters of light that impact how it influences the human circadian clock. We detail how the timing (phase), intensity, duration and temporal structure, and spectral composition all can modulate the impact of light on both the timing of the circadian clock as well as its amplitude. The neurobiological underpinnings of the system are briefly discussed in the context of understanding how light can evoke its observed effects on the circadian clock.
Collapse
Affiliation(s)
- Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
17
|
Burckard O, Teboul M, Delaunay F, Chaves M. Cycle dynamics and synchronization in a coupled network of peripheral circadian clocks. Interface Focus 2022; 12:20210087. [PMID: 35464139 PMCID: PMC9010852 DOI: 10.1098/rsfs.2021.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
Abstract
The intercellular interactions between peripheral circadian clocks, located in tissues and organs other than the suprachiasmatic nuclei of the hypothalamus, are still very poorly understood. We propose a theoretical and computational study of the coupling between two or more clocks, using a calibrated, reduced model of the circadian clock to describe some synchronization properties between peripheral cellular clocks. Based on a piecewise linearization of the dynamics of the mutual CLOCK:BMAL1/PER:CRY inactivation term, we suggest a segmentation of the circadian cycle into six stages, to help analyse different types of synchronization between two clocks, including single stage duration, total period and maximal amplitudes. Finally, our model reproduces some recent experimental results on the effects of different regimes of time-restricted feeding in liver circadian clocks of mice.
Collapse
Affiliation(s)
- Odile Burckard
- Université Côte d’Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, France
| | | | | | - Madalena Chaves
- Université Côte d’Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, France
| |
Collapse
|
18
|
Qian J, Morris CJ, Phillips AJK, Li P, Rahman SA, Wang W, Hu K, Arendt J, Czeisler CA, Scheer FAJL. Unanticipated daytime melatonin secretion on a simulated night shift schedule generates a distinctive 24-h melatonin rhythm with antiphasic daytime and nighttime peaks. J Pineal Res 2022; 72:e12791. [PMID: 35133678 PMCID: PMC8930611 DOI: 10.1111/jpi.12791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Abstract
The daily rhythm of plasma melatonin concentrations is typically unimodal, with one broad peak during the circadian night and near-undetectable levels during the circadian day. Light at night acutely suppresses melatonin secretion and phase shifts its endogenous circadian rhythm. In contrast, exposure to darkness during the circadian day has not generally been reported to increase circulating melatonin concentrations acutely. Here, in a highly-controlled simulated night shift protocol with 12-h inverted behavioral/environmental cycles, we unexpectedly found that circulating melatonin levels were significantly increased during daytime sleep (p < .0001). This resulted in a secondary melatonin peak during the circadian day in addition to the primary peak during the circadian night, when sleep occurred during the circadian day following an overnight shift. This distinctive diurnal melatonin rhythm with antiphasic peaks could not be readily anticipated from the behavioral/environmental factors in the protocol (e.g., light exposure, posture, diet, activity) or from current mathematical model simulations of circadian pacemaker output. The observation, therefore, challenges our current understanding of underlying physiological mechanisms that regulate melatonin secretion. Interestingly, the increase in melatonin concentration observed during daytime sleep was positively correlated with the change in timing of melatonin nighttime peak (p = .002), but not with the degree of light-induced melatonin suppression during nighttime wakefulness (p = .92). Both the increase in daytime melatonin concentrations and the change in the timing of the nighttime peak became larger after repeated exposure to simulated night shifts (p = .002 and p = .006, respectively). Furthermore, we found that melatonin secretion during daytime sleep was positively associated with an increase in 24-h glucose and insulin levels during the night shift protocol (p = .014 and p = .027, respectively). Future studies are needed to elucidate the key factor(s) driving the unexpected daytime melatonin secretion and the melatonin rhythm with antiphasic peaks during shifted sleep/wake schedules, the underlying mechanisms of their relationship with glucose metabolism, and the relevance for diabetes risk among shift workers.
Collapse
Affiliation(s)
- Jingyi Qian
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Christopher J Morris
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Andrew JK Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peng Li
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Kun Hu
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Josephine Arendt
- School of Biological Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Frank AJL Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep and Circadian Disorders, Depts. Of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
19
|
Ahmed T, Wilson D. Exploiting circadian memory to hasten recovery from circadian misalignment. CHAOS (WOODBURY, N.Y.) 2021; 31:073130. [PMID: 34340336 DOI: 10.1063/5.0053441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Recent years have seen a sustained interest in the development of circadian reentrainment strategies to limit the deleterious effects of jet lag. Due to the dynamical complexity of many circadian models, phase-based model reduction techniques are often an imperative first step in the analysis. However, amplitude coordinates that capture lingering effects (i.e., memory) from past inputs are often neglected. In this work, we focus on these amplitude coordinates using an operational phase and an isostable coordinate framework in the context of the development of jet-lag amelioration strategies. By accounting for the influence of circadian memory, we identify a latent phase shift that can prime one's circadian cycle to reentrain more rapidly to an expected time-zone shift. A subsequent optimal control problem is proposed that balances the trade-off between control effort and the resulting latent phase shift. Data-driven model identification techniques for the inference of necessary reduced order, phase-amplitude-based models are considered in situations where the underlying model equations are unknown, and numerical results are illustrated in both a simple planar model and in a coupled population of circadian oscillators.
Collapse
Affiliation(s)
- Talha Ahmed
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, USA
| | - Dan Wilson
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, USA
| |
Collapse
|
20
|
Ono D, Honma KI, Honma S. Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock. Front Neurosci 2021; 15:650154. [PMID: 33935635 PMCID: PMC8081951 DOI: 10.3389/fnins.2021.650154] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Individual SCN cells exhibit intrinsic oscillations, and their circadian period and robustness are different cell by cell in the absence of cellular coupling, indicating that cellular coupling is important for coherent circadian rhythms in the SCN. Several neuropeptides such as arginine vasopressin (AVP) and vasoactive intestinal polypeptide (VIP) are expressed in the SCN, where these neuropeptides function as synchronizers and are important for entrainment to environmental light and for determining the circadian period. These neuropeptides are also related to developmental changes of the circadian system of the SCN. Transcription factors are required for the formation of neuropeptide-related neuronal networks. Although VIP is critical for synchrony of circadian rhythms in the neonatal SCN, it is not required for synchrony in the embryonic SCN. During postnatal development, the clock genes cryptochrome (Cry)1 and Cry2 are involved in the maturation of cellular networks, and AVP is involved in SCN networks. This mini-review focuses on the functional roles of neuropeptides in the SCN based on recent findings in the literature.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
Keller C, Wei P, Wancewicz B, Cross TWL, Rey FE, Li L. Extraction optimization for combined metabolomics, peptidomics, and proteomics analysis of gut microbiota samples. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4625. [PMID: 32885503 PMCID: PMC7855350 DOI: 10.1002/jms.4625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/28/2020] [Accepted: 07/11/2020] [Indexed: 05/02/2023]
Abstract
Multiomic studies are increasingly performed to gain a deeper understanding of molecular processes occurring in a biological system, such as the complex microbial communities (i.e., microbiota) that reside the distal gut. While a combination of metabolomics and proteomics is more commonly used, multiomics studies including peptidomcis characterization are less frequently undertaken. Here, we investigated three different extraction methods, chosen for their previous use in extracting metabolites, peptides, and proteins, and compared their ability to perform metabolomic, peptidomic, and proteomic analysis of mouse cecum content. The methanol/chloroform/water extraction performed the best for metabolomic and peptidomic analysis as it detected the largest number of small molecules and identified the largest number of peptides, but the acidified methanol extraction performed best for proteomics analysis as it had the highest number of protein identifications. The methanol/chloroform/water extraction was further analyzed by identifying metabolites with tandem mass spectrometry (MS/MS) analysis and by gene ontology analysis for the peptide and protein results to provide a multiomics analysis of the gut microbiota.
Collapse
Affiliation(s)
- Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison WI, 53705
| | - Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison WI, 53705
| | - Benjamin Wancewicz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison WI, 53705
| | - Tzu-Wen L Cross
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI, 53705
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI, 53705
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison WI, 53705
- School of Pharmacy, University of Wisconsin-Madison, Madison WI, 53705
| |
Collapse
|
22
|
Cheng AH, Cheng HYM. Genesis of the Master Circadian Pacemaker in Mice. Front Neurosci 2021; 15:659974. [PMID: 33833665 PMCID: PMC8021851 DOI: 10.3389/fnins.2021.659974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the central circadian clock of mammals. It is responsible for communicating temporal information to peripheral oscillators via humoral and endocrine signaling, ultimately controlling overt rhythms such as sleep-wake cycles, body temperature, and locomotor activity. Given the heterogeneity and complexity of the SCN, its genesis is tightly regulated by countless intrinsic and extrinsic factors. Here, we provide a brief overview of the development of the SCN, with special emphasis on the murine system.
Collapse
Affiliation(s)
- Arthur H. Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Taylor SR. Delays are Self-enhancing: An Explanation of the East-West Asymmetry in Recovery from Jetlag. J Biol Rhythms 2021; 36:127-136. [PMID: 33535873 DOI: 10.1177/0748730421990482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is evidence in mammals that recovering from jetlag after westward travel is faster than after eastward travel. To understand why, mathematical models have been used, along with theories of entrainment rooted in experimental evidence. The most complete understanding relies on detailed mathematical modeling, so it is helpful to develop an intuition about why there is an east-west asymmetry. One such intuition is that humans have long periods and therefore recover better when they can delay. Although this is part of the reason, it does not explain why short-period mice also recover from westward travel faster. Our goal is to provide a simple intuition consistent with detailed mathematical theories, but which does not require mathematical expertise to follow. Here, we present the intuition that westward travel is easier to recover from because of a simple principle: delays are self-enhancing.
Collapse
|
24
|
De Pablo-Fernández E, Warner TT. Hypothalamic α-synuclein and its relation to autonomic symptoms and neuroendocrine abnormalities in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:223-233. [PMID: 34266594 DOI: 10.1016/b978-0-12-819973-2.00015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder presenting with defining motor features and a variable combination of nonmotor symptoms. There is growing evidence suggesting that hypothalamic involvement in PD may contribute to the pathogenesis of nonmotor symptoms. Initial neuropathologic studies demonstrated histologic involvement of hypothalamic nuclei by Lewy pathology, i.e., neuronal aggregates including Lewy bodies (round eosinophilic inclusions with a halo found in the neuronal perikarya) and other inclusions in neuronal processes such as Lewy neurites. Recent studies using more sensitive immunohistochemistry have shown that synuclein deposition is common in all hypothalamic nuclei and can happen at preclinical stages of the disease. Several neuropathologic changes, including synuclein deposition, neuronal loss, and adaptative morphologic changes, have been described in neurochemically defined specific hypothalamic cell populations with a potential role in the pathogenesis of nonmotor symptoms such as autonomic dysfunction, blood pressure control, circadian rhythms, sleep, and body weight regulation. The clinical implications of these hypothalamic neuropathologic changes are not fully understood and a direct clinical correlation may be challenging due to the multifactorial pathogenesis of the symptomatology and the additional involvement of other peripheral regulatory mechanisms. Future neuropathologic research using histological and functional assessments should establish the potential role of hypothalamic dysfunction on clinical burden, symptomatic therapies, and disease biomarkers in PD.
Collapse
Affiliation(s)
- Eduardo De Pablo-Fernández
- Reta Lila Weston Institute and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Movement and Clinical Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Reta Lila Weston Institute and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Movement and Clinical Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
25
|
Joye DAM, Rohr KE, Keller D, Inda T, Telega A, Pancholi H, Carmona-Alcocer V, Evans JA. Reduced VIP Expression Affects Circadian Clock Function in VIP-IRES-CRE Mice (JAX 010908). J Biol Rhythms 2020; 35:340-352. [PMID: 32460660 DOI: 10.1177/0748730420925573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circadian rhythms are programmed by the suprachiasmatic nucleus (SCN), which relies on neuropeptide signaling to maintain daily timekeeping. Vasoactive intestinal polypeptide (VIP) is critical for SCN function, but the precise role of VIP neurons in SCN circuits is not fully established. To interrogate their contribution to SCN circuits, VIP neurons can be manipulated specifically using the DNA-editing enzyme Cre recombinase. Although the Cre transgene is assumed to be inert by itself, we find that VIP expression is reduced in both heterozygous and homozygous adult VIP-IRES-Cre mice (JAX 010908). Compared with wild-type mice, homozygous VIP-Cre mice display faster reentrainment and shorter free-running period but do not become arrhythmic in constant darkness. Consistent with this phenotype, homozygous VIP-Cre mice display intact SCN PER2::LUC rhythms, albeit with altered period and network organization. We present evidence that the ability to sustain molecular rhythms in the VIP-Cre SCN is not due to residual VIP signaling; rather, arginine vasopressin signaling helps to sustain SCN function at both intracellular and intercellular levels in this model. This work establishes that the VIP-IRES-Cre transgene interferes with VIP expression but that loss of VIP can be mitigated by other neuropeptide signals to help sustain SCN function. Our findings have implications for studies employing this transgenic model and provide novel insight into neuropeptide signals that sustain daily timekeeping in the master clock.
Collapse
Affiliation(s)
- Deborah A M Joye
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Kayla E Rohr
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Danielle Keller
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Thomas Inda
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Adam Telega
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Harshida Pancholi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Jennifer A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
26
|
Tokuda IT, Schmal C, Ananthasubramaniam B, Herzel H. Conceptual Models of Entrainment, Jet Lag, and Seasonality. Front Physiol 2020; 11:334. [PMID: 32411006 PMCID: PMC7199094 DOI: 10.3389/fphys.2020.00334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/23/2020] [Indexed: 01/16/2023] Open
Abstract
Understanding entrainment of circadian rhythms is a central goal of chronobiology. Many factors, such as period, amplitude, Zeitgeber strength, and daylength, govern entrainment ranges and phases of entrainment. We have tested whether simple amplitude-phase models can provide insight into the control of entrainment phases. Using global optimization, we derived conceptual models with just three free parameters (period, amplitude, and relaxation rate) that reproduce known phenotypic features of vertebrate clocks: phase response curves (PRCs) with relatively small phase shifts, fast re-entrainment after jet lag, and seasonal variability to track light onset or offset. Since optimization found multiple sets of model parameters, we could study this model ensemble to gain insight into the underlying design principles. We found complex associations between model parameters and entrainment features. Arnold onions of representative models visualize strong dependencies of entrainment on periods, relative Zeitgeber strength, and photoperiods. Our results support the use of oscillator theory as a framework for understanding the entrainment of circadian clocks.
Collapse
Affiliation(s)
- Isao T. Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kyoto, Japan
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | | | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
- Institute for Theoretical Biology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Han K, Mei L, Zhong R, Pang Y, Zhang EE, Huang Y. A microfluidic approach for experimentally modelling the intercellular coupling system of a mammalian circadian clock at single-cell level. LAB ON A CHIP 2020; 20:1204-1211. [PMID: 32149320 DOI: 10.1039/d0lc00140f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In mammals, it is believed that the intercellular coupling mechanism between neurons in the suprachiasmatic nucleus (SCN) confers robustness and distinguishes the central clock from peripheral circadian oscillators. Current in vitro culturing methods used in Petri dishes to study intercellular coupling by exogenous factors invariably cause perturbations, such as simple media changes. Here, we design a microfluidic device to quantitatively study the intercellular coupling mechanism of circadian clock at the single cell level, and demonstrate that vasoactive intestinal peptide (VIP) induced coupling in clock mutant Cry1-/- mouse adult fibroblasts engineered to express the VIP receptor, VPAC2, is sufficient to synchronize and maintain robust circadian oscillations. Our study provides a proof-of-concept platform to reconstitute the intercellular coupling system of the central clock using uncoupled, single fibroblast cells in vitro, to mimic SCN slice cultures ex vivo and mouse behavior in vivo phenotypically. Such a versatile microfluidic platform may greatly facilitate the studies of intercellular regulation networks, and provide new insights into the coupling mechanisms of the circadian clock.
Collapse
Affiliation(s)
- Kui Han
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), College of Engineering, College of Chemistry, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
28
|
Ananthasubramaniam B, Schmal C, Herzel H. Amplitude Effects Allow Short Jet Lags and Large Seasonal Phase Shifts in Minimal Clock Models. J Mol Biol 2020; 432:3722-3737. [PMID: 31978397 DOI: 10.1016/j.jmb.2020.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/24/2023]
Abstract
Mathematical models of varying complexity have helped shed light on different aspects of circadian clock function. In this work, we question whether minimal clock models (Goodwin models) are sufficient to reproduce essential phenotypes of the clock: a small phase response curve (PRC), fast jet lag, and seasonal phase shifts. Instead of building a single best model, we take an approach where we study the properties of a set of models satisfying certain constraints; here, a 1h-pulse PRC with a range of 3h and clock periods between 22h and 26h is designed. Surprisingly, almost all these randomly parameterized models showed a 4h change in phase of entrainment between long and short days and jet lag durations of three to seven days in advance and delay. Moreover, intrinsic clock period influenced jet lag duration and entrainment amplitude and phase. Fast jet lag was realized in this model by means of an interesting amplitude effect: the association between clock amplitude and clock period termed "twist." This twist allows amplitude changes to speed up and slow down clocks enabling faster shifts. These findings were robust to the addition of positive feedback to the model. In summary, the known design principles of rhythm generation - negative feedback, long delay, and switch-like inhibition (we review these in detail) - are sufficient to reproduce the essential clock phenotypes. Furthermore, amplitudes play a role in determining clock properties and must be always considered, although they are difficult to measure.
Collapse
Affiliation(s)
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| |
Collapse
|
29
|
Vetter C. Circadian disruption: What do we actually mean? Eur J Neurosci 2020; 51:531-550. [PMID: 30402904 PMCID: PMC6504624 DOI: 10.1111/ejn.14255] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
The circadian system regulates physiology and behavior. Acute challenges to the system, such as those experienced when traveling across time zones, will eventually result in re-synchronization to local environmental time cues, but this re-synchronization is oftentimes accompanied by adverse short-term consequences. When such challenges are experienced chronically, adaptation may not be achieved, as for example in the case of rotating night shift workers. The transient and chronic disturbance of the circadian system is most frequently referred to as "circadian disruption", but many other terms have been proposed and used to refer to similar situations. It is now beyond doubt that the circadian system contributes to health and disease, emphasizing the need for clear terminology when describing challenges to the circadian system and their consequences. The goal of this review is to provide an overview of the terms used to describe disruption of the circadian system, discuss proposed quantifications of disruption in experimental and observational settings with a focus on human research, and highlight limitations and challenges of currently available tools. For circadian research to advance as a translational science, clear, operationalizable, and scalable quantifications of circadian disruption are key, as they will enable improved assessment and reproducibility of results, ideally ranging from mechanistic settings, including animal research, to large-scale randomized clinical trials.
Collapse
Affiliation(s)
- Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
30
|
Manoogian ENC, Kumar A, Obed D, Bergan J, Bittman EL. Suprachiasmatic function in a circadian period mutant: Duper alters light-induced activation of vasoactive intestinal peptide cells and PERIOD1 immunostaining. Eur J Neurosci 2019; 48:3319-3334. [PMID: 30346078 DOI: 10.1111/ejn.14214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 11/28/2022]
Abstract
Mammalian circadian rhythms are entrained by photic stimuli that are relayed by retinal projections to the core of the suprachiasmatic nucleus (SCN). Neuronal activation, as demonstrated by expression of the immediate early gene c-fos, leads to transcription of the core clock gene per1. The duper mutation in hamsters shortens circadian period and amplifies light-induced phase shifts. We performed two experiments to compare the number of c-FOS immunoreactive (ir) and PER1-ir cells, and the intensity of staining, in the SCN of wild-type (WT) and duper hamsters at various intervals after presentation of a 15-min light pulse in the early subjective night. Light-induced c-FOS-ir within 1 hr in the dorsocaudal SCN of duper, but not WT hamsters. In cells that express vasoactive intestinal peptide (VIP), which plays a critical role in synchronization of SCN cellular oscillators, light-induced c-FOS-ir was greater in duper than WT hamsters. After the light pulse, PER1-ir cells were found in more medial portions of the SCN than FOS-ir, and appeared with a longer latency and over a longer time course, in VIP cells of duper than wild-type hamsters. Our results indicate that the duper allele alters SCN function in ways that may contribute to changes in free running period and phase resetting.
Collapse
Affiliation(s)
- Emily N C Manoogian
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Ajay Kumar
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Doha Obed
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Joseph Bergan
- Psychological and Brain Sciences and Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Eric L Bittman
- Department of Biology, Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
31
|
Kanders K, Stoop N, Stoop R. Universality in the firing of minicolumnar-type neural networks. CHAOS (WOODBURY, N.Y.) 2019; 29:093109. [PMID: 31575124 DOI: 10.1063/1.5111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
An open question in biological neural networks is whether changes in firing modalities are mainly an individual network property or whether networks follow a joint pathway. For the early developmental period, our study focusing on a simple network class of excitatory and inhibitory neurons suggests the following answer: Networks with considerable variation of topology and dynamical parameters follow a universal firing paradigm that evolves as the overall connectivity strength and firing level increase, as seen in the process of network maturation. A simple macroscopic model reproduces the main features of the paradigm as a result of the competition between the fundamental dynamical system notions of synchronization vs chaos and explains why in simulations the paradigm is robust regarding differences in network topology and largely independent from the neuron model used. The presented findings reflect the first dozen days of dissociated neuronal in vitro cultures (upon following the developmental period bears similarly universal features but is characterized by the processes of neuronal facilitation and depression that do not require to be considered for the first developmental period).
Collapse
Affiliation(s)
- Karlis Kanders
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Norbert Stoop
- Institute for Building Materials, ETH Zurich, 8092 Zurich, Switzerland
| | - Ruedi Stoop
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Walbeek TJ, Harrison EM, Soler RR, Gorman MR. Enhanced Circadian Entrainment in Mice and Its Utility under Human Shiftwork Schedules. Clocks Sleep 2019; 1:394-413. [PMID: 33089177 PMCID: PMC7445835 DOI: 10.3390/clockssleep1030032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
The circadian system is generally considered to be incapable of adjusting to rapid changes in sleep/work demands. In shiftworkers this leads to chronic circadian disruption and sleep loss, which together predict underperformance at work and negative health consequences. Two distinct experimental protocols have been proposed to increase circadian flexibility in rodents using dim light at night: rhythm bifurcation and T-cycle (i.e., day length) entrainment. Successful translation of such protocols to human shiftworkers could facilitate alignment of internal time with external demands. To assess entrainment flexibility following bifurcation and exposure to T-cycles, mice in Study 1 were repeatedly phase-shifted. Mice from experimental conditions rapidly phase-shifted their activity, while control mice showed expected transient misalignment. In Study 2 and 3, mice followed a several weeks-long intervention designed to model a modified DuPont or Continental shiftwork schedule, respectively. For both schedules, bifurcation and nocturnal dim lighting reduced circadian misalignment. Together, these studies demonstrate proof of concept that mammalian circadian systems can be rendered sufficiently flexible to adapt to multiple, rapidly changing shiftwork schedules. Flexible adaptation to exotic light-dark cycles likely relies on entrainment mechanisms that are distinct from traditional entrainment.
Collapse
Affiliation(s)
- Thijs J. Walbeek
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence: (T.J.W.); (M.R.G.); Tel.: +1-858-822-2466 (M.R.G.)
| | - Elizabeth M. Harrison
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert R. Soler
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael R. Gorman
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence: (T.J.W.); (M.R.G.); Tel.: +1-858-822-2466 (M.R.G.)
| |
Collapse
|
33
|
Nicholls SK, Casiraghi LP, Wang W, Weber ET, Harrington ME. Evidence for Internal Desynchrony Caused by Circadian Clock Resetting. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:259-270. [PMID: 31249487 PMCID: PMC6585527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Circadian disruption has been linked to markers for poor health outcomes in humans and animal models. What is it about circadian disruption that is problematic? One hypothesis is that phase resetting of the circadian system, which occurs in response to changes in environmental timing cues, leads to internal desynchrony within the organism. Internal desynchrony is understood as acute changes in phase relationships between biological rhythms from different cell groups, tissues, or organs within the body. Do we have strong evidence for internal desynchrony associated with or caused by circadian clock resetting? Here we review the literature, highlighting several key studies from measures of gene expression in laboratory rodents. We conclude that current evidence offers strong support for the premise that some protocols for light-induced resetting are associated with internal desynchrony. It is important to continue research to test whether internal desynchrony is necessary and/or sufficient for negative health impact of circadian disruption.
Collapse
Affiliation(s)
| | | | - Wanqi Wang
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| | - E. Todd Weber
- Department of Biology, Behavioral Neuroscience and Health Sciences, Rider University, Lawrenceville, NJ
| | - Mary E. Harrington
- Neuroscience Program, Smith College, Northampton, MA,To whom all correspondence should be addressed: Mary Harrington, Neuroscience Program, Clark Science Center, 44 College Lane, Smith College, Northampton, MA 01060; Tel: (413) 585-3925; Fax: (413) 585-3786;
| |
Collapse
|
34
|
Dopamine Signaling in Circadian Photoentrainment: Consequences of Desynchrony. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:271-281. [PMID: 31249488 PMCID: PMC6585530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Circadian rhythms, or biological oscillations of approximately 24 hours, impact almost all aspects of our lives by regulating the sleep-wake cycle, hormone release, body temperature fluctuation, and timing of food consumption. The molecular machinery governing these rhythms is similar across organisms ranging from unicellular fungi to insects, rodents, and humans. Circadian entrainment, or temporal synchrony with one's environment, is essential for survival. In mammals, the central circadian pacemaker is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and mediates entrainment to environmental conditions. While the light:dark cycle is the primary environmental cue, arousal-inducing, non-photic signals such as food consumption, exercise, and social interaction are also potent synchronizers. Many of these stimuli enhance dopaminergic signaling suggesting that a cohesive circadian physiology depends on the relationship between circadian clocks and the neuronal circuits responsible for detecting salient events. Here, we review the inner workings of mammalian circadian entrainment, and describe the health consequences of circadian rhythm disruptions with an emphasis on dopamine signaling.
Collapse
|
35
|
A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies. Int J Mol Sci 2019; 20:ijms20092363. [PMID: 31086044 PMCID: PMC6540063 DOI: 10.3390/ijms20092363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
The central pacemakers of circadian timekeeping systems are highly robust yet adaptable, providing the temporal coordination of rhythms in behavior and physiological processes in accordance with the demands imposed by environmental cycles. These features of the central pacemaker are achieved by a multi-oscillator network in which individual cellular oscillators are tightly coupled to the environmental day-night cycle, and to one another via intercellular coupling. In this review, we will summarize the roles of various neurotransmitters and neuropeptides in the regulation of circadian entrainment and synchrony within the mammalian and Drosophila central pacemakers. We will also describe the diverse functions of protein kinases in the relay of input signals to the core oscillator or the direct regulation of the molecular clock machinery.
Collapse
|
36
|
Off the Clock: From Circadian Disruption to Metabolic Disease. Int J Mol Sci 2019; 20:ijms20071597. [PMID: 30935034 PMCID: PMC6480015 DOI: 10.3390/ijms20071597] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian timekeeping allows appropriate temporal regulation of an organism’s internal metabolism to anticipate and respond to recurrent daily changes in the environment. Evidence from animal genetic models and from humans under circadian misalignment (such as shift work or jet lag) shows that disruption of circadian rhythms contributes to the development of obesity and metabolic disease. Inappropriate timing of food intake and high-fat feeding also lead to disruptions of the temporal coordination of metabolism and physiology and subsequently promote its pathogenesis. This review illustrates the impact of genetically or environmentally induced molecular clock disruption (at the level of the brain and peripheral tissues) and the interplay between the circadian system and metabolic processes. Here, we discuss some mechanisms responsible for diet-induced circadian desynchrony and consider the impact of nutritional cues in inter-organ communication, with a particular focus on the communication between peripheral organs and brain. Finally, we discuss the relay of environmental information by signal-dependent transcription factors to adjust the timing of gene oscillations. Collectively, a better knowledge of the mechanisms by which the circadian clock function can be compromised will lead to novel preventive and therapeutic strategies for obesity and other metabolic disorders arising from circadian desynchrony.
Collapse
|
37
|
Sládek M, Sumová A. Modulation of NMDA-Mediated Clock Resetting in the Suprachiasmatic Nuclei of mPer2 Luc Mouse by Endocannabinoids. Front Physiol 2019; 10:361. [PMID: 30984034 PMCID: PMC6450388 DOI: 10.3389/fphys.2019.00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/14/2019] [Indexed: 11/29/2022] Open
Abstract
Light entrains the master circadian clock in the suprachiasmatic nucleus (SCN) predominantly through glutamatergic signaling via NMDA receptors. The magnitude and the direction of resulting phase shifts depend on timing of the photic stimulus. Previous reports based on behavioral and electrophysiological data suggested that endocannabinoids (EC) might reduce the ability of the SCN clock to respond to light. However, there is little direct evidence for the involvement of EC in entrainment of the rhythmic clock gene expression in the SCN. We have used luminescence recording of cultured SCN slices from mPer2Luc mice to construct a complete phase response curve (PRC) for NMDA receptor activation. The results demonstrated that NMDA administration phase-shifts the PER2 rhythm in a time-specific manner. A stable “singularity,” in the course of which the clock seemingly stops while the overall phase is caught between delays and advances, can occur in response to NMDA at a narrow interval during the PER2 level decrease. NMDA-induced phase delays were affected neither by the agonist (WIN 55,212-2 mesylate) nor by the antagonist (rimonabant hydrochloride) of EC receptors. However, the agonist significantly reduced the NMDA-induced phase advance of the clock, while the antagonist enhanced the phase advance, causing a shift in the sensitivity window of the SCN to NMDA. The modulation of EC signaling in the SCN had no effect by itself on the phase of the PER2 rhythm. The results provide evidence for a modulatory role of EC in photic entrainment of the circadian clock in the SCN.
Collapse
Affiliation(s)
- Martin Sládek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Alena Sumová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
38
|
Tamai TK, Nakane Y, Ota W, Kobayashi A, Ishiguro M, Kadofusa N, Ikegami K, Yagita K, Shigeyoshi Y, Sudo M, Nishiwaki-Ohkawa T, Sato A, Yoshimura T. Identification of circadian clock modulators from existing drugs. EMBO Mol Med 2019; 10:emmm.201708724. [PMID: 29666146 PMCID: PMC5938619 DOI: 10.15252/emmm.201708724] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet‐lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time‐consuming. We therefore performed a high‐throughput chemical screen of existing drugs for circadian clock modulators in human U2OS cells, with the aim of repurposing known bioactive compounds. Approximately 5% of the drugs screened altered circadian period, including the period‐shortening compound dehydroepiandrosterone (DHEA; also known as prasterone). DHEA is one of the most abundant circulating steroid hormones in humans and is available as a dietary supplement in the USA. Dietary administration of DHEA to mice shortened free‐running circadian period and accelerated re‐entrainment to advanced light–dark (LD) cycles, thereby reducing jet‐lag. Our drug screen also revealed the involvement of tyrosine kinases, ABL1 and ABL2, and the BCR serine/threonine kinase in regulating circadian period. Thus, drug repurposing is a useful approach to identify new circadian clock modulators and potential therapies for circadian disorders.
Collapse
Affiliation(s)
- T Katherine Tamai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yusuke Nakane
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Wataru Ota
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Akane Kobayashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masateru Ishiguro
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoya Kadofusa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keisuke Ikegami
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masaki Sudo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Taeko Nishiwaki-Ohkawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan .,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
39
|
Asgari-Targhi A, Klerman EB. Mathematical modeling of circadian rhythms. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1439. [PMID: 30328684 PMCID: PMC6375788 DOI: 10.1002/wsbm.1439] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Circadian rhythms are endogenous ~24-hr oscillations usually entrained to daily environmental cycles of light/dark. Many biological processes and physiological functions including mammalian body temperature, the cell cycle, sleep/wake cycles, neurobehavioral performance, and a wide range of diseases including metabolic, cardiovascular, and psychiatric disorders are impacted by these rhythms. Circadian clocks are present within individual cells and at tissue and organismal levels as emergent properties from the interaction of cellular oscillators. Mathematical models of circadian rhythms have been proposed to provide a better understanding of and to predict aspects of this complex physiological system. These models can be used to: (a) manipulate the system in silico with specificity that cannot be easily achieved using in vivo and in vitro experimental methods and at lower cost, (b) resolve apparently contradictory empirical results, (c) generate hypotheses, (d) design new experiments, and (e) to design interventions for altering circadian rhythms. Mathematical models differ in structure, the underlying assumptions, the number of parameters and variables, and constraints on variables. Models representing circadian rhythms at different physiologic scales and in different species are reviewed to promote understanding of these models and facilitate their use. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
|
40
|
Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signalling. Nat Commun 2019; 10:542. [PMID: 30710088 PMCID: PMC6358603 DOI: 10.1038/s41467-019-08427-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) co-ordinates circadian behaviour and physiology in mammals. Its cell-autonomous circadian oscillations pivot around a well characterised transcriptional/translational feedback loop (TTFL), whilst the SCN circuit as a whole is synchronised to solar time by its retinorecipient cells that express and release vasoactive intestinal peptide (VIP). The cell-autonomous and circuit-level mechanisms whereby VIP synchronises the SCN are poorly understood. We show that SCN slices in organotypic culture demonstrate rapid and sustained circuit-level circadian responses to VIP that are mediated at a cell-autonomous level. This is accompanied by changes across a broad transcriptional network and by significant VIP-directed plasticity in the internal phasing of the cell-autonomous TTFL. Signalling via ERK1/2 and tuning by its negative regulator DUSP4 are critical elements of the VIP-directed circadian re-programming. In summary, we provide detailed mechanistic insight into VIP signal transduction in the SCN at the level of genes, cells and neural circuit. The suprachiasmatic nucleus (SCN) synchronises daily rhythms of behaviour and physiology to the light-dark cycle. Vasoactive intestinal peptide (VIP) is important for mediating SCN entrainment; however, the underlying mechanisms are incompletely understood. Here, the authors show that the effects of VIP on the SCN are mediated by ERK1/2 and DUSP4.
Collapse
|
41
|
Carmona-Alcocer V, Rohr KE, Joye DAM, Evans JA. Circuit development in the master clock network of mammals. Eur J Neurosci 2018; 51:82-108. [PMID: 30402923 DOI: 10.1111/ejn.14259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/08/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022]
Abstract
Daily rhythms are generated by the circadian timekeeping system, which is orchestrated by the master circadian clock in the suprachiasmatic nucleus (SCN) of mammals. Circadian timekeeping is endogenous and does not require exposure to external cues during development. Nevertheless, the circadian system is not fully formed at birth in many mammalian species and it is important to understand how SCN development can affect the function of the circadian system in adulthood. The purpose of the current review is to discuss the ontogeny of cellular and circuit function in the SCN, with a focus on work performed in model rodent species (i.e., mouse, rat, and hamster). Particular emphasis is placed on the spatial and temporal patterns of SCN development that may contribute to the function of the master clock during adulthood. Additional work aimed at decoding the mechanisms that guide circadian development is expected to provide a solid foundation upon which to better understand the sources and factors contributing to aberrant maturation of clock function.
Collapse
Affiliation(s)
| | - Kayla E Rohr
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Deborah A M Joye
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Jennifer A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
42
|
Leise TL, Goldberg A, Michael J, Montoya G, Solow S, Molyneux P, Vetrivelan R, Harrington ME. Recurring circadian disruption alters circadian clock sensitivity to resetting. Eur J Neurosci 2018; 51:2343-2354. [PMID: 30269396 DOI: 10.1111/ejn.14179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/12/2023]
Abstract
A single phase advance of the light:dark (LD) cycle can temporarily disrupt synchrony of neural circadian rhythms within the suprachiasmatic nucleus (SCN) and between the SCN and peripheral tissues. Compounding this, modern life can involve repeated disruptive light conditions. To model chronic disruption to the circadian system, we exposed male mice to more than a month of a 20-hr light cycle (LD10:10), which mice typically cannot entrain to. Control animals were housed under LD12:12. We measured locomotor activity and body temperature rhythms in vivo, and rhythms of PER2::LUC bioluminescence in SCN and peripheral tissues ex vivo. Unexpectedly, we discovered strong effects of the time of dissection on circadian phase of PER2::LUC bioluminescent rhythms, which varied across tissues. White adipose tissue was strongly reset by dissection, while thymus phase appeared independent of dissection timing. Prior light exposure impacted the SCN, resulting in strong resetting of SCN phase by dissection for mice housed under LD10:10, and weak phase shifts by time of dissection in SCN from control LD12:12 mice. These findings suggest that exposure to circadian disruption may desynchronize SCN neurons, increasing network sensitivity to perturbations. We propose that tissues with a weakened circadian network, such as the SCN under disruptive light conditions, or with little to no coupling, for example, some peripheral tissues, will show increased resetting effects. In particular, exposure to light at inconsistent circadian times on a recurring weekly basis disrupts circadian rhythms and alters sensitivity of the SCN neural pacemaker to dissection time.
Collapse
Affiliation(s)
- Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Ariella Goldberg
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - John Michael
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Grace Montoya
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Sabrina Solow
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Penny Molyneux
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | |
Collapse
|
43
|
Noguchi T, Harrison EM, Sun J, May D, Ng A, Welsh DK, Gorman MR. Circadian rhythm bifurcation induces flexible phase resetting by reducing circadian amplitude. Eur J Neurosci 2018; 51:2329-2342. [PMID: 30044021 DOI: 10.1111/ejn.14086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 11/29/2022]
Abstract
Shift-work and jet-lag-related disorders are caused by the limited flexibility of the suprachiasmatic nucleus (SCN), a master circadian clock in the hypothalamus, to adjust to new light-dark (LD) cycles. Recent findings confirmed here establish that behavioral jet lag after simulated time-zone travel is virtually eliminated following bifurcated circadian entrainment under a novel and atypical 24-h light:dark:light:dark (LDLD) cycle. To investigate the mechanisms of this fast resetting, we examined the oscillatory stability of the SCN and peripheral tissues in LDLD-bifurcated mice employing the dissection procedure as a perturbing resetting stimulus. SCN, lung, liver, and adrenal tissue were extracted at times throughout the day from female and male PER2::Luciferase knock-in mice entrained to either LDLD or a normal LD cycle. Except for adrenals, the phase of the cultured explants was more strongly set by dissection under LDLD than under normal LD. Acute bioluminescence levels of SCN explants indicate that the rhythm amplitude of PER2 is reduced and phase is altered in LDLD. Real-time quantitative PCR suggests that amplitude and rhythmicity of canonical clock genes in the lung, liver, and kidney are also significantly reduced in LDLD in vivo. Furthermore, spatiotemporal patterns of PER2 peak time in cultured SCN were altered in LDLD. These results suggest that altered gene expression patterns in the SCN caused by bifurcation likely result in fast resetting of behavior and cultured explants, consistent with previously reported mathematical models. Thus, non-invasive, simple light manipulations can make circadian rhythms more adaptable to abrupt shifts in the environmental LD cycle.
Collapse
Affiliation(s)
- Takako Noguchi
- Center for Circadian Biology, UCSD, La Jolla, California
| | - Elizabeth M Harrison
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychology, UCSD, La Jolla, California
| | - Jonathan Sun
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychology, UCSD, La Jolla, California
| | - Deborah May
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychology, UCSD, La Jolla, California
| | - Alan Ng
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Biology, UCSD, La Jolla, California
| | - David K Welsh
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychiatry, UCSD, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Michael R Gorman
- Center for Circadian Biology, UCSD, La Jolla, California.,Department of Psychology, UCSD, La Jolla, California
| |
Collapse
|
44
|
Eghlidi DH, Luna SL, Brown DI, Garyfallou VT, Kohama SG, Urbanski HF. Gene expression profiling of the SCN in young and old rhesus macaques. J Mol Endocrinol 2018; 61:57-67. [PMID: 29743294 PMCID: PMC6054827 DOI: 10.1530/jme-18-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) is the location of a master circadian pacemaker. It receives photic signals from the environment via the retinal hypothalamic tract, which play a key role in synchronizing the body's endogenously generated circadian rhythms with the 24-h rhythm of the environment. Therefore, it is plausible that age-related changes within the SCN contribute to the etiology of perturbed activity-rest cycles that become prevalent in humans during aging. To test this hypothesis, we used gene arrays and quantitative RT-PCR to profile age-related gene expression changes within the SCN of male rhesus macaques - a pragmatic translational animal model of human aging, which similarly displays an age-related attenuation of daytime activity levels. As expected, the SCN showed high expression of arginine vasopressin, vasoactive intestinal polypeptide, calbindin and nuclear receptor subfamily 1, group D, member 1 (NR1D1) (also known as reverse strand of ERBA (REV-ERBα), both at the mRNA and protein level. However, no obvious difference was detected between the SCNs of young (7-12 years) and old animals (21-26 years), in terms of the expression of core clock genes or genes associated with SCN signaling and neurotransmission. These data demonstrate the resilience of the primate SCN to normal aging, at least at the transcriptional level and, at least in males, suggest that age-related disruption of activity-rest cycles in humans may instead stem from changes within other components of the circadian system, such as desynchronization of subordinate oscillators in other parts of the body.
Collapse
Affiliation(s)
- Dominique H Eghlidi
- Department of Neurology and Division of Sleep MedicineHarvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Selva L Luna
- Escuela de Química y FarmaciaFacultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Donald I Brown
- Instituto de BiologíaFacultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Vasilios T Garyfallou
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
| | - Steven G Kohama
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
| | - Henryk F Urbanski
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Behavioral NeuroscienceOregon Health & Science University, Portland, Oregon, USA
- Department of Physiology & PharmacologyOregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
45
|
Chatterjee A, Lamaze A, De J, Mena W, Chélot E, Martin B, Hardin P, Kadener S, Emery P, Rouyer F. Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock. Curr Biol 2018; 28:2007-2017.e4. [PMID: 29910074 PMCID: PMC6039274 DOI: 10.1016/j.cub.2018.04.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023]
Abstract
The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Angélique Lamaze
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Joydeep De
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Wilson Mena
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabeth Chélot
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Béatrice Martin
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Paul Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77845-3258, USA
| | | | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
46
|
Synchronization by uncorrelated noise: interacting rhythms in interconnected oscillator networks. Sci Rep 2018; 8:6949. [PMID: 29725054 PMCID: PMC5934367 DOI: 10.1038/s41598-018-24670-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/06/2018] [Indexed: 12/28/2022] Open
Abstract
Oscillators coupled in a network can synchronize with each other to yield a coherent population rhythm. How do multiple such rhythms interact with each other? Do these collective oscillations synchronize like individual oscillators? We show that this is not the case: for strong, inhibitory coupling rhythms can become synchronized by noise. In contrast to stochastic synchronization, this new mechanism synchronizes the rhythms even if the noisy inputs to different oscillators are completely uncorrelated. Key for the synchrony across networks is the reduced synchrony within the networks: it substantially increases the frequency range across which the networks can be entrained by other networks or by periodic pacemaker-like inputs. We demonstrate this type of robust synchronization for different classes of oscillators and network connectivities. The synchronization of different population rhythms is expected to be relevant for brain rhythms.
Collapse
|
47
|
Yamaguchi Y. Arginine vasopressin signaling in the suprachiasmatic nucleus on the resilience of circadian clock to jet lag. Neurosci Res 2018; 129:57-61. [DOI: 10.1016/j.neures.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/25/2022]
|
48
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
49
|
Carrillo GL, Su J, Monavarfeshani A, Fox MA. F-spondin Is Essential for Maintaining Circadian Rhythms. Front Neural Circuits 2018; 12:13. [PMID: 29472844 PMCID: PMC5809851 DOI: 10.3389/fncir.2018.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/25/2018] [Indexed: 12/19/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) is the master pacemaker that drives circadian behaviors. SCN neurons have intrinsic, self-sustained rhythmicity that is governed by transcription-translation feedback loops. Intrinsic rhythms within the SCN do not match the day-night cycle and are therefore entrained by light-derived cues. Such cues are transmitted to the SCN by a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). In the present study, we sought to identify how axons from ipRGCs target the SCN. While none of the potential targeting cues identified appeared necessary for retinohypothalamic innervation, we unexpectedly identified a novel role for the extracellular matrix protein F-spondin in circadian behavior. In the absence of F-spondin, mice lost their ability to maintain typical intrinsic rhythmicity. Moreover, F-spondin loss results in the displacement of vasoactive intestinal peptide (VIP)-expressing neurons, a class of neurons that are essential for maintaining rhythmicity among SCN neurons. Thus, this study highlights a novel role for F-spondin in maintaining circadian rhythms.
Collapse
Affiliation(s)
- Gabriela L. Carrillo
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Jianmin Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
| | - Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Michael A. Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
50
|
Central Circadian Clock Regulates Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:79-103. [PMID: 30390286 DOI: 10.1007/978-981-13-1286-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our body not only responds to environmental changes but also anticipates them. The light and dark cycle with the period of about 24 h is a recurring environmental change that determines the diurnal variation in food availability and safety from predators in nature. As a result, the circadian clock is evolved in most animals to align locomotor behaviors and energy metabolism with the light cue. The central circadian clock in mammals is located at the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain. We here review the molecular and anatomic architecture of the central circadian clock in mammals, describe the experimental and observational evidence that suggests a critical role of the central circadian clock in shaping systemic energy metabolism, and discuss the involvement of endocrine factors, neuropeptides, and the autonomic nervous system in the metabolic functions of the central circadian clock.
Collapse
|