1
|
Liu S, Feng L, Wang Z. DCTPP1: A promising target in cancer therapy and prognosis through nucleotide metabolism. Drug Discov Today 2025; 30:104348. [PMID: 40180312 DOI: 10.1016/j.drudis.2025.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Deoxycytidine triphosphate pyrophosphatase 1 (DCTPP1) is an important deoxycytidine triphosphate (dCTP) hydrolase responsible for eliminating noncanonical dCTP and maintaining deoxyribonucleoside triphosphate (dNTP) pool homeostasis. This regulation is vital for proper DNA replication and genome stability. Emerging evidence highlights the considerable role of DCTPP1 in tumor progression, chemotherapy resistance, and prognostic prediction. Consequently, DCTPP1 has emerged as a promising nucleotide metabolism-related target for cancer therapy. In this review, we provide a comprehensive summary of the structural and cellular biological features of DCTPP1, its functions, and its role in cancer. In addition, we discuss recent advancments in small molecules targeting DCTPP1, and propose potential directions for future research.
Collapse
Affiliation(s)
- Shaoxuan Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Pan L, Lachowicz JC, Paddy I, Xu Y, Yang Q, Zizola C, Milne A, Grove TL, Pandelia ME. Activation and Allostery in a Fungal SAMHD1 Hydrolase: An Evolutionary Blueprint for dNTP Catabolism. JACS AU 2025; 5:1862-1874. [PMID: 40313832 PMCID: PMC12042053 DOI: 10.1021/jacsau.5c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a metal-dependent hydrolase that plays key roles in dNTP homeostasis, antiretroviral defense, and regulation of various cancers in humans. Beyond mammals, SAMHD1 is also present in a wide range of eukaryotes, including invertebrates, plants, and human parasites. Although the specific mechanisms and biological significance of SAMHD1 in these organisms are not well understood, its functions are linked to essential processes such as photosynthesis, genome maintenance, and immune response. In this study, we bioinformatically mined the SAMHD1 superfamily and selected the ortholog from the mycorrhizal fungus Rhizophagus irregularis as a model system for both fungal and biochemically intractable plant SAMHD1s. Ri SAMHD1 retains the substrate promiscuity of the human enzyme but bypasses the strict requirement for allosteric activation through tetramerization, positioning it as a prototypical enzyme in which hydrolysis and allosteric regulation can be uncoupled. Its activity is selectively dependent on transition metal ions such as Mn and Fe, while Mg serves as a poor activator. Although Ri SAMHD1 lacks several ancillary regulatory features present in human SAMHD1, its activity is differentially modulated by GTP, which acts as an allosteric activator at lower concentrations and an allosteric inhibitor at higher concentrations. These results demonstrate that metal dependence and allosteric regulation are adaptive traits that have evolved divergently among mammals, fungi, and plants, invoking alternative molecular routes for fine-tuning dNTP levels. Our findings on Ri SAMHD1 provide a paradigm for the mechanistic diversification of SAMHD1 enzymes and offer valuable insights for dissecting the complex mechanisms of nucleotide regulation in humans.
Collapse
Affiliation(s)
- Luying Pan
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Jake C. Lachowicz
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Isaac Paddy
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Yutong Xu
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Qianyi Yang
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Cynthia Zizola
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Amy Milne
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Tyler L. Grove
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Maria-Eirini Pandelia
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
3
|
Martínez-López A, Tyrkalska SD, Martínez-Morcillo FJ, Abenza-Olmos C, Lozano-Gil JM, Candel S, Mulero V, García-Moreno D. SAMHD1 deficiency enhances macrophage-mediated clearance of Salmonella Typhimurium via NF-κB activation in zebrafish. Front Immunol 2025; 16:1509725. [PMID: 40352920 PMCID: PMC12062899 DOI: 10.3389/fimmu.2025.1509725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/28/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Mutations in the gene encoding the protein containing the sterile alpha motif and the HD domain (SAMHD1) have been implicated in the occurrence of type I interferonopathies. SAMHD1 is also involved in blocking the replication of retroviruses and certain DNA viruses by reducing the intracellular amount of deoxynucleotide triphosphates (dNTPs). It has also been suggested that SAMHD1 negatively regulates interferon (IFN) and the inflammatory responses to viral infections; however, the functions and mechanisms of SAMHD1 in modulating innate immunity are still under study. Methods In our laboratory, we have generated Samhd1-deficient zebrafish larvae using CRISPR-Cas9 and studied its role in the activation of nuclear factor kappa B (NF-κB) and the induction of type I IFN (IFN-I). Results It was shown that Samhd1 deficiency results in the overactivation of the IFN-I response, assayed as the increased transcript levels of the Interferon Stimulated Genes (ISGs), but only if the larvae were stimulated with suboptimal doses of IFN-I. However, Samhd1-deficient larvae showed robust spontaneous activation of NF-κB, which led to increased larval resistance to Salmonella enterica serovar Typhimurium (STM) infection. Genetic experiments further showed that the activation of NF-κB in macrophages mediated the resistance of Samhd1-deficient larvae against STM. Discussion These findings highlight the evolutionary conserved functions of SAMHD1 in the negative regulation of the inflammatory response of vertebrates and reveal, for the first time, a critical role for SAMHD1 in the regulation of NF-κB in macrophages to clear intracellular bacterial infection.
Collapse
Affiliation(s)
- Alicia Martínez-López
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sylwia D. Tyrkalska
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J. Martínez-Morcillo
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Constantino Abenza-Olmos
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Juan M. Lozano-Gil
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Sergio Candel
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Victoriano Mulero
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de BiologíaUniversidad de Murcia, Murcia, Spain
| | - Diana García-Moreno
- Immunology, Microbiology and Infectious Diseases, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Li H, Afroze M, Arora G, Federman S, Shevade K, Yang YA, Nguyen P, Esanov R, Przybyla L, Litterman A, Shafer S. SAMHD1 knockout hiPSC model enables high lentiviral transduction efficiency in myeloid cell types. Front Genet 2025; 16:1574545. [PMID: 40259927 PMCID: PMC12009803 DOI: 10.3389/fgene.2025.1574545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 04/23/2025] Open
Abstract
Recent advances in functional genomics tools have ushered in a new era of genetic editing to identify molecular pathways relevant to developmental and disease biology. However, limited model systems are available that adequately mimic cell states and phenotypes associated with human disease pathways. Here, we quantitatively analyzed the founder population bottleneck effect and demonstrated how the population changes from human induced pluripotent stem cells (hiPSCs) to hematopoietic stem cells and to the final induced macrophage population. We then engineered a key gene encoding an enzyme in the myeloid cell antiviral pathway-SAMHD1-knockout (KO) hiPSCs and characterized the hiPSC line with RNA-Seq and induced macrophages from two distinct protocols with functional analysis. We then generated SAMHD1 KO CRISPR-dCAS9 KRAB hiPSCs through lentiviral transduction aiming to increase the efficiency of lentiviral mediated gene transfer. We demonstrated increased lentiviral transduction efficiency in induced macrophages, as well as microglia induced with two distinct protocols. This model allows for efficient gene knockdown, as well as large-scale functional genomics screens in mature hiPSC-derived macrophages or microglia with applications in innate immunity and chronic inflammatory disease biology. These experiments highlight the broad applicability of this platform for disease-relevant target identification and may improve our ability to run large-scale screens in hiPSC-derived myeloid model systems.
Collapse
Affiliation(s)
- Huinan Li
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Maliha Afroze
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Target Discovery GSK, San Francisco, CA, United States
| | - Gunisha Arora
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Target Discovery GSK, San Francisco, CA, United States
| | - Scot Federman
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Kaivalya Shevade
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Yeqing Angela Yang
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Target Discovery GSK, San Francisco, CA, United States
| | - Phuong Nguyen
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Rustam Esanov
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Target Discovery GSK, San Francisco, CA, United States
| | - Laralynne Przybyla
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Adam Litterman
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Shawn Shafer
- Target Discovery Laboratory for Genomics Research, San Francisco, CA, United States
- Target Discovery GSK, San Francisco, CA, United States
| |
Collapse
|
5
|
Rodríguez-Sánchez A, Quijada-Álamo M, Pérez-Carretero C, Herrero AB, Arroyo-Barea A, Dávila-Valls J, Rubio A, García de Coca A, Benito-Sánchez R, Rodríguez-Vicente AE, Hernández-Rivas JM, Hernández-Sánchez M. SAMHD1 dysfunction impairs DNA damage response and increases sensitivity to PARP inhibition in chronic lymphocytic leukemia. Sci Rep 2025; 15:10446. [PMID: 40140468 PMCID: PMC11947222 DOI: 10.1038/s41598-025-93629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically and genetically heterogenous disease. Recent next-generation sequencing (NGS) studies have uncovered numerous low-frequency mutated genes in CLL patients, with SAMHD1 emerging as a candidate driver gene. However, the biological and clinical implications of SAMHD1 mutations remain unclear. Using CRISPR/Cas9, we generated CLL models to investigate the impact of SAMHD1 deficiency on pathogenesis and explore therapeutic strategies. Moreover, we performed NGS in treatment-naïve CLL patients to characterize SAMHD1 mutations and employed RNA-sequencing to evaluate their clinical significance. Our study shows that SAMHD1 inactivation impairs the DNA damage response by reducing homologous recombination efficiency through BRCA1 and RAD51 dysregulation. Importantly, SAMHD1 colocalizes with BRCA1 at DNA damage sites in CLL cells. This research also identifies that SAMHD1-mutated cells are more sensitive to PARP inhibition. Clinically, SAMHD1 dysfunction negatively impacts clinical outcome of CLL cases: SAMHD1 mutations reduce failure-free survival (median 46 vs 57 months, p = 0.033), while low SAMHD1 expression associates with shorter time to first treatment (median 47 vs 77 months; p = 0.00073). Overall, this study elucidates that SAMHD1 dysfunction compromises DNA damage response mechanisms, potentially contributing to unfavorable clinical outcomes in CLL, and proposes PARP-inhibitors as a potential therapeutic approach for SAMHD1-mutated CLL cells.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- SAM Domain and HD Domain-Containing Protein 1/genetics
- SAM Domain and HD Domain-Containing Protein 1/metabolism
- DNA Damage
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Mutation
- Female
- Male
- BRCA1 Protein/metabolism
- BRCA1 Protein/genetics
- Middle Aged
- Aged
- CRISPR-Cas Systems
- Cell Line, Tumor
Collapse
Affiliation(s)
- Alberto Rodríguez-Sánchez
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Miguel Quijada-Álamo
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Pérez-Carretero
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana B Herrero
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Departamento de Medicina, Unidad de Medicina Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Andrés Arroyo-Barea
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Dávila-Valls
- Servicio de Hematología, Hospital Nuestra Señora de Sonsoles, SACYL, Ávila, Spain
| | - Araceli Rubio
- Servicio de Hematología, Hospital Miguel Servet, SERGAS, Zaragoza, Spain
| | | | - Rocío Benito-Sánchez
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana E Rodríguez-Vicente
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Jesús María Hernández-Rivas
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María Hernández-Sánchez
- Centro de Investigación del Cáncer, Universidad de Salamanca, IBSAL, IBMCC, CSIC, Salamanca, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Liu X, Lam SM, Zheng Y, Mo L, Li M, Sun T, Long X, Peng S, Zhang X, Mei M, Shui G, Bao S. Palmitoyl-carnitine Regulates Lung Development by Promoting Pulmonary Mesenchyme Proliferation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0620. [PMID: 40104443 PMCID: PMC11914330 DOI: 10.34133/research.0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 03/20/2025]
Abstract
Disruption of acylcarnitine homeostasis results in life-threatening outcomes in humans. Carnitine-acylcarnitine translocase deficiency (CACTD) is a scarce autosomal recessive genetic disease and may result in patients' death due to heart arrest or respiratory insufficiency. However, the reasons and mechanism of CACTD inducing respiratory insufficiency have never been elucidated. Herein, we employed lipidomic techniques to create comprehensive lipidomic maps of entire lungs throughout both prenatal and postnatal developmental stages in mice. We found that the acylcarnitines manifested notable variations and coordinated the expression levels of carnitine-acylcarnitine translocase (Cact) across these lung developmental stages. Cact-null mice were all dead with a symptom of respiratory distress and exhibited failed lung development. Loss of Cact resulted in an accumulation of palmitoyl-carnitine (C16-acylcarnitine) in the lungs and promoted the proliferation of mesenchymal progenitor cells. Mesenchymal cells with elevated C16-acylcarnitine levels displayed minimal changes in energy metabolism but, upon investigation, revealed an interaction with sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (Samhd1), leading to decreased protein abundance and enhanced cell proliferation. Thus, our findings present a mechanism addressing respiratory distress in CACTD, offering a valuable reference point for both the elucidation of pathogenesis and the exploration of treatment strategies for neonatal respiratory distress.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Respiratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lesong Mo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Long
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Peng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwei Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
8
|
Egleston M, Bhat S, Howlader AH, Bianchet MA, Liu Y, Lopez Rovira LM, Smith B, Greenberg MM, Stivers JT. Inhibitors of SAMHD1 Obtained from Chemical Tethering to the Guanine Antiviral Acyclovir. Biochemistry 2025; 64:1109-1120. [PMID: 39989431 PMCID: PMC12035775 DOI: 10.1021/acs.biochem.4c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is an enzyme with diverse activities. Its dNTPase activity degrades all canonical dNTPs and many anticancer nucleoside drugs, while its single-stranded nucleic acid binding activity promotes DNA repair and RNA homeostasis in cells. These functions require guanine nucleotide binding to a specific allosteric site (A1) on the enzyme. We previously described how the activities of SAMHD1 could be inhibited in vitro with fragment-based inhibitor design, using dGMP as a targeting fragment for the A1 site. However, these dGMP-tethered inhibitors had poor cell permeability due to the charged guanine monophosphate group. Here, we describe a new approach where the amino form of the guanine acyclic nucleoside acyclovir (NH2-ACV) is used as the targeting fragment, allowing facile coupling to activated carboxylic acids (R-COOH), either directly or using linkers. This approach generates a neutral amide instead of charged monophosphate attachment points. High-throughput screening of a ∼375 compound carboxylic acid library identified two compounds (8, 11) with similar micromolar affinities for SAMHD1. Compound 11 was obtained by direct coupling to NH2-ACV, while compound 8 used a five-carbon linker. Both inhibitors had the same dibromonaphthol component from the carboxylic acid library screen. A crystal structure of a complex between SAMHD1 and 8, combined with computational models of bound 11, suggest how the dibromonaphthol promotes binding. The findings establish that guanine-based inhibitors targeting the A1 site do not require nucleotide or cyclic nucleoside structural elements. This guanine site targeting strategy is highly amenable to further chemical optimization.
Collapse
Affiliation(s)
- Matthew Egleston
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - A Hasan Howlader
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Mario A Bianchet
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Yi Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Laura Maria Lopez Rovira
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Brandon Smith
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Adabi E, Charitidis FT, Thalheimer FB, Guaza-Lasheras M, Clarke C, Buchholz CJ. Enhanced conversion of T cells into CAR T cells by modulation of the MAPK/ERK pathway. Cell Rep Med 2025; 6:101970. [PMID: 39938523 PMCID: PMC11866553 DOI: 10.1016/j.xcrm.2025.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 01/22/2025] [Indexed: 02/14/2025]
Abstract
Delivery of chimeric antigen receptors (CARs) to T cells is usually mediated by lentiviral vectors (LVs), which can have broad tropism or be T cell targeted. To better understand the molecular events during CAR T cell generation, T cell transduction with four different LVs is followed by single-cell multi-omics analysis, distinguishing between transduced T cells and T cells with vector signal but no CAR. We find that only a fraction of the T cells that encounter vectors convert into CAR T cells. Single-cell transcriptome data reveal that interferon-stimulated genes are upregulated in non-transduced cells, whereas extracellular signal-regulated kinase (ERK)2 phosphatases are upregulated in CAR T cells. This expression pattern is evident in CAR T cells from healthy donors and patients. The role of the mitogen-activated protein kinase (MAPK)/ERK pathway in CAR T cell generation is confirmed by chemical inhibitors. These data provide molecular insights into T cell transduction with implications for improving CAR T cell generation.
Collapse
Affiliation(s)
- Elham Adabi
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany
| | - Filippos T Charitidis
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany
| | - Frederic B Thalheimer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany; Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany; Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany
| | - Mar Guaza-Lasheras
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany
| | - Colin Clarke
- National Institute for Bioprocessing Research and Training, Fosters Avenue, A94 X099 Blackrock, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Belfield, Dublin, Ireland
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany; Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany; Deutsches Krebsforschungszentrum and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Shao J, Wang W, Li S, Yin G, Han L, Wang X, Cai M, Yang T, Wang Y, Qu W, Jiao Y, Wang P, Xu H, Zhu X, Ying S, Xu S, Sheng Q, Fang J, Jiang T, Wei C, Shen Y, Shen Y. Nuclear Overexpression of SAMHD1 Induces M Phase Stalling in Hepatoma Cells and Suppresses HCC Progression by Interacting with the Cohesin Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411988. [PMID: 39679869 PMCID: PMC11809348 DOI: 10.1002/advs.202411988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Emerging evidence suggests that the sterile alpha-motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is implicated in various cancers, including hepatocellular carcinoma (HCC). However, its precise role in tumor cells and the underlying mechanisms remain unclear. This study aimed to investigate the expression patterns, prognostic values, and functional role of SAMHD1 in HCC progression. We constructed liver tissue microarrays using tumor and paired paratumor tissue specimens from 187 patients with primary HCC. Our findings indicate that nuclear SAMHD1 protein levels are increased in tumors compared to paratumor tissues. Moreover, nuclear SAMHD1 levels decline in advanced tumor stages, with higher SAMHD1 nuclear staining correlating with favorable prognostic outcomes. Hepatocyte-specific SAMHD1 knockout mice, generated by crossing SAMHD1fl/fl mice with Alb-cre mice, showed accelerated tumor progression in a diethylnitrosamine (DEN)-induced HCC model. In hepatoma cell lines, nuclear overexpression of SAMHD1 inhibited cell proliferation by stalling mitosis, independent of its deoxynucleotide triphosphohydrolase (dNTPase) function. Mechanistically, SAMHD1 interacts with the cohesin complex in nucleus, enhancing sister chromatid cohesion during cell division, which delays metaphase progression. Our findings suggest that nuclear SAMHD1 plays a critical role in slowing HCC progression by regulating mitosis, highlighting its potential as a therapeutic target by manipulating cohesin dynamics.
Collapse
Affiliation(s)
- Juntang Shao
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Wei Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
| | - Shiyu Li
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Guangfa Yin
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Lili Han
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Xinyu Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Meng Cai
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Tao Yang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Ying Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Wenyan Qu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yanhong Jiao
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Peng Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Hanyang Xu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Xu Zhu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Songcheng Ying
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Sa Xu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Qiang Sheng
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Jian Fang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Tongcui Jiang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Chuansheng Wei
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yujun Shen
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yuxian Shen
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
| |
Collapse
|
11
|
Duzanic FD, Penengo L. The interferon response at the intersection of genome integrity and innate immunity. DNA Repair (Amst) 2025; 145:103786. [PMID: 39577202 DOI: 10.1016/j.dnarep.2024.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
In recent years, numerous reports indicated that, besides pathogen infections, DNA replication stress and defective DNA repair can trigger the innate immune response by introducing a state of viral mimicry, due to cytosolic accumulation of the self-nucleic acid species, which culminates in the activation of type I interferon (IFN) pathway. In turn, IFN upregulates a variety of factors mutually implicated in immune- and genome-related mechanisms, shedding light on the unprecedented causality between genome stability and innate immunity. Intriguingly, in addition to being induced by replication stress, IFN-regulated factors can also promote it, pinpointing IFN signaling as both a consequence and a cause of replication stress. Here, we provide an overview of the factors and molecular mechanisms implicated in the evolutionary conserved crosstalk between genome maintenance and innate immunity, highlighting the role of the IFN-stimulated gene 15 (ISG15), which appears to be at the hub of this intersection. Moreover, we discuss the potential significance and clinical implications of the immune-mediated modulation of DNA replication and repair upon pathogen infection and in human diseases such as cancer and autoinflammatory syndromes. Finally, we discuss the relevant open questions and future directions.
Collapse
Affiliation(s)
- Filip D Duzanic
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland
| | - Lorenza Penengo
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland.
| |
Collapse
|
12
|
Stankovic S, Shekari S, Huang QQ, Gardner EJ, Ivarsdottir EV, Owens NDL, Mavaddat N, Azad A, Hawkes G, Kentistou KA, Beaumont RN, Day FR, Zhao Y, Jonsson H, Rafnar T, Tragante V, Sveinbjornsson G, Oddsson A, Styrkarsdottir U, Gudmundsson J, Stacey SN, Gudbjartsson DF, Kennedy K, Wood AR, Weedon MN, Ong KK, Wright CF, Hoffmann ER, Sulem P, Hurles ME, Ruth KS, Martin HC, Stefansson K, Perry JRB, Murray A. Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature 2024; 633:608-614. [PMID: 39261734 PMCID: PMC11410666 DOI: 10.1038/s41586-024-07931-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Human genetic studies of common variants have provided substantial insight into the biological mechanisms that govern ovarian ageing1. Here we report analyses of rare protein-coding variants in 106,973 women from the UK Biobank study, implicating genes with effects around five times larger than previously found for common variants (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1). The SAMHD1 association reinforces the link between ovarian ageing and cancer susceptibility1, with damaging germline variants being associated with extended reproductive lifespan and increased all-cause cancer risk in both men and women. Protein-truncating variants in ZNF518A are associated with shorter reproductive lifespan-that is, earlier age at menopause (by 5.61 years) and later age at menarche (by 0.56 years). Finally, using 8,089 sequenced trios from the 100,000 Genomes Project (100kGP), we observe that common genetic variants associated with earlier ovarian ageing associate with an increased rate of maternally derived de novo mutations. Although we were unable to replicate the finding in independent samples from the deCODE study, it is consistent with the expected role of DNA damage response genes in maintaining the genetic integrity of germ cells. This study provides evidence of genetic links between age of menopause and cancer risk.
Collapse
Affiliation(s)
- Stasa Stankovic
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Saleh Shekari
- University of Exeter Medical School, University of Exeter, Exeter, UK
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Qin Qin Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Nick D L Owens
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ajuna Azad
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gareth Hawkes
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Robin N Beaumont
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Felix R Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | - Kitale Kennedy
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Andrew R Wood
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Michael N Weedon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Caroline F Wright
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Katherine S Ruth
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Anna Murray
- University of Exeter Medical School, University of Exeter, Exeter, UK.
| |
Collapse
|
13
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
14
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
15
|
Dirks C, Bwanika HC, Jemth AS, Zhang SM, Rudd SG. The N-terminal SAM domain of the dNTPase SAMHD1 is not required for inhibition by small molecule TH6342. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:831-836. [PMID: 38830230 DOI: 10.1080/15257770.2024.2325439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 06/05/2024]
Abstract
Sterile alpha motif and histidine-aspartic acid domain containing protein-1 (SAMHD1) is a deoxynucleoside triphosphate (dNTP) hydrolase that controls dNTP pools and detoxifies cancer cells of chemotherapy metabolites. TH6342 is a recently reported small molecule inhibitor of SAMHD1 that interacts with the protein in vitro and non-competitively prevents dimerisation, a prerequisite for catalysis. The binding site of TH6342 on SAMHD1 is currently unknown. In the present study we demonstrate that the N-terminal SAM domain of SAMHD1 is not required for inhibition by TH6342.
Collapse
Affiliation(s)
- Christopher Dirks
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henri Colyn Bwanika
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Sofie Jemth
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Si Min Zhang
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sean G Rudd
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Acton OJ, Sheppard D, Kunzelmann S, Caswell SJ, Nans A, Burgess AJO, Kelly G, Morris ER, Rosenthal PB, Taylor IA. Platform-directed allostery and quaternary structure dynamics of SAMHD1 catalysis. Nat Commun 2024; 15:3775. [PMID: 38710701 PMCID: PMC11074143 DOI: 10.1038/s41467-024-48237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.
Collapse
Affiliation(s)
- Oliver J Acton
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- AstraZeneca, The Discovery Centre, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sarah J Caswell
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- AstraZeneca, The Discovery Centre, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ailidh J O Burgess
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Biosciences, University of Durham, Durham, DH1 3LE, UK
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
17
|
Hellenbrand CN, Stevenson DM, Gromek KA, Amador-Noguez D, Hershey DM. A deoxynucleoside triphosphate triphosphohydrolase promotes cell cycle progression in Caulobacter crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591158. [PMID: 38712277 PMCID: PMC11071499 DOI: 10.1101/2024.04.25.591158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Intracellular pools of deoxynucleoside triphosphates (dNTPs) are strictly maintained throughout the cell cycle to ensure accurate and efficient DNA replication. DNA synthesis requires an abundance of dNTPs, but elevated dNTP concentrations in nonreplicating cells delay entry into S phase. Enzymes known as deoxyguanosine triphosphate triphosphohydrolases (Dgts) hydrolyze dNTPs into deoxynucleosides and triphosphates, and we propose that Dgts restrict dNTP concentrations to promote the G1 to S phase transition. We characterized a Dgt from the bacterium Caulobacter crescentus termed flagellar signaling suppressor C (fssC) to clarify the role of Dgts in cell cycle regulation. Deleting fssC increases dNTP levels and extends the G1 phase of the cell cycle. We determined that the segregation and duplication of the origin of replication (oriC) is delayed in ΔfssC, but the rate of replication elongation is unchanged. We conclude that dNTP hydrolysis by FssC promotes the initiation of DNA replication through a novel nucleotide signaling pathway. This work further establishes Dgts as important regulators of the G1 to S phase transition, and the high conservation of Dgts across all domains of life implies that Dgt-dependent cell cycle control may be widespread in both prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Katarzyna A. Gromek
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| |
Collapse
|
18
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
19
|
Zhang SM, Paulin CB, Shu H, Yagüe-Capilla M, Michel M, Marttila P, Ortis F, Bwanika HC, Dirks C, Venkatram RP, Wiita E, Jemth AS, Almlöf I, Loseva O, Hormann FM, Koolmeister T, Linde E, Lee S, Llona-Minguez S, Haraldsson M, Axelsson H, Strömberg K, Homan EJ, Scobie M, Lundbäck T, Helleday T, Rudd SG. Identification and evaluation of small-molecule inhibitors against the dNTPase SAMHD1 via a comprehensive screening funnel. iScience 2024; 27:108907. [PMID: 38318365 PMCID: PMC10839966 DOI: 10.1016/j.isci.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output. The identified small molecules, TH6342 and analogs, accompanied by inactive control TH7126, demonstrated specific, low μM potency against both physiological and oncology-drug-derived substrates. By coupling kinetic studies with thermal shift assays, we reveal the inhibitory mechanism of TH6342 and analogs, which engage pre-tetrameric SAMHD1 and deter oligomerization and allosteric activation without occupying nucleotide-binding pockets. Altogether, our study diversifies inhibitory modes against SAMHD1, and the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.
Collapse
Affiliation(s)
- Si Min Zhang
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Cynthia B.J. Paulin
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Huazhang Shu
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Miriam Yagüe-Capilla
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Maurice Michel
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Petra Marttila
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Florian Ortis
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Henri Colyn Bwanika
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Christopher Dirks
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Rajagopal Papagudi Venkatram
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Femke M. Hormann
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Erika Linde
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sun Lee
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sabin Llona-Minguez
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Kia Strömberg
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Evert J. Homan
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Sean G. Rudd
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
20
|
Vanegas-Estévez T, Duque FM, Urbina DL, Vesga LC, Mendez-Sanchez SC, Duque JE. Design and elucidation of an insecticide from natural compounds targeting mitochondrial proteins of Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105721. [PMID: 38225076 DOI: 10.1016/j.pestbp.2023.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/17/2024]
Abstract
Developing new pesticides poses a significant challenge in designing next-generation natural insecticides that selectively target specific pharmacological sites while ensuring environmental friendliness. In this study, we aimed to address this challenge by formulating novel natural pesticides derived from secondary plant metabolites, which exhibited potent insecticide activity. Additionally, we tested their effect on mitochondrial enzyme activity and the proteomic profile of Ae. aegypti, a mosquito species responsible for transmitting diseases. Initially, 110 key compounds from essential oils were selected that have been reported with insecticidal properties; then, to ensure safety for mammals were performed in silico analyses for toxicity properties, identifying non-toxic candidates for further investigation. Subsequently, in vivo tests were conducted using these non-toxic compounds, focusing on the mosquito's larval stage. Based on the lethal concentration (LC), the most promising compounds as insecticidal were identified as S-limonene (LC50 = 6.4 ppm, LC95 = 17.2 ppm), R-limonene (LC50 = 9.86 ppm, LC95 = 27.7 ppm), citronellal (LC50 = 40.5 ppm, LC95 = 68.6 ppm), R-carvone (LC50 = 61.4 ppm, LC95 = 121 ppm), and S-carvone (LC50 = 62.5 ppm, LC95 = 114 ppm). Furthermore, we formulated a mixture of R-limonene, S-carvone, and citronellal with equal proportions of each compound based on their LC50. This mixture specifically targeted mitochondrial proteins and demonstrated a higher effect that showed by each compound separately, enhancing the insecticidal activity of each compound. Besides, the proteomic profile revealed the alteration in proteins involved in proliferation processes and detoxification mechanisms in Ae. aegypti. In summary, our study presents a formulation strategy for developing next-generation natural insecticides using secondary plant metabolites with the potential for reducing the adverse effects on humans and the development of chemical resistance in insects. Our findings also highlight the proteomic alteration induced by the formulated insecticide, showing insight into the mechanisms of action and potential targets for further exploration in vector control strategies.
Collapse
Affiliation(s)
- Thomas Vanegas-Estévez
- Centro de Investigaciones en Enfermedades Tropicales - Cintrop. Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones, Guatiguará Km 2 El Refugio Piedecuesta, Santander, A.A. (P.O. Box) 678 Bucaramanga, Colombia
| | - Fanny Melina Duque
- Grupo de Sistemas Organizados (GSO), Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Diana L Urbina
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A. 678, Colombia
| | - Luis C Vesga
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A. 678, Colombia
| | - Stelia C Mendez-Sanchez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A. 678, Colombia
| | - Jonny E Duque
- Centro de Investigaciones en Enfermedades Tropicales - Cintrop. Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones, Guatiguará Km 2 El Refugio Piedecuesta, Santander, A.A. (P.O. Box) 678 Bucaramanga, Colombia.
| |
Collapse
|
21
|
Schüssler M, Schott K, Fuchs NV, Oo A, Zahadi M, Rauch P, Kim B, König R. Gene editing of SAMHD1 in macrophage-like cells reveals complex relationships between SAMHD1 phospho-regulation, HIV-1 restriction, and cellular dNTP levels. mBio 2023; 14:e0225223. [PMID: 37800914 PMCID: PMC10653793 DOI: 10.1128/mbio.02252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE We introduce BLaER1 cells as an alternative myeloid cell model in combination with CRISPR/Cas9-mediated gene editing to study the influence of sterile α motif and HD domain-containing protein 1 (SAMHD1) T592 phosphorylation on anti-viral restriction and the control of cellular dNTP levels in an endogenous, physiologically relevant context. A proper understanding of the mechanism of the anti-viral function of SAMHD1 will provide attractive strategies aiming at selectively manipulating SAMHD1 without affecting other cellular functions. Even more, our toolkit may inspire further genetic analysis and investigation of restriction factors inhibiting retroviruses and their cellular function and regulation, leading to a deeper understanding of intrinsic anti-viral immunity.
Collapse
Affiliation(s)
- Moritz Schüssler
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Adrian Oo
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Morssal Zahadi
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Paula Rauch
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
22
|
Egleston M, Dong L, Howlader AH, Bhat S, Orris B, Bianchet MA, Greenberg MM, Stivers JT. Deoxyguanosine-Linked Bifunctional Inhibitor of SAMHD1 dNTPase Activity and Nucleic Acid Binding. ACS Chem Biol 2023; 18:2200-2210. [PMID: 37233733 PMCID: PMC10596003 DOI: 10.1021/acschembio.3c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Sterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance. The enzyme also possesses a single-strand nucleic acid binding function that promotes RNA and DNA homeostasis by several mechanisms. To discover small molecule inhibitors of SAMHD1, we screened a custom ∼69 000-compound library for dNTPase inhibitors. Surprisingly, this effort yielded no viable hits and indicated that exceptional barriers for discovery of small molecule inhibitors existed. We then took a rational fragment-based inhibitor design approach using a deoxyguanosine (dG) A1 site targeting fragment. A targeted chemical library was synthesized by coupling a 5'-phosphoryl propylamine dG fragment (dGpC3NH2) to 376 carboxylic acids (RCOOH). Direct screening of the products (dGpC3NHCO-R) yielded nine initial hits, one of which (R = 3-(3'-bromo-[1,1'-biphenyl]), 5a) was investigated extensively. Amide 5a is a competitive inhibitor against GTP binding to the A1 site and induces inactive dimers that are deficient in tetramerization. Surprisingly, 5a also prevented ssDNA and ssRNA binding, demonstrating that the dNTPase and nucleic acid binding functions of SAMHD1 can be disrupted by a single small molecule. A structure of the SAMHD1-5a complex indicates that the biphenyl fragment impedes a conformational change in the C-terminal lobe that is required for tetramerization.
Collapse
Affiliation(s)
- Matthew Egleston
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Linghao Dong
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - A. Hasan Howlader
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Shridhar Bhat
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Benjamin Orris
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Mario A. Bianchet
- Department
of Neurology and Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Marc M. Greenberg
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - James T. Stivers
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
23
|
Jia X, Tan L, Chen S, Tang R, Chen W. Monogenic lupus: Tracing the therapeutic implications from single gene mutations. Clin Immunol 2023; 254:109699. [PMID: 37481012 DOI: 10.1016/j.clim.2023.109699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Monogenic lupus, a distinctive variant of systemic lupus erythematosus (SLE), is characterized by early onset, family-centric clustering, and heightened disease severity. So far, over thirty genetic variations have been identified as single-gene etiology of SLE and lupus-like phenotypes. The critical role of these gene mutations in disrupting various immune pathways is increasingly recognized. In particular, single gene mutation-driven dysfunction within the innate immunity, notably deficiencies in the complement system, impedes the degradation of free nucleic acid and immune complexes, thereby promoting activation of innate immune cells. The accumulation of these components in various tissues and organs creates a pro-inflammatory microenvironment, characterized by a surge in pro-inflammatory cytokines, chemokines, reactive oxygen species, and type I interferons. Concurrently, single gene mutation-associated defects in the adaptive immune system give rise to the emergence of autoreactive T cells, hyperactivated B cells and plasma cells. The ensuing spectrum of cytokines and autoimmune antibodies drives systemic disease manifestations, primarily including kidney, skin and central nervous system-related phenotypes. This review provides a thorough overview of the single gene mutations and potential consequent immune dysregulations in monogenic lupus, elucidating the pathogenic mechanisms of monogenic lupus. Furthermore, it discusses the recent advances made in the therapeutic interventions for monogenic lupus.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruihan Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
24
|
Cai Y, Chen X, Lu T, Fang X, Ding M, Yu Z, Hu S, Liu J, Zhou X, Wang X. Activation of STING by SAMHD1 Deficiency Promotes PANoptosis and Enhances Efficacy of PD-L1 Blockade in Diffuse Large B-cell Lymphoma. Int J Biol Sci 2023; 19:4627-4643. [PMID: 37781035 PMCID: PMC10535696 DOI: 10.7150/ijbs.85236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Genomic instability is a significant driver of cancer. As the sensor of cytosolic DNA, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in regulating anti-tumor immunity and cell death. However, the role and regulatory mechanisms of STING in diffuse large B-cell lymphoma (DLBCL) are still undefined. In this study, we reported that sterile alpha motif and HD domain-containing protein 1 (SAMHD1) deficiency induced STING expression and inhibited tumor growth in DLBCL. High level of SAMHD1 was associated with poor prognosis in DLBCL patients. Down-regulation of SAMHD1 inhibited DLBCL cell proliferation both in vitro and in vivo. Moreover, we found that SAMHD1 deficiency induced DNA damage and promoted the expression of DNA damage adaptor STING. STING overexpression promoted the formation of Caspase 8/RIPK3/ASC, further leading to MLKL phosphorylation, Caspase 3 cleavage, and GSDME cleavage. Up-regulation of necroptotic, apoptotic, and pyroptotic effectors indicated STING-mediated PANoptosis. Finally, we demonstrated that the STING agonist, DMXAA, enhanced the efficacy of a PD-L1 inhibitor in DLBCL. Our findings highlight the important role of STING-mediated PANoptosis in restricting DLBCL progression and provide a potential strategy for enhancing the efficacy of immune checkpoint inhibitor agents in DLBCL.
Collapse
Affiliation(s)
- Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| |
Collapse
|
25
|
Schüssler M, Schott K, Fuchs NV, Oo A, Zahadi M, Rauch P, Kim B, König R. Gene editing of SAMHD1 in macrophage-like cells reveals complex relationships between SAMHD1 phospho-regulation, HIV-1 restriction and cellular dNTP levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554731. [PMID: 37662193 PMCID: PMC10473771 DOI: 10.1101/2023.08.24.554731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphate triphosphohydrolase (dNTPase) and a potent restriction factor for immunodeficiency virus 1 (HIV-1), active in myeloid and resting CD4+ T cells. The anti-viral activity of SAMHD1 is regulated by dephosphorylation of the residue T592. However, the impact of T592 phosphorylation on dNTPase activity is still under debate. Whether additional cellular functions of SAMHD1 impact anti-viral restriction is not completely understood. We report BLaER1 cells as a novel human macrophage HIV-1 infection model combined with CRISPR/Cas9 knock-in (KI) introducing specific mutations into the SAMHD1 locus to study mutations in a physiological context. Transdifferentiated BLaER1 cells harbor active dephosphorylated SAMHD1 that blocks HIV-1 reporter virus infection. As expected, homozygous T592E mutation, but not T592A, relieved a block to HIV-1 reverse transcription. Co-delivery of VLP-Vpx to SAMHD1 T592E KI mutant cells did not further enhance HIV-1 infection indicating the absence of an additional SAMHD1-mediated antiviral activity independent of T592 de-phosphorylation. T592E KI cells retained dNTP levels similar to WT cells indicating uncoupling of anti-viral and dNTPase activity of SAMHD1. The integrity of the catalytic site in SAMHD1 was critical for anti-viral activity, yet poor correlation of HIV-1 restriction and global cellular dNTP levels was observed in cells harboring catalytic core mutations. Together, we emphasize the complexity of the relationship between HIV-1 restriction, SAMHD1 enzymatic function and T592 phospho-regulation and provide novel tools for investigation in an endogenous and physiological context.
Collapse
Affiliation(s)
- Moritz Schüssler
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Adrian Oo
- Department of Pediatrics, Emory University, Atlanta, USA
| | - Morssal Zahadi
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Paula Rauch
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, USA
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, USA
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
26
|
Antequera-Parrilla P, Castillo-Acosta VM, Bosch-Navarrete C, Ruiz-Pérez LM, González-Pacanowska D. A nuclear orthologue of the dNTP triphosphohydrolase SAMHD1 controls dNTP homeostasis and genomic stability in Trypanosoma brucei. Front Cell Infect Microbiol 2023; 13:1241305. [PMID: 37674581 PMCID: PMC10478004 DOI: 10.3389/fcimb.2023.1241305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Maintenance of dNTPs pools in Trypanosoma brucei is dependent on both biosynthetic and degradation pathways that together ensure correct cellular homeostasis throughout the cell cycle which is essential for the preservation of genomic stability. Both the salvage and de novo pathways participate in the provision of pyrimidine dNTPs while purine dNTPs are made available solely through salvage. In order to identify enzymes involved in degradation here we have characterized the role of a trypanosomal SAMHD1 orthologue denominated TbHD82. Our results show that TbHD82 is a nuclear enzyme in both procyclic and bloodstream forms of T. brucei. Knockout forms exhibit a hypermutator phenotype, cell cycle perturbations and an activation of the DNA repair response. Furthermore, dNTP quantification of TbHD82 null mutant cells revealed perturbations in nucleotide metabolism with a substantial accumulation of dATP, dCTP and dTTP. We propose that this HD domain-containing protein present in kinetoplastids plays an essential role acting as a sentinel of genomic fidelity by modulating the unnecessary and detrimental accumulation of dNTPs.
Collapse
Affiliation(s)
| | - Víctor M. Castillo-Acosta
- Instituto de Parasitología y Biomedicina “López-Neyra, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | | | | | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina “López-Neyra, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| |
Collapse
|
27
|
Yun SD, Scott E, Moghadamchargari Z, Laganowsky A. 2'-Deoxy Guanosine Nucleotides Alter the Biochemical Properties of Ras. Biochemistry 2023; 62:2450-2460. [PMID: 37487239 PMCID: PMC11131413 DOI: 10.1021/acs.biochem.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Ras proteins in the mitogen-activated protein kinase (MAPK) signaling pathway represent one of the most frequently mutated oncogenes in cancer. Ras binds guanosine nucleotides and cycles between active (GTP) and inactive (GDP) conformations to regulate the MAPK signaling pathway. Guanosine and other nucleotides exist in cells as either 2'-hydroxy or 2'-deoxy forms, and imbalances in the deoxyribonucleotide triphosphate pool have been associated with different diseases, such as diabetes, obesity, and cancer. However, the biochemical properties of Ras bound to dGNP are not well understood. Herein, we use native mass spectrometry to monitor the intrinsic GTPase activity of H-Ras and N-Ras oncogenic mutants, revealing that the rate of 2'-deoxy guanosine triphosphate (dGTP) hydrolysis differs compared to the hydroxylated form, in some cases by seven-fold. Moreover, K-Ras expressed from HEK293 cells exhibited a higher than anticipated abundance of dGNP, despite the low abundance of dGNP in cells. Additionally, the GTPase and dGTPase activity of K-RasG12C was found to be accelerated by 10.2- and 3.8-fold in the presence of small molecule covalent inhibitors, which may open opportunities for the development of Pan-Ras inhibitors. The molecular assemblies formed between H-Ras and N-Ras, including mutant forms, with the catalytic domain of SOS (SOScat) were also investigated. The results show that the different mutants of H-Ras and N-Ras not only engage SOScat differently, but these assemblies are also dependent on the form of guanosine triphosphate bound to Ras. These findings bring to the forefront a new perspective on the nucleotide-dependent biochemical properties of Ras that may have implications for the activation of the MAPK signaling pathway and Ras-driven cancers.
Collapse
Affiliation(s)
- Sangho D. Yun
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | | | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| |
Collapse
|
28
|
Harada Y, Mizote Y, Suzuki T, Hirayama A, Ikeda S, Nishida M, Hiratsuka T, Ueda A, Imagawa Y, Maeda K, Ohkawa Y, Murai J, Freeze HH, Miyoshi E, Higashiyama S, Udono H, Dohmae N, Tahara H, Taniguchi N. Metabolic clogging of mannose triggers dNTP loss and genomic instability in human cancer cells. eLife 2023; 12:e83870. [PMID: 37461317 PMCID: PMC10353863 DOI: 10.7554/elife.83870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs). This metabolic remodeling impaired dormant origin firing required to rescue stalled forks by cisplatin, thus exacerbating replication stress. Importantly, pharmacological inhibition of de novo dNTP biosynthesis was sufficient to retard cell cycle progression, sensitize cells to cisplatin, and inhibit dormant origin firing, suggesting dNTP loss-induced genomic instability as a central mechanism for the anticancer activity of mannose.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer InstituteOsakaJapan
| | - Yu Mizote
- Department of Cancer Drug Discovery and Development, Research Institute, Osaka International Cancer InstituteOsakaJapan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource ScienceSaitamaJapan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio UniversityYamagataJapan
- Systems Biology Program, Graduate School of Media and Governance, Keio UniversityKanagawaJapan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio UniversityYamagataJapan
| | - Mikako Nishida
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Toru Hiratsuka
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer InstituteOsakaJapan
| | - Ayaka Ueda
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka UniversityOsakaJapan
| | - Yusuke Imagawa
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer InstituteOsakaJapan
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer InstituteOsakaJapan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer InstituteOsakaJapan
| | - Junko Murai
- Institute for Advanced Biosciences, Keio UniversityYamagataJapan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime UniversityEhimeJapan
- Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime UniversityEhimeJapan
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka UniversityOsakaJapan
| | - Shigeki Higashiyama
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer InstituteOsakaJapan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime UniversityEhimeJapan
- Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime UniversityEhimeJapan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource ScienceSaitamaJapan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research Institute, Osaka International Cancer InstituteOsakaJapan
- Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, The University of TokyoTokyoJapan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer InstituteOsakaJapan
| |
Collapse
|
29
|
Marrero RJ, Cao X, Wu H, Elsayed AH, Klco JM, Ribeiro RC, Rubnitz JE, Ma X, Meshinchi S, Aplenc R, Kolb EA, Ries RE, Alonzo TA, Pounds SB, Lamba JK. SAMHD1 single nucleotide polymorphisms impact outcome in children with newly diagnosed acute myeloid leukemia. Blood Adv 2023; 7:2538-2550. [PMID: 36689724 PMCID: PMC10242642 DOI: 10.1182/bloodadvances.2022009088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Cytarabine arabinoside (Ara-C) has been the cornerstone of acute myeloid leukemia (AML) chemotherapy for decades. After cellular uptake, it is phosphorylated into its active triphosphate form (Ara-CTP), which primarily exerts its cytotoxic effects by inhibiting DNA synthesis in proliferating cells. Interpatient variation in the enzymes involved in the Ara-C metabolic pathway has been shown to affect intracellular abundance of Ara-CTP and, thus, its therapeutic benefit. Recently, SAMHD1 (SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1) has emerged to play a role in Ara-CTP inactivation, development of drug resistance, and, consequently, clinical response in AML. Despite this, the impact of genetic variations in SAMHD1 on outcome in AML has not been investigated in depth. In this study, we evaluated 25 single nucleotide polymorphisms (SNPs) within the SAMHD1 gene for association with clinical outcome in 400 pediatric patients with newly diagnosed AML from 2 clinical trials, AML02 and AML08. Three SNPs, rs1291128, rs1291141, and rs7265241 located in the 3' region of SAMHD1 were significantly associated with at least 1 clinical outcome: minimal residual disease after induction I, event-free survival (EFS), or overall survival (OS) in the 2 cohorts. In an independent cohort of patients from the COG-AAML1031 trial (n = 854), rs7265241 A>G remained significantly associated with EFS and OS. In multivariable analysis, all the SNPs remained independent predictors of clinical outcome. These results highlight the relevance of the SAMHD1 pharmacogenomics in context of response to Ara-C in AML and warrants the need for further validation in expanded patient cohorts.
Collapse
Affiliation(s)
- Richard J. Marrero
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
| | - Xueyuan Cao
- Department of Health Promotion and Disease Prevention, University of Tennessee Health Science Center, Memphis, TN
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Abdelrahman H. Elsayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Raul C. Ribeiro
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Richard Aplenc
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Todd A. Alonzo
- Children's Oncology Group Statistics and Data Center, Monrovia, CA
- Biostatistics Division, University of Southern California, Los Angeles, CA
| | - Stanley B. Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL
| |
Collapse
|
30
|
Tsai MHC, Caswell SJ, Morris ER, Mann MC, Pennell S, Kelly G, Groom HCT, Taylor IA, Bishop KN. Attenuation of reverse transcriptase facilitates SAMHD1 restriction of HIV-1 in cycling cells. Retrovirology 2023; 20:5. [PMID: 37127613 PMCID: PMC10150492 DOI: 10.1186/s12977-023-00620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND SAMHD1 is a deoxynucleotide triphosphohydrolase that restricts replication of HIV-1 in differentiated leucocytes. HIV-1 is not restricted in cycling cells and it has been proposed that this is due to phosphorylation of SAMHD1 at T592 in these cells inactivating the enzymatic activity. To distinguish between theories for how SAMHD1 restricts HIV-1 in differentiated but not cycling cells, we analysed the effects of substitutions at T592 on restriction and dNTP levels in both cycling and differentiated cells as well as tetramer stability and enzymatic activity in vitro. RESULTS We first showed that HIV-1 restriction was not due to SAMHD1 nuclease activity. We then characterised a panel of SAMHD1 T592 mutants and divided them into three classes. We found that a subset of mutants lost their ability to restrict HIV-1 in differentiated cells which generally corresponded with a decrease in triphosphohydrolase activity and/or tetramer stability in vitro. Interestingly, no T592 mutants were able to restrict WT HIV-1 in cycling cells, despite not being regulated by phosphorylation and retaining their ability to hydrolyse dNTPs. Lowering dNTP levels by addition of hydroxyurea did not give rise to restriction. Compellingly however, HIV-1 RT mutants with reduced affinity for dNTPs were significantly restricted by wild-type and T592 mutant SAMHD1 in both cycling U937 cells and Jurkat T-cells. Restriction correlated with reverse transcription levels. CONCLUSIONS Altogether, we found that the amino acid at residue 592 has a strong effect on tetramer formation and, although this is not a simple "on/off" switch, this does correlate with the ability of SAMHD1 to restrict HIV-1 replication in differentiated cells. However, preventing phosphorylation of SAMHD1 and/or lowering dNTP levels by adding hydroxyurea was not enough to restore restriction in cycling cells. Nonetheless, lowering the affinity of HIV-1 RT for dNTPs, showed that restriction is mediated by dNTP levels and we were able to observe for the first time that SAMHD1 is active and capable of inhibiting HIV-1 replication in cycling cells, if the affinity of RT for dNTPs is reduced. This suggests that the very high affinity of HIV-1 RT for dNTPs prevents HIV-1 restriction by SAMHD1 in cycling cells.
Collapse
Affiliation(s)
- Ming-Han C Tsai
- Retroviral Replication Laboratory, The Francis Crick Institute, London, UK
- LabGenius, London, UK
| | - Sarah J Caswell
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
- AstraZeneca, Granta Park, Cambridge, UK
| | - Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
- Department of Biosciences, University of Durham, Durham, UK
| | - Melanie C Mann
- Retroviral Replication Laboratory, The Francis Crick Institute, London, UK
- Sartorius, Ulm, Germany
| | - Simon Pennell
- Structural Biology of DNA-Damage Signalling Laboratory, The Francis Crick Institute, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, London, UK
| | - Harriet C T Groom
- Retroviral Replication Laboratory, The Francis Crick Institute, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Kate N Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
31
|
Abstract
Metabolic alterations are a key hallmark of cancer cells, and the augmented synthesis and use of nucleotide triphosphates is a critical and universal metabolic dependency of cancer cells across different cancer types and genetic backgrounds. Many of the aggressive behaviours of cancer cells, including uncontrolled proliferation, chemotherapy resistance, immune evasion and metastasis, rely heavily on augmented nucleotide metabolism. Furthermore, most of the known oncogenic drivers upregulate nucleotide biosynthetic capacity, suggesting that this phenotype is a prerequisite for cancer initiation and progression. Despite the wealth of data demonstrating the efficacy of nucleotide synthesis inhibitors in preclinical cancer models and the well-established clinical use of these drugs in certain cancer settings, the full potential of these agents remains unrealized. In this Review, we discuss recent studies that have generated mechanistic insights into the diverse biological roles of hyperactive cancer cell nucleotide metabolism. We explore opportunities for combination therapies that are highlighted by these recent advances and detail key questions that remain to be answered, with the goal of informing urgently warranted future studies.
Collapse
Affiliation(s)
- Nicholas J Mullen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
32
|
Xu B, Sui Q, Hu H, Hu X, Zhou X, Qian C, Li N. SAMHD1 Attenuates Acute Inflammation by Maintaining Mitochondrial Function in Macrophages via Interaction with VDAC1. Int J Mol Sci 2023; 24:7888. [PMID: 37175593 PMCID: PMC10177872 DOI: 10.3390/ijms24097888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Over-activation of Toll-like receptor 4 (TLR4) is the key mechanism in Gram-negative bacterial infection-induced sepsis. SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) inhibits multiple viruses, but whether it plays a role during bacterial invasion remains unelucidated. Monocyte-macrophage specific Samhd1 knockout (Samhd1-/-) mice and Samhd1-/- macrophage cell line RAW264.7 were constructed and used as research models to evaluate the role of SAMHD1 in TLR4-activated inflammation. In vivo, LPS-challenged Samhd1-/- mice showed higher serum inflammatory factors, accompanied with more severe inflammation infiltration and lower survival rate. In vitro, Samhd1-/- peritoneal macrophages had more activated TLR4 pathway upon LPS-stimulation, accompanied with mitochondrial depolarization and dysfunction and a higher tendency to be M1-polarized. These results could be rescued by overexpressing full-length wild-type SAMHD1 or its phospho-mimetic T634D mutant into Samhd1-/- RAW264.7 cells, whereas the mutants, dNTP hydrolase-function-deprived H238A and phospho-ablative T634A, did not exert the same effect. Lastly, co-IP and immunofluorescence assays confirmed that SAMHD1 interacted with an outer mitochondrial membrane-localized protein, voltage-dependent anion channel-1 (VDAC1). SAMHD1 inhibits TLR4-induced acute inflammation and M1 polarization of macrophages by interacting with VDAC1 and maintaining mitochondria function, which outlines a novel regulatory mechanism of TLR signaling upon LPS stimulation.
Collapse
Affiliation(s)
- Bowen Xu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Qianyi Sui
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiangjia Hu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Cheng Qian
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
33
|
D'Aronco G, Ferraro P, Sassano V, Dagostino C, Biancotto M, Palumbo E, Presot E, Russo A, Bianchi V, Rampazzo C. SAMHD1 restricts the deoxyguanosine triphosphate pool contributing to telomere stability in telomerase-positive cells. FASEB J 2023; 37:e22883. [PMID: 36934410 PMCID: PMC11977530 DOI: 10.1096/fj.202300122r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/20/2023]
Abstract
SAMHD1 (Sterile alpha motif and histidine/aspartic acid domain-containing protein 1) is a dNTP triphosphohydrolase crucial in the maintenance of balanced cellular dNTP pools, which support genome integrity. In SAMHD1 deficient fibroblasts isolated from Aicardi-Goutières Syndrome (AGS) patients, all four DNA precursors are increased and markedly imbalanced with the largest effect on dGTP, a key player in the modulation of telomerase processivity. Here, we present data showing that SAMHD1, by restricting the dGTP pool, contributes to telomere maintenance in hTERT-immortalized human fibroblasts from AGS patients as well as in telomerase positive cancer cell lines. Only in cells expressing telomerase, the lack of SAMHD1 causes excessive lengthening of telomeres and telomere fragility, whereas primary fibroblasts lacking both SAMHD1 and telomerase enter normally into senescence. Telomere lengthening observed in SAMHD1 deficient but telomerase proficient cells is a gradual process, in accordance with the intrinsic property of telomerase of adding only a few tens of nucleotides for each cycle. Therefore, only a prolonged exposure to high dGTP content causes telomere over-elongation. hTERT-immortalized AGS fibroblasts display also high fragility of chromosome ends, a marker of telomere replication stress. These results not only demonstrate the functional importance of dGTP cellular level but also reveal the critical role played by SAMHD1 in restraining telomerase processivity and safeguarding telomere stability.
Collapse
Affiliation(s)
| | - Paola Ferraro
- Department of BiologyUniversity of PadovaPadovaItaly
| | | | | | | | - Elisa Palumbo
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Ettore Presot
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Antonella Russo
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Vera Bianchi
- Department of BiologyUniversity of PadovaPadovaItaly
| | | |
Collapse
|
34
|
Mannherz W, Agarwal S. Thymidine nucleotide metabolism controls human telomere length. Nat Genet 2023; 55:568-580. [PMID: 36959362 PMCID: PMC11000509 DOI: 10.1038/s41588-023-01339-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023]
Abstract
Telomere length in humans is associated with lifespan and severe diseases, yet the genetic determinants of telomere length remain incompletely defined. Here we performed genome-wide CRISPR-Cas9 functional telomere length screening and identified thymidine (dT) nucleotide metabolism as a limiting factor in human telomere maintenance. Targeted genetic disruption using CRISPR-Cas9 revealed multiple telomere length control points across the thymidine nucleotide metabolism pathway: decreasing dT nucleotide salvage via deletion of the gene encoding nuclear thymidine kinase (TK1) or de novo production by knockout of the thymidylate synthase gene (TYMS) decreased telomere length, whereas inactivation of the deoxynucleoside triphosphohydrolase-encoding gene SAMHD1 lengthened telomeres. Remarkably, supplementation with dT alone drove robust telomere elongation by telomerase in cells, and thymidine triphosphate stimulated telomerase activity in a substrate-independent manner in vitro. In induced pluripotent stem cells derived from patients with genetic telomere biology disorders, dT supplementation or inhibition of SAMHD1 promoted telomere restoration. Our results demonstrate a critical role of thymidine metabolism in controlling human telomerase and telomere length, which may be therapeutically actionable in patients with fatal degenerative diseases.
Collapse
Affiliation(s)
- William Mannherz
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard/MIT MD-PhD Program, Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Biological and Biomedical Sciences Program, Harvard/MIT MD-PhD Program, Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Pillalamarri V, Shi W, Say C, Yang S, Lane J, Guallar E, Pankratz N, Arking DE. Whole-exome sequencing in 415,422 individuals identifies rare variants associated with mitochondrial DNA copy number. HGG ADVANCES 2023; 4:100147. [PMID: 36311265 PMCID: PMC9615038 DOI: 10.1016/j.xhgg.2022.100147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022] Open
Abstract
Inter-individual variation in the number of copies of the mitochondrial genome, called mitochondrial DNA copy number (mtDNA-CN), reflects mitochondrial function and has been associated with various aging-related diseases. We examined 415,422 exomes of self-reported White ancestry individuals from the UK Biobank and tested the impact of rare variants, at the level of single variants and through aggregate variant-set tests, on mtDNA-CN. A survey across nine variant sets tested enrichment of putatively causal variants and identified 14 genes at experiment-wide significance and three genes at marginal significance. These included associations at known mtDNA depletion syndrome genes (mtDNA helicase TWNK, p = 1.1 × 10-30; mitochondrial transcription factor TFAM, p = 4.3 × 10-15; mtDNA maintenance exonuclease MGME1, p = 2.0 × 10-6) and the V617F dominant gain-of-function mutation in the tyrosine kinase JAK2 (p = 2.7 × 10-17), associated with myeloproliferative disease. Novel genes included the ATP-dependent protease CLPX (p = 8.4 × 10-9), involved in mitochondrial proteome quality, and the mitochondrial adenylate kinase AK2 (p = 4.7 × 10-8), involved in hematopoiesis. The most significant association was a missense variant in SAMHD1 (p = 4.2 × 10-28), found on a rare, 1.2-Mb shared ancestral haplotype on chromosome 20. SAMHD1 encodes a cytoplasmic host restriction factor involved in viral defense response and the mitochondrial nucleotide salvage pathway, and is associated with Aicardi-Goutières syndrome 5, a childhood encephalopathy and chronic inflammatory response disorder. Rare variants were enriched in Mendelian mtDNA depletion syndrome loci, and these variants implicated core processes in mtDNA replication, nucleoid structure formation, and maintenance. These data indicate that strong-effect mutations from the nuclear genome contribute to the genetic architecture of mtDNA-CN.
Collapse
Affiliation(s)
- Vamsee Pillalamarri
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Predoctoral Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Maryland Genetics Epidemiology and Medicine Training Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Wen Shi
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Conrad Say
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephanie Yang
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Vertex Pharmaceuticals, Inc., Boston, MA 02210, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Eliseo Guallar
- Departments of Epidemiology and Medicine and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Kim DH, Kim JS, Mok CS, Chang EH, Choi J, Lim J, Kim CH, Park AR, Bae YJ, Koo BS, Lee HC. dTMP imbalance through thymidylate 5'-phosphohydrolase activity induces apoptosis in triple-negative breast cancers. Sci Rep 2022; 12:20027. [PMID: 36414668 PMCID: PMC9681768 DOI: 10.1038/s41598-022-24706-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Immunotherapy has a number of advantages over traditional anti-tumor therapy but can cause severe adverse reactions due to an overactive immune system. In contrast, a novel metabolic treatment approach can induce metabolic vulnerability through multiple cancer cell targets. Here, we show a therapeutic effect by inducing nucleotide imbalance and apoptosis in triple negative breast cancer cells (TNBC), by treating with cytosolic thymidylate 5'-phosphohydrolase (CT). We show that a sustained consumption of dTMP by CT could induce dNTP imbalance, leading to apoptosis as tricarboxylic acid cycle intermediates were depleted to mitigate this imbalance. These cytotoxic effects appeared to be different, depending on substrate specificity of the 5' nucleotide or metabolic dependency of the cancer cell lines. Using representative TNBC cell lines, we reveal how the TNBC cells were affected by CT-transfection through extracellular acidification rate (ECAR)/oxygen consumption rate (OCR) analysis and differential transcription/expression levels. We suggest a novel approach for treating refractory TNBC by an mRNA drug that can exploit metabolic dependencies to exacerbate cell metabolic vulnerability.
Collapse
Affiliation(s)
- Dae-Ho Kim
- Research Center, BPgene Co, Ltd, Seoul, 03127 Republic of Korea ,grid.251916.80000 0004 0532 3933Department of Molecular Science and Technology, Ajou University, Suwon, 16499 Republic of Korea ,grid.251916.80000 0004 0532 3933Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499 Republic of Korea
| | - Jin-Sook Kim
- Research Center, BPgene Co, Ltd, Seoul, 03127 Republic of Korea
| | - Chang-Soo Mok
- Research Center, BPgene Co, Ltd, Seoul, 03127 Republic of Korea ,grid.255168.d0000 0001 0671 5021Department of Life Science, Dongguk University Biomedi Campus, Gyeonggi-do, 10326 Republic of Korea
| | - En-Hyung Chang
- Research Center, BPgene Co, Ltd, Seoul, 03127 Republic of Korea
| | - Jiwon Choi
- Research Center, BPgene Co, Ltd, Seoul, 03127 Republic of Korea
| | - Junsub Lim
- Research Center, BPgene Co, Ltd, Seoul, 03127 Republic of Korea
| | - Chul-Ho Kim
- grid.251916.80000 0004 0532 3933Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499 Republic of Korea
| | | | | | - Bong-Seong Koo
- Research Center, BPgene Co, Ltd, Seoul, 03127 Republic of Korea
| | - Hyeon-Cheol Lee
- Research Center, BPgene Co, Ltd, Seoul, 03127 Republic of Korea
| |
Collapse
|
37
|
Helleday T, Rudd SG. Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Mol Oncol 2022; 16:3792-3810. [PMID: 35583750 PMCID: PMC9627788 DOI: 10.1002/1878-0261.13227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
The exploitation of the DNA damage response and DNA repair proficiency of cancer cells is an important anticancer strategy. The replication and repair of DNA are dependent upon the supply of deoxynucleoside triphosphate (dNTP) building blocks, which are produced and maintained by nucleotide metabolic pathways. Enzymes within these pathways can be promising targets to selectively induce toxic DNA lesions in cancer cells. These same pathways also activate antimetabolites, an important group of chemotherapies that disrupt both nucleotide and DNA metabolism to induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can also be targeted to refine the use of these chemotherapeutics, many of which remain standard of care in common cancers. In this review article, we will discuss both these approaches exemplified by the enzymes MTH1, MTHFD2 and SAMHD1. © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Oncology and Metabolism, Weston Park Cancer CentreUniversity of SheffieldUK
| | - Sean G. Rudd
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
38
|
Wang H, Tu R, Ruan Z, Wu D, Peng Z, Zhou X, Liu Q, Wu W, Cao L, Cheng S, Sun L, Zhan X, Shen X. STRIPE3, encoding a human dNTPase SAMHD1 homolog, regulates chloroplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111395. [PMID: 35878695 DOI: 10.1016/j.plantsci.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast is an important organelle for photosynthesis and numerous essential metabolic processes, thus ensuring plant fitness or survival. Although many genes involved in chloroplast development have been identified, mechanisms underlying such development are not fully understood. Here, we isolated and characterized the stripe3 (st3) mutant which exhibited white-striped leaves with reduced chlorophyll content and abnormal chloroplast development during the seedling stage, but gradually produced nearly normal green leaves as it developed. Map-based cloning and transgenic tests demonstrated that a splicing mutation in ST3, encoding a human deoxynucleoside triphosphate triphosphohydrolase (dNTPase) SAMHD1 homolog, was responsible for st3 phenotypes. ST3 is highly expressed in the third leaf at three-leaf stage and expressed constitutively in root, stem, leaf, sheath, and panicle, and the encoded protein, OsSAMHD1, is localized to the cytoplasm. The st3 mutant showed more severe albino leaf phenotype under exogenous 1-mM dATP/dA, dCTP/dC, and dGTP/dG treatments compared with the control conditions, indicating that ST3 is involved in dNTP metabolism. This study reveals a gene associated with dNTP catabolism, and propose a model in which chloroplast development in rice is regulated by the dNTP pool, providing a potential application of these results to hybrid rice breeding.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Ranran Tu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Zheyan Ruan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Duo Wu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zequn Peng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Qunen Liu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Lianping Sun
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xihong Shen
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| |
Collapse
|
39
|
Niehaus M, Straube H, Specht A, Baccolini C, Witte CP, Herde M. The nucleotide metabolome of germinating Arabidopsis thaliana seeds reveals a central role for thymidine phosphorylation in chloroplast development. THE PLANT CELL 2022; 34:3790-3813. [PMID: 35861422 PMCID: PMC9516053 DOI: 10.1093/plcell/koac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 05/29/2023]
Abstract
Thymidylates are generated by several partially overlapping metabolic pathways in different subcellular locations. This interconnectedness complicates an understanding of how thymidylates are formed in vivo. Analyzing a comprehensive collection of mutants and double mutants on the phenotypic and metabolic level, we report the effect of de novo thymidylate synthesis, salvage of thymidine, and conversion of cytidylates to thymidylates on thymidylate homeostasis during seed germination and seedling establishment in Arabidopsis (Arabidopsis thaliana). During germination, the salvage of thymidine in organelles contributes predominantly to the thymidylate pools and a mutant lacking organellar (mitochondrial and plastidic) thymidine kinase has severely altered deoxyribonucleotide levels, less chloroplast DNA, and chlorotic cotyledons. This phenotype is aggravated when mitochondrial thymidylate de novo synthesis is additionally compromised. We also discovered an organellar deoxyuridine-triphosphate pyrophosphatase and show that its main function is not thymidylate synthesis but probably the removal of noncanonical nucleotide triphosphates. Interestingly, cytosolic thymidylate synthesis can only compensate defective organellar thymidine salvage in seedlings but not during germination. This study provides a comprehensive insight into the nucleotide metabolome of germinating seeds and demonstrates the unique role of enzymes that seem redundant at first glance.
Collapse
Affiliation(s)
- Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - André Specht
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Chiara Baccolini
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
40
|
Xiong F, Wang Q, Wu GH, Liu WZ, Wang B, Chen YJ. Direct and indirect effects of IFN-α2b in malignancy treatment: not only an archer but also an arrow. Biomark Res 2022; 10:69. [PMID: 36104718 PMCID: PMC9472737 DOI: 10.1186/s40364-022-00415-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Interferon-α2b (IFN-α2b) is a highly active cytokine that belongs to the interferon-α (IFN-α) family. IFN-α2b has beneficial antiviral, antitumour, antiparasitic and immunomodulatory activities. Direct and indirect antiproliferative effects of IFN-α2b have been found to occur via multiple pathways, mainly the JAK-STAT pathway, in certain cancers. This article reviews mechanistic studies and clinical trials on IFN-α2b. Potential regulators of the function of IFN-α2b were also reviewed, which could be utilized to relieve the poor response to IFN-α2b. IFN-α2b can function not only by enhancing the systematic immune response but also by directly killing tumour cells. Different parts of JAK-STAT pathway activated by IFN-α2b, such as interferon alpha and beta receptors (IFNARs), Janus kinases (JAKs) and IFN‐stimulated gene factor 3 (ISGF3), might serve as potential target for enhancing the pharmacological action of IFN-α2b. Despite some issues that remain to be solved, based on current evidence, IFN-α2b can inhibit disease progression and improve the survival of patients with certain types of malignant tumours. More efforts should be made to address potential adverse effects and complications.
Collapse
|
41
|
Biodistribution of a Mitochondrial Metabolic Tracer, [ 18F]F-AraG, in Healthy Volunteers. Mol Imaging 2022; 2022:3667417. [PMID: 36072652 PMCID: PMC9400547 DOI: 10.1155/2022/3667417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose [18F]F-AraG is a radiolabeled nucleoside analog that shows relative specificity for activated T cells. The aim of this study was to investigate the biodistribution of [18F]F-AraG in healthy volunteers and assess the preliminary safety and radiation dosimetry. Methods Six healthy subjects (three female and three male) between the ages of 24 and 60 participated in the study. Each subject received a bolus venous injection of [18F]F-AraG (dose range: 244.2-329.3 MBq) prior to four consecutive PET/MR whole-body scans. Blood samples were collected at regular intervals and vital signs monitored before and after tracer administration. Regions of interest were delineated for multiple organs, and the area under the time-activity curves was calculated for each organ and used to derive time-integrated activity coefficient (TIAC). TIACs were input for absorbed dose and effective dose calculations using OLINDA. Results PET/MR examination was well tolerated, and no adverse effects to the administration of [18F]F-AraG were noted by the study participants. The biodistribution was generally reflective of the expression and activity profiles of the enzymes involved in [18F]F-AraG's cellular accumulation, mitochondrial kinase dGK, and SAMHD1. The highest uptake was observed in the kidneys and liver, while the brain, lung, bone marrow, and muscle showed low tracer uptake. The estimated effective dose for [18F]F-AraG was 0.0162 mSv/MBq (0.0167 mSv/MBq for females and 0.0157 mSv/MBq for males). Conclusion Biodistribution of [18F]F-AraG in healthy volunteers was consistent with its association with mitochondrial metabolism. PET/MR [18F]F-AraG imaging was well tolerated, with a radiation dosimetry profile similar to other commonly used [18F]-labeled tracers. [18F]F-AraG's connection with mitochondrial biogenesis and favorable biodistribution characteristics make it an attractive tracer with a variety of potential applications.
Collapse
|
42
|
Bowen NE, Oo A, Kim B. Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis. Viruses 2022; 14:v14081622. [PMID: 35893688 PMCID: PMC9331428 DOI: 10.3390/v14081622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
Collapse
Affiliation(s)
- Nicole E. Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
- Correspondence:
| |
Collapse
|
43
|
Klemm BP, Sikkema AP, Hsu AL, Horng JC, Hall TMT, Borgnia MJ, Schaaper RM. High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J Biol Chem 2022; 298:102073. [PMID: 35643313 PMCID: PMC9257424 DOI: 10.1016/j.jbc.2022.102073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 10/27/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) triphosphohydrolases (dNTPases) are important enzymes that may perform multiple functions in the cell, including regulating the dNTP pools and contributing to innate immunity against viruses. Among the homologs that are best studied are human sterile alpha motif and HD domain-containing protein 1 (SAMHD1), a tetrameric dNTPase, and the hexameric Escherichia coli dGTPase; however, it is unclear whether these are representative of all dNTPases given their wide distribution throughout life. Here, we investigated a hexameric homolog from the marine bacterium Leeuwenhoekiella blandensis, revealing that it is a dGTPase that is subject to allosteric activation by dATP, specifically. Allosteric regulation mediated solely by dATP represents a novel regulatory feature among dNTPases that may facilitate maintenance of cellular dNTP pools in L. blandensis. We present high-resolution X-ray crystallographic structures (1.80-2.26 Å) in catalytically important conformations as well as cryo-EM structures (2.1-2.7 Å) of the enzyme bound to dGTP and dATP ligands. The structures, the highest resolution cryo-EM structures of any SAMHD1-like dNTPase to date, reveal an intact metal-binding site with the dGTP substrate coordinated to three metal ions. These structural and biochemical data yield insights into the catalytic mechanism and support a conserved catalytic mechanism for the tetrameric and hexameric dNTPase homologs. We conclude that the allosteric activation by dATP appears to rely on structural connectivity between the allosteric and active sites, as opposed to the changes in oligomeric state upon ligand binding used by SAMHD1.
Collapse
Affiliation(s)
- Bradley P Klemm
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Andrew P Sikkema
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - James C Horng
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, North Carolina, USA.
| |
Collapse
|
44
|
Wang H, He X, Zhang L, Dong H, Huang F, Xian J, Li M, Chen W, Lu X, Pathak KV, Huang W, Li Z, Zhang L, Nguyen LXT, Yang L, Feng L, Gordon DJ, Zhang J, Pirrotte P, Chen CW, Salhotra A, Kuo YH, Horne D, Marcucci G, Sykes DB, Tiziani S, Jin H, Wang X, Li L. Disruption of dNTP homeostasis by ribonucleotide reductase hyperactivation overcomes AML differentiation blockade. Blood 2022; 139:3752-3770. [PMID: 35439288 PMCID: PMC9247363 DOI: 10.1182/blood.2021015108] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/07/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation blockade is a hallmark of acute myeloid leukemia (AML). A strategy to overcome such a blockade is a promising approach against the disease. The lack of understanding of the underlying mechanisms hampers development of such strategies. Dysregulated ribonucleotide reductase (RNR) is considered a druggable target in proliferative cancers susceptible to deoxynucleoside triphosphate (dNTP) depletion. Herein, we report an unanticipated discovery that hyperactivating RNR enables differentiation and decreases leukemia cell growth. We integrate pharmacogenomics and metabolomics analyses to identify that pharmacologically (eg, nelarabine) or genetically upregulating RNR subunit M2 (RRM2) creates a dNTP pool imbalance and overcomes differentiation arrest. Moreover, R-loop-mediated DNA replication stress signaling is responsible for RRM2 activation by nelarabine treatment. Further aggravating dNTP imbalance by depleting the dNTP hydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) enhances ablation of leukemia stem cells by RRM2 hyperactivation. Mechanistically, excessive activation of extracellular signal-regulated kinase (ERK) signaling downstream of the imbalance contributes to cellular outcomes of RNR hyperactivation. A CRISPR screen identifies a synthetic lethal interaction between loss of DUSP6, an ERK-negative regulator, and nelarabine treatment. These data demonstrate that dNTP homeostasis governs leukemia maintenance, and a combination of DUSP inhibition and nelarabine represents a therapeutic strategy.
Collapse
Affiliation(s)
- Hanying Wang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
- Department of Medical Oncology and
| | - Xin He
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Lei Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Haojie Dong
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Feiteng Huang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jie Xian
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Min Li
- Department of Information Sciences, Beckman Research Institute and
| | - Wei Chen
- Integrative Genomics Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Xiyuan Lu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX
| | - Khyatiben V Pathak
- Cancer & Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ
| | - Wenfeng Huang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Zheng Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lianjun Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Lifeng Feng
- Laboratory of Cancer Biology, Provincial Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - David J Gordon
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research and Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| | - Patrick Pirrotte
- Cancer & Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ
- Cancer & Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | | | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
- Department of Hematology and Hematopoietic Cell Transplantation and
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA; and
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX
- Department of Pediatrics and
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Provincial Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | | | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| |
Collapse
|
45
|
Targeting SAMHD1: to overcome multiple anti-cancer drugs resistance in hematological malignancies. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
De Novo Transcriptome of the Flagellate Isochrysis galbana Identifies Genes Involved in the Metabolism of Antiproliferative Metabolites. BIOLOGY 2022; 11:biology11050771. [PMID: 35625500 PMCID: PMC9138222 DOI: 10.3390/biology11050771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Haptophytes are important primary producers in the oceans, and among the phylum Haptophyta, the flagellate Isochrysis galbana has been found to be rich in high-value compounds, such as lipids, carotenoids and highly branched polysaccharides. In the present work, I. galbana was cultured and collected at both stationary and exponential growth phases. A transcriptomic approach was used to analyze the possible activation of metabolic pathways responsible for bioactive compound synthesis at the gene level. Differential expression analysis of samples collected at the exponential versus stationary growth phase allowed the identification of genes involved in the glycerophospholipid metabolic process, the sterol biosynthetic process, ADP-ribose diphosphatase activity and others. I. galbana raw extracts and fractions were tested on specific human cancer cells for possible antiproliferative activity. The most active fractions, without affecting normal cells, were fractions enriched in nucleosides (fraction B) and triglycerides (fraction E) for algae collected in the exponential growth phase and fraction E for stationary phase samples. Overall, transcriptomic and bioactivity data confirmed the activation of metabolic pathways involved in the synthesis of bioactive compounds giving new insights on possible Isochrysis applications in the anticancer sector.
Collapse
|
47
|
Kermi C, Lau L, Asadi Shahmirzadi A, Classon M. Disrupting Mechanisms that Regulate Genomic Repeat Elements to Combat Cancer and Drug Resistance. Front Cell Dev Biol 2022; 10:826461. [PMID: 35602594 PMCID: PMC9114874 DOI: 10.3389/fcell.2022.826461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in understanding cancer pathogenesis and the development of many effective therapeutic agents, resistance to drug treatment remains a widespread challenge that substantially limits curative outcomes. The historical focus on genetic evolution under drug “pressure” as a key driver of resistance has uncovered numerous mechanisms of therapeutic value, especially with respect to acquired resistance. However, recent discoveries have also revealed a potential role for an ancient evolutionary balance between endogenous “viral” elements in the human genome and diverse factors involved in their restriction in tumor evolution and drug resistance. It has long been appreciated that the stability of genomic repeats such as telomeres and centromeres affect tumor fitness, but recent findings suggest that de-regulation of other repetitive genome elements, including retrotransposons, might also be exploited as cancer therapy. This review aims to present an overview of these recent findings.
Collapse
|
48
|
Felip E, Gutiérrez-Chamorro L, Gómez M, Garcia-Vidal E, Romeo M, Morán T, Layos L, Pérez-Roca L, Riveira-Muñoz E, Clotet B, Fernandez PL, Mesía R, Martínez-Cardús A, Ballana E, Margelí M. Modulation of DNA Damage Response by SAM and HD Domain Containing Deoxynucleoside Triphosphate Triphosphohydrolase (SAMHD1) Determines Prognosis and Treatment Efficacy in Different Solid Tumor Types. Cancers (Basel) 2022; 14:641. [PMID: 35158911 PMCID: PMC8833711 DOI: 10.3390/cancers14030641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
SAMHD1 is a deoxynucleotide triphosphate (dNTP) triphosphohydrolase with important roles in the control of cell proliferation and apoptosis, either through the regulation of intracellular dNTPs levels or the modulation of the DNA damage response. However, SAMHD1's role in cancer evolution is still unknown. We performed the first in-depth study of SAMHD1's role in advanced solid tumors, by analyzing samples of 128 patients treated with chemotherapy agents based on platinum derivatives and/or antimetabolites, developing novel in vitro knock-out models to explore the mechanisms driving SAMHD1 function in cancer. Low (or no) expression of SAMHD1 was associated with a positive prognosis in breast, ovarian, and non-small cell lung cancer (NSCLC) cancer patients. A predictive value was associated with low-SAMHD1 expression in NSCLC and ovarian patients treated with antimetabolites in combination with platinum derivatives. In vitro, SAMHD1 knock-out cells showed increased γ-H2AX and apoptosis, suggesting that SAMHD1 depletion induces DNA damage leading to cell death. In vitro treatment with platinum-derived drugs significantly enhanced γ-H2AX and apoptotic markers expression in knock-out cells, indicating a synergic effect of SAMHD1 depletion and platinum-based treatment. SAMHD1 expression represents a new strong prognostic and predictive biomarker in solid tumors and, thus, modulation of the SAMHD1 function may constitute a promising target for the improvement of cancer therapy.
Collapse
Affiliation(s)
- Eudald Felip
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Lucía Gutiérrez-Chamorro
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Maica Gómez
- Department of Pathology, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (M.G.); (P.L.F.)
| | - Edurne Garcia-Vidal
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Margarita Romeo
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Laura Layos
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Laia Pérez-Roca
- Banc de Tumors, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Eva Riveira-Muñoz
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Bonaventura Clotet
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Pedro Luis Fernandez
- Department of Pathology, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (M.G.); (P.L.F.)
| | - Ricard Mesía
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Anna Martínez-Cardús
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Mireia Margelí
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
49
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
50
|
Wang T, Yue W, Tang G, Ye M, Yu J, Liu B, Jiao L, Liu X, Yin S, Chen J, Gao L, Yang J, He M. SAMHD1 Mutations and Expression in Mantle Cell Lymphoma Patients. Front Oncol 2021; 11:763151. [PMID: 34976810 PMCID: PMC8719590 DOI: 10.3389/fonc.2021.763151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
SAMHD1 (sterile alpha motif domain and histidine-aspartate domain-containing protein 1) is a deoxynucleoside triphosphate triphosphohydrolase regulating innate immune and modulating DNA damage signaling. It plays an important role in the development of some tumors. SAMHD1 was also reported as a barrier to cytarabine, a common chemotherapy drug for mantle cell lymphoma (MCL), and as a biomarker of grim prognosis for acute myelocytic leukemia (AML) patients. However, SAMHD1 expression and function in MCL have not been well-defined. In the present study, we evaluated SAMHD1 expression by immunohistochemistry and its gene structure by Sanger sequencing in MCL. Our results showed that SAMHD1 was positive in 36 (62.1%) patients. Importantly, SAMHD1-positive patients were associated with lower chemotherapy response rate (p = 0.023) and shorter overall survival (p = 0.039) than SAMHD1-negative cases. These results suggest that SAMHD1 is an adverse biomarker for MCL patients, which is due to the high expression of SAMHD1 and rapid cell proliferation. These findings were confirmed in an in vitro study using the siRNA technique. Silencing the SAMHD1 gene in the MCL cell line Jeko-1 significantly decreased cell proliferation and increased cell apoptosis. The MCL cell line with SAMHD1 knockdown showed lower Ki-67 proliferation index, higher caspase-3, and higher sensitivity to cytarabine. Furthermore, for the first time, four previously unreported missense mutations (S302Y, Y432C, E449G, and R451H) in exon 8 and exon 12 of the SAMHD1 gene were discovered by sequencing. The mutations had not been found to corelate with SAMHD1 protein expression detected by immunohistochemistry. The biological functions of this mutated SAMHD1 remain to be investigated.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenqin Yue
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Gusheng Tang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mingyu Ye
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jiechen Yu
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bin Liu
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lijuan Jiao
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xuefei Liu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuyi Yin
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jie Chen
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lei Gao
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Yang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|