1
|
Fountain AJ, Waller NJE, Cheung CY, Jowsey W, Chrisp MT, Troll M, Edelstein PH, Cook GM, McNeil MB, Ramakrishnan L. Verapamil and its metabolite norverapamil inhibit the Mycobacterium tuberculosis MmpS5L5 efflux pump to increase bedaquiline activity. Proc Natl Acad Sci U S A 2025; 122:e2426827122. [PMID: 40244664 PMCID: PMC12036985 DOI: 10.1073/pnas.2426827122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025] Open
Abstract
Bedaquiline is the cornerstone of a new regimen for the treatment of drug-resistant tuberculosis. However, its clinical use is threatened by the emergence of bedaquiline-resistant strains of Mycobacterium tuberculosis. Bedaquiline targets mycobacterial ATP synthase but the predominant route to clinical bedaquiline resistance is via upregulation of the MmpS5L5 efflux pump due to mutations that inactivate the transcriptional repressor Rv0678. Here, we show that the MmpS5L5 efflux pump reduces susceptibility to bedaquiline as well as its new, more potent derivative TBAJ-876 and other antimicrobial substrates, including clofazimine and the DprE1 inhibitors PBTZ-169 and OPC-167832. Furthermore, the increased resistance of Rv0678 mutants stems entirely from increased MmpS5L5 expression. These results highlight the potential of a pharmacological MmpS5L5 inhibitor to increase drug efficacy. Verapamil, primarily used as a calcium channel inhibitor, is known to inhibit diverse efflux pumps and to potentiate bedaquiline and clofazimine activity in M. tuberculosis. Here, we show that verapamil potentiates the activity of multiple diverse MmpS5L5 substrates. Using biochemical approaches, we demonstrate that verapamil does not exert this effect by acting as a disruptor of the protonmotive force used to power MmpS5L5, as previously proposed, suggesting that verapamil inhibits the function of the MmpS5L5 pump. Finally, norverapamil, the major verapamil metabolite, which has greatly reduced calcium channel activity, has equal potency in reducing resistance to MmpS5L5 substrates. Our findings highlight verapamil's potential for enhancing bedaquiline TB treatment, for preventing acquired resistance to bedaquiline and other MmpS5L5 substrates, while also providing the impetus to identify additional MmpS5L5 inhibitors.
Collapse
Affiliation(s)
- Adam J. Fountain
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Natalie J. E. Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Michael T. Chrisp
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Mark Troll
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Paul H. Edelstein
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Matthew B. McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Lalita Ramakrishnan
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| |
Collapse
|
2
|
Voskuil MI, Covey CR, Reichlen MJ, Chatterjee A, Duerkop BA, Dawadi S, Aldrich CC, Aaring A. Mycobactin and clofazimine activity are negatively correlated in mycobacteria. Front Microbiol 2025; 16:1539139. [PMID: 40248424 PMCID: PMC12003420 DOI: 10.3389/fmicb.2025.1539139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/06/2025] [Indexed: 04/19/2025] Open
Abstract
Clofazimine (CFZ) is an anti-leprosy drug shown to improve outcomes in treatment of multidrug-resistant tuberculosis (TB) and nontuberculous mycobacterial infections. Studies in Mycobacterium tuberculosis and Mycobacterium avium identified CFZ resistance mutations in the gene that encodes the MmpR5/MmpT5 regulator, which increase expression of the mycobactin (MBT) transporter, MmpS5/L5. We found exposure of M. tuberculosis to CFZ induced a pattern of gene expression that mirrored low iron conditions, including strong induction of genes that encode MBT synthesis and transport. We identified a corresponding increase in MBT levels indicating a role in iron homeostasis in CFZ activity. CFZ bactericidal activity against both Mycobacterium smegmatis and M. tuberculosis was increased in high iron conditions in which MTB synthesis and transport was limited. We show the presence of MBT correlated with decreased CFZ killing activity while inhibition of MBT synthesis increased killing. Considerable iron efflux was observed during CFZ treatment indicating iron loss may be a feature of CFZ anti-mycobacterial activity. CFZ solubility studies and CFZ-mediated reduction of free iron indicate a potential redox interaction between CFZ and iron. MBT or MBT flux across the cell envelope appears to block CFZ killing in M. smegmatis and potentially M. tuberculosis. The specific mechanism by which MBT inhibits CFZ lethality remains unclear but may involve, increased iron acquisition, the MmpS5/L5 MBT efflux pump, or the CFZ subcellular localization altered by the redox state and solubility of CFZ. CFZ has thus far been proven most effective against Mycobacterium leprae, which lacks MBT, indicating an understanding of the complex interaction of CFZ with iron acquisition systems may suggest more effective therapeutic applications.
Collapse
Affiliation(s)
- Martin I. Voskuil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christopher R. Covey
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew J. Reichlen
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Aaring
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
3
|
Mayegowda SB, Gadilingappa MN. Microbial Siderophores: A New Insight on Healthcare Applications. BME FRONTIERS 2025; 6:0112. [PMID: 40124737 PMCID: PMC11927942 DOI: 10.34133/bmef.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Globally, increased illness and disorders have gained importance in improvising therapeutics to help extend the lifespan of an individual. In this scenario, understanding the mechanism of bacterial pathogenicity linked to the interaction between the host and the pathogen focusing on essential metal ions is necessary. Numerous studies indicate that the severity of a disease might be due to the reduced availability of iron, linked to abnormal production or lack of acquisition systems. However, several microbes produce siderophores as virulence factors, low-molecular-weight organic compounds for acquisition of iron by iron-chelating systems. In medical applications, siderophores are employed in novel strategies in order to design effective new drugs and vaccines, targeting and delivering antibiotics to target sites in multidrug-resistant pathogens. Meanwhile, some types of siderophores are used as drug delivery modalities and antimalarial, anticancer, and antibacterial agents, for example, by employing conjugation techniques such as Trojan horse delivery. Hence, the current review integrates several applications of siderophores with an overview covering taxonomy, organisms producing iron affinity carriers, and their acquisition mechanism. This understanding may delineate newer opportunities to adapt possible therapies and/or treatments against several multidrug-resistant pathogens, representing a crucial solution for public health problems worldwide.
Collapse
|
4
|
Earp JC, Garaeva AA, Meikle V, Niederweis M, Seeger MA. Structural basis of siderophore export and drug efflux by Mycobacterium tuberculosis. Nat Commun 2025; 16:1934. [PMID: 39994240 PMCID: PMC11850643 DOI: 10.1038/s41467-025-56888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
To replicate and cause disease, Mycobacterium tuberculosis secretes siderophores called mycobactins to scavenge iron from the human host. Two closely related transporters, MmpL4 and MmpL5, are required for mycobactin secretion and drug efflux. In clinical strains, overproduction of MmpL5 confers resistance towards bedaquiline and clofazimine, key drugs to combat multidrug resistant tuberculosis. Here, we present cryogenic-electron microscopy structures of MmpL4 and identify a mycobactin binding site, which is accessible from the cytosol and also required for bedaquiline efflux. An unusual coiled-coil domain predicted to extend 130 Å into the periplasm is essential for mycobactin and bedaquiline efflux by MmpL4 and MmpL5. The mycobacterial acyl carrier protein MbtL forms a complex with MmpL4, indicating that mycobactin synthesis and export are coupled. Thus, MmpL4 and MmpL5 constitute the core components of a unique multi-subunit machinery required for iron acquisition and drug efflux by M. tuberculosis.
Collapse
Affiliation(s)
- Jennifer C Earp
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Alisa A Garaeva
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Gonda I, Sorrentino S, Galazzo L, Lichti NP, Arnold FM, Mehdipour AR, Bordignon E, Seeger MA. The mycobacterial ABC transporter IrtAB employs a membrane-facing crevice for siderophore-mediated iron uptake. Nat Commun 2025; 16:1133. [PMID: 39880813 PMCID: PMC11779899 DOI: 10.1038/s41467-024-55136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025] Open
Abstract
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface. Mutations introduced at the crevice abrogate mycobactin import and in corresponding structures, the crevice is collapsed. A conserved triple histidine motif coordinating a zinc ion is present below the mycobactin binding site. Substitution of these histidine residues with alanine results in a decoupled transporter, which hydrolyzes ATP, but lost its capacity to import mycobactins. Our data suggest that IrtAB imports mycobactin via a credit-card mechanism in a transport cycle that is coupled to the presence of zinc.
Collapse
Affiliation(s)
- Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Simona Sorrentino
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Nicolas P Lichti
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ahmad R Mehdipour
- UGent Center for Molecular Modelling, Ghent University, Ghent, Belgium
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Kotliarova MS, Shumkov MS, Goncharenko AV. Toward Mycobacterium tuberculosis Virulence Inhibition: Beyond Cell Wall. Microorganisms 2024; 13:21. [PMID: 39858789 PMCID: PMC11767696 DOI: 10.3390/microorganisms13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful bacterial pathogens in human history. Even in the antibiotic era, Mtb is widespread and causes millions of new cases of tuberculosis each year. The ability to disrupt the host's innate and adaptive immunity, as well as natural persistence, complicates disease control. Tuberculosis traditional therapy involves the long-term use of several antibiotics. Treatment failures are often associated with the development of resistance to one or more drugs. The development of medicines that act on new targets will expand treatment options for tuberculosis caused by multidrug-resistant or extensively drug-resistant Mtb. Therefore, the development of drugs that target virulence factors is an attractive strategy. Such medicines do not have a direct bacteriostatic or bactericidal effect, but can disarm the pathogen so that the host immune system becomes able to eliminate it. Although cell wall-associated targets are being actively studied for anti-TB drug development, other virulence factors important for adaptation and host interaction are also worth comprehensive analysis. In this review, specific Mtb virulence factors (such as secreted phosphatases, regulatory systems, and the ESX-1 secretion system) are identified as promising targets for novel anti-virulence drug development. Additionally, models for the search of virulence inhibitors are discussed, such as virtual screening in silico, in vitro enzyme inhibition assay, the use of recombinant Mtb strains with reporter constructs, phenotypic analysis using in vitro cell infection models and specific environments.
Collapse
Affiliation(s)
- Maria S. Kotliarova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology, Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia; (M.S.S.); (A.V.G.)
| | | | | |
Collapse
|
7
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
8
|
Varshney A, Jia Z, Howe MD, Keiler KC, Baughn AD. A trans-translation inhibitor is potentiated by zinc and kills Mycobacterium tuberculosis and non-tuberculous mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621434. [PMID: 39554143 PMCID: PMC11566007 DOI: 10.1101/2024.11.02.621434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mycobacterium tuberculosis poses a serious challenge for human health, and new antibiotics with novel targets are needed. Here we demonstrate that an acylaminooxadiazole, MBX-4132, specifically inhibits the trans-translation ribosome rescue pathway to kill M. tuberculosis. Our data demonstrate that MBX-4132 is bactericidal against multiple pathogenic mycobacterial species and kills M. tuberculosis in macrophages. We also show that acylaminooxadiazole activity is antagonized by iron but is potentiated by zinc. Our transcriptomic data reveals dysregulation of multiple metal homeostasis pathways after exposure to MBX-4132. Furthermore, we see differential expression of genes related to zinc sensing and efflux when trans-translation is inhibited. Taken together, these data suggest that there is a link between disturbing intracellular metal levels and acylaminooxadiazole-mediated inhibition of trans-translation. These findings provide an important proof-of-concept that trans-translation is a promising antitubercular drug target.
Collapse
Affiliation(s)
- Akanksha Varshney
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
- These authors contributed equally
| | - Ziyi Jia
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
- These authors contributed equally
| | - Michael D. Howe
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Kenneth C. Keiler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Anthony D. Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| |
Collapse
|
9
|
Poonawala H, Zhang Y, Kuchibhotla S, Green AG, Cirillo DM, Di Marco F, Spitlaeri A, Miotto P, Farhat MR. Transcriptomic responses to antibiotic exposure in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0118523. [PMID: 38587412 PMCID: PMC11064486 DOI: 10.1128/aac.01185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Transcriptional responses in bacteria following antibiotic exposure offer insights into antibiotic mechanism of action, bacterial responses, and characterization of antimicrobial resistance. We aimed to define the transcriptional antibiotic response (TAR) in Mycobacterium tuberculosis (Mtb) isolates for clinically relevant drugs by pooling and analyzing Mtb microarray and RNA-seq data sets. We generated 99 antibiotic transcription profiles across 17 antibiotics, with 76% of profiles generated using 3-24 hours of antibiotic exposure and 49% within one doubling of the WHO antibiotic critical concentration. TAR genes were time-dependent, and largely specific to the antibiotic mechanism of action. TAR signatures performed well at predicting antibiotic exposure, with the area under the receiver operating curve (AUC) ranging from 0.84-1.00 (TAR <6 hours of antibiotic exposure) and 0.76-1.00 (>6 hours of antibiotic exposure) for upregulated genes and 0.57-0.90 and 0.87-1.00, respectfully, for downregulated genes. This work desmonstrates that transcriptomics allows for the assessment of antibiotic activity in Mtb within 6 hours of exposure.
Collapse
Affiliation(s)
- Husain Poonawala
- Department of Medicine and Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Medicine and Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yu Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Anna G. Green
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Spitlaeri
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maha R. Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Batista BB, de Lima VM, Picinato BA, Koide T, da Silva Neto JF. A quorum-sensing regulatory cascade for siderophore-mediated iron homeostasis in Chromobacterium violaceum. mSystems 2024; 9:e0139723. [PMID: 38501880 PMCID: PMC11019928 DOI: 10.1128/msystems.01397-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
Iron is a transition metal used as a cofactor in many biochemical reactions. In bacteria, iron homeostasis involves Fur-mediated de-repression of iron uptake systems, such as the iron-chelating compounds siderophores. In this work, we identified and characterized novel regulatory systems that control siderophores in the environmental opportunistic pathogen Chromobacterium violaceum. Screening of a 10,000-transposon mutant library for siderophore halos identified seven possible regulatory systems involved in siderophore-mediated iron homeostasis in C. violaceum. Further characterization revealed a regulatory cascade that controls siderophores involving the transcription factor VitR acting upstream of the quorum-sensing (QS) system CviIR. Mutation of the regulator VitR led to an increase in siderophore halos, and a decrease in biofilm, violacein, and protease production. We determined that these effects occurred due to VitR-dependent de-repression of vioS. Increased VioS leads to direct inhibition of the CviR regulator by protein-protein interaction. Indeed, insertion mutations in cviR and null mutations of cviI and cviR led to an increase of siderophore halos. RNA-seq of the cviI and cviR mutants revealed that CviR regulates CviI-dependent and CviI-independent regulons. Classical QS-dependent processes (violacein, proteases, and antibiotics) were activated at high cell density by both CviI and CviR. However, genes related to iron homeostasis and many other processes were regulated by CviR but not CviI, suggesting that CviR acts without its canonical CviI autoinducer. Our data revealed a complex regulatory cascade involving QS that controls siderophore-mediated iron homeostasis in C. violaceum.IMPORTANCEThe iron-chelating compounds siderophores play a major role in bacterial iron acquisition. Here, we employed a genetic screen to identify novel siderophore regulatory systems in Chromobacterium violaceum, an opportunistic human pathogen. Many mutants with increased siderophore halos had transposon insertions in genes encoding transcription factors, including a novel regulator called VitR, and CviR, the regulator of the quorum-sensing (QS) system CviIR. We found that VitR is upstream in the pathway and acts as a dedicated repressor of vioS, which encodes a direct CviR-inhibitory protein. Indeed, all QS-related phenotypes of a vitR mutant were rescued in a vitRvioS mutant. At high cell density, CviIR activated classical QS-dependent processes (violacein, proteases, and antibiotics production). However, genes related to iron homeostasis and type-III and type-VI secretion systems were regulated by CviR in a CviI- or cell density-independent manner. Our data unveil a complex regulatory cascade integrating QS and siderophores in C. violaceum.
Collapse
Affiliation(s)
- Bianca B. Batista
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinicius M. de Lima
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Beatriz A. Picinato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José F. da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Cuthbert BJ, Mendoza J, de Miranda R, Papavinasasundaram K, Sassetti CM, Goulding CW. The structure of Mycobacterium thermoresistibile MmpS5 reveals a conserved disulfide bond across mycobacteria. Metallomics 2024; 16:mfae011. [PMID: 38425033 PMCID: PMC10929441 DOI: 10.1093/mtomcs/mfae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
The tuberculosis (TB) emergency has been a pressing health threat for decades. With the emergence of drug-resistant TB and complications from the COVID-19 pandemic, the TB health crisis is more serious than ever. Mycobacterium tuberculosis (Mtb), the causative agent of TB, requires iron for its survival. Thus, Mtb has evolved several mechanisms to acquire iron from the host. Mtb produces two siderophores, mycobactin and carboxymycobactin, which scavenge for host iron. Mtb siderophore-dependent iron acquisition requires the export of apo-siderophores from the cytosol to the host environment and import of iron-bound siderophores. The export of Mtb apo-siderophores across the inner membrane is facilitated by two mycobacterial inner membrane proteins with their cognate periplasmic accessory proteins, designated MmpL4/MmpS4 and MmpL5/MmpS5. Notably, the Mtb MmpL4/MmpS4 and MmpL5/MmpS5 complexes have also been implicated in the efflux of anti-TB drugs. Herein, we solved the crystal structure of M. thermoresistibile MmpS5. The MmpS5 structure reveals a previously uncharacterized, biologically relevant disulfide bond that appears to be conserved across the Mycobacterium MmpS4/S5 homologs, and comparison with structural homologs suggests that MmpS5 may be dimeric.
Collapse
Affiliation(s)
- Bonnie J Cuthbert
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Jessica Mendoza
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Stein NV, Eder M, Burr F, Stoss S, Holzner L, Kunz HH, Jung H. The RND efflux system ParXY affects siderophore secretion in Pseudomonas putida KT2440. Microbiol Spectr 2023; 11:e0230023. [PMID: 37800935 PMCID: PMC10715066 DOI: 10.1128/spectrum.02300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Gram-negative bacteria from the Pseudomonas group are survivors in various environmental niches. For example, the bacteria secrete siderophores to capture ferric ions under deficiency conditions. Tripartite efflux systems are involved in the secretion of siderophores, which are also important for antibiotic resistance. For one of these efflux systems, the resistance-nodulation-cell division transporter ParXY from the model organism Pseudomonas putida KT2440, we show that it influences the secretion of the siderophore pyoverdine in addition to its already known involvement in antibiotic resistance. Phenotypically, its role in pyoverdine secretion is only apparent when other pyoverdine secretion systems are inactive. The results confirm that the different tripartite efflux systems have overlapping substrate specificities and can at least partially functionally substitute for each other, especially in important physiological activities such as supplying the cell with iron ions. This fact must be taken into account when developing specific inhibitors for tripartite efflux systems.
Collapse
Affiliation(s)
- Nicola Victoria Stein
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Michelle Eder
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Fabienne Burr
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Sarah Stoss
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Lorenz Holzner
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Heinrich Jung
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| |
Collapse
|
13
|
Rakshit G, Biswas A, Jayaprakash V. In Silico Drug Repurposing Studies for the Discovery of Novel Salicyl-AMP Ligase (MbtA)Inhibitors. Pathogens 2023; 12:1433. [PMID: 38133316 PMCID: PMC10745912 DOI: 10.3390/pathogens12121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Tuberculosis (TB) continues to pose a global health challenge, exacerbated by the rise of drug-resistant strains. The development of new TB therapies is an arduous and time-consuming process. To expedite the discovery of effective treatments, computational structure-based drug repurposing has emerged as a promising strategy. From this perspective, conditionally essential targets present a valuable opportunity, and the mycobactin biosynthesis pathway stands out as a prime example highlighting the intricate response of Mycobacterium tuberculosis (Mtb) to changes in iron availability. This study focuses on the repurposing and revival of FDA-approved drugs (library) as potential inhibitors of MbtA, a crucial enzyme in mycobactin biosynthesis in Mtb conserved among all species of mycobacteria. The literature suggests this pathway to be associated with drug efflux pumps, which potentially contribute to drug resistance. This makes it a potential target for antitubercular drug discovery. Herein, we utilized cheminformatics and structure-based drug repurposing approaches, viz., molecular docking, dynamics, and PCA analysis, to decode the intermolecular interactions and binding affinity of the FDA-reported molecules against MbtA. Virtual screening revealed ten molecules with significant binding affinities and interactions with MbtA. These drugs, originally designed for different therapeutic indications (four antiviral, three anticancer, one CYP450 inhibitor, one ACE inhibitor, and one leukotriene antagonist), were repurposed as potential MbtA inhibitors. Furthermore, our study explores the binding modes and interactions between these drugs and MbtA, shedding light on the structural basis of their inhibitory potential. Principal component analysis highlighted significant motions in MbtA-bound ligands, emphasizing the stability of the top protein-ligand complexes (PLCs). This computational approach provides a swift and cost-effective method for identifying new MbtA inhibitors, which can subsequently undergo validation through experimental assays. This streamlined process is facilitated by the fact that these compounds are already FDA-approved and have established safety and efficacy profiles. This study has the potential to lay the groundwork for addressing the urgent global health challenge at hand, specifically in the context of combating antimicrobial resistance (AMR) and tuberculosis (TB).
Collapse
Affiliation(s)
| | | | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India; (G.R.); (A.B.)
| |
Collapse
|
14
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
15
|
Meikle V, Zhang L, Niederweis M. Intricate link between siderophore secretion and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2023; 67:e0162922. [PMID: 37676015 PMCID: PMC10583673 DOI: 10.1128/aac.01629-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/30/2023] [Indexed: 09/08/2023] Open
Abstract
Drug-resistant Mycobacterium tuberculosis is a worldwide health-care problem rendering current tuberculosis (TB) drugs ineffective. Drug efflux is an important mechanism in bacterial drug resistance. The MmpL4 and MmpL5 transporters form functionally redundant complexes with their associated MmpS4 and MmpS5 proteins and constitute the inner membrane components of an essential siderophore secretion system of M. tuberculosis. Inactivating siderophore secretion is toxic for M. tuberculosis due to self-poisoning at low-iron conditions and leads to a strong virulence defect in mice. In this study, we show that M. tuberculosis mutants lacking components of the MmpS4-MmpL4 and MmpS5-MmpL5 systems are more susceptible to bedaquiline, clofazimine, and rifabutin, important drugs for treatment of drug-resistant TB. While genetic deletion experiments revealed similar functions of the MmpL4 and MmpL5 transporters in siderophore and drug secretion, complementation experiments indicated that the MmpS4-MmpL4 proteins alone are not sufficient to restore drug efflux in an M. tuberculosis mutant lacking both operons, in contrast to MmpS5-MmpL5. Importantly, an M. tuberculosis mutant lacking the recently discovered periplasmic Rv0455c protein, which is also essential for siderophore secretion, is more susceptible to the same drugs. These results reveal a promising target for the development of dual-function TB drugs, which might poison M. tuberculosis by blocking siderophore secretion and synergize with other drugs by impairing drug efflux.
Collapse
Affiliation(s)
- Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Li X, Chen L, Wang Y, Guo X, He ZG. Zinc excess impairs Mycobacterium bovis growth through triggering a Zur-IdeR-iron homeostasis signal pathway. Microbiol Spectr 2023; 11:e0106923. [PMID: 37668384 PMCID: PMC10580935 DOI: 10.1128/spectrum.01069-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/15/2023] [Indexed: 09/06/2023] Open
Abstract
Zinc excess is toxic to bacteria and, thus, represents an important innate defense mechanism of host cells, especially against mycobacterial infections. However, the signaling pathway triggered by zinc excess and its relationship with iron homeostasis remain poorly understood in mycobacteria. Here, we characterize a novel Zur-IdeR-iron homeostasis signaling pathway that modulates the growth of Mycobacterium bovis under zinc toxicity. We found that the regulator Zur interacts with the iron-homeostasis regulator IdeR, enhancing the DNA-binding ability of IdeR. Excess zinc disrupts this interaction and represses ideR transcription through Zur, which promotes the expression of iron uptake genes and leads to the accumulation of intracellular iron in M. bovis. The elevated iron levels lower the bacterial survival ability under excess zinc stress. Consistently, deleting zur hinders intracellular iron accumulation of M. bovis and enhances bacterial growth under stress, while silencing ideR impairs the growth of the wild-type and zur-deleted strains under the same conditions. Interestingly, both Zur and IdeR are conserved in bacteria facing zinc toxicity. Overall, our work uncovers a novel antimicrobial signal pathway whereby zinc excess disrupts iron homeostasis, which may deepen our understanding of the crosstalk mechanism between iron and zinc homeostasis in bacteria.IMPORTANCEAs a catalytic and structural cofactor of proteins, zinc is essential for almost all living organisms. However, zinc excess is toxic and represents a vital innate immunity strategy of macrophages to combat intracellular pathogens, especially against mycobacterial pathogens such as Mycobacterium tuberculosis, the causative agent of tuberculosis. Here, we first characterize an antibacterial signaling pathway of zinc excess and its relationship with iron homeostasis in M. bovis. We found that excess zinc inhibits the transcription of ideR and its DNA-binding activity through Zur, which, in turn, promotes the expression of iron uptake genes, causes intracellular iron accumulation, and finally impairs the bacterial growth. This study reveals the existence of the Zur-IdeR-iron homeostasis pathway triggered by zinc excess in M. bovis, which will shed light on the crosstalk mechanisms between zinc and iron homeostasis in bacteria and the antimicrobial mechanisms of host-mediated zinc toxicity.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuankun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Zheng-Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Leon J, Sarkar S, Basu D, Nanda N, Joseph NM. Predictors of Change in the Anemia Status Among Pulmonary Tuberculosis Patients Following Anti-tuberculosis Treatment in Puducherry, India. Cureus 2023; 15:e44821. [PMID: 37809247 PMCID: PMC10559261 DOI: 10.7759/cureus.44821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background Pulmonary tuberculosis (PTB) is commonly associated with reversible peripheral blood abnormalities. The evolution of tuberculosis (TB)-associated anemia with anti-tuberculosis treatment (ATT) has not been well elucidated. This study aimed to compare the hematological profiles at the start and end of the ATT among new sputum smear-positive (NSP) PTB patients in Puducherry, India. Methods A prospective cohort study was conducted in the 10 urban primary health centers of Puducherry from 2017 to 2020. All the NSP PTB participants aged ≥18 years registered under the National Tuberculosis Elimination Program (NTEP) were contacted within two weeks of the start of the ATT. All eligible participants were enrolled, and they were followed up till the end of ATT (180 days). Hematological profiles and anthropometric measurements were compared at the start and end of the ATT. Binomial logistic regression analysis was used to assess the predictors of changes in the anemia status at the start and end of the ATT. Results Out of 176 NSP PTB participants, 145 were followed up after treatment. Initially, 63% (111/176) patients had anemia, which decreased to 44% (64/145) by the end of treatment. The risk factors for a negative change in hemoglobin levels were female gender, below poverty level, underweight, and reduced iron intake. The adjusted risk ratios (ARRs) were 1.53 (1.24-1.88), 1.18 (1.01-1.38), 1.29 (1.02-1.64), and 1.26 (1.05-1.51),respectively. Conclusion ATT may lead to the resolution of TB-associated anemia. Moreover, female gender, possession of a red ration card, being underweight, and reduced iron intake were identified as risk factors for negative changes in hemoglobin levels during treatment.
Collapse
Affiliation(s)
- Jovita Leon
- Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| | - Sonali Sarkar
- Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| | - Debdatta Basu
- Pathology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| | - Nivedita Nanda
- Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| | - Noyal M Joseph
- Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| |
Collapse
|
18
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
19
|
Gupta S, Bhagavathula M, Sharma V, Sharma N, Sharma N, Biswas A, Palacios A, Salgueiro V, Lavín JL, Dogra N, Salgame P, Prados‐Rosales R, Rodríguez GM. Dynamin-like proteins mediate extracellular vesicle secretion in Mycobacterium tuberculosis. EMBO Rep 2023; 24:e55593. [PMID: 37079766 PMCID: PMC10240201 DOI: 10.15252/embr.202255593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) secretes extracellular vesicles (EVs) containing a variety of proteins, lipoproteins, and lipoglycans. While emerging evidence suggests that EVs contribute to tuberculosis pathogenesis, the factors and molecular mechanisms involved in mycobacterial EV production have not been identified. In this study, we use a genetic approach to identify Mtb proteins that mediate vesicle release in response to iron limitation and antibiotic exposure. We uncover a critical role for the isoniazid-induced, dynamin-like proteins, IniA and IniC, in mycobacterial EV biogenesis. Further characterization of a Mtb iniA mutant shows that the production of EVs enables intracellular Mtb to export bacterial components into the extracellular environment to communicate with host cells and potentially modulate the immune response. The findings advance our understanding of the biogenesis and functions of mycobacterial EVs and provide an avenue for targeting vesicle production in vivo.
Collapse
Affiliation(s)
- Shamba Gupta
- Department of Medicine, New Jersey Medical School, Public Health Research InstituteRutgers UniversityNewarkNJUSA
| | - Madhuri Bhagavathula
- Department of Medicine, New Jersey Medical School, Public Health Research InstituteRutgers UniversityNewarkNJUSA
| | - Vartika Sharma
- Department of Medicine, New Jersey Medical School, Public Health Research InstituteRutgers UniversityNewarkNJUSA
| | - Nishant Sharma
- Department of Medicine, New Jersey Medical School, Public Health Research InstituteRutgers UniversityNewarkNJUSA
| | - Nevadita Sharma
- Department of Medicine, New Jersey Medical School, Public Health Research InstituteRutgers UniversityNewarkNJUSA
| | - Ashis Biswas
- Department of Medicine, New Jersey Medical School, Public Health Research InstituteRutgers UniversityNewarkNJUSA
| | - Ainhoa Palacios
- Inflammation and Macrophage Plasticity LabCIC bioGUNEDerioSpain
| | - Vivian Salgueiro
- Department of Preventive Medicine and Public Health and MicrobiologyAutonoma University of MadridMadridSpain
| | | | - Navneet Dogra
- Genetics and Genomic Sciences Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Padmini Salgame
- Department of Medicine, New Jersey Medical School, Public Health Research InstituteRutgers UniversityNewarkNJUSA
| | - Rafael Prados‐Rosales
- Department of Preventive Medicine and Public Health and MicrobiologyAutonoma University of MadridMadridSpain
| | - G Marcela Rodríguez
- Department of Medicine, New Jersey Medical School, Public Health Research InstituteRutgers UniversityNewarkNJUSA
| |
Collapse
|
20
|
Cui F, Fan R, Wang D, Li J, Li T. Research progress on iron uptake pathways and mechanisms of foodborne microorganisms and their application in the food sector. Crit Rev Food Sci Nutr 2023; 64:8892-8910. [PMID: 37099732 DOI: 10.1080/10408398.2023.2204491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Iron is one of the essential nutrients for almost all microorganisms. Under iron-limited conditions, bacteria can secrete siderophores to the outside world to absorb iron for survival. This process requires the coordinated action of energy-transducing proteins, transporters, and receptors. The spoilage factors of some spoilage bacteria and the pathogenic mechanism of pathogenic bacteria are also closely related to siderophores. Meanwhile, some siderophores have also gradually evolved toward beneficial aspects. First, a variety of siderophores are classified into three aspects. In addition, representative iron uptake systems of Gram-negative and Gram-positive bacteria are described in detail to understand the common and specific pathways of iron uptake by various bacteria. In particular, the causes of siderophore-induced bacterial pathogenicity and the methods and mechanisms of inhibiting bacterial iron absorption under the involvement of siderophores are presented. Then, the application of siderophores in the food sector is mainly discussed, such as improving the food quality of dairy products and meat, inhibiting the attack of pathogenic bacteria on food, improving the plant growth environment, and promoting plant growth. Finally, this review highlights the unresolved fate of siderophores in the iron uptake system and emphasizes further development of siderophore-based substitutes for traditional drugs, new antibiotic-resistance drugs, and vaccines in the food and health sectors.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Rongsen Fan
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- College of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, China
| |
Collapse
|
21
|
Sankey N, Merrick H, Singh P, Rogers J, Reddi A, Hartson SD, Mitra A. Role of the Mycobacterium tuberculosis ESX-4 Secretion System in Heme Iron Utilization and Pore Formation by PPE Proteins. mSphere 2023; 8:e0057322. [PMID: 36749044 PMCID: PMC10117145 DOI: 10.1128/msphere.00573-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is transmitted through aerosols and primarily colonizes within the lung. The World Health Organization estimates that Mtb kills ~1.4 million people every year. A key aspect that makes Mtb such a successful pathogen is its ability to overcome iron limitation mounted by the host immune response. In our previous studies, we have shown that Mtb can utilize iron from heme, the largest source of iron in the human host, and that it uses two redundant heme utilization pathways. In this study, we show that the ESX-4 type VII secretion system (T7SS) is necessary for extracellular heme uptake into the Mtb cell through both heme utilization pathways. ESX-4 influences the secretion of the culture filtrate proteins Rv0125 and Rv1085c, which are also necessary for efficient heme utilization. We also discovered that deletion of the alternative sigma factor SigM significantly reduced Mtb heme utilization through both pathways and predict that SigM is a global positive regulator of core heme utilization genes of both pathways. Finally, we present the first direct evidence that some mycobacterial PPE (proline-proline-glutamate motif) proteins of the PPE protein family are pore-forming membrane proteins. Altogether, we identified core components of both Mtb Heme utilization pathways that were previously unknown and identified a novel channel-forming membrane protein of Mtb. IMPORTANCE M. tuberculosis (Mtb) is completely dependent on iron acquisition in the host to cause disease. The largest source of iron for Mtb in the human host is heme. Here, we show that the ancestral ESX-4 type VII secretion system is required for the efficient utilization of heme as a source of iron, which is an essential nutrient. This is another biological function identified for ESX-4 in Mtb, whose contribution to Mtb physiology is poorly understood. A most exciting finding is that some mycobacterial PPE (proline-proline-glutamate motif) proteins that have been implicated in the nutrient acquisition are membrane proteins that can form channels in a lipid bilayer. These observations have far-reaching implications because they support an emerging theme that PPE proteins can function as channel proteins in the outer mycomembrane for nutrient acquisition. Mtb has evolved a heme uptake system that is drastically different from all other known bacterial heme acquisition systems.
Collapse
Affiliation(s)
- November Sankey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Haley Merrick
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Padam Singh
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Amit Reddi
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Steven D. Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Avishek Mitra
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
22
|
Boopathi S, Ramasamy S, Haridevamuthu B, Murugan R, Veerabadhran M, Jia AQ, Arockiaraj J. Intercellular communication and social behaviors in mycobacteria. Front Microbiol 2022; 13:943278. [PMID: 36177463 PMCID: PMC9514802 DOI: 10.3389/fmicb.2022.943278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-to-cell communication is a fundamental process of bacteria to exert communal behaviors. Sputum samples of patients with cystic fibrosis have often been observed with extensive mycobacterial genetic diversity. The emergence of heterogenic mycobacterial populations is observed due to subtle changes in their morphology, gene expression level, and distributive conjugal transfer (DCT). Since each subgroup of mycobacteria has different hetero-resistance, they are refractory against several antibiotics. Such genetically diverse mycobacteria have to communicate with each other to subvert the host immune system. However, it is still a mystery how such heterogeneous strains exhibit synchronous behaviors for the production of quorum sensing (QS) traits, such as biofilms, siderophores, and virulence proteins. Mycobacteria are characterized by division of labor, where distinct sub-clonal populations contribute to the production of QS traits while exchanging complimentary products at the community level. Thus, active mycobacterial cells ensure the persistence of other heterogenic clonal populations through cooperative behaviors. Additionally, mycobacteria are likely to establish communication with neighboring cells in a contact-independent manner through QS signals. Hence, this review is intended to discuss our current knowledge of mycobacterial communication. Understanding mycobacterial communication could provide a promising opportunity to develop drugs to target key pathways of mycobacteria.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subbiah Ramasamy
- Department of Biochemistry, Cardiac Metabolic Disease Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
23
|
Choudhary E, Sharma R, Pal P, Agarwal N. Deciphering the Proteomic Landscape of Mycobacterium tuberculosis in Response to Acid and Oxidative Stresses. ACS OMEGA 2022; 7:26749-26766. [PMID: 35936415 PMCID: PMC9352160 DOI: 10.1021/acsomega.2c03092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The fundamental to the pathogenicity of Mycobacterium tuberculosis (Mtb) is the modulation in the control mechanisms that play a role in sensing and counteracting the microbicidal milieu encompassing various cellular stresses inside the human host. To understand such changes, we measured the cellular proteome of Mtb subjected to different stresses using a quantitative proteomics approach. We identified defined sets of Mtb proteins that are modulated in response to acid and a sublethal dose of diamide and H2O2 treatments. Notably, proteins involved in metabolic, catalytic, and binding functions are primarily affected under these stresses. Moreover, our analysis led to the observations that during acidic stress Mtb enters into energy-saving mode simultaneously modulating the acid tolerance system, whereas under diamide and H2O2 stresses, there were prominent changes in the biosynthesis and homeostasis pathways, primarily modifying the resistance mechanism in diamide-treated bacteria while causing metabolic arrest in H2O2-treated bacilli. Overall, we delineated the adaptive mechanisms that Mtb may utilize under physiological stresses and possible overlap between the responses to these stress conditions. In addition to offering important protein signatures that can be exploited for future mechanistic studies, our study highlights the importance of proteomics in understanding complex adjustments made by the human pathogen during infection.
Collapse
Affiliation(s)
- Eira Choudhary
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Symbiosis
School of Biomedical Sciences, Symbiosis
International (Deemed University), Pune412115, Maharashtra, India
| | - Rishabh Sharma
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| | - Pramila Pal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Jawaharlal
Nehru University, New
Mehrauli Road, New Delhi110067, India
| | - Nisheeth Agarwal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| |
Collapse
|
24
|
Shyam M, Shilkar D, Rakshit G, Jayaprakash V. Approaches for Targeting the Mycobactin Biosynthesis Pathway for Novel Anti-tubercular Drug Discovery: Where We Stand. Expert Opin Drug Discov 2022; 17:699-715. [PMID: 35575503 DOI: 10.1080/17460441.2022.2077328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Several decades of antitubercular drug discovery efforts have focused on novel antitubercular chemotherapies. However, recent efforts have greatly shifted towards countering extremely/multi/total drug-resistant species. Targeting the conditionally essential elements inside Mycobacterium is a relatively new approach against tuberculosis and has received lackluster attention. The siderophore, Mycobactin, is a conditionally essential molecule expressed by mycobacteria in iron-stress conditions. It helps capture the micronutrient iron, essential for the smooth functioning of cellular processes. AREAS COVERED The authors discuss opportunities to target the conditionally essential pathways to help develop newer drugs and prolong the shelf life of existing therapeutics, emphasizing the bottlenecks in fast-tracking antitubercular drug discovery. EXPERT OPINION While the lack of iron supply can cripple bacterial growth and multiplication, excess iron can cause oxidative overload. Constant up-regulation can strain the bacterial synthetic machinery, further slowing its growth. Mycobactin synthesis is tightly controlled by a genetically conserved mega enzyme family via up-regulation (HupB) or down-regulation (IdeR) based on iron availability in its microenvironment. Furthermore, the recycling of siderophores by the MmpL-MmpS4/5 orchestra provides endogenous drug targets to beat the bugs with iron-toxicity contrivance. These processes can be exploited as chinks in the armor of Mycobacterium and be used for new drug development.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
25
|
Rodriguez GM, Sharma N, Biswas A, Sharma N. The Iron Response of Mycobacterium tuberculosis and Its Implications for Tuberculosis Pathogenesis and Novel Therapeutics. Front Cell Infect Microbiol 2022; 12:876667. [PMID: 35646739 PMCID: PMC9132128 DOI: 10.3389/fcimb.2022.876667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Most pathogenic bacteria require iron for growth. However, this metal is not freely available in the mammalian host. Due to its poor solubility and propensity to catalyze the generation of reactive oxygen species, host iron is kept in solution bound to specialized iron binding proteins. Access to iron is an important factor in the outcome of bacterial infections; iron limitation frequently induces virulence and drives pathogenic interactions with host cells. Here, we review the response of Mycobacterium tuberculosis to changes in iron availability, the relevance of this response to TB pathogenesis, and its potential for the design of new therapeutic interventions.
Collapse
|
26
|
Zhang L, Kent JE, Whitaker M, Young DC, Herrmann D, Aleshin AE, Ko YH, Cingolani G, Saad JS, Moody DB, Marassi FM, Ehrt S, Niederweis M. A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis. Nat Commun 2022; 13:2255. [PMID: 35474308 PMCID: PMC9042941 DOI: 10.1038/s41467-022-29873-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating the importance of Rv0455c and siderophore secretion during disease. The crystal structure of a Rv0455c homolog reveals a novel protein fold consisting of a helical bundle with a 'cinch' formed by an essential intramolecular disulfide bond. These findings advance our understanding of the distinct M. tuberculosis siderophore secretion system.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James E Kent
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Meredith Whitaker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - David C Young
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Alexander E Aleshin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
27
|
Shyam M, Verma H, Bhattacharje G, Mukherjee P, Singh S, Kamilya S, Jalani P, Das S, Dasgupta A, Mondal A, Das AK, Singh A, Brucoli F, Bagnéris C, Dickman R, Basavanakatti VN, Naresh Babu P, Sankaran V, Dev A, Sinha BN, Bhakta S, Jayaprakash V. Mycobactin Analogues with Excellent Pharmacokinetic Profile Demonstrate Potent Antitubercular Specific Activity and Exceptional Efflux Pump Inhibition. J Med Chem 2022; 65:234-256. [PMID: 34981940 DOI: 10.1021/acs.jmedchem.1c01349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we have designed and synthesized pyrazoline analogues that partially mimic the structure of mycobactin, to address the requirement of novel therapeutics to tackle the emerging global challenge of antimicrobial resistance (AMR). Our investigation resulted in the identification of novel lead compounds 44 and 49 as potential mycobactin biosynthesis inhibitors against mycobacteria. Moreover, candidates efficiently eradicated intracellularly surviving mycobacteria. Thermofluorimetric analysis and molecular dynamics simulations suggested that compounds 44 and 49 bind to salicyl-AMP ligase (MbtA), a key enzyme in the mycobactin biosynthetic pathway. To the best of our knowledge, these are the first rationally designed mycobactin inhibitors to demonstrate an excellent in vivo pharmacokinetic profile. In addition, these compounds also exhibited more potent whole-cell efflux pump inhibition than known efflux pump inhibitors verapamil and chlorpromazine. Results from this study pave the way for the development of 3-(2-hydroxyphenyl)-5-(aryl)-pyrazolines as a new weapon against superbug-associated AMR challenges.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Harshita Verma
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | | | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, CV Raman Avenue, Bangalore 560012, India
| | - Pushpendu Jalani
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10 Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Swetarka Das
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10 Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Arunava Dasgupta
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10 Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, CV Raman Avenue, Bangalore 560012, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K
| | - Claire Bagnéris
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Rachael Dickman
- Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University of London, London WC1N 1AX, U.K
| | | | | | - Vadivelan Sankaran
- Eurofins Advinus Limited, 21 & 22, Peenya Industrial area, Bengaluru 560058, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
28
|
Gokhale KM, Iyer AM. Deployment of iron uptake machineries as targets against drug resistant strains of mycobacterium tuberculosis. Indian J Pharmacol 2022; 54:353-363. [PMID: 36537405 PMCID: PMC9846915 DOI: 10.4103/ijp.ijp_667_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) requires a perpetual supply of iron for its sustenance. Iron scarcity and its limited availability in the host environment because of an encounter of various sites during the establishment of infection has led to the evolution of strategies for iron uptake, which includes biosynthesis of iron-chelating molecules called siderophores, Heme uptake pathways, recently discovered host iron transport protein receptors like glyceraldehyde-3-phosphate dehydrogenase and the development of machinery for proper storage of the acquired iron and its regulation. The components of the iron uptake machineries are viable targets in multidrug-resistant tuberculosis, some of which include the MmpL3 heme transfer protein, MbtA enzyme, and the ESX-3 system, while employment of approaches like the synthesis of siderophore drug conjugates, heme analogs, xenosiderophores as drug delivery agents, and the blockade of siderophore recycling are encouraged too. Thus, the mentioned discoveries stand as promising targets against various strains of MTB.
Collapse
Affiliation(s)
- Kunal Mohan Gokhale
- Assistant Professor, Department of Pharmaceutical Chemistry, Dr L H Hiranandani College of Pharmacy, Ulhasnagar, Maharashtra, India,Address for correspondence: Dr. Kunal Mohan Gokhale, Dr L H Hiranandani College of Pharmacy, CHM Campus, Opp UNR Railway Station, Maharashtra - 421003, India. E-mail:
| | - Aditya Manivannan Iyer
- Assistant Professor, Department of Pharmaceutical Chemistry, Dr L H Hiranandani College of Pharmacy, Ulhasnagar, Maharashtra, India
| |
Collapse
|
29
|
Remm S, Earp JC, Dick T, Dartois V, Seeger MA. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 46:6391500. [PMID: 34637511 PMCID: PMC8829022 DOI: 10.1093/femsre/fuab050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can withstand months of antibiotic treatment. An important goal of tuberculosis research is to shorten the treatment to reduce the burden on patients, increase adherence to the drug regimen and thereby slow down the spread of drug resistance. Inhibition of drug efflux pumps by small molecules has been advocated as a promising strategy to attack persistent Mtb and shorten therapy. Although mycobacterial drug efflux pumps have been broadly investigated, mechanistic studies are scarce. In this critical review, we shed light on drug efflux in its larger mechanistic context by considering the intricate interplay between membrane transporters annotated as drug efflux pumps, membrane energetics, efflux inhibitors and cell wall biosynthesis processes. We conclude that a great wealth of data on mycobacterial transporters is insufficient to distinguish by what mechanism they contribute to drug resistance. Recent studies suggest that some drug efflux pumps transport structural lipids of the mycobacterial cell wall and that the action of certain drug efflux inhibitors involves dissipation of the proton motive force, thereby draining the energy source of all active membrane transporters. We propose recommendations on the generation and interpretation of drug efflux data to reduce ambiguities and promote assigning novel roles to mycobacterial membrane transporters.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
30
|
Vatlin AA, Shitikov EA, Shahbaaz M, Bespiatykh DA, Klimina KM, Christoffels A, Danilenko VN, Maslov DA. Transcriptomic Profile of Mycobacterium smegmatis in Response to an Imidazo[1,2- b][1,2,4,5]tetrazine Reveals Its Possible Impact on Iron Metabolism. Front Microbiol 2021; 12:724042. [PMID: 34421882 PMCID: PMC8371482 DOI: 10.3389/fmicb.2021.724042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis (TB), caused by the Mycobacterium tuberculosis complex bacteria, is one of the most pressing health problems. The development of new drugs and new therapeutic regimens effective against the pathogen is one of the greatest challenges in the way of tuberculosis control. Imidazo[1,2-b][1,2,4,5]tetrazines have shown promising activity against M. tuberculosis and M. smegmatis strains. Mutations in MSMEG_1380 lead to mmpS5–mmpL5 operon overexpression, which provides M. smegmatis with efflux-mediated resistance to imidazo[1,2-b][1,2,4,5]tetrazines, but the exact mechanism of action of these compounds remains unknown. To assess the mode of action of imidazo[1,2-b][1,2,4,5]tetrazines, we analyzed the transcriptomic response of M. smegmatis to three different concentrations of 3a compound: 1/8×, 1/4×, and 1/2× MIC. Six groups of genes responsible for siderophore synthesis and transport were upregulated in a dose-dependent manner, while virtual docking revealed proteins involved in siderophore synthesis as possible targets for 3a. Thus, we suggest that imidazo[1,2-b][1,2,4,5]tetrazines may affect mycobacterial iron metabolism.
Collapse
Affiliation(s)
- Aleksey A Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Egor A Shitikov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Mohd Shahbaaz
- South Africa Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Dmitry A Bespiatykh
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ksenia M Klimina
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alan Christoffels
- South Africa Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Valery N Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Expression Dysregulation as a Mediator of Fitness Costs in Antibiotic Resistance. Antimicrob Agents Chemother 2021; 65:e0050421. [PMID: 34228548 PMCID: PMC8370218 DOI: 10.1128/aac.00504-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a threat to global health and the economy. Rifampicin-resistant Mycobacterium tuberculosis accounts for a third of the global AMR burden. Gaining the upper hand on AMR requires a deeper understanding of the physiology of resistance. AMR often results in a fitness cost in the absence of drug. Identifying the molecular mechanisms underpinning this cost could help strengthen future treatment regimens. Here, we used a collection of M. tuberculosis strains that provide an evolutionary and phylogenetic snapshot of rifampicin resistance and subjected them to genome-wide transcriptomic and proteomic profiling to identify key perturbations of normal physiology. We found that the clinically most common rifampicin resistance-conferring mutation, RpoB Ser450Leu, imparts considerable gene expression changes, many of which are mitigated by the compensatory mutation in RpoC Leu516Pro. However, our data also provide evidence for pervasive epistasis—the same resistance mutation imposed a different fitness cost and functionally distinct changes to gene expression in genetically unrelated clinical strains. Finally, we report a likely posttranscriptional modulation of gene expression that is shared in most of the tested strains carrying RpoB Ser450Leu, resulting in an increased abundance of proteins involved in central carbon metabolism. These changes contribute to a more general trend in which the disruption of the composition of the proteome correlates with the fitness cost of the RpoB Ser450Leu mutation in different strains.
Collapse
|
32
|
A multi-targeting pre-clinical candidate against drug-resistant tuberculosis. Tuberculosis (Edinb) 2021; 129:102104. [PMID: 34214859 DOI: 10.1016/j.tube.2021.102104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022]
Abstract
FNDR-20081 [4-{4-[5-(4-Isopropyl-phenyl)- [1,2,4]oxadiazol-3-ylmethyl]-piperazin-1-yl}-7-pyridin-3-yl-quinoline] is a novel, first in class anti-tubercular pre-clinical candidate against sensitive and drug-resistant Mycobacterium tuberculosis (Mtb). In-vitro combination studies of FNDR-20081 with first- and second-line drugs exhibited no antagonism, suggesting its compatibility for developing new combination-regimens. FNDR-20081, which is non-toxic with no CYP3A4 liability, demonstrated exposure-dependent killing of replicating-Mtb, as well as the non-replicating-Mtb, and efficacy in a mouse model of infection. Whole genome sequencing (WGS) of FNDR-20081 resistant mutants revealed the identification of pleotropic targets: marR (Rv0678), a regulator of MmpL5, a transporter/efflux pump mechanism for drug resistance; and Rv3683, a putative metalloprotease potentially involved in peptidoglycan biosynthesis. In summary, FNDR-20081 is a promising first in class compound with the potential to form a new combination regimen for MDR-TB treatment.
Collapse
|
33
|
Pawełczyk J, Brzostek A, Minias A, Płociński P, Rumijowska-Galewicz A, Strapagiel D, Zakrzewska-Czerwińska J, Dziadek J. Cholesterol-dependent transcriptome remodeling reveals new insight into the contribution of cholesterol to Mycobacterium tuberculosis pathogenesis. Sci Rep 2021; 11:12396. [PMID: 34117327 PMCID: PMC8196197 DOI: 10.1038/s41598-021-91812-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an obligate human pathogen that can adapt to the various nutrients available during its life cycle. However, in the nutritionally stringent environment of the macrophage phagolysosome, Mtb relies mainly on cholesterol. In previous studies, we demonstrated that Mtb can accumulate and utilize cholesterol as the sole carbon source. However, a growing body of evidence suggests that a lipid-rich environment may have a much broader impact on the pathogenesis of Mtb infection than previously thought. Therefore, we applied high-resolution transcriptome profiling and the construction of various mutants to explore in detail the global effect of cholesterol on the tubercle bacillus metabolism. The results allow re-establishing the complete list of genes potentially involved in cholesterol breakdown. Moreover, we identified the modulatory effect of vitamin B12 on Mtb transcriptome and the novel function of cobalamin in cholesterol metabolite dissipation which explains the probable role of B12 in Mtb virulence. Finally, we demonstrate that a key role of cholesterol in mycobacterial metabolism is not only providing carbon and energy but involves also a transcriptome remodeling program that helps in developing tolerance to the unfavorable host cell environment far before specific stress-inducing phagosomal signals occur.
Collapse
Affiliation(s)
- Jakub Pawełczyk
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Anna Brzostek
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Alina Minias
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Przemysław Płociński
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland ,grid.10789.370000 0000 9730 2769Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Anna Rumijowska-Galewicz
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Dominik Strapagiel
- grid.10789.370000 0000 9730 2769Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Jolanta Zakrzewska-Czerwińska
- grid.8505.80000 0001 1010 5103Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jarosław Dziadek
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
34
|
Khasheii B, Mahmoodi P, Mohammadzadeh A. Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiol Res 2021; 250:126790. [PMID: 34098495 DOI: 10.1016/j.micres.2021.126790] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Iron is an essential element for all microorganisms. Siderophores are low-weight, high-affinity iron chelating molecules produced in response to iron deficiency by Gram-positive and Gram-negative bacteria which also known as essential virulence factors of bacteria. Several studies have indicated that defective production and/or function of these molecules as well as iron acquisition systems in pathogens are associated with a reduction in pathogenicity of bacteria. Because of their potential role in various biological pathways, siderophores have been received special attention as secondary metabolites. Siderophores can detect iron levels in a variety of environments with a biosensor function. In medicine, siderophores are used to deliver antibiotics (Trojan horse strategy) to resistant bacteria and to treat diseases such as cancer and malaria. In this review, we discuss the iron acquisition pathways in Gram-positive and -negative bacteria, importance of siderophore production in pathogenesis of bacteria, classification of siderophores, and main applications of siderophores in medicine and industry.
Collapse
Affiliation(s)
- Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
35
|
Mycobacterium tuberculosis Binds Human Serum Amyloid A, and the Interaction Modulates the Colonization of Human Macrophages and the Transcriptional Response of the Pathogen. Cells 2021; 10:cells10051264. [PMID: 34065319 PMCID: PMC8160739 DOI: 10.3390/cells10051264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
As a very successful pathogen with outstanding adaptive properties, Mycobacterium tuberculosis (Mtb) has developed a plethora of sophisticated mechanisms to subvert host defenses and effectively enter and replicate in the harmful environment inside professional phagocytes, namely, macrophages. Here, we demonstrated the binding interaction of Mtb with a major human acute phase protein, namely, serum amyloid A (SAA1), and identified AtpA (Rv1308), ABC (Rv2477c), EspB (Rv3881c), TB 18.6 (Rv2140c), and ThiC (Rv0423c) membrane proteins as mycobacterial effectors responsible for the pathogen-host protein interplay. SAA1-opsonization of Mtb prior to the infection of human macrophages favored bacterial entry into target phagocytes accompanied by a substantial increase in the load of intracellularly multiplying and surviving bacteria. Furthermore, binding of human SAA1 by Mtb resulted in the up- or downregulation of the transcriptional response of tubercle bacilli. The most substantial changes were related to the increased expression level of the genes of two operons encoding mycobacterial transporter systems, namely, mmpL5/mmpS5 (rv0676c), and rv1217c, rv1218c. Therefore, we postulate that during infection, Mtb-SAA1 binding promotes the infection of host macrophages by tubercle bacilli and modulates the functional response of the pathogen.
Collapse
|
36
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
37
|
Fullam E, Young RJ. Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs? RSC Med Chem 2020; 12:43-56. [PMID: 34041481 PMCID: PMC8130550 DOI: 10.1039/d0md00265h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Securing novel, safe, and effective medicines to treat Mycobacterium tuberculosis remains an elusive goal, particularly influenced by the largely impervious Mtb envelope that limits exposure and thus efficacy of inhibitors at their cellular and periplasmic targets. The impact of physicochemical properties on pharmacokinetic parameters that govern oral absorption and exposure at sites of infection is considered alongside how these properties influence penetration of the Mtb envelope, with the likely influence of transporter proteins. The findings are discussed to benchmark current drugs and the emerging pipeline, whilst considering tactics for future rational and targeted design strategies, based around emerging data on Mtb transporters and their structures and functions.
Collapse
Affiliation(s)
- Elizabeth Fullam
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | |
Collapse
|
38
|
Modlin SJ, Conkle-Gutierrez D, Kim C, Mitchell SN, Morrissey C, Weinrick BC, Jacobs WR, Ramirez-Busby SM, Hoffner SE, Valafar F. Drivers and sites of diversity in the DNA adenine methylomes of 93 Mycobacterium tuberculosis complex clinical isolates. eLife 2020; 9:58542. [PMID: 33107429 PMCID: PMC7591249 DOI: 10.7554/elife.58542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-methylome mapping corrected methyltransferase variant effects previously obscured by reference-based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic cultures, which we formalize as ‘intercellular mosaic methylation’ (IMM). Mutation-driven IMM was nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is widespread and associated with differential expression in the ΔhsdM transcriptome, suggesting promoter HsdM-methylation directly influences transcription. Finally, comparative and functional analyses identified 351 sites hypervariable across isolates and numerous putative regulatory interactions. This multi-omic integration revealed features of methylomic variability in clinical isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation in MTBC physiology and adaptive evolution.
Collapse
Affiliation(s)
- Samuel J Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Derek Conkle-Gutierrez
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Calvin Kim
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Scott N Mitchell
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Christopher Morrissey
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | | | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Sarah M Ramirez-Busby
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Sven E Hoffner
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States.,Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| |
Collapse
|
39
|
Teelucksingh T, Thompson LK, Cox G. The Evolutionary Conservation of Escherichia coli Drug Efflux Pumps Supports Physiological Functions. J Bacteriol 2020; 202:e00367-20. [PMID: 32839176 PMCID: PMC7585057 DOI: 10.1128/jb.00367-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria harness an impressive repertoire of resistance mechanisms to evade the inhibitory action of antibiotics. One such mechanism involves efflux pump-mediated extrusion of drugs from the bacterial cell, which significantly contributes to multidrug resistance. Intriguingly, most drug efflux pumps are chromosomally encoded components of the intrinsic antibiotic resistome. In addition, in terms of xenobiotic detoxification, bacterial efflux systems often exhibit significant levels of functional redundancy. Efflux pumps are also considered to be highly conserved; however, the extent of conservation in many bacterial species has not been reported and the majority of genes that encode efflux pumps appear to be dispensable for growth. These observations, in combination with an increasing body of experimental evidence, imply alternative roles in bacterial physiology. Indeed, the ability of efflux pumps to facilitate antibiotic resistance could be a fortuitous by-product of ancient physiological functions. Using Escherichia coli as a model organism, we here evaluated the evolutionary conservation of drug efflux pumps and we provide phylogenetic analysis of the major efflux families. We show the E. coli drug efflux system has remained relatively stable and the majority (∼80%) of pumps are encoded in the core genome. This analysis further supports the importance of drug efflux pumps in E. coli physiology. In this review, we also provide an update on the roles of drug efflux pumps in the detoxification of endogenously synthesized substrates and pH homeostasis. Overall, gaining insight into drug efflux pump conservation, common evolutionary ancestors, and physiological functions could enable strategies to combat these intrinsic and ancient elements.
Collapse
Affiliation(s)
- Tanisha Teelucksingh
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Grim KP, Radin JN, Solórzano PKP, Morey JR, Frye KA, Ganio K, Neville SL, McDevitt CA, Kehl-Fie TE. Intracellular Accumulation of Staphylopine Can Sensitize Staphylococcus aureus to Host-Imposed Zinc Starvation by Chelation-Independent Toxicity. J Bacteriol 2020; 202:e00014-20. [PMID: 32071094 PMCID: PMC7148132 DOI: 10.1128/jb.00014-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The host restricts the availability of zinc to prevent infection. To overcome this defense, Staphylococcus aureus and Pseudomonas aeruginosa rely on zincophore-dependent zinc importers. Synthesis of the zincophore staphylopine by S. aureus and its import are both necessary for the bacterium to cause infection. In this study, we sought to elucidate how loss of zincophore efflux impacts bacterial resistance to host-imposed zinc starvation. In culture and during infection, mutants lacking CntE, the staphylopine efflux pump, were more sensitive to zinc starvation imposed by the metal-binding immune effector calprotectin than those lacking the ability to import staphylopine. However, disruption of staphylopine synthesis reversed the enhanced sensitivity phenotype of the ΔcntE mutant to calprotectin, indicating that intracellular toxicity of staphylopine is more detrimental than the impaired ability to acquire zinc. Unexpectedly, intracellular accumulation of staphylopine does not increase the expression of metal importers or alter cellular metal concentrations, suggesting that, contrary to prevailing models, the toxicity associated with staphylopine is not strictly due to intracellular chelation of metals. As P. aeruginosa and other pathogens produce zincophores with similar chemistry, our observations on the crucial importance of zincophore efflux are likely to be broadly relevant.IMPORTANCEStaphylococcus aureus and many other bacterial pathogens rely on metal-binding small molecules to obtain the essential metal zinc during infection. In this study, we reveal that export of these small molecules is critical for overcoming host-imposed metal starvation during infection and prevents toxicity due to accumulation of the metal-binding molecule within the cell. Surprisingly, we found that intracellular toxicity of the molecule is not due to chelation of cellular metals.
Collapse
Affiliation(s)
- Kyle P Grim
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Departmento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jacqueline R Morey
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katie A Frye
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
41
|
Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol 2020; 18:152-163. [PMID: 31748738 PMCID: PMC7116523 DOI: 10.1038/s41579-019-0284-4] [Citation(s) in RCA: 504] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 01/06/2023]
Abstract
Iron is an essential trace element for most organisms. A common way for bacteria to acquire this nutrient is through the secretion of siderophores, which are secondary metabolites that scavenge iron from environmental stocks and deliver it to cells via specific receptors. While there has been tremendous interest in understanding the molecular basis of siderophore synthesis, uptake and regulation, questions about the ecological and evolutionary consequences of siderophore secretion have only recently received increasing attention. In this Review, we outline how eco-evolutionary questions can complement the mechanistic perspective and help to obtain a more integrated view of siderophores. In particular, we explain how secreted diffusible siderophores can affect other community members, leading to cooperative, exploitative and competitive interactions between individuals. These social interactions in turn can spur co-evolutionary arms races between strains and species, lead to ecological dependencies between them and potentially contribute to the formation of stable communities. In brief, this Review shows that siderophores are much more than just iron carriers: they are important mediators of interactions between members of microbial assemblies and the eukaryotic hosts they inhabit.
Collapse
Affiliation(s)
- Jos Kramer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Özhan Özkaya
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Ma S, Huang Y, Xie F, Gong Z, Zhang Y, Stojkoska A, Xie J. Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting. Biol Chem 2020; 401:331-348. [DOI: 10.1515/hsz-2019-0326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
AbstractTuberculosis caused by Mycobacterium tuberculosis remains a serious threat to public health. The M. tuberculosis cell envelope is closely related to its virulence and drug resistance. Mycobacterial membrane large proteins (MmpL) are lipid-transporting proteins of the efflux pump resistance nodulation cell division (RND) superfamily with lipid substrate specificity and non-transport lipid function. Mycobacterial membrane small proteins (MmpS) are small regulatory proteins, and they are also responsible for some virulence-related effects as accessory proteins of MmpL. The MmpL transporters are the candidate targets for the development of anti-tuberculosis drugs. This article summarizes the structure, function, phylogenetics of M. tuberculosis MmpL/S proteins and their roles in host immune response, inhibitors and regulatory system.
Collapse
Affiliation(s)
- Shuang Ma
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Yu Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Fuling Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Yuan Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| |
Collapse
|
43
|
Knobloch P, Koliwer-Brandl H, Arnold FM, Hanna N, Gonda I, Adenau S, Personnic N, Barisch C, Seeger MA, Soldati T, Hilbi H. Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Cell Microbiol 2020; 22:e13163. [PMID: 31945239 DOI: 10.1111/cmi.13163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium-containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid-bound mycobactin (MBT) and the water-soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe-MBT or Fe-cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe-cMBT promoted the growth of wild-type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild-type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra- and intracellular growth of the pathogen.
Collapse
Affiliation(s)
- Paulina Knobloch
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | | | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Sophia Adenau
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
44
|
Zhang L, Hendrickson RC, Meikle V, Lefkowitz EJ, Ioerger TR, Niederweis M. Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. PLoS Pathog 2020; 16:e1008337. [PMID: 32069330 PMCID: PMC7058343 DOI: 10.1371/journal.ppat.1008337] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/05/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Iron is essential for nearly all bacterial pathogens, including Mycobacterium tuberculosis (Mtb), but is severely limited in the human host. To meet its iron needs, Mtb secretes siderophores, small molecules with high affinity for iron, and takes up iron-loaded mycobactins (MBT) and carboxymycobactins (cMBT), from the environment. Mtb is also capable of utilizing heme and hemoglobin which contain more than 70% of the iron in the human body. However, many components of these iron acquisition pathways are still unknown. In this study, a high-density transposon mutagenesis coupled with deep sequencing (TnSeq) showed that Mtb exhibits nearly opposite requirements for 165 genes in the presence of heme and hemoglobin versus MBT and cMBT as iron sources. The ESX-3 secretion system was assessed as essential for siderophore-mediated iron uptake and, surprisingly, also for heme utilization by Mtb. Predictions derived from the TnSeq analysis were validated by growth experiments with isogenic Mtb mutants. These results showed that (i) the efflux pump MmpL5 plays a dominant role in siderophore secretion, (ii) the Rv2047c protein is essential for growth of Mtb in the presence of mycobactin, and (iii) the transcriptional repressor Zur is required for heme utilization by Mtb. The novel genetic determinants of iron utilization revealed in this study will stimulate further experiments in this important area of Mtb physiology.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - R. Curtis Hendrickson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
45
|
Dragset MS, Ioerger TR, Zhang YJ, Mærk M, Ginbot Z, Sacchettini JC, Flo TH, Rubin EJ, Steigedal M. Genome-wide Phenotypic Profiling Identifies and Categorizes Genes Required for Mycobacterial Low Iron Fitness. Sci Rep 2019; 9:11394. [PMID: 31388080 PMCID: PMC6684656 DOI: 10.1038/s41598-019-47905-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022] Open
Abstract
Iron is vital for nearly all living organisms, but during infection, not readily available to pathogens. Infectious bacteria therefore depend on specialized mechanisms to survive when iron is limited. These mechanisms make attractive targets for new drugs. Here, by genome-wide phenotypic profiling, we identify and categorize mycobacterial genes required for low iron fitness. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), can scavenge host-sequestered iron by high-affinity iron chelators called siderophores. We take advantage of siderophore redundancy within the non-pathogenic mycobacterial model organism M. smegmatis (Msmeg), to identify genes required for siderophore dependent and independent fitness when iron is low. In addition to genes with a potential function in recognition, transport or utilization of mycobacterial siderophores, we identify novel putative low iron survival strategies that are separate from siderophore systems. We also identify the Msmeg in vitro essential gene set, and find that 96% of all growth-required Msmeg genes have a mutual ortholog in Mtb. Of these again, nearly 90% are defined as required for growth in Mtb as well. Finally, we show that a novel, putative ferric iron ABC transporter contributes to low iron fitness in Msmeg, in a siderophore independent manner.
Collapse
Affiliation(s)
- Marte S Dragset
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway. .,Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, 02115, USA. .,Germans Trias i Pujol Research Institute, Tuberculosis Research Unit, Badalona, 80916, Spain.
| | - Thomas R Ioerger
- Texas A&M University, Department of Computer Science, College Station, TX, 77843, USA
| | - Yanjia J Zhang
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, 02115, USA
| | - Mali Mærk
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway
| | - Zekarias Ginbot
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway
| | - James C Sacchettini
- Texas A&M University, Department of Biochemistry and Biophysics, College Station, TX, 77843, USA
| | - Trude H Flo
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway
| | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, 02115, USA
| | - Magnus Steigedal
- NTNU Norwegian University of Science and Technology, Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Trondheim, 7491, Norway.,Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, 02115, USA.,St. Olavs University Hospital, Department of Medical Microbiology, Trondheim, 7030, Norway
| |
Collapse
|
46
|
Iron Supplementation Therapy, A Friend and Foe of Mycobacterial Infections? Pharmaceuticals (Basel) 2019; 12:ph12020075. [PMID: 31108902 PMCID: PMC6630247 DOI: 10.3390/ph12020075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential element that is required for oxygen transfer, redox, and metabolic activities in mammals and bacteria. Mycobacteria, some of the most prevalent infectious agents in the world, require iron as growth factor. Mycobacterial-infected hosts set up a series of defense mechanisms, including systemic iron restriction and cellular iron distribution, whereas mycobacteria have developed sophisticated strategies to acquire iron from their hosts and to protect themselves from iron’s harmful effects. Therefore, it is assumed that host iron and iron-binding proteins, and natural or synthetic chelators would be keys targets to inhibit mycobacterial proliferation and may have a therapeutic potential. Beyond this hypothesis, recent evidence indicates a host protective effect of iron against mycobacterial infections likely through promoting remodeled immune response. In this review, we discuss experimental procedures and clinical observations that highlight the role of the immune response against mycobacteria under various iron availability conditions. In addition, we discuss the clinical relevance of our knowledge regarding host susceptibility to mycobacteria in the context of iron availability and suggest future directions for research on the relationship between host iron and the immune response and the use of iron as a therapeutic agent.
Collapse
|
47
|
Chen C, Hooper DC. Intracellular accumulation of staphylopine impairs the fitness of Staphylococcus aureus cntE mutant. FEBS Lett 2019; 593:1213-1222. [PMID: 31045247 DOI: 10.1002/1873-3468.13396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus exports staphylopine (StP), a broad-spectrum metallophore, via the CntE efflux pump. Here, the mechanism of the fitness defect in the ΔcntE mutant under metal depletion was investigated. Deletion of the StP exporter CntE results in a substantial growth defect, and disrupting the StP biosynthesis gene cntL restores growth of the ΔcntE mutant in metal-depleted media. High-resolution mass spectrometry revealed cytoplasmic accumulation of StP and the absence of extracellular StP in the ΔcntE mutant. The fitness defect of the ΔcntE mutant in mouse subcutaneous abscesses is largely due to StP accumulation. Expression of StP biosynthesis genes are upregulated in the ΔcntE mutant under metal starvation induction. In conclusion, failure to efflux StP results in intracellular StP accumulation and substantially impairs the fitness of S. aureus.
Collapse
Affiliation(s)
- Chunhui Chen
- Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
48
|
Bohac TJ, Fang L, Giblin DE, Wencewicz TA. Fimsbactin and Acinetobactin Compete for the Periplasmic Siderophore Binding Protein BauB in Pathogenic Acinetobacter baumannii. ACS Chem Biol 2019; 14:674-687. [PMID: 30785725 DOI: 10.1021/acschembio.8b01051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Environmental and pathogenic microbes produce siderophores as small iron-binding molecules to scavenge iron from natural environments. It is common for microbes to produce multiple siderophores to gain a competitive edge in mixed microbial environments. Strains of human pathogenic Acinetobacter baumannii produce up to three siderophores: acinetobactin, baumannoferrin, and fimsbactin. Production of acinetobactin and baumannoferrin is highly conserved among clinical isolates while fimsbactin production appears to be less common. Fimsbactin is structurally related to acinetobactin through the presence of catecholate and phenolate oxazoline metal-binding motifs, and both are derived from nonribosomal peptide assembly lines with similar catalytic domain orientations and identities. Here we report on the chemical, biochemical, and microbiological investigation of fimsbactin and acinetobactin alone and in combination. We show that fimsbactin forms a 1:1 complex with iron(III) that is thermodynamically more stable than the 2:1 acinetobactin ferric complex. Alone, both acinetobactin and fimsbactin stimulate A. baumannii growth, but in combination the two siderophores appear to compete and collectively inhibit bacterial growth. We show that fimsbactin directly competes with acinetobactin for binding the periplasmic siderophore-binding protein BauB suggesting a possible biochemical mechanism for the phenomenon where the buildup of apo-siderophores in the periplasm leads to iron starvation. We propose an updated model for siderophore utilization and competition in A. baumannii that frames the molecular, biochemical, and cellular interplay of multiple iron acquisition systems in a multidrug resistant Gram-negative human pathogen.
Collapse
Affiliation(s)
- Tabbetha J. Bohac
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Luting Fang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Daryl E. Giblin
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
49
|
Tullius MV, Nava S, Horwitz MA. PPE37 Is Essential for Mycobacterium tuberculosis Heme-Iron Acquisition (HIA), and a Defective PPE37 in Mycobacterium bovis BCG Prevents HIA. Infect Immun 2019; 87:e00540-18. [PMID: 30455201 PMCID: PMC6346139 DOI: 10.1128/iai.00540-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis, one of the world's leading causes of death, must acquire nutrients, such as iron, from the host to multiply and cause disease. Iron is an essential metal and M. tuberculosis possesses two different systems to acquire iron from its environment: siderophore-mediated iron acquisition (SMIA) and heme-iron acquisition (HIA), involving uptake and degradation of heme to release ferrous iron. We have discovered that Mycobacterium bovis BCG, the tuberculosis vaccine strain, is severely deficient in HIA, and we exploited this phenotypic difference between BCG and M. tuberculosis to identify genes involved in HIA by complementing BCG's defect with a fosmid library. We identified ppe37, an iron-regulated PPE family gene, as being essential for HIA. BCG complemented with M. tuberculosisppe37 exhibits HIA as efficient as that of M. tuberculosis, achieving robust growth with <0.2 µM hemin. Conversely, deletion of ppe37 from M. tuberculosis results in a strain severely attenuated in HIA, with a phenotype nearly identical to that of BCG, requiring a 200-fold higher concentration of hemin to achieve growth equivalent to that of its parental strain. A nine-amino-acid deletion near the N terminus of BCG PPE37 (amino acids 31 to 39 of the M. tuberculosis PPE37 protein) underlies BCG's profound defect in HIA. Significant genetic variability exists in ppe37 genes across different M. tuberculosis strains, with more than 60% of sequences from completely sequenced M. tuberculosis genomes having mutations that result in altered PPE37 proteins; furthermore, these altered PPE37 proteins are nonfunctional in HIA. Our findings should allow delineation of the relative roles of HIA and SMIA in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Michael V Tullius
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Susana Nava
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
50
|
Bythrow GV, Mohandas P, Guney T, Standke LC, Germain GA, Lu X, Ji C, Levendosky K, Chavadi SS, Tan DS, Quadri LEN. Kinetic Analyses of the Siderophore Biosynthesis Inhibitor Salicyl-AMS and Analogues as MbtA Inhibitors and Antimycobacterial Agents. Biochemistry 2019; 58:833-847. [PMID: 30582694 DOI: 10.1021/acs.biochem.8b01153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a paramount need for expanding the drug armamentarium to counter the growing problem of drug-resistant tuberculosis. Salicyl-AMS, an inhibitor of salicylic acid adenylation enzymes, is a first-in-class antibacterial lead compound for the development of tuberculosis drugs targeting the biosynthesis of salicylic-acid-derived siderophores. In this study, we determined the Ki of salicyl-AMS for inhibition of the salicylic acid adenylation enzyme MbtA from Mycobacterium tuberculosis (MbtAtb), designed and synthesized two new salicyl-AMS analogues to probe structure-activity relationships (SAR), and characterized these two analogues alongside salicyl-AMS and six previously reported analogues in biochemical and cell-based studies. The biochemical studies included determination of kinetic parameters ( Kiapp, konapp, koff, and tR) and analysis of the mechanism of inhibition. For these studies, we optimized production and purification of recombinant MbtAtb, for which Km and kcat values were determined, and used the enzyme in conjunction with an MbtAtb-optimized, continuous, spectrophotometric assay for MbtA activity and inhibition. The cell-based studies provided an assessment of the antimycobacterial activity and postantibiotic effect of the nine MbtAtb inhibitors. The antimycobacterial properties were evaluated using a strain of nonpathogenic, fast-growing Mycobacterium smegmatis that was genetically engineered for MbtAtb-dependent susceptibility to MbtA inhibitors. This convenient model system greatly facilitated the cell-based studies by bypassing the methodological complexities associated with the use of pathogenic, slow-growing M. tuberculosis. Collectively, these studies provide new information on the mechanism of inhibition of MbtAtb by salicyl-AMS and eight analogues, afford new SAR insights for these inhibitors, and highlight several suitable candidates for future preclinical evaluation.
Collapse
Affiliation(s)
- Glennon V Bythrow
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Poornima Mohandas
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Tezcan Guney
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Lisa C Standke
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Gabrielle A Germain
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Xuequan Lu
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Cheng Ji
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Keith Levendosky
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Sivagami Sundaram Chavadi
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States
| | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States.,Pharmacology Program, Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States.,Tri-Institutional Research Program , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Luis E N Quadri
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States.,Biochemistry Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| |
Collapse
|