1
|
Miklík D, Slavková M, Kučerová D, Mekadim C, Mrázek J, Hejnar J. Long Terminal Repeats of Gammaretroviruses Retain Stable Expression after Integration Retargeting. Viruses 2024; 16:1518. [PMID: 39459853 PMCID: PMC11512309 DOI: 10.3390/v16101518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviruses integrate into the genomes of infected host cells to form proviruses, a genetic platform for stable viral gene expression. Epigenetic silencing can, however, hamper proviral transcriptional activity. As gammaretroviruses (γRVs) preferentially integrate into active promoter and enhancer sites, the high transcriptional activity of γRVs can be attributed to this integration preference. In addition, long terminal repeats (LTRs) of some γRVs were shown to act as potent promoters by themselves. Here, we investigate the capacity of different γRV LTRs to drive stable expression within a non-preferred epigenomic environment in the context of diverse retroviral vectors. We demonstrate that different γRV LTRs are either rapidly silenced or remain active for long periods of time with a predominantly active proviral population under normal and retargeted integration. As an alternative to the established γRV systems, the feline leukemia virus and koala retrovirus LTRs are able to drive stable, albeit intensity-diverse, transgene expression. Overall, we show that despite the occurrence of rapid silencing events, most γRV LTRs can drive stable expression outside of their preferred chromatin landscape after retrovirus integrations.
Collapse
Affiliation(s)
- Dalibor Miklík
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.S.)
| | - Martina Slavková
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.S.)
| | - Dana Kučerová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.S.)
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (C.M.); (J.M.)
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (C.M.); (J.M.)
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.S.)
| |
Collapse
|
2
|
Hurd CA, Bush JT, Powell AJ, Walport LJ. mRNA Display in Cell Lysates Enables Identification of Cyclic Peptides Targeting the BRD3 Extraterminal Domain. Angew Chem Int Ed Engl 2024; 63:e202406414. [PMID: 38899853 DOI: 10.1002/anie.202406414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
mRNA display is a powerful technology to screen libraries of >1012 cyclic peptides against a protein target, enabling the rapid discovery of high affinity ligands. These cyclic peptides are particularly well suited to challenging protein targets that have been difficult to drug with small molecules. However, target choice can still be limited as screens are typically performed against purified proteins which often demands the use of isolated domains and precludes the use of aggregation-prone targets. Herein, we report a method to perform mRNA display selections in mammalian cell lysates without the need for prior target purification, vastly expanding the potential target scope of mRNA display. We have applied the methodology to identify low to sub-nanomolar peptide binders for two targets: a NanoLuc subunit (LgBiT) and full-length bromodomain-containing protein 3 (BRD3). Our cyclic peptides for BRD3 were found to bind to the extraterminal (ET) domain of BRD3 and the closely related BRD proteins, BRD2 and BRD4. While many chemical probes exist for the bromodomains of BRD proteins, the ET domain is relatively underexplored, making these peptides valuable additions to the BRD toolbox.
Collapse
Affiliation(s)
- Catherine A Hurd
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ
- Crick-GSK Biomedical LinkLabs, The Francis Crick Institute, London, NW1 1AT
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, SG1 2NY
| | - Andrew J Powell
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, SG1 2NY
| | - Louise J Walport
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT
| |
Collapse
|
3
|
Thanaskody K, Natashah FN, Nordin F, Kamarul Zaman WSW, Tye GJ. Designing molecules: directing stem cell differentiation. Front Bioeng Biotechnol 2024; 12:1396405. [PMID: 38803845 PMCID: PMC11129639 DOI: 10.3389/fbioe.2024.1396405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Stem cells have been widely applied in regenerative and therapeutic medicine for their unique regenerative properties. Although much research has shown their potential, it remains tricky in directing stem cell differentiation. The advancement of genetic and therapeutic technologies, however, has facilitated this issue through development of design molecules. These molecules are designed to overcome the drawbacks previously faced, such as unexpected differentiation outcomes and insufficient migration of endogenous or exogenous MSCs. Here, we introduced aptamer, bacteriophage, and biological vectors as design molecules and described their characteristics. The methods of designing/developing discussed include various Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedures, in silico approaches, and non-SELEX methods for aptamers, and genetic engineering methods such as homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), Bacteriophage Recombineering with Infectious Particles (BRIP), and genome rebooting for bacteriophage. For biological vectors, methods such as alternate splicing, multiple promoters, internal ribosomal entry site, CRISPR-Cas9 system and Cre recombinase mediated recombination were used to design viral vectors, while non-viral vectors like exosomes are generated through parental cell-based direct engineering. Besides that, we also discussed the pros and cons, and applications of each design molecule in directing stem cell differentiation to illustrate their great potential in stem cells research. Finally, we highlighted some safety and efficacy concerns to be considered for future studies.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fajriyah Nur Natashah
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
4
|
Salas-Briceno K, Zhao W, Ross SR. Murine leukemia virus infection of non-dividing dendritic cells is dependent on nucleoporins. PLoS Pathog 2024; 20:e1011640. [PMID: 38215165 PMCID: PMC10810426 DOI: 10.1371/journal.ppat.1011640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/25/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Retroviral reverse transcription starts within the capsid and uncoating and reverse transcription are mutually dependent. There is still debate regarding the timing and cellular location of HIV's uncoating and reverse transcription and whether it occurs solely in the cytoplasm, nucleus or both. HIV can infect non-dividing cells because there is active transport of the preintegration complex (PIC) across the nuclear membrane, but Murine Leukemia Virus (MLV) is thought to depend on cell division for replication and whether MLV uncoating and reverse transcription is solely cytoplasmic has not been studied. Here, we used NIH3T3 and primary mouse dendritic cells to determine where the different stages of reverse transcription occur and whether cell division is needed for nuclear entry. Our data strongly suggest that in both NIH3T3 cells and dendritic cells (DCs), the initial step of reverse transcription occurs in the cytoplasm. However, we detected MLV RNA/DNA hybrid intermediates in the nucleus of dividing NIH3T3 cells and non-dividing DCs, suggesting that reverse transcription can continue after nuclear entry. We also confirmed that the MLV PIC requires cell division to enter the nucleus of NIH3T3 cells. In contrast, we show that MLV can infect non-dividing primary DCs, although integration of MLV DNA in DCs still required the viral p12 protein. Knockdown of several nuclear pore proteins dramatically reduced the appearance of integrated MLV DNA in DCs but not NIH3T3 cells. Additionally, MLV capsid associated with the nuclear pore proteins NUP358 and NUP62 during infection. These findings suggest that simple retroviruses, like the complex retrovirus HIV, gain nuclear entry by traversing the nuclear pore complex in non-mitotic cells.
Collapse
Affiliation(s)
- Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Wenming Zhao
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Akkawi C, Feuillard J, Diaz FL, Belkhir K, Godefroy N, Peloponese JM, Mougel M, Laine S. Murine leukemia virus (MLV) P50 protein induces cell transformation via transcriptional regulatory function. Retrovirology 2023; 20:16. [PMID: 37700325 PMCID: PMC10496198 DOI: 10.1186/s12977-023-00631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The murine leukemia virus (MLV) has been a powerful model of pathogenesis for the discovery of genes involved in cancer. Its splice donor (SD')-associated retroelement (SDARE) is important for infectivity and tumorigenesis, but the mechanism remains poorly characterized. Here, we show for the first time that P50 protein, which is produced from SDARE, acts as an accessory protein that transregulates transcription and induces cell transformation. RESULTS By infecting cells with MLV particles containing SDARE transcript alone (lacking genomic RNA), we show that SDARE can spread to neighbouring cells as shown by the presence of P50 in infected cells. Furthermore, a role for P50 in cell transformation was demonstrated by CCK8, TUNEL and anchorage-independent growth assays. We identified the integrase domain of P50 as being responsible for transregulation of the MLV promoter using luciferase assay and RTqPCR with P50 deleted mutants. Transcriptomic analysis furthermore revealed that the expression of hundreds of cellular RNAs involved in cancerogenesis were deregulated in the presence of P50, suggesting that P50 induces carcinogenic processes via its transcriptional regulatory function. CONCLUSION We propose a novel SDARE-mediated mode of propagation of the P50 accessory protein in surrounding cells. Moreover, due to its transforming properties, P50 expression could lead to a cellular and tissue microenvironment that is conducive to cancer development.
Collapse
Affiliation(s)
- Charbel Akkawi
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Jerome Feuillard
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Felipe Leon Diaz
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Khalid Belkhir
- ISEM, CNRS, EPHE, Université Montpellier, IRD, Montpellier, France
| | - Nelly Godefroy
- ISEM, CNRS, EPHE, Université Montpellier, IRD, Montpellier, France
| | | | - Marylene Mougel
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
| | - Sebastien Laine
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Bruggemans A, Vansant G, Van de Velde P, Debyser Z. The HIV-2 OGH double reporter virus shows that HIV-2 is less cytotoxic and less sensitive to reactivation from latency than HIV-1 in cell culture. J Virus Erad 2023; 9:100343. [PMID: 37701289 PMCID: PMC10493508 DOI: 10.1016/j.jve.2023.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
A better understanding of HIV-1 latency is a research priority in HIV cure research. Conversely, little is known about the latency characteristics of HIV-2, the closely related human lentivirus. Though both viruses cause AIDS, HIV-2 infection progresses more slowly with significantly lower viral loads, even when corrected for CD4+ T cell counts. Hence a direct comparison of latency characteristics between HIV-1 and HIV-2 could provide important clues towards a functional cure. Transduction of SupT1 cells with single-round HIV-1 and HIV-2 viruses with an enhanced green fluorescent protein (eGFP) reporter showed higher levels of eGFP expression for HIV-2 than HIV-1, while HIV-1 expression appeared more cytotoxic. To compare HIV-1 and HIV-2 gene expression, latency and reactivation in more detail, we have generated HIV-2 OGH, a replication deficient, near full- length, double reporter virus that discriminates latently and productively infected cells in cell culture. This construct is based on HIV-1 OGH, and to our knowledge, first of its kind for HIV-2. Using this construct we have observed a higher eGFP expression for HIV-2, but higher losses of HIV-1 transduced cells in SupT1 and Jurkat cells and a reduced sensitivity of HIV-2 for reactivation with TNF-α. In addition, we have analysed HIV-2 integration sites and their epigenetic environment. HIV-1 and HIV-2 share a preference for actively transcribed genes in gene-dense regions and favor active chromatin marks while disfavoring methylation markers associated with heterochromatin. In conclusion the HIV-2 OGH construct provides an interesting tool for studying HIV-2 expression, latency and reactivation. As simian immunodeficiency virus (SIV) and HIV-2 have been proposed to model a functional HIV cure, a better understanding of the mechanisms governing HIV-2 and SIV latency will be important to move forward. Further research is needed to investigate if HIV-2 uses similar mechanisms as HIV-1 to achieve its integration site selectivity.
Collapse
Affiliation(s)
- Anne Bruggemans
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | - Gerlinde Vansant
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
7
|
Moll GM, Swenson CL, Yuzbasiyan-Gurkan V. BET Inhibitor JQ1 Attenuates Feline Leukemia Virus DNA, Provirus, and Antigen Production in Domestic Cat Cell Lines. Viruses 2023; 15:1853. [PMID: 37766260 PMCID: PMC10535802 DOI: 10.3390/v15091853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Feline leukemia virus (FeLV) is a cosmopolitan gammaretrovirus that causes lifelong infections and fatal diseases, including leukemias, lymphomas, immunodeficiencies, and anemias, in domestic and wild felids. There is currently no definitive treatment for FeLV, and while existing vaccines reduce the prevalence of progressive infections, they neither provide sterilizing immunity nor prevent regressive infections that result in viral reservoirs with the potential for reactivation, transmission, and the development of associated clinical diseases. Previous studies of murine leukemia virus (MuLV) established that host cell epigenetic reader bromodomain and extra-terminal domain (BET) proteins facilitate MuLV replication by promoting proviral integration. Here, we provide evidence that this facilitatory effect of BET proteins extends to FeLV. Treatment with the archetypal BET protein bromodomain inhibitor (+)-JQ1 and FeLV challenge of two phenotypically disparate feline cell lines, 81C fibroblasts and 3201 lymphoma cells, significantly reduced FeLV proviral load, total FeLV DNA load, and p27 capsid protein expression at nonlethal concentrations. Moreover, significant decreases in FeLV proviral integration were documented in 81C and 3201 cells. These findings elucidate the importance of BET proteins for efficient FeLV replication, including proviral integration, and provide a potential target for treating FeLV infections.
Collapse
Affiliation(s)
- Garrick M. Moll
- Comparative Medicine & Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Cheryl L. Swenson
- Comparative Medicine & Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Vilma Yuzbasiyan-Gurkan
- Comparative Medicine & Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Miklík D, Grim J, Elleder D, Hejnar J. Unraveling the palindromic and nonpalindromic motifs of retroviral integration site sequences by statistical mixture models. Genome Res 2023; 33:1395-1408. [PMID: 37463751 PMCID: PMC10547254 DOI: 10.1101/gr.277694.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
A weak palindromic nucleotide motif is the hallmark of retroviral integration site alignments. Given that the majority of target sequences are not palindromic, the current model explains the symmetry by an overlap of the nonpalindromic motif present on one of the half-sites of the sequences. Here, we show that the implementation of multicomponent mixture models allows for different interpretations consistent with the existence of both palindromic and nonpalindromic submotifs in the sets of integration site sequences. We further show that the weak palindromic motifs result from freely combined site-specific submotifs restricted to only a few positions proximal to the site of integration. The submotifs are formed by either palindrome-forming nucleotide preference or nucleotide exclusion. Using the mixture models, we also identify HIV-1-favored palindromic sequences in Alu repeats serving as local hotspots for integration. The application of the novel statistical approach provides deeper insight into the selection of retroviral integration sites and may prove to be a valuable tool in the analysis of any type of DNA motifs.
Collapse
Affiliation(s)
- Dalibor Miklík
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Jiří Grim
- Pattern Recognition Department, Institute of Information Theory and Automation of the Czech Academy of Sciences, Prague 8, 182 08, Czech Republic
| | - Daniel Elleder
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic;
| |
Collapse
|
9
|
To KKW, Xing E, Larue RC, Li PK. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023; 28:molecules28073043. [PMID: 37049806 PMCID: PMC10096006 DOI: 10.3390/molecules28073043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Collapse
|
10
|
Specialized DNA Structures Act as Genomic Beacons for Integration by Evolutionarily Diverse Retroviruses. Viruses 2023; 15:v15020465. [PMID: 36851678 PMCID: PMC9962126 DOI: 10.3390/v15020465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Retroviral integration site targeting is not random and plays a critical role in expression and long-term survival of the integrated provirus. To better understand the genomic environment surrounding retroviral integration sites, we performed a meta-analysis of previously published integration site data from evolutionarily diverse retroviruses, including new experimental data from HIV-1 subtypes A, B, C and D. We show here that evolutionarily divergent retroviruses exhibit distinct integration site profiles with strong preferences for integration near non-canonical B-form DNA (non-B DNA). We also show that in vivo-derived HIV-1 integration sites are significantly more enriched in transcriptionally silent regions and transcription-silencing non-B DNA features of the genome compared to in vitro-derived HIV-1 integration sites. Integration sites from individuals infected with HIV-1 subtype A, B, C or D viruses exhibited different preferences for common genomic and non-B DNA features. In addition, we identified several integration site hotspots shared between different HIV-1 subtypes, all of which were located in the non-B DNA feature slipped DNA. Together, these data show that although evolutionarily divergent retroviruses exhibit distinct integration site profiles, they all target non-B DNA for integration. These findings provide new insight into how retroviruses integrate into genomes for long-term survival.
Collapse
|
11
|
Wang Y, Zhou Z, Wu X, Li T, Wu J, Cai M, Nie J, Wang W, Cui Z. Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:1-27. [PMID: 36920689 DOI: 10.1007/978-981-99-0113-5_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pseudotyped viruses have been constructed for many viruses. They can mimic the authentic virus and have many advantages compared to authentic viruses. Thus, they have been widely used as a surrogate of authentic virus for viral function analysis, detection of neutralizing antibodies, screening viral entry inhibitors, and others. This chapter reviewed the progress in the field of pseudotyped viruses in general, including the definition and the advantages of pseudotyped viruses, their potential usage, different strategies or vectors used for the construction of pseudotyped viruses, and factors that affect the construction of pseudotyped viruses.
Collapse
Affiliation(s)
- Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| | - Zehua Zhou
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Xi Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Meina Cai
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
12
|
Pellaers E, Bhat A, Christ F, Debyser Z. Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV-Based Vectors and for a Cure for HIV-1 Infection. Viruses 2022; 15:32. [PMID: 36680071 PMCID: PMC9861059 DOI: 10.3390/v15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, overwhelming evidence from cell culture, animal experiments and clinical data suggests that integration sites are important for retroviral replication, oncogenesis and/or latency. In this review, we will summarize the increasing knowledge of the mechanisms underlying the integration site selection of the gammaretrovirus MLV and the lentivirus HIV-1. We will discuss how host factors of the integration site selection of retroviruses may steer the development of safer viral vectors for gene therapy. Next, we will discuss how altering the integration site preference of HIV-1 using small molecules could lead to a cure for HIV-1 infection.
Collapse
Affiliation(s)
| | | | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Barkova A, Adhya I, Conesa C, Asif-Laidin A, Bonnet A, Rabut E, Chagneau C, Lesage P, Acker J. A proteomic screen of Ty1 integrase partners identifies the protein kinase CK2 as a regulator of Ty1 retrotransposition. Mob DNA 2022; 13:26. [PMCID: PMC9673352 DOI: 10.1186/s13100-022-00284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Transposable elements are ubiquitous and play a fundamental role in shaping genomes during evolution. Since excessive transposition can be mutagenic, mechanisms exist in the cells to keep these mobile elements under control. Although many cellular factors regulating the mobility of the retrovirus-like transposon Ty1 in Saccharomyces cerevisiae have been identified in genetic screens, only very few of them interact physically with Ty1 integrase (IN).
Results
Here, we perform a proteomic screen to establish Ty1 IN interactome. Among the 265 potential interacting partners, we focus our study on the conserved CK2 kinase. We confirm the interaction between IN and CK2, demonstrate that IN is a substrate of CK2 in vitro and identify the modified residues. We find that Ty1 IN is phosphorylated in vivo and that these modifications are dependent in part on CK2. No significant change in Ty1 retromobility could be observed when we introduce phospho-ablative mutations that prevent IN phosphorylation by CK2 in vitro. However, the absence of CK2 holoenzyme results in a strong stimulation of Ty1 retrotransposition, characterized by an increase in Ty1 mRNA and protein levels and a high accumulation of cDNA.
Conclusion
Our study shows that Ty1 IN is phosphorylated, as observed for retroviral INs and highlights an important role of CK2 in the regulation of Ty1 retrotransposition. In addition, the proteomic approach enabled the identification of many new Ty1 IN interacting partners, whose potential role in the control of Ty1 mobility will be interesting to study.
Collapse
|
14
|
Chen IP, Ott M. Viral Hijacking of BET Proteins. Viruses 2022; 14:2274. [PMID: 36298829 PMCID: PMC9609653 DOI: 10.3390/v14102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Proteins of the bromodomain and exterminal domain (BET) family mediate critical host functions such as cell proliferation, transcriptional regulation, and the innate immune response, which makes them preferred targets for viruses. These multidomain proteins are best known as transcriptional effectors able to read acetylated histone and non-histone proteins through their tandem bromodomains. They also contain other short motif-binding domains such as the extraterminal domain, which recognizes transcriptional regulatory proteins. Here, we describe how different viruses have evolved to hijack or disrupt host BET protein function through direct interactions with BET family members to support their own propagation. The network of virus-BET interactions emerges as highly intricate, which may complicate the use of small-molecule BET inhibitors-currently in clinical development for the treatment of cancer and cardiovascular diseases-to treat viral infections.
Collapse
Affiliation(s)
- Irene P. Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Wolff JH, Mikkelsen JG. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J Biomed Sci 2022; 29:79. [PMID: 36209077 PMCID: PMC9548131 DOI: 10.1186/s12929-022-00865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses are naturally endowed with the capacity to transfer genetic material between cells. Following early skepticism, engineered viruses have been used to transfer genetic information into thousands of patients, and genetic therapies are currently attracting large investments. Despite challenges and severe adverse effects along the way, optimized technologies and improved manufacturing processes are driving gene therapy toward clinical translation. Fueled by the outbreak of AIDS in the 1980s and the accompanying focus on human immunodeficiency virus (HIV), lentiviral vectors derived from HIV have grown to become one of the most successful and widely used vector technologies. In 2022, this vector technology has been around for more than 25 years. Here, we celebrate the anniversary by portraying the vector system and its intriguing properties. We dive into the technology itself and recapitulate the use of lentiviral vectors for ex vivo gene transfer to hematopoietic stem cells and for production of CAR T-cells. Furthermore, we describe the adaptation of lentiviral vectors for in vivo gene delivery and cover the important contribution of lentiviral vectors to basic molecular research including their role as carriers of CRISPR genome editing technologies. Last, we dwell on the emerging capacity of lentiviral particles to package and transfer foreign proteins.
Collapse
Affiliation(s)
- Jonas Holst Wolff
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
16
|
Chen IP, Longbotham JE, McMahon S, Suryawanshi RK, Khalid MM, Taha TY, Tabata T, Hayashi JM, Soveg FW, Carlson-Stevermer J, Gupta M, Zhang MY, Lam VL, Li Y, Yu Z, Titus EW, Diallo A, Oki J, Holden K, Krogan N, Fujimori DG, Ott M. Viral E protein neutralizes BET protein-mediated post-entry antagonism of SARS-CoV-2. Cell Rep 2022; 40:111088. [PMID: 35839775 PMCID: PMC9234021 DOI: 10.1016/j.celrep.2022.111088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/27/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Inhibitors of bromodomain and extraterminal domain (BET) proteins are possible anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here we show that BET proteins should not be inactivated therapeutically because they are critical antiviral factors at the post-entry level. Depletion of BRD3 or BRD4 in cells overexpressing ACE2 exacerbates SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.
Collapse
Affiliation(s)
- Irene P Chen
- Gladstone Institutes, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Longbotham
- Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah McMahon
- Gladstone Institutes, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Mir M Khalid
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Taha Y Taha
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | | | | | | | - Meghna Gupta
- Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Meng Yao Zhang
- Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Victor L Lam
- Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yang Li
- Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zanlin Yu
- Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erron W Titus
- Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amy Diallo
- Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Oki
- Synthego Corporation, 3696 Haven Avenue, Suite A, Menlo Park, CA 94063, USA
| | - Kevin Holden
- Synthego Corporation, 3696 Haven Avenue, Suite A, Menlo Park, CA 94063, USA
| | - Nevan Krogan
- Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danica Galonić Fujimori
- Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute COVID-19 Research Group (QCRG), University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
BET-Independent Murine Leukemia Virus Integration Is Retargeted
In Vivo
and Selects Distinct Genomic Elements for Lymphomagenesis. Microbiol Spectr 2022; 10:e0147822. [PMID: 35852337 PMCID: PMC9431007 DOI: 10.1128/spectrum.01478-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Moloney murine leukemia virus (MLV) infects BALB/c mice and induces T-cell lymphoma in mice. Retroviral integration is mediated by the interaction of the MLV integrase (IN) with members of the bromodomain and extraterminal motif (BET) protein family (BRD2, BRD3, and BRD4). The introduction of the W390A mutation into MLV IN abolishes the BET interaction. Here, we compared the replication of W390A MLV to that of wild-type (WT) MLV in adult BALB/c mice to study the role of BET proteins in replication, integration, and tumorigenesis in vivo. Comparing WT and W390A MLV infections revealed similar viral loads in the blood, thymus, and spleen cells. Interestingly, W390A MLV integration was retargeted away from GC-enriched genomic regions. However, both WT MLV- and W390A MLV-infected mice developed T-cell lymphoma after similar latencies represented by an enlarged thymus and spleen and multiorgan tumor infiltration. Integration site sequencing from splenic tumor cells revealed clonal expansion in all WT MLV- and W390A MLV-infected mice. However, the integration profiles of W390A MLV and WT MLV differed significantly. Integrations were enriched in enhancers and promoters, but compared to the WT, W390A MLV integrated less frequently into enhancers and more frequently into oncogene bodies such as Notch1 and Ppp1r16b. We conclude that host factors direct MLV in vivo integration site selection. Although BET proteins target WT MLV integration preferentially toward enhancers and promoters, insertional lymphomagenesis can occur independently from BET, likely due to the intrinsically strong enhancer/promoter of the MLV long terminal repeat (LTR). IMPORTANCE In this study, we have shown that the in vivo replication of murine leukemia virus happens independently of BET proteins, which are key host determinants involved in retroviral integration site selection. This finding opens a new research line in the discovery of alternative viral or host factors that may complement the dominant host factor. In addition, our results show that BET-independent murine leukemia virus uncouples insertional mutagenesis from gene enhancers, although lymphomagenesis still occurs despite the lack of an interaction with BET proteins. Our findings also have implications for the engineering of BET-independent MLV-based vectors for gene therapy, which may not be a safe alternative.
Collapse
|
18
|
Lin Z, Li Z, Guo Z, Cao Y, Li J, Liu P, Li Z. Epigenetic Reader Bromodomain Containing Protein 2 Facilitates Pathological Cardiac Hypertrophy via Regulating the Expression of Citrate Cycle Genes. Front Pharmacol 2022; 13:887991. [PMID: 35694272 PMCID: PMC9174549 DOI: 10.3389/fphar.2022.887991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
The bromodomain and extra-terminal domain proteins (BETs) family serve as epigenetic “readers”, which recognize the acetylated histones and recruit transcriptional regulator complexes to chromatin, eventually regulating gene transcription. Accumulating evidences demonstrate that pan BET inhibitors (BETi) confer protection against pathological cardiac hypertrophy, a precursor progress for developing heart failure. However, the roles of BET family members, except BRD4, remain unknown in pathological cardiac hypertrophy. The present study identified BRD2 as a novel regulator in cardiac hypertrophy, with a distinct mechanism from BRD4. BRD2 expression was elevated in cardiac hypertrophy induced by β-adrenergic agonist isoprenaline (ISO) in vivo and in vitro. Overexpression of BRD2 upregulated the expression of hypertrophic biomarkers and increased cell surface area, whereas BRD2 knockdown restrained ISO-induced cardiomyocyte hypertrophy. In vivo, rats received intramyocardial injection of adeno-associated virus (AAV) encoding siBRD2 significantly reversed ISO-induced pathological cardiac hypertrophy, cardiac fibrosis, and cardiac function dysregulation. The bioinformatic analysis of whole-genome sequence data demonstrated that a majority of metabolic genes, in particular those involved in TCA cycle, were under regulation by BRD2. Real-time PCR results confirmed that the expressions of TCA cycle genes were upregulated by BRD2, but were downregulated by BRD2 silencing in ISO-treated cardiomyocytes. Results of mitochondrial oxygen consumption rate (OCR) and ATP production measurement demonstrated that BRD2 augmented cardiac metabolism during cardiac hypertrophy. In conclusion, the present study revealed that BRD2 could facilitate cardiac hypertrophy through upregulating TCA cycle genes. Strategies targeting inhibition of BRD2 might suggest therapeutic potential for pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Zhirong Lin
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Zhen Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yanjun Cao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Peiqing Liu, ; Zhuoming Li,
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Peiqing Liu, ; Zhuoming Li,
| |
Collapse
|
19
|
Winans S, Yu HJ, de Los Santos K, Wang GZ, KewalRamani VN, Goff SP. A point mutation in HIV-1 integrase redirects proviral integration into centromeric repeats. Nat Commun 2022; 13:1474. [PMID: 35304442 PMCID: PMC8933506 DOI: 10.1038/s41467-022-29097-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Retroviruses utilize the viral integrase (IN) protein to integrate a DNA copy of their genome into host chromosomal DNA. HIV-1 integration sites are highly biased towards actively transcribed genes, likely mediated by binding of the IN protein to specific host factors, particularly LEDGF, located at these gene regions. We here report a substantial redirection of integration site distribution induced by a single point mutation in HIV-1 IN. Viruses carrying the K258R IN mutation exhibit a high frequency of integrations into centromeric alpha satellite repeat sequences, as assessed by deep sequencing, a more than 10-fold increase over wild-type. Quantitative PCR and in situ immunofluorescence assays confirm this bias of the K258R mutant virus for integration into centromeric DNA. Immunoprecipitation studies identify host factors binding to IN that may account for the observed bias for integration into centromeres. Centromeric integration events are known to be enriched in the latent reservoir of infected memory T cells, as well as in elite controllers who limit viral replication without intervention. The K258R point mutation in HIV-1 IN is also present in databases of latent proviruses found in patients, and may reflect an unappreciated aspect of the establishment of viral latency. HIV-1 integration sites are biased towards actively transcribed genes, likely mediated by binding of the viral integrase (IN) protein to host factors. Here, Winans et al. show that the K258R point mutation in IN eredirects viral DNA integration to the centromeres of host chromosomes, which may affect HIV latency.
Collapse
Affiliation(s)
- Shelby Winans
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, USA
| | - Kenia de Los Santos
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Gary Z Wang
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - Vineet N KewalRamani
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA. .,Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Liang G, He Y, Zhao L, Ouyang J, Geng W, Zhang X, Han X, Jiang Y, Ding H, Xiong Y, Dong J, Liu M, Shang H. CTNNBL1 restricts HIV-1 replication by suppressing viral DNA integration into the cell genome. Cell Rep 2022; 38:110533. [PMID: 35294870 DOI: 10.1016/j.celrep.2022.110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/17/2021] [Accepted: 02/25/2022] [Indexed: 11/03/2022] Open
Abstract
Retroviral integration is mediated by a unique enzymatic process shared by all retroviruses and retrotransposons. During integration, double-stranded linear viral DNA is inserted into the host genome in a process catalyzed by viral-encoded integrase (IN). However, host cell defenses against HIV-1 integration are not clear. This study identifies β-catenin-like protein 1 (CTNNBL1) as a potent inhibitor of HIV-1 integration via association with viral-encoded integrase (IN) and its cofactor, lens epithelium-derived growth factor/p75. CTNNBL1 overexpression blocks HIV-1 integration and inhibits viral replication, whereas CTNNBL1 depletion significantly upregulates HIV-1 integration into the genome of various target cells. Further, CTNNBL1 expression is downregulated in CD4+ T cells by activation, and CTNNBL1 depletion also facilitates HIV-1 integration in resting CD4+ T cells. Thus, host cells may employ CTNNBL1 to inhibit HIV-1 integration into the genome. This finding suggests a strategy for the treatment of HIV infections.
Collapse
Affiliation(s)
- Guoxin Liang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; Research Institute for Cancer Therapy, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yang He
- Research Institute for Cancer Therapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Li Zhao
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayue Ouyang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenqing Geng
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Zhang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Xiong
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinxiu Dong
- National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mei Liu
- National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of Ministry of Health, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
21
|
Abstract
A hallmark of retroviral replication is establishment of the proviral state, wherein a DNA copy of the viral RNA genome is stably incorporated into a host cell chromosome. Integrase is the viral enzyme responsible for the catalytic steps involved in this process, and integrase strand transfer inhibitors are widely used to treat people living with HIV. Over the past decade, a series of X-ray crystallography and cryogenic electron microscopy studies have revealed the structural basis of retroviral DNA integration. A variable number of integrase molecules congregate on viral DNA ends to assemble a conserved intasome core machine that facilitates integration. The structures additionally informed on the modes of integrase inhibitor action and the means by which HIV acquires drug resistance. Recent years have witnessed the development of allosteric integrase inhibitors, a highly promising class of small molecules that antagonize viral morphogenesis. In this Review, we explore recent insights into the organization and mechanism of the retroviral integration machinery and highlight open questions as well as new directions in the field.
Collapse
|
22
|
Van Looveren D, Giacomazzi G, Thiry I, Sampaolesi M, Gijsbers R. Improved functionality and potency of next generation BinMLV viral vectors toward safer gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:51-67. [PMID: 34553002 PMCID: PMC8433069 DOI: 10.1016/j.omtm.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/16/2021] [Indexed: 10/27/2022]
Abstract
To develop safer retroviral murine leukemia virus (MLV)-based vectors, we previously mutated and re-engineered the MLV integrase: the W390A mutation abolished the interaction with its cellular tethering factors, BET proteins, and a retargeting peptide (the chromodomain of the CBX1 protein) was fused C-terminally. The resulting BET-independent MLVW390A-CBX was shown to integrate efficiently and more randomly, away from typical retroviral markers. In this study, we assessed the functionality and stability of expression of the redistributed MLVW390A-CBX vector in more depth, and evaluated safety using a clinically more relevant vector design encompassing a self-inactivated (SIN) LTR and a weak internal elongation factor 1α short (EFS) promoter. MLVW390A-CBX-EFS produced like MLVWT and efficiently transduced laboratory cells and primary human CD34+ hematopoetic stem cells (HSC) without transgene silencing over time, while displaying a more preferred, redistributed, and safer integration pattern. In a human mesoangioblast (MAB) stem cell model, the myogenic fusion capacity was hindered following MLVWT transduction, while this remained unaffected when applying MLVW390A-CBX. Likewise, smooth muscle cell differentiation of MABs was unaltered by MLVW390A-CBX-EFS. Taken together, our results underscore the potential of MLVW390A-CBX-EFS as a clinically relevant viral vector for ex-vivo gene therapy, combining efficient production with a preferable integration site distribution profile and stable expression over time.
Collapse
Affiliation(s)
- Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Giacomazzi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Irina Thiry
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
24
|
Chen IP, Longbotham JE, McMahon S, Suryawanshi RK, Carlson-Stevermer J, Gupta M, Zhang MY, Soveg FW, Hayashi JM, Taha TY, Lam VL, Li Y, Yu Z, Titus EW, Diallo A, Oki J, Holden K, Krogan N, Galonić Fujimori D, Ott M. Viral E Protein Neutralizes BET Protein-Mediated Post-Entry Antagonism of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34816261 DOI: 10.1101/2021.11.14.468537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhibitors of Bromodomain and Extra-terminal domain (BET) proteins are possible anti-SARS-CoV-2 prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here, we show that BET proteins should not be inactivated therapeutically as they are critical antiviral factors at the post-entry level. Knockouts of BRD3 or BRD4 in cells overexpressing ACE2 exacerbate SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection, and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.
Collapse
|
25
|
Lapaillerie D, Lelandais B, Mauro E, Lagadec F, Tumiotto C, Miskey C, Ferran G, Kuschner N, Calmels C, Métifiot M, Rooryck C, Ivics Z, Ruff M, Zimmer C, Lesbats P, Toutain J, Parissi V. Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75. Nucleic Acids Res 2021; 49:11241-11256. [PMID: 34634812 PMCID: PMC8565322 DOI: 10.1093/nar/gkab886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
The stable insertion of the retroviral genome into the host chromosomes requires the association between integration complexes and cellular chromatin via the interaction between retroviral integrase and the nucleosomal target DNA. This final association may involve the chromatin-binding properties of both the retroviral integrase and its cellular cofactor LEDGF/p75. To investigate this and better understand the LEDGF/p75-mediated chromatin tethering of HIV-1 integrase, we used a combination of biochemical and chromosome-binding assays. Our study revealed that retroviral integrase has an intrinsic ability to bind and recognize specific chromatin regions in metaphase even in the absence of its cofactor. Furthermore, this integrase chromatin-binding property was modulated by the interaction with its cofactor LEDGF/p75, which redirected the enzyme to alternative chromosome regions. We also better determined the chromatin features recognized by each partner alone or within the functional intasome, as well as the chronology of efficient LEDGF/p75-mediated targeting of HIV-1 integrase to chromatin. Our data support a new chromatin-binding function of integrase acting in concert with LEDGF/p75 for the optimal association with the nucleosomal substrate. This work also provides additional information about the behavior of retroviral integration complexes in metaphase chromatin and the mechanism of action of LEDGF/p75 in this specific context.
Collapse
Affiliation(s)
- Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Benoît Lelandais
- Imaging and modeling unit, Computational Biology Department, Institut Pasteur, Paris, France
| | - Eric Mauro
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Floriane Lagadec
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Camille Tumiotto
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Csaba Miskey
- Paul-Ehrlich-Institute, division of medical biotechnology, Langen, Germany
| | | | | | - Christina Calmels
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Mathieu Métifiot
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | | | - Zoltan Ivics
- Paul-Ehrlich-Institute, division of medical biotechnology, Langen, Germany
| | - Marc Ruff
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Biologie Structurale intégrative, UDS, U596 INSERM, UMR7104, CNRS, Strasbourg, France
| | - Christophe Zimmer
- Imaging and modeling unit, Computational Biology Department, Institut Pasteur, Paris, France
| | - Paul Lesbats
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| | - Jérôme Toutain
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux France
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Lab (MFP), UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed. Bordeaux, France
| |
Collapse
|
26
|
Liang Y, Tian J, Wu T. BRD4 in physiology and pathology: ''BET'' on its partners. Bioessays 2021; 43:e2100180. [PMID: 34697817 DOI: 10.1002/bies.202100180] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Bromodomain-containing 4 (BRD4), a member of Bromo and Extra-Terminal (BET) family, recognizes acetylated histones and is of importance in transcription, replication, and DNA repair. It also binds non-histone proteins, DNA and RNA, contributing to development, tissue growth, and various physiological processes. Additionally, BRD4 has been implicated in driving diverse diseases, ranging from cancer, viral infection, inflammation to neurological disorders. Inhibiting its functions with BET inhibitors (BETis) suppresses the progression of several types of cancer, creating an impetus for translating these chemicals to the clinic. The diverse roles of BRD4 are largely dependent on its interaction partners in different contexts. In this review we discuss the molecular mechanisms of BRD4 with its interacting partners in physiology and pathology. Current development of BETis is also summarized. Further understanding the functions of BRD4 and its partners will facilitate resolving the liabilities of present BETis and accelerate their clinical translation.
Collapse
Affiliation(s)
- Yin Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jieyi Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
27
|
Weissman JD, Singh AK, Devaiah BN, Schuck P, LaRue RC, Singer DS. The intrinsic kinase activity of BRD4 spans its BD2-B-BID domains. J Biol Chem 2021; 297:101326. [PMID: 34688663 PMCID: PMC8591364 DOI: 10.1016/j.jbc.2021.101326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022] Open
Abstract
Bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator that is a therapeutic target in many cancers and inflammatory diseases. BRD4 plays important roles in transcription as an active kinase, which phosphorylates the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II), the proto-oncogene c-MYC, and transcription factors TAF7 and CDK9. BRD4 is also a passive scaffold that recruits transcription factors. Despite these well-established functions, there has been little characterization of BRD4’s biophysical properties or its kinase activity. We report here that the 156 kD mouse BRD4 exists in an extended dimeric conformation with a sedimentation coefficient of ∼6.7 S and a high frictional ratio. Deletion of the conserved B motif (aa 503–548) disrupts BRD4’s dimerization. BRD4 kinase activity maps to amino acids 351 to 598, which span bromodomain-2, the B motif, and the BID domain (BD2-B-BID) and contributes to the in vivo phosphorylation of its substrates. As further assessed by analytical ultracentrifugation, BRD4 directly binds purified Pol II CTD. Importantly, the conserved A motif of BRD4 is essential for phosphorylation of Pol II CTD, but not for phosphorylation of TAF7, mapping its binding site to the A motif. Peptides of the viral MLV integrase (MLVIN) protein and cellular histone lysine methyltransferase, NSD3, which have been shown by NMR to bind to the extra-terminal (ET) domain, also are phosphorylated by BRD4. Thus, BRD4 has multiple distinct substrate-binding sites and a common kinase domain. These results provide new insights into the structure and kinase function of BRD4.
Collapse
Affiliation(s)
- Jocelyn D Weissman
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Amit K Singh
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ballachanda N Devaiah
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland, USA
| | - Ross C LaRue
- Department of Cancer Biology and Genetics, College of Medicine, and Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
28
|
Xing E, Surendranathan N, Kong X, Cyberski N, Garcia JD, Cheng X, Sharma A, Li PK, Larue RC. Development of Murine Leukemia Virus Integrase-Derived Peptides That Bind Brd4 Extra-Terminal Domain as Candidates for Suppression of Acute Myeloid Leukemia. ACS Pharmacol Transl Sci 2021; 4:1628-1638. [PMID: 34661079 DOI: 10.1021/acsptsci.1c00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 02/08/2023]
Abstract
The bromodomain and extra-terminal (BET) domain family of proteins, which include its prototypical member Brd4, is implicated in a variety of cancers and viral infections due to their interaction with cellular and viral proteins. BET proteins contain two bromodomains, a common protein motif that selectively binds acetylated lysine on histones. However, they are structurally distinct from other bromodomain-containing proteins because they encode a unique C-terminal extra-terminal (ET) domain that is important for the protein-protein interactions including jumonji C-domain-containing protein 6 (JMJD6) and histone-lysine N-methyltransferase NSD3 (NSD3). Brd4 functions primarily during transcription as a passive scaffold linking cellular and viral proteins to chromatin. The rapid development of clinical inhibitors targeting Brd4 highlights the importance of this protein as an anticancer target. Current therapeutic approaches focus on the development of small molecule acetylated lysine mimics of histone marks that block the ability of the bromodomains to bind their chromatin marks. Thus far, bromodomain-targeted agents have shown dose-limiting toxicities due to off-target effects on other bromodomain-containing proteins. Here, we exploited a viral-host protein interaction interface to design peptides for the disruption of BET protein function. A murine leukemia virus (MLV) integrase-derived peptide (ET binding motif, EBM) and its shorter minimal binding motif (pentapeptide LKIRL) were sufficient to directly bind the Brd4 ET domain and reduce cellular proliferation of an acute myeloid leukemia cell line. Using computational and biochemical approaches, we identified the minimal essential contacts between EBM and LKIRL peptides and the Brd4 ET domain. Our findings provide a structural foundation for inhibiting BET/Brd4-mediated cancers by targeting the ET domain with small peptide-based inhibitors.
Collapse
Affiliation(s)
- Enming Xing
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nandini Surendranathan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaotian Kong
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Natalie Cyberski
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica D Garcia
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amit Sharma
- Department of Veterinary Biosciences, College of Veterinary Medicine, and Department of Microbial Infection & Immunity, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ross C Larue
- Department of Cancer Biology and Genetics, College of Medicine, and Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Morgan MA, Galla M, Grez M, Fehse B, Schambach A. Retroviral gene therapy in Germany with a view on previous experience and future perspectives. Gene Ther 2021; 28:494-512. [PMID: 33753908 PMCID: PMC8455336 DOI: 10.1038/s41434-021-00237-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Gene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is "Spotlight on Germany," the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.
Collapse
Affiliation(s)
- Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Designing Lentiviral Vectors for Gene Therapy of Genetic Diseases. Viruses 2021; 13:v13081526. [PMID: 34452394 PMCID: PMC8402868 DOI: 10.3390/v13081526] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Lentiviral vectors are the most frequently used tool to stably transfer and express genes in the context of gene therapy for monogenic diseases. The vast majority of clinical applications involves an ex vivo modality whereby lentiviral vectors are used to transduce autologous somatic cells, obtained from patients and re-delivered to patients after transduction. Examples are hematopoietic stem cells used in gene therapy for hematological or neurometabolic diseases or T cells for immunotherapy of cancer. We review the design and use of lentiviral vectors in gene therapy of monogenic diseases, with a focus on controlling gene expression by transcriptional or post-transcriptional mechanisms in the context of vectors that have already entered a clinical development phase.
Collapse
|
31
|
Lara-Ureña N, García-Domínguez M. Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules 2021; 11:1126. [PMID: 34439792 PMCID: PMC8391731 DOI: 10.3390/biom11081126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The recent pandemic we are experiencing caused by the coronavirus disease 2019 (COVID-19) has put the world's population on the rack, with more than 191 million cases and more than 4.1 million deaths confirmed to date. This disease is caused by a new type of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A massive proteomic analysis has revealed that one of the structural proteins of the virus, the E protein, interacts with BRD2 and BRD4 proteins of the Bromodomain and Extra Terminal domain (BET) family of proteins. BETs are essential to cell cycle progression, inflammation and immune response and have also been strongly associated with infection by different types of viruses. The fundamental role BET proteins play in transcription makes them appropriate targets for the propagation strategies of some viruses. Recognition of histone acetylation by BET bromodomains is essential for transcription control. The development of drugs mimicking acetyl groups, and thereby able to displace BET proteins from chromatin, has boosted interest on BETs as attractive targets for therapeutic intervention. The success of these drugs against a variety of diseases in cellular and animal models has been recently enlarged with promising results from SARS-CoV-2 infection studies.
Collapse
Affiliation(s)
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain;
| |
Collapse
|
32
|
McBride AA, Warburton A, Khurana S. Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses. Front Mol Biosci 2021; 8:725794. [PMID: 34386523 PMCID: PMC8353396 DOI: 10.3389/fmolb.2021.725794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human Papillomaviruses (HPV) reproduce in stratified epithelia by establishing a reservoir of low- level infection in the dividing basal cells and restricting the production of viral particles to terminally differentiated cells. These small DNA viruses hijack pivotal cellular processes and pathways to support the persistent infectious cycle. One cellular factor that is key to multiple stages of viral replication and transcription is the BET (bromodomain and extra-terminal domain) protein, Brd4 (Bromodomain containing protein 4). Here we provide an overview of the multiple interactions of Brd4 that occur throughout the HPV infectious cycle.
Collapse
Affiliation(s)
- Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
33
|
Yoder KE, Rabe AJ, Fishel R, Larue RC. Strategies for Targeting Retroviral Integration for Safer Gene Therapy: Advances and Challenges. Front Mol Biosci 2021; 8:662331. [PMID: 34055882 PMCID: PMC8149907 DOI: 10.3389/fmolb.2021.662331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retroviruses are obligate intracellular parasites that must integrate a copy of the viral genome into the host DNA. The integration reaction is performed by the viral enzyme integrase in complex with the two ends of the viral cDNA genome and yields an integrated provirus. Retroviral vector particles are attractive gene therapy delivery tools due to their stable integration. However, some retroviral integration events may dysregulate host oncogenes leading to cancer in gene therapy patients. Multiple strategies to target retroviral integration, particularly to genetic safe harbors, have been tested with limited success. Attempts to target integration may be limited by the multimerization of integrase or the presence of host co-factors for integration. Several retroviral integration complexes have evolved a mechanism of tethering to chromatin via a host protein. Integration host co-factors bind chromatin, anchoring the complex and allowing integration. The tethering factor allows for both close proximity to the target DNA and specificity of targeting. Each retrovirus appears to have distinct preferences for DNA sequence and chromatin features at the integration site. Tethering factors determine the preference for chromatin features, but do not affect the subtle sequence preference at the integration site. The sequence preference is likely intrinsic to the integrase protein. New developments may uncouple the requirement for a tethering factor and increase the ability to redirect retroviral integration.
Collapse
Affiliation(s)
- Kristine E Yoder
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anthony J Rabe
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Richard Fishel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ross C Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
34
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
35
|
Kotlar RM, Jones ND, Senavirathne G, Gardner AM, Messer RK, Tan YY, Rabe AJ, Fishel R, Yoder KE. Retroviral prototype foamy virus intasome binding to a nucleosome target does not determine integration efficiency. J Biol Chem 2021; 296:100550. [PMID: 33744295 PMCID: PMC8050864 DOI: 10.1016/j.jbc.2021.100550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
Retroviral integrases must navigate host DNA packaged as chromatin during integration of the viral genome. Prototype foamy virus (PFV) integrase (IN) forms a tetramer bound to two viral DNA (vDNA) ends in a complex termed an intasome. PFV IN consists of four domains: the amino terminal extension domain (NED), amino terminal domain (NTD), catalytic core domain (CCD), and carboxyl terminal domain (CTD). The domains of the two inner IN protomers have been visualized, as well as the CCDs of the two outer IN protomers. However, the roles of the amino and carboxyl terminal domains of the PFV intasome outer subunits during integration to a nucleosome target substrate are not clear. We used the well-characterized 601 nucleosome to assay integration activity as well as intasome binding. PFV intasome integration to 601 nucleosomes occurs in clusters at four independent sites. We find that the outer protomer NED and NTD domains have no significant effects on integration efficiency, site selection, or binding. The CTDs of the outer PFV intasome subunits dramatically affect nucleosome binding but have little effect on total integration efficiency. The outer PFV IN CTDs did significantly alter the integration efficiency at one site. Histone tails also significantly affect intasome binding, but have little impact on PFV integration efficiency or site selection. These results indicate that binding to nucleosomes does not correlate with integration efficiency and suggests most intasome-binding events are unproductive.
Collapse
Affiliation(s)
- Randi M Kotlar
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nathan D Jones
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Gayan Senavirathne
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Anne M Gardner
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ryan K Messer
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Yow Yong Tan
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Anthony J Rabe
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Richard Fishel
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Kristine E Yoder
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
| |
Collapse
|
36
|
McEwen GK, Alquezar-Planas DE, Dayaram A, Gillett A, Tarlinton R, Mongan N, Chappell KJ, Henning J, Tan M, Timms P, Young PR, Roca AL, Greenwood AD. Retroviral integrations contribute to elevated host cancer rates during germline invasion. Nat Commun 2021; 12:1316. [PMID: 33637755 PMCID: PMC7910482 DOI: 10.1038/s41467-021-21612-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Repeated retroviral infections of vertebrate germlines have made endogenous retroviruses ubiquitous features of mammalian genomes. However, millions of years of evolution obscure many of the immediate repercussions of retroviral endogenisation on host health. Here we examine retroviral endogenisation during its earliest stages in the koala (Phascolarctos cinereus), a species undergoing germline invasion by koala retrovirus (KoRV) and affected by high cancer prevalence. We characterise KoRV integration sites (IS) in tumour and healthy tissues from 10 koalas, detecting 1002 unique IS, with hotspots of integration occurring in the vicinity of known cancer genes. We find that tumours accumulate novel IS, with proximate genes over-represented for cancer associations. We detect dysregulation of genes containing IS and identify a highly-expressed transduced oncogene. Our data provide insights into the tremendous mutational load suffered by the host during active retroviral germline invasion, a process repeatedly experienced and overcome during the evolution of vertebrate lineages.
Collapse
Affiliation(s)
- Gayle K McEwen
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - David E Alquezar-Planas
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Anisha Dayaram
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, Australia
| | - Rachael Tarlinton
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Nigel Mongan
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Keith J Chappell
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Joerg Henning
- School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Milton Tan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Peter Timms
- Genecology Research Center, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Paul R Young
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
- Department of Veterinary Medicine, Freie Universität, Berlin, Germany.
| |
Collapse
|
37
|
Patel K, Solomon PD, Walshe JL, Ford DJ, Wilkinson-White L, Payne RJ, Low JKK, Mackay JP. BET-Family Bromodomains Can Recognize Diacetylated Sequences from Transcription Factors Using a Conserved Mechanism. Biochemistry 2021; 60:648-662. [PMID: 33620209 DOI: 10.1021/acs.biochem.0c00816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Almost all eukaryotic proteins receive diverse post-translational modifications (PTMs) that modulate protein activity. Many histone PTMs are well characterized, heavily influence gene regulation, and are often predictors of distinct transcriptional programs. Although our understanding of the histone PTM network has matured, much is yet to be understood about the roles of transcription factor (TF) PTMs, which might well represent a similarly complex and dynamic network of functional regulation. Members of the bromodomain and extra-terminal domain (BET) family of proteins recognize acetyllysine residues and relay the signals encoded by these modifications. Here, we have investigated the acetylation dependence of several functionally relevant BET-TF interactions in vitro using surface plasmon resonance, nuclear magnetic resonance, and X-ray crystallography. We show that motifs known to be acetylated in TFs E2F1 and MyoD1 can interact with all bromodomains of BRD2, BRD3, and BRD4. The interactions are dependent on diacetylation of the motifs and show a preference for the first BET bromodomain. Structural mapping of the interactions confirms a conserved mode of binding for the two TFs to the acetyllysine binding pocket of the BET bromodomains, mimicking that of other already established functionally important histone- and TF-BET interactions. We also examined a motif from the TF RelA that is known to be acetylated but were unable to observe any interaction, regardless of the acetylation state of the sequence. Our findings overall advance our understanding of BET-TF interactions and suggest a physical link between the important diacetylated motifs found in E2F1 and MyoD1 and the BET-family proteins.
Collapse
Affiliation(s)
- Karishma Patel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Paul D Solomon
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - James L Walshe
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J Ford
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Richard J Payne
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
38
|
Bonnet A, Lesage P. Light and shadow on the mechanisms of integration site selection in yeast Ty retrotransposon families. Curr Genet 2021; 67:347-357. [PMID: 33590295 DOI: 10.1007/s00294-021-01154-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Transposable elements are ubiquitous in genomes. Their successful expansion depends in part on their sites of integration in their host genome. In Saccharomyces cerevisiae, evolution has selected various strategies to target the five Ty LTR-retrotransposon families into gene-poor regions in a genome, where coding sequences occupy 70% of the DNA. The integration of Ty1/Ty2/Ty4 and Ty3 occurs upstream and at the transcription start site of the genes transcribed by RNA polymerase III, respectively. Ty5 has completely different integration site preferences, targeting heterochromatin regions. Here, we review the history that led to the identification of the cellular tethering factors that play a major role in anchoring Ty retrotransposons to their preferred sites. We also question the involvement of additional factors in the fine-tuning of the integration site selection, with several studies converging towards an importance of the structure and organization of the chromatin.
Collapse
Affiliation(s)
- Amandine Bonnet
- INSERM U944, CNRS UMR 7212, Genomes and Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Pascale Lesage
- INSERM U944, CNRS UMR 7212, Genomes and Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
39
|
Aiyer S, Swapna GVT, Ma LC, Liu G, Hao J, Chalmers G, Jacobs BC, Montelione GT, Roth MJ. A common binding motif in the ET domain of BRD3 forms polymorphic structural interfaces with host and viral proteins. Structure 2021; 29:886-898.e6. [PMID: 33592170 DOI: 10.1016/j.str.2021.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
The extraterminal (ET) domain of BRD3 is conserved among BET proteins (BRD2, BRD3, BRD4), interacting with multiple host and viral protein-protein networks. Solution NMR structures of complexes formed between the BRD3 ET domain and either the 79-residue murine leukemia virus integrase (IN) C-terminal domain (IN329-408) or its 22-residue IN tail peptide (IN386-407) alone reveal similar intermolecular three-stranded β-sheet formations. 15N relaxation studies reveal a 10-residue linker region (IN379-388) tethering the SH3 domain (IN329-378) to the ET-binding motif (IN389-405):ET complex. This linker has restricted flexibility, affecting its potential range of orientations in the IN:nucleosome complex. The complex of the ET-binding peptide of the host NSD3 protein (NSD3148-184) and the BRD3 ET domain includes a similar three-stranded β-sheet interaction, but the orientation of the β hairpin is flipped compared with the two IN:ET complexes. These studies expand our understanding of molecular recognition polymorphism in complexes of ET-binding motifs with viral and host proteins.
Collapse
Affiliation(s)
- Sriram Aiyer
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - G V T Swapna
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Li-Chung Ma
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaohua Liu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jingzhou Hao
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Gordon Chalmers
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian C Jacobs
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaetano T Montelione
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
40
|
Winans S, Goff SP. Mutations altering acetylated residues in the CTD of HIV-1 integrase cause defects in proviral transcription at early times after integration of viral DNA. PLoS Pathog 2020; 16:e1009147. [PMID: 33351861 PMCID: PMC7787678 DOI: 10.1371/journal.ppat.1009147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/06/2021] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
The central function of the retroviral integrase protein (IN) is to catalyze the integration of viral DNA into the host genome to form the provirus. The IN protein has also been reported to play a role in a number of other processes throughout the retroviral life cycle such as reverse transcription, nuclear import and particle morphogenesis. Studies have shown that HIV-1 IN is subject to multiple post-translational modifications (PTMs) including acetylation, phosphorylation and SUMOylation. However, the importance of these modifications during infection has been contentious. In this study we attempt to clarify the role of acetylation of HIV-1 IN during the retroviral life cycle. We show that conservative mutation of the known acetylated lysine residues has only a modest effect on reverse transcription and proviral integration efficiency in vivo. However, we observe a large defect in successful expression of proviral genes at early times after infection by an acetylation-deficient IN mutant that cannot be explained by delayed integration dynamics. We demonstrate that the difference between the expression of proviruses integrated by an acetylation mutant and WT IN is likely not due to altered integration site distribution but rather directly due to a lower rate of transcription. Further, the effect of the IN mutation on proviral gene expression is independent of the Tat protein or the LTR promoter. At early times after integration when the transcription defect is observed, the LTRs of proviruses integrated by the mutant IN have altered histone modifications as well as reduced IN protein occupancy. Over time as the transcription defect in the mutant virus diminishes, histone modifications on the WT and mutant proviral LTRs reach comparable levels. These results highlight an unexpected role for the IN protein in regulating proviral transcription at early times post-integration. A key step of the retrovirus life cycle is the insertion of the viral DNA genome into the host cell genome, a process called integration. The process of integration is solely catalyzed by the virally encoded integrase (IN) protein. IN has been reported to influence a number of other viral processes such as reverse transcription, nuclear import and particle morphogenesis. The HIV-1 IN protein is known to be heavily post-translationally modified. In light of the known effect of post-translational modifications on the function of the orthologous proteins of certain retrotransposons, we were motivated to ask how post-translational modifications of HIV-1 IN may regulate its various functions. In this study, we examined the consequences of mutations preventing the acetylation of the IN protein on the retroviral life cycle. Surprisingly, we saw that mutations blocking IN acetylation had only modest effects on viral DNA integration. Instead, we uncovered a novel function for HIV-1 IN in regulating proviral transcription at early times after infection. Our data suggests that IN may be retained on proviral DNA at early times after integration and promote proviral gene expression by altering chromatin modifications at the viral transcriptional promoter.
Collapse
Affiliation(s)
- Shelby Winans
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, New York, United States of America
- Columbia University, Department of Microbiology and Immunology, New York, New York, United States of America
- Howard Hughes Medical Institute, Columbia University, New York, New York United States of America
| | - Stephen P. Goff
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, New York, United States of America
- Columbia University, Department of Microbiology and Immunology, New York, New York, United States of America
- Howard Hughes Medical Institute, Columbia University, New York, New York United States of America
- * E-mail:
| |
Collapse
|
41
|
Blanco E, Izotova N, Booth C, Thrasher AJ. Immune Reconstitution After Gene Therapy Approaches in Patients With X-Linked Severe Combined Immunodeficiency Disease. Front Immunol 2020; 11:608653. [PMID: 33329605 PMCID: PMC7729079 DOI: 10.3389/fimmu.2020.608653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
X-linked severe immunodeficiency disease (SCID-X1) is an inherited, rare, and life-threating disease. The genetic origin is a defect in the interleukin 2 receptor γ chain (IL2RG) gene and patients are classically characterized by absence of T and NK cells, as well as presence of partially-functional B cells. Without any treatment the disease is usually lethal during the first year of life. The treatment of choice for these patients is hematopoietic stem cell transplantation, with an excellent survival rate (>90%) if an HLA-matched sibling donor is available. However, when alternative donors are used, the success and survival rates are often lower. Gene therapy has been developed as an alternative treatment initially using γ-retroviral vectors to correct the defective γ chain in the absence of pre-conditioning treatment. The results were highly promising in SCID-X1 infants, showing long-term T-cell recovery and clinical benefit, although NK and B cell recovery was less robust. However, some infants developed T-cell acute lymphoblastic leukemia after the gene therapy, due to vector-mediated insertional mutagenesis. Consequently, considerable efforts have been made to develop safer vectors. The most recent clinical trials using lentiviral vectors together with a low-dose pre-conditioning regimen have demonstrated excellent sustained T cell recovery, but also B and NK cells, in both children and adults. This review provides an overview about the different gene therapy approaches used over the last 20 years to treat SCID-X1 patients, particularly focusing on lymphoid immune reconstitution, as well as the developments that have improved the process and outcomes.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalia Izotova
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adrian James Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
42
|
Lotke R, Schneeweiß U, Pietrek M, Günther T, Grundhoff A, Weidner-Glunde M, Schulz TF. Brd/BET Proteins Influence the Genome-Wide Localization of the Kaposi's Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus Major Latency Proteins. Front Microbiol 2020; 11:591778. [PMID: 33193257 PMCID: PMC7642799 DOI: 10.3389/fmicb.2020.591778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023] Open
Abstract
The rhadinoviruses Kaposi’s Sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus (MHV-68) persist in infected hosts in a latent state that is characterized by the absence of virus production and by restricted viral gene expression. Their major latency protein, the latency-associated nuclear antigen (kLANA for KSHV and mLANA for MHV-68), is essential for viral genome maintenance and replication and involved in transcriptional regulation. Both kLANA and mLANA interact with cellular chromatin-associated proteins, among them the Bromodomain and Extra Terminal domain (Brd/BET) proteins, which recruit cellular and viral proteins to acetylated histones through their bromodomains and modulate cellular gene expression. Brd/BET proteins also play a role in the tethering, replication, segregation or integration of a diverse group of viral DNA genomes. In this study we explored if Brd/BET proteins influence the localization of the LANAs to preferential regions in the host chromatin and thereby contribute to kLANA- or mLANA-mediated transcriptional regulation. Using ChIP-Seq, we revealed a genome-wide co-enrichment of kLANA with Brd2/4 near cellular and viral transcriptional start sites (TSS). Treatment with I-BET151, an inhibitor of Brd/BET, displaced kLANA and Brd2/4 from TSS in the viral and host chromatin, but did not affect the direct binding of kLANA to kLANA-binding sites (LBS) in the KSHV latent origin of replication. Similarly, mLANA, but not a mLANA mutant deficient for binding to Brd2/4, also associated with cellular TSS. We compared the transcriptome of KSHV-infected with uninfected and kLANA-expressing human B cell lines, as well as a murine B cell line expressing mLANA or a Brd2/4-binding deficient mLANA mutant. We found that only a minority of cellular genes, whose TSS are occupied by kLANA or mLANA, is transcriptionally regulated by these latency proteins. Our findings extend previous reports on a preferential deposition of kLANA on cellular TSS and show that this characteristic chromatin association pattern is at least partially determined by the interaction of these viral latency proteins with members of the Brd/BET family of chromatin modulators.
Collapse
Affiliation(s)
- Rishikesh Lotke
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| | - Ulrike Schneeweiß
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Marcel Pietrek
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Thomas Günther
- Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Adam Grundhoff
- German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany.,Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Magdalena Weidner-Glunde
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| |
Collapse
|
43
|
Barski MS, Minnell JJ, Hodakova Z, Pye VE, Nans A, Cherepanov P, Maertens GN. Cryo-EM structure of the deltaretroviral intasome in complex with the PP2A regulatory subunit B56γ. Nat Commun 2020; 11:5043. [PMID: 33028863 PMCID: PMC7542444 DOI: 10.1038/s41467-020-18874-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is a deltaretrovirus and the most oncogenic pathogen. Many of the ~20 million HTLV-1 infected people will develop severe leukaemia or an ALS-like motor disease, unless a therapy becomes available. A key step in the establishment of infection is the integration of viral genetic material into the host genome, catalysed by the retroviral integrase (IN) enzyme. Here, we use X-ray crystallography and single-particle cryo-electron microscopy to determine the structure of the functional deltaretroviral IN assembled on viral DNA ends and bound to the B56γ subunit of its human host factor, protein phosphatase 2 A. The structure reveals a tetrameric IN assembly bound to two molecules of the phosphatase via a conserved short linear motif. Insight into the deltaretroviral intasome and its interaction with the host will be crucial for understanding the pattern of integration events in infected individuals and therefore bears important clinical implications.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Cloning, Molecular
- Cryoelectron Microscopy
- Crystallography, X-Ray
- DNA, Viral/metabolism
- DNA, Viral/ultrastructure
- Human T-lymphotropic virus 1/enzymology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/pathogenicity
- Humans
- Integrases/genetics
- Integrases/metabolism
- Integrases/ultrastructure
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/virology
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Protein Multimerization
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/metabolism
- Protein Phosphatase 2/ultrastructure
- Protein Structure, Quaternary
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/ultrastructure
- Sequence Homology, Amino Acid
- Simian T-lymphotropic virus 1/enzymology
- Simian T-lymphotropic virus 1/genetics
- Single Molecule Imaging
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Viral Proteins/ultrastructure
- Virus Integration
Collapse
Affiliation(s)
- Michał S Barski
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Jordan J Minnell
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Zuzana Hodakova
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Peter Cherepanov
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Goedele N Maertens
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
44
|
Asif‐Laidin A, Conesa C, Bonnet A, Grison C, Adhya I, Menouni R, Fayol H, Palmic N, Acker J, Lesage P. A small targeting domain in Ty1 integrase is sufficient to direct retrotransposon integration upstream of tRNA genes. EMBO J 2020; 39:e104337. [PMID: 32677087 PMCID: PMC7459421 DOI: 10.15252/embj.2019104337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
Integration of transposable elements into the genome is mutagenic. Mechanisms targeting integrations into relatively safe locations, hence minimizing deleterious consequences for cell fitness, have emerged during evolution. In budding yeast, integration of the Ty1 LTR retrotransposon upstream of RNA polymerase III (Pol III)-transcribed genes requires interaction between Ty1 integrase (IN1) and AC40, a subunit common to Pol I and Pol III. Here, we identify the Ty1 targeting domain of IN1 that ensures (i) IN1 binding to Pol I and Pol III through AC40, (ii) IN1 genome-wide recruitment to Pol I- and Pol III-transcribed genes, and (iii) Ty1 integration only at Pol III-transcribed genes, while IN1 recruitment by AC40 is insufficient to target Ty1 integration into Pol I-transcribed genes. Swapping the targeting domains between Ty5 and Ty1 integrases causes Ty5 integration at Pol III-transcribed genes, indicating that the targeting domain of IN1 alone confers Ty1 integration site specificity.
Collapse
Affiliation(s)
- Amna Asif‐Laidin
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Christine Conesa
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Amandine Bonnet
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Camille Grison
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Indranil Adhya
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Rachid Menouni
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Hélène Fayol
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Noé Palmic
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Joël Acker
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Pascale Lesage
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| |
Collapse
|
45
|
Yang Y, Lee JE, Jeong HY, Shim JY, Baek MJ, Son MJ, Kim YJ, Noh H, Lim KI. Alteration of gammaretroviral vector integration patterns by insertion of histone and leucine zipper into integrase. Biotechnol Bioeng 2020; 117:3924-3937. [PMID: 32816306 DOI: 10.1002/bit.27540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Retroviral vectors show long-term gene expression in gene therapy through the integration of transgenes into the human cell genome. Murine leukemia virus (MLV), a well-studied gammaretrovirus, has been often used as a representative retroviral vector. However, frequent integrations of MLV-based vectors into transcriptional start sites (TSSs) could lead to the activation of oncogenes by enhancer effects of the genetic components within the vectors. Therefore, the MLV integration preference for TSSs limits its wider use in clinical applications. To reduce the integration preference of MLV-based vectors, we attempted to perturb the structure of the viral integrase that plays a key role in determining integration sites. For this goal, we inserted histones and leucine zippers, having DNA-binding property, into internal sites of MLV integrase. This integrase engineering yielded multiple mutant vectors that showed significantly different integration patterns compared with that of wild-type vector. Some mutant vectors did not prefer the key regulatory genomic domains of human cells, TSSs. Moreover, a couple of engineered vectors did not integrate into the genomic sites near the TSSs of oncogenes. Overall, this study suggests that structural perturbation of integrase is a simple way to develop safer MLV-based retroviral vectors for use in clinical applications.
Collapse
Affiliation(s)
- Yeji Yang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Division of Analytical Science Research, Research Center for Biocenvergence Analysis, Korea Basic Science Institute, Chungcheongbukdo, Korea
| | - Ji-Eun Lee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Health and Environment Research Institute of Gwangju, Gwangju, Korea
| | - Hye-Young Jeong
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Ji-Yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Min-Jeong Baek
- Bioinformatics Analysis Team, Research Institute, National Cancer Center, Goyang, Korea
| | - Min-Jeong Son
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Yeon-Ju Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Hohsuk Noh
- Department of Statistics, Sookmyung Women's University, Seoul, Korea
| | - Kwang-Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
46
|
Wells DW, Guo S, Shao W, Bale MJ, Coffin JM, Hughes SH, Wu X. An analytical pipeline for identifying and mapping the integration sites of HIV and other retroviruses. BMC Genomics 2020; 21:216. [PMID: 32151239 PMCID: PMC7063773 DOI: 10.1186/s12864-020-6647-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND All retroviruses, including human immunodeficiency virus (HIV), must integrate a DNA copy of their genomes into the genome of the infected host cell to replicate. Although integrated retroviral DNA, known as a provirus, can be found at many sites in the host genome, integration is not random. The adaption of linker-mediated PCR (LM-PCR) protocols for high-throughput integration site mapping, using randomly-sheared genomic DNA and Illumina paired-end sequencing, has dramatically increased the number of mapped integration sites. Analysis of samples from human donors has shown that there is clonal expansion of HIV infected cells and that clonal expansion makes an important contribution to HIV persistence. However, analysis of HIV integration sites in samples taken from patients requires extensive PCR amplification and high-throughput sequencing, which makes the methodology prone to certain specific artifacts. RESULTS To address the problems with artifacts, we use a comprehensive approach involving experimental procedures linked to a bioinformatics analysis pipeline. Using this combined approach, we are able to reduce the number of PCR/sequencing artifacts that arise and identify the ones that remain. Our streamlined workflow combines random cleavage of the DNA in the samples, end repair, and linker ligation in a single step. We provide guidance on primer and linker design that reduces some of the common artifacts. We also discuss how to identify and remove some of the common artifacts, including the products of PCR mispriming and PCR recombination, that have appeared in some published studies. Our improved bioinformatics pipeline rapidly parses the sequencing data and identifies bona fide integration sites in clonally expanded cells, producing an Excel-formatted report that can be used for additional data processing. CONCLUSIONS We provide a detailed protocol that reduces the prevalence of artifacts that arise in the analysis of retroviral integration site data generated from in vivo samples and a bioinformatics pipeline that is able to remove the artifacts that remain.
Collapse
Affiliation(s)
- Daria W Wells
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA
| | - Shuang Guo
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA
| | - Wei Shao
- Advanced Biomedical Computational Science, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael J Bale
- HIV Dynamics and Replication Program, National Cancer Institute Frederick, National Institutes of Health, Frederick, MD, USA
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, National Cancer Institute Frederick, National Institutes of Health, Frederick, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA.
| |
Collapse
|
47
|
Sun Y, Fan J, Wang B, Meng Z, Ren D, Zhao J, Liu Z, Li D, Jin X, Wu H. The aberrant expression of ADAR1 promotes resistance to BET inhibitors in pancreatic cancer by stabilizing c-Myc. Am J Cancer Res 2020; 10:148-163. [PMID: 32064158 PMCID: PMC7017738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023] Open
Abstract
Pancreatic cancer is a malignant tumor with the worst prognosis worldwide. This cancer type requires new insight to help with diagnosis and, eventually, treatment. Adenosine deaminases acting on RNA 1 (ADAR1) is reportedly overexpressed in many types of tumors, such as lung, liver, breast, and esophageal cancers. However, the biological significance and specific mechanism of ADAR1 in pancreatic cancer have not been explored. In this study, we reveal that the expression level of ADAR1 is significantly up-regulated in pancreatic cancer tissues. We also find that highly expressed ADAR1 is closely associated with poor prognosis in pancreatic cancer specimens. Overexpressed ADAR1 equally increased the growth activity of pancreatic cancer cells in vivo and in vitro. We further demonstrate that ADAR1 stabilizes c-Myc through AKT signaling, which contributes to cancer cell resistance to BET inhibitors in pancreatic cancer cells. Moreover, we reveal that EZH2 regulates ADAR1 expression, and EZH2 and BET inhibitors show synergistic inhibition in pancreatic cancer. Collectively, these findings suggest that ADAR1 could serve as a new diagnostic and prognostic marker for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic, Cancer Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | - Jiquan Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic, Cancer Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | - Zibo Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic, Cancer Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic, Cancer Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic, Cancer Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic, Cancer Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | - Dan Li
- Cardiovascular Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | - Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic, Cancer Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic, Cancer Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| |
Collapse
|
48
|
Spatially clustered loci with multiple enhancers are frequent targets of HIV-1 integration. Nat Commun 2019; 10:4059. [PMID: 31492853 PMCID: PMC6731298 DOI: 10.1038/s41467-019-12046-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
HIV-1 recurrently targets active genes and integrates in the proximity of the nuclear pore compartment in CD4+ T cells. However, the genomic features of these genes and the relevance of their transcriptional activity for HIV-1 integration have so far remained unclear. Here we show that recurrently targeted genes are proximal to super-enhancer genomic elements and that they cluster in specific spatial compartments of the T cell nucleus. We further show that these gene clusters acquire their location during the activation of T cells. The clustering of these genes along with their transcriptional activity are the major determinants of HIV-1 integration in T cells. Our results provide evidence of the relevance of the spatial compartmentalization of the genome for HIV-1 integration, thus further strengthening the role of nuclear architecture in viral infection.
Collapse
|
49
|
Borrenberghs D, Zurnic I, De Wit F, Acke A, Dirix L, Cereseto A, Debyser Z, Hendrix J. Post-mitotic BET-induced reshaping of integrase quaternary structure supports wild-type MLV integration. Nucleic Acids Res 2019; 47:1195-1210. [PMID: 30445610 PMCID: PMC6379647 DOI: 10.1093/nar/gky1157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
The Moloney murine leukemia virus (MLV) is a prototype gammaretrovirus requiring nuclear disassembly before DNA integration. In the nucleus, integration site selection towards promoter/enhancer elements is mediated by the host factor bromo- and extraterminal domain (BET) proteins (bromodomain (Brd) proteins 2, 3 and 4). MLV-based retroviral vectors are used in gene therapy trials. In some trials leukemia occurred through integration of the MLV vector in close proximity to cellular oncogenes. BET-mediated integration is poorly understood and the nature of integrase oligomers heavily debated. Here, we created wild-type infectious MLV vectors natively incorporating fluorescent labeled IN and performed single-molecule intensity and Förster resonance energy transfer experiments. The nuclear localization of the MLV pre-integration complex neither altered the IN content, nor its quaternary structure. Instead, BET-mediated interaction of the MLV intasome with chromatin in the post-mitotic nucleus reshaped its quaternary structure.
Collapse
Affiliation(s)
- Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Irena Zurnic
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Flore De Wit
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Aline Acke
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Lieve Dirix
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Anna Cereseto
- Center for Integrative Biology (CIBIO), University of Trento, I-38123 Trento, Italy
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan C, B-3590 Diepenbeek, Belgium
| |
Collapse
|
50
|
Berjón-Otero M, Koslová A, Fischer MG. The dual lifestyle of genome-integrating virophages in protists. Ann N Y Acad Sci 2019; 1447:97-109. [PMID: 31162694 DOI: 10.1111/nyas.14118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 01/03/2023]
Abstract
DNA viruses with efficient host genome integration capability were unknown in eukaryotes until recently. The discovery of virophages, satellite-like DNA viruses that depend on lytic giant viruses that infect protists, revealed a genetically diverse group of viruses with high genome mobility. Virophages can act as strong inhibitors of their associated giant viruses, and the resulting beneficial effects on their unicellular hosts resemble a population-based antiviral defense mechanism. By comparing various aspects of genome-integrating virophages, in particular the virophage mavirus, with other mobile genetic elements and parasite-derived defense mechanisms in eukaryotes and prokaryotes, we show that virophages share many features with other host-parasite systems. Yet, the dual lifestyle exhibited by mavirus remains unprecedented among eukaryotic DNA viruses, with potentially far-reaching ecological and evolutionary consequences for the host.
Collapse
Affiliation(s)
- Mónica Berjón-Otero
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anna Koslová
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Matthias G Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|