1
|
Xing X, Du H, Yang Z, Zhang H, Li N, Shao Z, Li W, Kong Y, Li X, Zhang C. GmEXPA11 facilitates nodule enlargement and nitrogen fixation via interaction with GmNOD20 under regulation of GmPTF1 in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112469. [PMID: 40074204 DOI: 10.1016/j.plantsci.2025.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/22/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Biological nitrogen fixation (BNF) provides 50-60 % of the nitrogen for plant growth and development, while its application is restricted for the deficiency of functional gene in biological breeding. Expansin can enlarge the plant cells through loosening the cell wall, which has a great breeding potential for legumes BNF improvement. In the present study, a cell wall α-subfamily expansin, GmEXPA11, was isolated and analyzed in soybean nodule growth and nitrogen fixation process. GmEXPA11 was highly induced by rhizobial infection and appeared high expressions in the whole process of soybean nodulation and nitrogen fixation. The overexpression of GmEXPA11 facilitated nodule cell enlargement and generated much more big nodules, with an increase of 37.6 % on nodule cell length, 14.7 % on cell width, 25.8 % on big nodule number, 25.6 % on nodule weight, while the RNAi nodules were opposite. Moreover, GmEXPA11 overexpression enhanced nodule nitrogen fixation ability, with the increases of 22.9 %, 6.7 % and 11.7 % on nitrogenase activity, nitrogen content and hairy root nitrogen content, while the RNAi decreased by 11.9 %, 10.7 % and 7.8 %, respectively. Further analysis demonstrated that GmEXPA11 affected nodules enlargement and nitrogen fixation via interacting with nodulin GmNOD20 under the regulation of transcription factor GmPTF1. The expression of GmEXPA11 was significantly increased in the transgenic nodules with GmPTF1 over-expressed. In addition, by analyzing soybean resequencing accessions, four upstream SNPs were found in the promoter of GmEXPA11 and formed two haplotypes with significantly different soybean nodulation and nitrogen fixation characters, which demonstrated the close relationship between GmEXPA11-SNPs and BNF.
Collapse
Affiliation(s)
- Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhenqi Shao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
2
|
Qin S, Liang Y, Xie Y, Wei G, Lin Q, Qin W, Wei F. Genome-wide analysis of the bHLH gene family in Spatholobus suberectus identifies SsbHLH112 as a regulator of flavonoid biosynthesis. BMC PLANT BIOLOGY 2025; 25:594. [PMID: 40329176 PMCID: PMC12054232 DOI: 10.1186/s12870-025-06452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
Spatholobus suberectus Dunn (S. suberectus), a medicinal herb from the Leguminosae family, is widely utilized in traditional medicine. The dried stem of S. suberectus demonstrates a variety of pharmacological effects, primarily attributed to its rich content of flavonoid compounds, such as catechin. The bHLH gene family serves diverse functions in plants, including regulating flavonoid biosynthesis, yet its specific function in S. suberectus remains uncertain. To address this, the sequenced genome of S. suberectus was leveraged for an extensive genome-wide analysis of the bHLH gene family. This analysis identified 156 SsbHLH genes, which were phylogenetically classified into 19 distinct subgroups. Of these, 153 genes were mapped across 9 chromosomes, while 3 remained unlocalized. Furthermore, genes within the identical subgroups displayed preserved exon-intron arrangements and motif patterns. Ka/Ks analysis further revealed that most duplicated genes have undergone purifying selection. A subset of 12 SsbHLH genes was found to be markedly associated with flavonoid content, including catechin, isoliquiritigenin, formononetin, and genistein. Among these, SsbHLH112, which strongly correlates with catechin levels, was shown to markedly elevate flavonoids and catechin accumulation when overexpressed in Nicotiana benthamiana. This overexpression also notably upregulated NbDFR and NbLAR, consistent with increased catechin production. These results elucidate the role of SsbHLH transcription factors in flavonoid biosynthesis, providing a basis for additional exploration of SsbHLH gene functions in S. suberectus.
Collapse
Affiliation(s)
- Shuangshuang Qin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yueying Xie
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guili Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Quan Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Weiqi Qin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| |
Collapse
|
3
|
Yu M, Ma C, Tai B, Fu X, Liu Q, Zhang G, Zhou X, Du L, Jin Y, Han Y, Zheng H, Huang L. Unveiling the regulatory mechanisms of nodules development and quality formation in Panax notoginseng using multi-omics and MALDI-MSI. J Adv Res 2025; 69:463-475. [PMID: 38588849 PMCID: PMC11954826 DOI: 10.1016/j.jare.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Renowned for its role in traditional Chinese medicine, Panax notoginseng exhibits healing properties including bidirectional regulatory effects on hematological system diseases. However, the presence of nodular structures near the top of the main root, known as nail heads, may impact the quality of the plant's valuable roots. OBJECTIVES In this paper, we aim to systematically analyze nail heads to identify their potential correlation with P. notoginseng quality. Additionally, we will investigate the molecular mechanisms behind nail head development. METHODS Morphological characteristics and anatomical features were analyzed to determine the biological properties of nail heads. Active component analysis and MALDI mass spectrometry imaging (MALDI-MSI) were performed to determine the correlation between nail heads and P. notoginseng quality. Phytohormone quantitation, MALDI-MSI, RNA-seq, and Arabidopsis transformation were conducted to elucidate the mechanisms of nail head formation. Finally, protein-nucleic acid and protein-protein interactions were investigated to construct a transcriptional regulatory network of nodule development and quality formation. RESULTS Our analyses have revealed that nail heads originate from an undeveloped lateral root. The content of ginsenosides was found to be positively associated with the amount of nail heads. Ginsenoside Rb1 specifically accumulated in the cortex of nail heads, while IAA, tZR and JAs also showed highest accumulation in the nodule. RNA-seq analysis identified PnIAA14 and PnCYP735A1 as inhibitors of lateral root development. PnMYB31 and PnMYB78 were found to form binary complexes with PnbHLH31 to synergistically regulate the expression of PnIAA14, PnCYP735A1, PnSS, and PnFPS. CONCLUSION Our study details the major biological properties of nodular structures in P. notoginseng and outlines their impact on the quality of the herb. It was also determined that PnMYB31- and PnMYB78-PnbHLH31 regulate phytohormones and ginsenosides accumulation, further affecting plant development and quality. This research provides insights for quality evaluation and clinical applications of P. notoginseng.
Collapse
Affiliation(s)
- Muyao Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Badalahu Tai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Mongolian Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xueqing Fu
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanhua Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiuteng Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liyuan Du
- Create (Beijing) Technology Co., Limited, Beijing 102200, China
| | - Yan Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Han
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Han Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Lin Y, Chen C, Chen W, Liu H, Xiao R, Ji H, Li X. A Comprehensive Transcriptome Atlas Reveals the Crucial Role of LncRNAs in Maintaining Nodulation Homeostasis in Soybean. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412104. [PMID: 39716953 PMCID: PMC11831499 DOI: 10.1002/advs.202412104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Symbiotic nitrogen fixation (SNF) provides nitrogen for soybean. A primary challenge in enhancing yield through efficient SNF lies in striking a balance between its high energy consumption and plant growth. However, the systemic transcriptional reprogramming during nodulation remains limited. Here, this work conducts a comprehensive RNA-seq of the roots, cotyledons and leaves of inoculated-soybean. This work finds 88,814 mRNAs and 6,156 noncoding RNAs (ncRNAs) across various organs. Notably, this work identifies 6,679 nodulation-regulated mRNAs (NR-mRNAs), 1,681 long noncoding RNAs (lncRNAs) (NR-lncRNAs), and 59 miRNAs (NR-miRNAs). The majority of these NR-RNAs are associated with plant-microbial interaction and exhibit high organ specificity. Roots display the highest abundance of NR-ncRNAs and the most dynamic crosstalk between NR-lncRNAs and NR-miRNAs in a GmNARK-dependent manner. This indicates that while each tissue responds uniquely, GmNARK serves as a primary regulator of the transcriptional control of nodulated-plants. Furthermore, this work proves that lnc-NNR6788 and lnc-NNR7059 promote nodulation by regulating their target genes. This work also shows that the nodulation- and GmNARK-regulated (NNR) lnc-NNR4481 negatively regulates nodulation through miR172c within a competing endogenous RNA (ceRNA) network. The spatial organ-type transcriptomic atlas establishes a benchmark and provides a valuable resource for integrative analyses of the mechanism underlying of nodulation and plant growth balance.
Collapse
Affiliation(s)
- Yanru Lin
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Chong Chen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Weizhen Chen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Hangcheng Liu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Renhao Xiao
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Hongtao Ji
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xia Li
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| |
Collapse
|
5
|
Sagharyan M, Sharifi M, Samari E, Karimi F. Changes in MicroRNAs expression mediate molecular mechanism underlying the effect of MeJA on the biosynthesis of podophyllotoxin in Linum album cells. Sci Rep 2024; 14:30738. [PMID: 39730376 DOI: 10.1038/s41598-024-78715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/29/2024] Open
Abstract
Podophyllotoxin (PTOX), produced by Linum album, is a monolignol that participates in plant defense strategies. Our previous study established that methyl jasmonate (MeJA) significantly stimulates PTOX production in L. album cells. However; the mechanisms by which MeJA regulates PTOX biosynthesis are uncovered. In the present study, we demonstrated that MeJA induces a time-dependent hydrogen peroxide (H2O2) and salicylic acid (SA) accumulation but reduces nitric oxide (NO) generation in L. album cells. PTOX biosynthetic genes such as PAL, CCR, CAD, and PLR were upregulated in response to MeJA exposure. Furthermore, the results of RT-qPCR revealed a positive correlation between the expression of PTOX biosynthetic genes and MeJA-induced upregulation of four miRNAs such as miR156, miR159, miR172, and miR396 at 12 h. Generally, this study revealed that MeJA mediates PTOX biosynthesis in L. album cells by inducing H2O2 and SA formation, which can probably upregulate the expression level of some miRNAs and biosynthetic genes in a redox balance-dependent manner.
Collapse
Affiliation(s)
- Mostafa Sagharyan
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Center of Excellence in Medicinal Plant Metabolites, Tarbiat Modares University, Tehran, Iran.
| | - Elaheh Samari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farah Karimi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
6
|
Williamson G, Harris T, Bizior A, Hoskisson PA, Pritchard L, Javelle A. Biological ammonium transporters: evolution and diversification. FEBS J 2024; 291:3786-3810. [PMID: 38265636 DOI: 10.1111/febs.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul Alan Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
7
|
Chen B, Hou Y, Huo Y, Zeng Z, Hu D, Mao X, Zhong C, Xu Y, Tang X, Gao X, Ma J, Chen G. QTL Mapping of Yield, Agronomic, and Nitrogen-Related Traits in Barley ( Hordeum vulgare L.) under Low Nitrogen and Normal Nitrogen Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2137. [PMID: 39124255 PMCID: PMC11314459 DOI: 10.3390/plants13152137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Improving low nitrogen (LN) tolerance in barley (Hordeum vulgare L.) increases global barley yield and quality. In this study, a recombinant inbred line (RIL) population crossed between "Baudin × CN4079" was used to conduct field experiments on twenty traits of barley yield, agronomy, and nitrogen(N)-related traits under LN and normal nitrogen (NN) treatments for two years. This study identified seventeen QTL, comprising eight QTL expressed under both LN and NN treatments, eight LN-specific QTL, and one NN-specific QTL. The localized C2 cluster contained QTL controlling yield, agronomic, and N-related traits. Of the four novel QTL, the expression of the N-related QTL Qstna.sau-5H and Qnhi.sau-5H was unaffected by N treatment. Qtgw.sau-2H for thousand-grain weight, Qph.sau-3H for plant height, Qsl.sau-7H for spike length, and Qal.sau-7H for awn length were identified to be the four stable expression QTL. Correlation studies revealed a significant negative correlation between grain N content and harvest index (p < 0.01). These results are essential for barley marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yao Hou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yuanfeng Huo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Zhaoyong Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Deyi Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xingwu Mao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Chengyou Zhong
- College of Economics, Hunan Agricultural University, Changsha 410125, China;
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| |
Collapse
|
8
|
Hu W, Wang D, Zhao S, Ji J, Yang J, Wan Y, Yu C. Genome-Wide Identification and Characterization of Ammonium Transporter (AMT) Genes in Chlamydomonas reinhardtii. Genes (Basel) 2024; 15:1002. [PMID: 39202361 PMCID: PMC11353525 DOI: 10.3390/genes15081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Ammonium transporters (AMTs) are vital plasma membrane proteins facilitating NH4+ uptake and transport, crucial for plant growth. The identification of favorable AMT genes is the main goal of improving ammonium-tolerant algas. However, there have been no reports on the systematic identification and expression analysis of Chlamydomonas reinhardtii (C. reinhardtii) AMT genes. This study comprehensively identified eight CrAMT genes, distributed across eight chromosomes, all containing more than 10 transmembrane structures. Phylogenetic analysis revealed that all CrAMTs belonged to the AMT1 subfamily. The conserved motifs and domains of CrAMTs were similar to those of the AMT1 members of OsAMTs and AtAMTs. Notably, the gene fragments of CrAMTs are longer and contain more introns compared to those of AtAMTs and OsAMTs. And the promoter regions of CrAMTs are enriched with cis-elements associated with plant hormones and light response. Under NH4+ treatment, CrAMT1;1 and CrAMT1;3 were significantly upregulated, while CrAMT1;2, CrAMT1;4, and CrAMT1;6 saw a notable decrease. CrAMT1;7 and CrAMT1;8 also experienced a decline, albeit less pronounced. Transgenic algas with overexpressed CrAMT1;7 did not show a significant difference in growth compared to CC-125, while transgenic algas with CrAMT1;7 knockdown exhibited growth inhibition. Transgenic algas with overexpressed or knocked-down CrAMT1;8 displayed reduced growth compared to CC-125, which also resulted in the suppression of other CrAMT genes. None of the transgenic algas showed better growth than CC-125 at high ammonium levels. In summary, our study has unveiled the potential role of CrAMT genes in high-ammonium environments and can serve as a foundational research platform for investigating ammonium-tolerant algal species.
Collapse
Affiliation(s)
- Wenhui Hu
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Dan Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Shuangshuang Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Jiaqi Ji
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Jing Yang
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Yiqin Wan
- Basic Experimental Center of Biology, Nanchang University, Nanchang 330031, China
| | - Chao Yu
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| |
Collapse
|
9
|
Cai Z, Yu T, Tan W, Zhou Q, Liu L, Nian H, Lian T. GmAMT2.1/2.2-dependent ammonium nitrogen and metabolites shape rhizosphere microbiome assembly to mitigate cadmium toxicity. NPJ Biofilms Microbiomes 2024; 10:60. [PMID: 39043687 PMCID: PMC11266425 DOI: 10.1038/s41522-024-00532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Cadmium (Cd), a heavy metal, is negatively associated with plant growth. AMT (ammonium transporter) genes can confer Cd resistance and enhance nitrogen (N) uptake in soybeans. The potential of AMT genes to alleviate Cd toxicity by modulating rhizosphere microbiota remains unkonwn. Here, the rhizosphere microbial taxonomic and metabolic differences in three genotypes, i.e., double knockout and overexpression lines and wild type, were identified. The results showed that GmAMT2.1/2.2 genes could induce soybean to recruit beneficial microorganisms, such as Tumebacillus, Alicyclobacillus, and Penicillium, by altering metabolites. The bacterial, fungal, and cross-kingdom synthetic microbial communities (SynComs) formed by these microorganisms can help soybean resist Cd toxicity. The mechanisms by which SynComs help soybeans resist Cd stress include reducing Cd content, increasing ammonium (NH4+-N) uptake and regulating specific functional genes in soybeans. Overall, this study provides valuable insights for the developing microbial formulations that enhance Cd resistance in sustainable agriculture.
Collapse
Affiliation(s)
- Zhandong Cai
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
| | - Taobing Yu
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weiyi Tan
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianghua Zhou
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lingrui Liu
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China.
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China.
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Rowson M, Jolly M, Dickson S, Gifford ML, Carré I. Timely symbiosis: circadian control of legume-rhizobia symbiosis. Biochem Soc Trans 2024; 52:1419-1430. [PMID: 38779952 PMCID: PMC11346424 DOI: 10.1042/bst20231307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Legumes house nitrogen-fixing endosymbiotic rhizobia in specialised polyploid cells within root nodules. This results in a mutualistic relationship whereby the plant host receives fixed nitrogen from the bacteria in exchange for dicarboxylic acids. This plant-microbe interaction requires the regulation of multiple metabolic and physiological processes in both the host and symbiont in order to achieve highly efficient symbiosis. Recent studies have showed that the success of symbiosis is influenced by the circadian clock of the plant host. Medicago and soybean plants with altered clock mechanisms showed compromised nodulation and reduced plant growth. Furthermore, transcriptomic analyses revealed that multiple genes with key roles in recruitment of rhizobia to plant roots, infection and nodule development were under circadian control, suggesting that appropriate timing of expression of these genes may be important for nodulation. There is also evidence for rhythmic gene expression of key nitrogen fixation genes in the rhizobium symbiont, and temporal coordination between nitrogen fixation in the bacterial symbiont and nitrogen assimilation in the plant host may be important for successful symbiosis. Understanding of how circadian regulation impacts on nodule establishment and function will identify key plant-rhizobial connections and regulators that could be targeted to increase the efficiency of this relationship.
Collapse
Affiliation(s)
- Monique Rowson
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Matthew Jolly
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Suzanna Dickson
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Miriam L. Gifford
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry CV4 7AL, U.K
| | - Isabelle Carré
- School of Life Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
11
|
Zhang X, Chen JX, Lian WT, Zhou HW, He Y, Li XX, Liao H. Molecular module GmPTF1a/b-GmNPLa regulates rhizobia infection and nodule formation in soybean. THE NEW PHYTOLOGIST 2024; 241:1813-1828. [PMID: 38062896 DOI: 10.1111/nph.19462] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 01/26/2024]
Abstract
Nodulation begins with the initiation of infection threads (ITs) in root hairs. Though mutual recognition and early symbiotic signaling cascades in legumes are well understood, molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis remain largely unexplored. We functionally investigated a novel pectate lyase enzyme, GmNPLa, and its transcriptional regulator GmPTF1a/b in soybean (Glycine max), where their regulatory roles in IT development and nodule formation were elucidated through investigation of gene expression patterns, bioinformatics analysis, biochemical verification of genetic interactions, and observation of phenotypic impacts in transgenic soybean plants. GmNPLa was specifically induced by rhizobium inoculation in root hairs. Manipulation of GmNPLa produced remarkable effects on IT and nodule formation. GmPTF1a/b displayed similar expression patterns as GmNPLa, and manipulation of GmPTF1a/b also severely influenced nodulation traits. LI soybeans with low nodulation phenotypes were nearly restored to HI nodulation level by complementation of GmNPLa and/or GmPTF1a. Further genetic and biochemical analysis demonstrated that GmPTF1a can bind to the E-box motif to activate transcription of GmNPLa, and thereby facilitate nodulation. Taken together, our findings potentially reveal novel mediation of cell wall gene expression involving the basic helix-loop-helix transcription factor GmPTF1a/b acts as a key early regulator of nodulation in soybean.
Collapse
Affiliation(s)
- Xiao Zhang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jia-Xin Chen
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen-Ting Lian
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui-Wen Zhou
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying He
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin-Xin Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
12
|
Ovchinnikova E, Chiasson D, Wen Z, Wu Y, Tahaei H, Smith PMC, Perrine-Walker F, Kaiser BN. Arbuscular-Mycorrhizal Symbiosis in Medicago Regulated by the Transcription Factor MtbHLHm1;1 and the Ammonium Facilitator Protein MtAMF1;3. Int J Mol Sci 2023; 24:14263. [PMID: 37762569 PMCID: PMC10532333 DOI: 10.3390/ijms241814263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Root systems of most land plants are colonised by arbuscular mycorrhiza fungi. The symbiosis supports nutrient acquisition strategies predominantly associated with plant access to inorganic phosphate. The nutrient acquisition is enhanced through an extensive network of external fungal hyphae that extends out into the soil, together with the development of fungal structures forming specialised interfaces with root cortical cells. Orthologs of the bHLHm1;1 transcription factor, previously described in soybean nodules (GmbHLHm1) and linked to the ammonium facilitator protein GmAMF1;3, have been identified in Medicago (Medicago truncatula) roots colonised by AM fungi. Expression studies indicate that transcripts of both genes are also present in arbuscular containing root cortical cells and that the MtbHLHm1;1 shows affinity to the promoter of MtAMF1;3. Both genes are induced by AM colonisation. Loss of Mtbhlhm1;1 expression disrupts AM arbuscule abundance and the expression of the ammonium transporter MtAMF1;3. Disruption of Mtamf1;3 expression reduces both AM colonisation and arbuscule development. The respective activities of MtbHLHm1;1 and MtAMF1;3 highlight the conservation of putative ammonium regulators supporting both the rhizobial and AM fungal symbiosis in legumes.
Collapse
Affiliation(s)
- Evgenia Ovchinnikova
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - David Chiasson
- Department of Biology, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Zhengyu Wen
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - Yue Wu
- School of Agriculture, Food and Wine, Waite Campus, University of Adelaide, Urrbrae, SA 5005, Australia
| | - Hero Tahaei
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - Penelope M. C. Smith
- Agribio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Francine Perrine-Walker
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - Brent N. Kaiser
- Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| |
Collapse
|
13
|
Chambard M, Albert B, Cadiou M, Auby S, Profizi C, Boulogne I. Living yeast-based biostimulants: different genes for the same results? FRONTIERS IN PLANT SCIENCE 2023; 14:1171564. [PMID: 37404542 PMCID: PMC10315835 DOI: 10.3389/fpls.2023.1171564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023]
Abstract
Nowadays, many products are available in the plant biostimulants market. Among them, living yeast-based biostimulants are also commercialized. Given the living aspect of these last products, the reproducibility of their effects should be investigated to ensure end-users' confidence. Therefore, this study aimed to compare the effects of a living yeast-based biostimulant between two different soybean cultures. These two cultures named C1 and C2 were conducted on the same variety and soil but in different locations and dates until the VC developmental stage (unifoliate leaves unrolled), with Bradyrhizobium japonicum (control and Bs condition) and with and without biostimulant coating seed treatment. The foliar transcriptomic analysis done first showed a high gene expression difference between the two cultures. Despite this first result, a secondary analysis seemed to show that this biostimulant led to a similar pathway enhancement in plants and with common genes even if the expressed genes were different between the two cultures. The pathways which seem to be reproducibly impacted by this living yeast-based biostimulant are abiotic stress tolerance and cell wall/carbohydrate synthesis. Impacting these pathways may protect the plant from abiotic stresses and maintain a higher level of sugars in plant.
Collapse
Affiliation(s)
- Marie Chambard
- Univ Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, Rouen, France
| | | | | | - Sarah Auby
- Agrauxine by Lesaffre, Beaucouzé, France
| | | | - Isabelle Boulogne
- Univ Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, Rouen, France
| |
Collapse
|
14
|
Zeng Z, Song S, Ma J, Hu D, Xu Y, Hou Y, He C, Tang X, Lan T, Zeng J, Gao X, Chen G. QTL Mapping of Agronomic and Physiological Traits at the Seedling and Maturity Stages under Different Nitrogen Treatments in Barley. Int J Mol Sci 2023; 24:ijms24108736. [PMID: 37240081 DOI: 10.3390/ijms24108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Nitrogen (N) stress seriously constrains barley (Hordeum vulgare L.) production globally by influencing its growth and development. In this study, we used a recombinant inbred line (RIL) population of 121 crosses between the variety Baudin and the wild barley accession CN4027 to detect QTL for 27 traits at the seedling stage in hydroponic culture trials and 12 traits at the maturity stage in field trials both under two N treatments, aiming to uncover favorable alleles for N tolerance in wild barley. In total, eight stable QTL and seven QTL clusters were detected. Among them, the stable QTL Qtgw.sau-2H located in a 0.46 cM interval on the chromosome arm 2HL was a novel QTL specific for low N. Notably, Clusters C4 and C7 contained QTL for traits at both the seedling and maturity stages. In addition, four stable QTLs in Cluster C4 were identified. Furthermore, a gene (HORVU2Hr1G080990.1) related to grain protein in the interval of Qtgw.sau-2H was predicted. Correlation analysis and QTL mapping showed that different N treatments significantly affected agronomic and physiological traits at the seedling and maturity stages. These results provide valuable information for understanding N tolerance as well as breeding and utilizing the loci of interest in barley.
Collapse
Affiliation(s)
- Zhaoyong Zeng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiyun Song
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Deyi Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Hou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengjun He
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Yang W, Dong X, Yuan Z, Zhang Y, Li X, Wang Y. Genome-Wide Identification and Expression Analysis of the Ammonium Transporter Family Genes in Soybean. Int J Mol Sci 2023; 24:3991. [PMID: 36835403 PMCID: PMC9960152 DOI: 10.3390/ijms24043991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Ammonium transporters (AMTs) are responsible for ammonium absorption and utilization in plants. As a high-nitrogen-demand crop and a legume, soybean can also obtain ammonium from symbiotic root nodules in which nitrogen-fixing rhizobia convert atmospheric nitrogen (N2) into ammonium. Although increasing evidence implicates vital roles of ammonium transport in soybean, no systematic analyses of AMTs in soybean (named GmAMTs) or functional analyses of GmAMTs are available. In this study, we aimed to identify all GmAMT family genes and gain a better understanding of the characteristics of GmAMT genes in soybean. Here, due to the improved genome assembly and annotation of soybean, we tried to generate a phylogenetic tree of 16 GmAMTs based on new information. Consistent with reported data, GmAMT family members can be divided into two subfamilies of GmAMT1 (6 genes) and GmAMT2 (10 genes). Interestingly, unlike Arabidopsis, which has only one AMT2, soybean has substantially increased the number of GmAMT2s, suggesting enhanced demand for ammonium transport. These genes were distributed on nine chromosomes, of which GmAMT1.3, GmAMT1.4, and GmAMT1.5 were three tandem repeat genes. The gene structures and conserved protein motifs of the GmAMT1 and GmAMT2 subfamilies were different. All the GmAMTs were membrane proteins with varying numbers of transmembrane domains ranging from 4 to 11. Promoter analysis found that these GmAMT genes have phytohormone-, circadian control-, and organ expression-related cis-elements in their promoters, and notably, there were nodulation-specific and nitrogen-responsive elements in the promoters of the GmAMT1 and GmAMT2 genes. Further expression data showed that these GmAMT family genes exhibited different spatiotemporal expression patterns across tissues and organs. In addition, GmAMT1.1, GmAMT1.2, GmAMT2.2, and GmAMT2.3 were responsive to nitrogen treatment, while GmAMT1.2, GmAMT1.3, GmAMT1.4, GmAMT1.5, GmAMT1.6, GmAMT2.1, GmAMT2.2, GmAMT2.3, GmAMT3.1, and GmAMT4.6 showed circadian rhythms in transcription. RT-qPCR validated the expression patterns of GmAMTs in response to different forms of nitrogen and exogenous ABA treatments. Gene expression analysis also confirmed that GmAMTs are regulated by key nodulation gene GmNINa, indicating a role of GmAMTs in symbiosis. Together, these data indicate that GmAMTs may differentially and/or redundantly regulate ammonium transport during plant development and in response to environmental factors. These findings provide a basis for future research on the functions of GmAMTs and the mechanisms through which GmAMTs regulate ammonium metabolism and nodulation in soybean.
Collapse
Affiliation(s)
- Wei Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoxu Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhanxin Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youning Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
17
|
Ji Y, Yue L, Cao X, Chen F, Li J, Zhang J, Wang C, Wang Z, Xing B. Carbon dots promoted soybean photosynthesis and amino acid biosynthesis under drought stress: Reactive oxygen species scavenging and nitrogen metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159125. [PMID: 36181808 DOI: 10.1016/j.scitotenv.2022.159125] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
With global warming and water scarcity, improving the drought tolerance and quality of crops is critical for food security and human health. Here, foliar application of carbon dots (CDs, 5 mg·L-1) could scavenge reactive oxygen species accumulation in soybean leaves under drought stress, thereby enhancing photosynthesis and carbohydrate transport. Moreover, CDs stimulated root secretion (e.g., amino acids, organic acids, and auxins) and recruited beneficial microorganisms (e.g., Actinobacteria, Ascomycota, Acidobacteria and Glomeromycota), which facilitate nitrogen (N) activation in the soil. Meanwhile, the expression of GmNRT, GmAMT, and GmAQP genes were up-regulated, indicating enhanced N and water uptake. The results demonstrated that CDs could promote nitrogen metabolism and enhance amino acid biosynthesis. Particularly, the N content in soybean shoots and roots increased significantly by 13.2 % and 30.5 %, respectively. The amino acids content in soybean shoots and roots increased by 257.5 % and 57.5 %, respectively. Consequently, soybean yields increased significantly by 21.5 %, and the protein content in soybean kernels improved by 3.7 %. Therefore, foliar application of CDs can support sustainable nano-enabled agriculture to combat climate change.
Collapse
Affiliation(s)
- Yahui Ji
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiangshan Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
18
|
Nezamivand-Chegini M, Metzger S, Moghadam A, Tahmasebi A, Koprivova A, Eshghi S, Mohammadi-Dehchesmeh M, Kopriva S, Niazi A, Ebrahimie E. Integration of transcriptomic and metabolomic analyses provides insights into response mechanisms to nitrogen and phosphorus deficiencies in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111498. [PMID: 36252857 DOI: 10.1016/j.plantsci.2022.111498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two essential plant macronutrients that can limit plant growth by different mechanisms. We aimed to shed light on how soybean respond to low nitrogen (LN), low phosphorus (LP) and their combined deficiency (LNP). Generally, these conditions triggered changes in gene expression of the same processes, including cell wall organization, defense response, response to oxidative stress, and photosynthesis, however, response was different in each condition. A typical primary response to LN and LP was detected also in soybean, i.e., the enhanced uptake of N and P, respectively, by upregulation of genes for the corresponding transporters. The regulation of genes involved in cell wall organization showed that in LP roots tended to produce more casparian strip, in LN more secondary wall biosynthesis occurred, and in LNP reduction in expression of genes involved in secondary wall production accompanied by cell wall loosening was observed. Flavonoid biosynthesis also showed distinct pattern of regulation in different conditions: more anthocyanin production in LP, and more isoflavonoid production in LN and LNP, which we confirmed also on the metabolite level. Interestingly, in soybean the nutrient deficiencies reduced defense response by lowering expression of genes involved in defense response, suggesting a role of N and P nutrition in plant disease resistance. In conclusion, we provide detailed information on how LN, LP, and LNP affect different processes in soybean roots on the molecular and physiological levels.
Collapse
Affiliation(s)
| | - Sabine Metzger
- MS Platform, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany; Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran; School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide SA 5371, Australia; La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
19
|
Babele PK, Srivastava A, Selim KA, Kumar A. Millet-inspired systems metabolic engineering of NUE in crops. Trends Biotechnol 2022; 41:701-713. [PMID: 36566140 DOI: 10.1016/j.tibtech.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
The use of nitrogen (N) fertilizers in agriculture has a great ability to increase crop productivity. However, their excessive use has detrimental effects on the environment. Therefore, it is necessary to develop crop varieties with improved nitrogen use efficiency (NUE) that require less N but have substantial yields. Orphan crops such as millets are cultivated in limited regions and are well adapted to lower input conditions. Therefore, they serve as a rich source of beneficial traits that can be transferred into major crops to improve their NUE. This review highlights the tremendous potential of systems biology to unravel the enzymes and pathways involved in the N metabolism of millets, which can open new possibilities to generate transgenic crops with improved NUE.
Collapse
Affiliation(s)
- Piyoosh K Babele
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India.
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute for Microbiology and Infection Medicine, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| |
Collapse
|
20
|
Sinsirimongkol K, Buasong A, Teppabut Y, Pholmanee N, Chen Y, Miller AJ, Punyasuk N. EgNRT2.3 and EgNAR2 expression are controlled by nitrogen deprivation and encode proteins that function as a two-component nitrate uptake system in oil palm. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153833. [PMID: 36257088 DOI: 10.1016/j.jplph.2022.153833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is an important crop for oil and biodiesel production. Oil palm plantations require extensive fertilizer additions to achieve a high yield. Fertilizer application decisions and management for oil palm farming rely on leaf tissue and soil nutrient analyses with little information available to describe the key players for nutrient uptake. A molecular understanding of how nutrients, especially nitrogen (N), are taken up in oil palm is very important to improve fertilizer use and formulation practice in oil palm plantations. In this work, two nitrate uptake genes in oil palm, EgNRT2.3 and EgNAR2, were cloned and characterized. Spatial expression analysis showed high expression of these two genes was mainly found in un-lignified young roots. Interestingly, EgNRT2.3 and EgNAR2 were up-regulated by N deprivation, but their expression pattern depended on the form of N source. Promoter analysis of these two genes confirmed the presence of regulatory elements that support these expression patterns. The Xenopus oocyte assay showed that EgNRT2.3 and EgNAR2 had to act together to take up nitrate. The results suggest that EgNRT2.3 and EgNAR2 act as a two-component nitrate uptake system in oil palm.
Collapse
Affiliation(s)
| | - Atcharaporn Buasong
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yada Teppabut
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nutthida Pholmanee
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yi Chen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anthony J Miller
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Napassorn Punyasuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
21
|
Chakraborty S, Valdés-López O, Stonoha-Arther C, Ané JM. Transcription Factors Controlling the Rhizobium-Legume Symbiosis: Integrating Infection, Organogenesis and the Abiotic Environment. PLANT & CELL PHYSIOLOGY 2022; 63:1326-1343. [PMID: 35552446 DOI: 10.1093/pcp/pcac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Legume roots engage in a symbiotic relationship with rhizobia, leading to the development of nitrogen-fixing nodules. Nodule development is a sophisticated process and is under the tight regulation of the plant. The symbiosis initiates with a signal exchange between the two partners, followed by the development of a new organ colonized by rhizobia. Over two decades of study have shed light on the transcriptional regulation of rhizobium-legume symbiosis. A large number of transcription factors (TFs) have been implicated in one or more stages of this symbiosis. Legumes must monitor nodule development amidst a dynamic physical environment. Some environmental factors are conducive to nodulation, whereas others are stressful. The modulation of rhizobium-legume symbiosis by the abiotic environment adds another layer of complexity and is also transcriptionally regulated. Several symbiotic TFs act as integrators between symbiosis and the response to the abiotic environment. In this review, we trace the role of various TFs involved in rhizobium-legume symbiosis along its developmental route and highlight the ones that also act as communicators between this symbiosis and the response to the abiotic environment. Finally, we discuss contemporary approaches to study TF-target interactions in plants and probe their potential utility in the field of rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, México
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin, 1575 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
22
|
Pankievicz VCS, Delaux PM, Infante V, Hirsch HH, Rajasekar S, Zamora P, Jayaraman D, Calderon CI, Bennett A, Ané JM. Nitrogen fixation and mucilage production on maize aerial roots is controlled by aerial root development and border cell functions. FRONTIERS IN PLANT SCIENCE 2022; 13:977056. [PMID: 36275546 PMCID: PMC9583020 DOI: 10.3389/fpls.2022.977056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Exploring natural diversity for biological nitrogen fixation in maize and its progenitors is a promising approach to reducing our dependence on synthetic fertilizer and enhancing the sustainability of our cropping systems. We have shown previously that maize accessions from the Sierra Mixe can support a nitrogen-fixing community in the mucilage produced by their abundant aerial roots and obtain a significant fraction of their nitrogen from the air through these associations. In this study, we demonstrate that mucilage production depends on root cap and border cells sensing water, as observed in underground roots. The diameter of aerial roots correlates with the volume of mucilage produced and the nitrogenase activity supported by each root. Young aerial roots produce more mucilage than older ones, probably due to their root cap's integrity and their ability to produce border cells. Transcriptome analysis on aerial roots at two different growth stages before and after mucilage production confirmed the expression of genes involved in polysaccharide synthesis and degradation. Genes related to nitrogen uptake and assimilation were up-regulated upon water exposure. Altogether, our findings suggest that in addition to the number of nodes with aerial roots reported previously, the diameter of aerial roots and abundance of border cells, polysaccharide synthesis and degradation, and nitrogen uptake are critical factors to ensure efficient nitrogen fixation in maize aerial roots.
Collapse
Affiliation(s)
| | - Pierre-Marc Delaux
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Valentina Infante
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Hayley H. Hirsch
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Shanmugam Rajasekar
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Pablo Zamora
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Dhileepkumar Jayaraman
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jean-Michel Ané
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
23
|
Wang C, Ji Y, Cao X, Yue L, Chen F, Li J, Yang H, Wang Z, Xing B. Carbon Dots Improve Nitrogen Bioavailability to Promote the Growth and Nutritional Quality of Soybeans under Drought Stress. ACS NANO 2022; 16:12415-12424. [PMID: 35946591 DOI: 10.1021/acsnano.2c03591] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The inefficient utilization of nitrogen (N) in soil and drought stress seriously threatens agricultural and food production. Herein, soil application of carbon dots (CDs, 5 mg kg-1) promoted the growth and nutritional quality of soybeans by improving N bioavailability, which was beneficial to alleviate the economic losses caused by drought stress. Soil application of CDs enhanced the N-fixing ability of nodules, regulated rhizosphere processes, and ultimately enhanced N and water uptake in soybeans under drought stress. Compared to control (drought stress), the application of CDs under drought stress enhanced soybean nitrogenase activity by 8.6% and increased N content in soybean shoots and roots by 18.5% and 14.8%, respectively. CDs in soil promoted the secretion of root exudates (e.g., organic acids, fatty acids, and polyketides) and regulated beneficial microbial communities (e.g., Proteobacteria, Acidobacteria, Gemmatimonadetes, and Actinobacteria), thus enhancing the N release from soil. Besides, compared to control, the expression of GmNRT, GmAMT, GmLB, and GmAQP genes in roots were upregulated by 1.2-, 1.8-, 2.7-, and 2.3-fold respectively, implying enhanced N transport and water uptake. Furthermore, the proteins, fatty acids, and amino acids in soybean grains were improved by 3.4%, 6.9%, and 17.3%, respectively, as a result of improved N bioavailability. Therefore, CD-enabled agriculture is promising for improving the drought tolerance and quality of soybeans, which is of significance for food security in facing the crisis of global climate change.
Collapse
Affiliation(s)
- Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yahui Ji
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hanyue Yang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
De Backer J, Van Breusegem F, De Clercq I. Proteolytic Activation of Plant Membrane-Bound Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:927746. [PMID: 35774815 PMCID: PMC9237531 DOI: 10.3389/fpls.2022.927746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 06/03/2023]
Abstract
Due to the presence of a transmembrane domain, the subcellular mobility plan of membrane-bound or membrane-tethered transcription factors (MB-TFs) differs from that of their cytosolic counterparts. The MB-TFs are mostly locked in (sub)cellular membranes, until they are released by a proteolytic cleavage event or when the transmembrane domain (TMD) is omitted from the transcript due to alternative splicing. Here, we review the current knowledge on the proteolytic activation mechanisms of MB-TFs in plants, with a particular focus on regulated intramembrane proteolysis (RIP), and discuss the analogy with the proteolytic cleavage of MB-TFs in animal systems. We present a comprehensive inventory of all known and predicted MB-TFs in the model plant Arabidopsis thaliana and examine their experimentally determined or anticipated subcellular localizations and membrane topologies. We predict proteolytically activated MB-TFs by the mapping of protease recognition sequences and structural features that facilitate RIP in and around the TMD, based on data from metazoan intramembrane proteases. Finally, the MB-TF functions in plant responses to environmental stresses and in plant development are considered and novel functions for still uncharacterized MB-TFs are forecasted by means of a regulatory network-based approach.
Collapse
Affiliation(s)
- Jonas De Backer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
25
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
26
|
Shah AN, Javed T, Singhal RK, Shabbir R, Wang D, Hussain S, Anuragi H, Jinger D, Pandey H, Abdelsalam NR, Ghareeb RY, Jaremko M. Nitrogen use efficiency in cotton: Challenges and opportunities against environmental constraints. FRONTIERS IN PLANT SCIENCE 2022; 13:970339. [PMID: 36072312 PMCID: PMC9443504 DOI: 10.3389/fpls.2022.970339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 05/09/2023]
Abstract
Nitrogen is a vital nutrient for agricultural, and a defieciency of it causes stagnate cotton growth and yield penalty. Farmers rely heavily on N over-application to boost cotton output, which can result in decreased lint yield, quality, and N use efficiency (NUE). Therefore, improving NUE in cotton is most crucial for reducing environmental nitrate pollution and increasing farm profitability. Well-defined management practices, such as the type of sources, N-rate, application time, application method, crop growth stages, and genotypes, have a notable impact on NUE. Different N formulations, such as slow and controlled released fertilizers, have been shown to improve N uptake and, NUE. Increasing N rates are said to boost cotton yield, although high rates may potentially impair the yield depending on the soil and environmental conditions. This study comprehensively reviews various factors including agronomic and environmental constraints that influence N uptake, transport, accumulation, and ultimately NUE in cotton. Furthermore, we explore several agronomic and molecular approaches to enhance efficiency for better N uptake and utilization in cotton. Finally, this objective of this review to highlight a comprehensive view on enhancement of NUE in cotton and could be useful for understanding the physiological, biochemical and molecular mechanism of N in cotton.
Collapse
Affiliation(s)
- Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
- *Correspondence: Adnan Noor Shah,
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi, Shandong, China
- Depeng Wang,
| | - Sadam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Hirdayesh Anuragi
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Dinesh Jinger
- ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Anand, Gujarat, India
| | | | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Science Research and Technological Applications, Alexandria, Egypt
| | - Mariusz Jaremko
- Smart Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
27
|
Di DW, Sun L, Wang M, Wu J, Kronzucker HJ, Fang S, Chu J, Shi W, Li G. WRKY46 promotes ammonium tolerance in Arabidopsis by repressing NUDX9 and indole-3-acetic acid-conjugating genes and by inhibiting ammonium efflux in the root elongation zone. THE NEW PHYTOLOGIST 2021; 232:190-207. [PMID: 34128546 DOI: 10.1111/nph.17554] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 05/11/2023]
Abstract
Ammonium (NH4+ ) is toxic to root growth in most plants, even at moderate concentrations. Transcriptional regulation is one of the most important mechanisms in the response of plants to NH4+ toxicity, but the nature of the involvement of transcription factors (TFs) in this regulation remains unclear. Here, RNA-seq analysis was performed on Arabidopsis roots to screen for ammonium-responsive TFs. WRKY46, the member of the WRKY transcription factor family most responsive to NH4+ , was selected. We defined the role of WRKY46 using mutation and overexpression assays, and characterized the regulation of NUDX9 and indole-3-acetic acid (IAA)-conjugating genes by WRKY46 via yeast one-hybrid and electrophoretic mobility shift assays and chromatin immunoprecipitation-quantitative real-time polymerase chain reaction (ChIP-qPCR). Knockout of WRKY46 increased, while overexpression of WRKY46 decreased, NH4+ -suppression of the primary root. WRKY46 is shown to directly bind to the promoters of the NUDX9 and IAA-conjugating genes (GH3.1, GH3.6, UGT75D1, UGT84B2) and to inhibit their transcription, thus positively regulating free IAA content and stabilizing protein N-glycosylation, leading to an inhibition of NH4+ efflux in the root elongation zone (EZ). We identify TF involvement in the regulation of NH4+ efflux in the EZ, and show that WRKY46 inhibits NH4+ efflux by negative regulation of NUDX9 and IAA-conjugating genes.
Collapse
Affiliation(s)
- Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingjing Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
28
|
Saini DK, Chopra Y, Pal N, Chahal A, Srivastava P, Gupta PK. Meta-QTLs, ortho-MQTLs and candidate genes for nitrogen use efficiency and root system architecture in bread wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2245-2267. [PMID: 34744364 PMCID: PMC8526679 DOI: 10.1007/s12298-021-01085-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 05/04/2023]
Abstract
In wheat, meta-QTLs (MQTLs), ortho-MQTLs, and candidate genes (CGs) were identified for nitrogen use efficiency and root system architecture. For this purpose, 1788 QTLs were available from 24 studies published during 2006-2020. Of these, 1098 QTLs were projected onto the consensus map resulting in 118 MQTLs. The average confidence interval (CI) of MQTLs was reduced up to 8.56 folds in comparison to the average CI of QTLs. Of the 118 MQTLs, 112 were anchored to the physical map of the wheat reference genome. The physical interval of MQTLs ranged from 0.02 to 666.18 Mb with a mean of 94.36 Mb. Eighty-eight of these 112 MQTLs were verified by marker-trait associations (MTAs) identified in published genome-wide association studies (GWAS); the MQTLs that were verified using GWAS also included 9 most robust MQTLs, which are particularly useful for breeders; we call them 'Breeder's QTLs'. Some selected wheat MQTLs were further utilized for the identification of ortho-MQTLs for wheat and maize; 9 such ortho-MQTLs were available. As many as 1991 candidate genes (CGs) were also detected, which included 930 CGs with an expression level of > 2 transcripts per million in relevant organs/tissues. Among the CGs, 97 CGs with functions previously reported as important for the traits under study were selected. Based on homology analysis and expression patterns, 49 orthologues of 35 rice genes were also identified in MQTL regions. The results of the present study may prove useful for the improvement of selection strategy for yield potential, stability, and performance under N-limiting conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01085-0.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
- Present Address: Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Amneek Chahal
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
29
|
Piya S, Lopes-Caitar VS, Kim W, Pantalone V, Krishnan HB, Hewezi T. Title: Hypermethylation of miRNA Genes During Nodule Development. Front Mol Biosci 2021; 8:616623. [PMID: 33928115 PMCID: PMC8076613 DOI: 10.3389/fmolb.2021.616623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
DNA methylation has recently emerged as a powerful regulatory mechanism controlling the expression of key regulators of various developmental processes, including nodulation. However, the functional role of DNA methylation in regulating the expression of microRNA (miRNA) genes during the formation and development of nitrogen-fixing nodules remains largely unknown. In this study, we profiled DNA methylation patterns of miRNA genes during nodule formation, development, and early senescence stages in soybean (Glycine max) through the analysis of methylC-seq data. Absolute DNA methylation levels in the CG, CHH, and CHH sequence contexts over the promoter and primary transcript regions of miRNA genes were significantly higher in the nodules compared with the corresponding root tissues at these three distinct nodule developmental stages. We identified a total of 82 differentially methylated miRNAs in the nodules compared with roots. Differential DNA methylation of these 82 miRNAs was detected only in the promoter (69), primary transcript region (3), and both in the promoter and primary transcript regions (10). The large majority of these differentially methylated miRNAs were hypermethylated in nodules compared with the corresponding root tissues and were found mainly in the CHH context and showed stage-specific methylation patterns. Differentially methylated regions in the promoters of 25 miRNAs overlapped with transposable elements, a finding that may explain the vulnerability of miRNAs to DNA methylation changes during nodule development. Gene expression analysis of a set of promoter-differentially methylated miRNAs pointed to a negative association between DNA methylation and miRNA expression. Gene Ontology and pathways analyses indicate that changes in DNA methylation of miRNA genes are reprogrammed and contribute to nodule development through indirect regulation of genes involved in cellular processes and pathways with well-established roles in nodulation.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | | | - Won‐Seok Kim
- Plant Science Division, University of Missouri, Columbia, MO, United States
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Hari B. Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, United States
- Plant Genetics Research, USDA-Agricultural Research Service, Columbia, MO, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
30
|
Sen S, DasGupta M. Involvement of Arachis hypogaea Jasmonate ZIM domain/TIFY proteins in root nodule symbiosis. JOURNAL OF PLANT RESEARCH 2021; 134:307-326. [PMID: 33558946 DOI: 10.1007/s10265-021-01256-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Jasmonate ZIM domain (JAZ) proteins are the key negative regulators of jasmonate signaling, an important integrator of plant-microbe relationships. Versatility of jasmonate signaling outcomes are maintained through the multiplicity of JAZ proteins and their definitive functionalities. How jasmonate signaling influences the legume-Rhizobium symbiotic relationship is still unclear. In Arachis hypogaea (peanut), a legume plant, one JAZ sub-family (JAZ1) gene and one TIFY sequence containing protein family member (TIFY8) gene show enhanced expression in the early stage and late stage of root nodule symbiosis (RNS) respectively. In plants, JAZ sub-family proteins belong to a larger TIFY family. Here, this study denotes the first attempt to reveal in planta interactions of downstream jasmonate signaling regulators through proteomics and mass spectrometry to find out the mode of jasmonate signaling participation in the RNS process of A. hypogaea. From 4-day old Bradyrhizobium-infected peanut roots, the JAZ1-protein complex shows its contribution towards the rhizobial entry, nodule development, autoregulation of nodulation and photo-morphogenesis during the early stage of symbiosis. From 30-day old Bradyrhizobium infected roots, the TIFY8-protein complex reveals repressor functionality of TIFY8, suppression of root jasmonate signaling, modulation of root circadian rhythm and nodule development. Cellular localization and expression level of the interaction partners during the nodulation process further substantiate the in planta interaction pairs. This study provides a comprehensive insight into the jasmonate functionality in RNS through modulation of nodule number and development, during the early stage and root circadian rhythm during the late stage of nodulation, through the protein complexes of JAZ1 and TIFY8 respectively in A. hypogaea.
Collapse
Affiliation(s)
- Saswati Sen
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
31
|
Islam S, Zhang J, Zhao Y, She M, Ma W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110759. [PMID: 33487345 DOI: 10.1016/j.plantsci.2020.110759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
High nitrogen application aimed at increasing crop yield is offset by higher production costs and negative environmental consequences. For wheat, only one third of the applied nitrogen is utilized, which indicates there is scope for increasing Nitrogen Use Efficiency (NUE). However, achieving greater NUE is challenged by the complexity of the trait, which comprises processes associated with nitrogen uptake, transport, reduction, assimilation, translocation and remobilization. Thus, knowledge of the genetic regulation of these processes is critical in increasing NUE. Although primary nitrogen uptake and metabolism-related genes have been well studied, the relative influence of each towards NUE is not fully understood. Recent attention has focused on engineering transcription factors and identification of miRNAs acting on expression of specific genes related to NUE. Knowledge obtained from model species needs to be translated into wheat using recently-released whole genome sequences, and by exploring genetic variations of NUE-related traits in wild relatives and ancient germplasm. Recent findings indicate the genetic basis of NUE is complex. Pyramiding various genes will be the most effective approach to achieve a satisfactory level of NUE in the field.
Collapse
Affiliation(s)
- Shahidul Islam
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Yun Zhao
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
32
|
Yang YY, Zheng PF, Ren YR, Yao YX, You CX, Wang XF, Hao YJ. Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. PLANTA 2021; 253:46. [PMID: 33484359 DOI: 10.1007/s00425-020-03528-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This study identified a new bHLHm1 transcription factor MdSAT1 which functioned in mediating tolerance to salt and drought resistance. Changes in the expression of stress-related genes play crucial roles in response to environmental stress. Basic helix-loop-helix (bHLH) proteins are the largest superfamily of transcription factors and a large number of bHLH proteins function in plant responses to abiotic stresses. We identified a new bHLHm1 transcription factor from apple and named it MdSAT1. β-Glucuronidase (GUS) staining showed that MdSAT1 expressed in various tissues with highly expressed in leaves. Promoter analysis revealed that MdSAT1 contained multiple response elements and its transcription was induced by several environmental cues, particularly salt and drought stresses. Overexpression of MdSAT1 in apple calli and Arabidopsis resulted in a phenotype of increased tolerance to salt and drought. Altering abscisic acid (ABA) treatment increased the sensitivity of MdSAT1-OE Arabidopsis to ABA, and heavy metal stress, osmotic stress, and ethylene did not participate in MdSAT1 mediated plant development. These findings reveal the abiotic stress functions of MdSAT1 and pave the way for further functional investigation.
Collapse
Affiliation(s)
- Yu-Ying Yang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peng-Fei Zheng
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yi-Ran Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yu-Xin Yao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
33
|
Shi Y, Zhang Z, Wen Y, Yu G, Zou J, Huang S, Wang J, Zhu J, Wang J, Chen L, Ma C, Liu X, Zhu R, Li Q, Li J, Guo M, Liu H, Zhu Y, Sun Z, Han L, Jiang H, Wu X, Wang N, Zhang W, Yin Z, Li C, Hu Z, Qi Z, Liu C, Chen Q, Xin D. RNA Sequencing-Associated Study Identifies GmDRR1 as Positively Regulating the Establishment of Symbiosis in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:798-807. [PMID: 32186464 DOI: 10.1094/mpmi-01-20-0017-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In soybean (Glycine max)-rhizobium interactions, the type III secretion system (T3SS) of rhizobium plays a key role in regulating host specificity. However, the lack of information on the role of T3SS in signaling networks limits our understanding of symbiosis. Here, we conducted an RNA sequencing analysis of three soybean chromosome segment substituted lines, one female parent and two derived lines with different chromosome-substituted segments of wild soybean and opposite nodulation patterns. By analyzing chromosome-linked differentially expressed genes in the substituted segments and quantitative trait loci (QTL)-assisted selection in the substituted-segment region, genes that may respond to type III effectors to mediate plant immunity-related signaling were identified. To narrow down the number of candidate genes, QTL assistant was used to identify the candidate region consistent with the substituted segments. Furthermore, one candidate gene, GmDRR1, was identified in the substituted segment. To investigate the role of GmDRR1 in symbiosis establishment, GmDRR1-overexpression and RNA interference soybean lines were constructed. The nodule number increased in the former compared with wild-type soybean. Additionally, the T3SS-regulated effectors appeared to interact with the GmDDR1 signaling pathway. This finding will allow the detection of T3SS-regulated effectors involved in legume-rhizobium interactions.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhanguo Zhang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yingnan Wen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Guolong Yu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jianan Zou
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shiyu Huang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jinhui Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jingyi Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jieqi Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lin Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chao Ma
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xueying Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Rongsheng Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Qingying Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jianyi Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Miaoxin Guo
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hanxi Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongxu Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhijun Sun
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lu Han
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongwei Jiang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, People's Republic of China
| | - Xiaoxia Wu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Nannan Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Jiamusi Branch of Heilongjiang Academy of Agricultural, Jiamusi, People's Republic of China
| | - Weiyao Zhang
- Suihua Branch of Heilongjiang Academy of Agricultural, Suihua, China, Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Zhengong Yin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Suihua Branch of Heilongjiang Academy of Agricultural, Suihua, China, Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Candong Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Jiamusi Branch of Heilongjiang Academy of Agricultural, Jiamusi, People's Republic of China
| | - Zhenbang Hu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhaoming Qi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chunyan Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Dawei Xin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
34
|
Ke YZ, Wu YW, Zhou HJ, Chen P, Wang MM, Liu MM, Li PF, Yang J, Li JN, Du H. Genome-wide survey of the bHLH super gene family in Brassica napus. BMC PLANT BIOLOGY 2020; 20:115. [PMID: 32171243 PMCID: PMC7071649 DOI: 10.1186/s12870-020-2315-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/27/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) gene family is one of the largest transcription factor families in plants and is functionally characterized in diverse species. However, less is known about its functions in the economically important allopolyploid oil crop, Brassica napus. RESULTS We identified 602 potential bHLHs in the B. napus genome (BnabHLHs) and categorized them into 35 subfamilies, including seven newly separated subfamilies, based on phylogeny, protein structure, and exon-intron organization analysis. The intron insertion patterns of this gene family were analyzed and a total of eight types were identified in the bHLH regions of BnabHLHs. Chromosome distribution and synteny analyses revealed that hybridization between Brassica rapa and Brassica oleracea was the main expansion mechanism for BnabHLHs. Expression analyses showed that BnabHLHs were widely in different plant tissues and formed seven main patterns, suggesting they may participate in various aspects of B. napus development. Furthermore, when roots were treated with five different hormones (IAA, auxin; GA3, gibberellin; 6-BA, cytokinin; ABA, abscisic acid and ACC, ethylene), the expression profiles of BnabHLHs changed significantly, with many showing increased expression. The induction of five candidate BnabHLHs was confirmed following the five hormone treatments via qRT-PCR. Up to 246 BnabHLHs from nine subfamilies were predicted to have potential roles relating to root development through the joint analysis of their expression profiles and homolog function. CONCLUSION The 602 BnabHLHs identified from B. napus were classified into 35 subfamilies, and those members from the same subfamily generally had similar sequence motifs. Overall, we found that BnabHLHs may be widely involved in root development in B. napus. Moreover, this study provides important insights into the potential functions of the BnabHLHs super gene family and thus will be useful in future gene function research.
Collapse
Affiliation(s)
- Yun-Zhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Yun-Wen Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Hong-Jun Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ping Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Mang-Mang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ming-Ming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
35
|
Mergaert P, Kereszt A, Kondorosi E. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants. THE PLANT CELL 2020; 32:42-68. [PMID: 31712407 PMCID: PMC6961632 DOI: 10.1105/tpc.19.00494] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Root nodules formed by plants of the nitrogen-fixing clade (NFC) are symbiotic organs that function in the maintenance and metabolic integration of large populations of nitrogen-fixing bacteria. These organs feature unique characteristics and processes, including their tissue organization, the presence of specific infection structures called infection threads, endocytotic uptake of bacteria, symbiotic cells carrying thousands of intracellular bacteria without signs of immune responses, and the integration of symbiont and host metabolism. The early stages of nodulation are governed by a few well-defined functions, which together constitute the common symbiosis-signaling pathway (CSSP). The CSSP activates a set of transcription factors (TFs) that orchestrate nodule organogenesis and infection. The later stages of nodule development require the activation of hundreds to thousands of genes, mostly expressed in symbiotic cells. Many of these genes are only active in symbiotic cells, reflecting the unique nature of nodules as plant structures. Although how the nodule-specific transcriptome is activated and connected to early CSSP-signaling is poorly understood, candidate TFs have been identified using transcriptomic approaches, and the importance of epigenetic and chromatin-based regulation has been demonstrated. We discuss how gene regulation analyses have advanced our understanding of nodule organogenesis, the functioning of symbiotic cells, and the evolution of symbiosis in the NFC.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Eva Kondorosi
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
36
|
Deng J, Zhu F, Liu J, Zhao Y, Wen J, Wang T, Dong J. Transcription Factor bHLH2 Represses CYSTEINE PROTEASE77 to Negatively Regulate Nodule Senescence. PLANT PHYSIOLOGY 2019; 181:1683-1703. [PMID: 31591150 PMCID: PMC6878008 DOI: 10.1104/pp.19.00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/23/2019] [Indexed: 05/12/2023]
Abstract
Legume-rhizobia symbiosis is a time-limited process due to the onset of senescence, which results in the degradation of host plant cells and symbiosomes. A number of transcription factors, proteases, and functional genes have been associated with nodule senescence; however, whether other proteases or transcription factors are involved in nodule senescence remains poorly understood. In this study, we identified an early nodule senescence mutant in Medicago truncatula, denoted basic helix-loop-helix transcription factor2 (bhlh2), that exhibits decreased nitrogenase activity, acceleration of plant programmed cell death (PCD), and accumulation of reactive oxygen species (ROS). The results suggest that MtbHLH2 plays a negative role in nodule senescence. Nodules of wild-type and bhlh2-TALEN mutant plants at 28 d postinoculation were used for transcriptome sequencing. The transcriptome data analysis identified a papain-like Cys protease gene, denoted MtCP77, that could serve as a potential target of MtbHLH2. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis demonstrated that MtbHLH2 directly binds to the promoter of MtCP77 to inhibit its expression. MtCP77 positively regulates nodule senescence by accelerating plant PCD and ROS accumulation. In addition, the expression of MtbHLH2 in the nodules gradually decreased from the meristematic zone to the nitrogen fixation zone, whereas the expression of MtCP77 showed enhancement. These results indicate that MtbHLH2 and MtCP77 have opposite functions in the regulation of nodule senescence. These results reveal significant roles for MtbHLH2 and MtCP77 in plant PCD, ROS accumulation, and nodule senescence, and improve our understanding of the regulation of the nodule senescence process.
Collapse
Affiliation(s)
- Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
37
|
Wu Z, Wang M, Yang S, Chen S, Chen X, Liu C, Wang S, Wang H, Zhang B, Liu H, Qin R, Wang X. A global coexpression network of soybean genes gives insights into the evolution of nodulation in nonlegumes and legumes. THE NEW PHYTOLOGIST 2019; 223:2104-2119. [PMID: 30977533 DOI: 10.1111/nph.15845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
A coexpression network is a powerful tool for revealing genes' relationship with many biological processes. Mass transcriptomic and genomic data from different plant species provide the foundation for understanding the evolution of nodulation across the Viridiplantae at a systematic level. We used weighted coexpression network analysis (WGCNA) to mine a nodule-related module (NRM) in Glycine max. Comparative genomic analysis of 78 green plant species revealed that NRM genes are recruited from different evolutionary nodes along with gene duplication events. A set of core coexpressed genes within legumes may play vital roles in regulating nodule environments essential for nitrogen fixation, including oxygen concentrations, sulfur transport, and iron homeostasis (such as GmCHY). The regulation of these genes occurred mainly at the transcription level, although some of them, such as sulfate transporters, may also undergo positive selection at protein level. We revealed that ancient orthologs and duplication events before the origin of legumes were preadapted for symbiosis. Conserved coregulated genes found within legumes paved the way for nodule formation and nitrogen fixation. These findings provide significant insights into the evolution of nodulation and indicate promising candidates for identifying other key components of legume nodulation and nitrogen fixation.
Collapse
Affiliation(s)
- Zhihua Wu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei Province, 430074, China
| | - Meirong Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Siyu Yang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Shengcai Chen
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xu Chen
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Chang Liu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Shixiang Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Haijiao Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei Province, 430074, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei Province, 430074, China
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
38
|
Pomraning KR, Collett JR, Kim J, Panisko EA, Culley DE, Dai Z, Deng S, Hofstad BA, Butcher MG, Magnuson JK. Transcriptomic analysis of the oleaginous yeast Lipomyces starkeyi during lipid accumulation on enzymatically treated corn stover hydrolysate. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:162. [PMID: 31289462 PMCID: PMC6593508 DOI: 10.1186/s13068-019-1510-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/19/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Efficient and economically viable production of biofuels from lignocellulosic biomass is dependent on mechanical and chemical pretreatment and enzymatic hydrolysis of plant material. These processing steps yield simple sugars as well as plant-derived and process-added organic acids, sugar-derived dehydration products, aldehydes, phenolics and other compounds that inhibit the growth of many microorganisms. Lipomyces starkeyi is an oleaginous yeast capable of robust growth on a variety of sugars and lipid accumulation on pretreated lignocellulosic substrates making it attractive as an industrial producer of biofuels. Here, we examined gene expression during batch growth and lipid accumulation in a 20-L bioreactor with either a blend of pure glucose and xylose or pretreated corn stover (PCS) that had been enzymatically hydrolyzed as the carbon sources. RESULTS We monitored sugar and ammonium utilization as well as biomass accumulation and found that growth of L. starkeyi is inhibited with PCS hydrolysate as the carbon source. Both acetic acid and furfural are present at concentrations toxic to L. starkeyi in PCS hydrolysate. We quantified gene expression at seven time-points for each carbon source during batch growth and found that gene expression is similar at physiologically equivalent points. Analysis of promoter regions revealed that gene expression during the transition to lipid accumulation is regulated by carbon and nitrogen catabolite repression, regardless of carbon source and is associated with decreased expression of the translation machinery and suppression of the cell cycle. We identified 73 differentially expressed genes during growth phase in the bioreactor that may be involved in detoxification of corn stover hydrolysate. CONCLUSIONS Growth of L. starkeyi is inhibited by compounds present in PCS hydrolysate. Here, we monitored key metabolites to establish physiologically equivalent comparisons during a batch bioreactor run comparing PCS hydrolysate and purified sugars. L. starkeyi's response to PCS hydrolysate is primarily at the beginning of the run during growth phase when inhibitory compounds are presumably at their highest concentration and inducing the general detoxification response by L. starkeyi. Differentially expressed genes identified herein during growth phase will aid in the improvement of industrial strains capable of robust growth on substrates containing various growth inhibitory compounds.
Collapse
Affiliation(s)
| | | | - Joonhoon Kim
- Pacific Northwest National Laboratory, Richland, WA USA
- Joint BioEnergy Institute, Emeryville, CA USA
| | | | | | - Ziyu Dai
- Pacific Northwest National Laboratory, Richland, WA USA
| | - Shuang Deng
- Pacific Northwest National Laboratory, Richland, WA USA
| | | | | | - Jon K. Magnuson
- Pacific Northwest National Laboratory, Richland, WA USA
- Joint BioEnergy Institute, Emeryville, CA USA
| |
Collapse
|
39
|
Dechorgnat J, Francis KL, Dhugga KS, Rafalski JA, Tyerman SD, Kaiser BN. Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize. BMC PLANT BIOLOGY 2019; 19:206. [PMID: 31109290 PMCID: PMC6528335 DOI: 10.1186/s12870-019-1768-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND In order to grow, plants rely on soil nutrients which can vary both spatially and temporally depending on the environment, the soil type or the microbial activity. An essential nutrient is nitrogen, which is mainly accessible as nitrate and ammonium. Many studies have investigated transport genes for these ions in Arabidopsis thaliana and recently in crop species, including Maize, Rice and Barley. However, in most crop species, an understanding of the participants in nitrate and ammonium transport across the soil plant continuum remains undefined. RESULTS We have mapped a non-exhaustive set of putative nitrate and ammonium transporters in maize. The selected transporters were defined based on previous studies comparing nitrate transport pathways conserved between Arabidopsis and Zea mays (Plett D et. al, PLOS ONE 5:e15289, 2010). We also selected genes from published studies (Gu R et. al, Plant and Cell Physiology, 54:1515-1524, 2013, Garnett T et. al, New Phytol 198:82-94, 2013, Garnett T et. al, Frontiers in Plant Sci 6, 2015, Dechorgnat J et. al, Front Plant Sci 9:531, 2018). To analyse these genes, the plants were grown in a semi-hydroponic system to carefully control nitrogen delivery and then harvested at both vegetative and reproductive stages. The expression patterns of 26 putative nitrogen transporters were then tested. Six putative genes were found not expressed in our conditions. Transcripts of 20 other genes were detected at both the vegetative and reproductive stages of maize development. We observed the expression of nitrogen transporters in all organs tested: roots, young leaves, old leaves, silks, cobs, tassels and husk leaves. We also followed the gene expression response to nitrogen starvation and resupply and uncovered mainly three expression patterns: (i) genes unresponsiveness to nitrogen supply; (ii) genes showing an increase of expression after nitrogen starvation; (iii) genes showing a decrease of expression after nitrogen starvation. CONCLUSIONS These data allowed the mapping of putative nitrogen transporters in maize at both the vegetative and reproductive stages of development. No growth-dependent expression was seen in our conditions. We found that nitrogen transporter genes were expressed in all the organs tested and in many cases were regulated by the availability of nitrogen supplied to the plant. The gene expression patterns in relation to organ specificity and nitrogen availability denote a speciality of nitrate and ammonium transporter genes and their probable function depending on the plant organ and the environment.
Collapse
Affiliation(s)
- Julie Dechorgnat
- University of Adelaide, School of Agriculture Food and Wine, 2B Hartley Grove, Urrbrae, SA 5064 Australia
- University of Sydney, School of Life and Environmental Sciences, 380 Werombi Road, Brownlow Hill, NSW 2570 Australia
| | - Karen L. Francis
- University of Adelaide, School of Agriculture Food and Wine, 2B Hartley Grove, Urrbrae, SA 5064 Australia
| | - Kanwarpal S. Dhugga
- Genetic Discovery Group, DuPont Pioneer, Johnston, IA 50131-1004 USA
- Present Address: Genetic Resources Group, International Center for Maize and Wheat Improvement (CIMMYT), El Batan, 56237 Texcoco, Mexico
| | - J. Antony Rafalski
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Building E353, Wilmington, DE 198803 USA
| | - Stephen D. Tyerman
- University of Adelaide, School of Agriculture Food and Wine, 2B Hartley Grove, Urrbrae, SA 5064 Australia
| | - Brent N. Kaiser
- University of Sydney, School of Life and Environmental Sciences, 380 Werombi Road, Brownlow Hill, NSW 2570 Australia
| |
Collapse
|
40
|
Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:1-35. [PMID: 30911887 DOI: 10.1007/978-3-030-13035-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.
Collapse
|
41
|
Mohammadi-Dehcheshmeh M, Niazi A, Ebrahimi M, Tahsili M, Nurollah Z, Ebrahimi Khaksefid R, Ebrahimi M, Ebrahimie E. Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1550. [PMID: 30483277 PMCID: PMC6240842 DOI: 10.3389/fpls.2018.01550] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/03/2018] [Indexed: 05/25/2023]
Abstract
Plant root symbiosis with Arbuscular mycorrhizal (AM) fungi improves uptake of water and mineral nutrients, improving plant development under stressful conditions. Unraveling the unified transcriptomic signature of a successful colonization provides a better understanding of symbiosis. We developed a framework for finding the transcriptomic signature of Arbuscular mycorrhiza colonization and its regulating transcription factors in roots of Medicago truncatula. Expression profiles of roots in response to AM species were collected from four separate studies and were combined by direct merging meta-analysis. Batch effect, the major concern in expression meta-analysis, was reduced by three normalization steps: Robust Multi-array Average algorithm, Z-standardization, and quartiling normalization. Then, expression profile of 33685 genes in 18 root samples of Medicago as numerical features, as well as study ID and Arbuscular mycorrhiza type as categorical features, were mined by seven models: RELIEF, UNCERTAINTY, GINI INDEX, Chi Squared, RULE, INFO GAIN, and INFO GAIN RATIO. In total, 73 genes selected by machine learning models were up-regulated in response to AM (Z-value difference > 0.5). Feature weighting models also documented that this signature is independent from study (batch) effect. The AM inoculation signature obtained was able to differentiate efficiently between AM inoculated and non-inoculated samples. The AP2 domain class transcription factor, GRAS family transcription factors, and cyclin-dependent kinase were among the highly expressed meta-genes identified in the signature. We found high correspondence between the AM colonization signature obtained in this study and independent RNA-seq experiments on AM colonization, validating the repeatability of the colonization signature. Promoter analysis of upregulated genes in the transcriptomic signature led to the key regulators of AM colonization, including the essential transcription factors for endosymbiosis establishment and development such as NF-YA factors. The approach developed in this study offers three distinct novel features: (I) it improves direct merging meta-analysis by integrating supervised machine learning models and normalization steps to reduce study-specific batch effects; (II) seven attribute weighting models assessed the suitability of each gene for the transcriptomic signature which contributes to robustness of the signature (III) the approach is justifiable, easy to apply, and useful in practice. Our integrative framework of meta-analysis, promoter analysis, and machine learning provides a foundation to reveal the transcriptomic signature and regulatory circuits governing Arbuscular mycorrhizal symbiosis and is transferable to the other biological settings.
Collapse
Affiliation(s)
- Manijeh Mohammadi-Dehcheshmeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | | | - Zahra Nurollah
- Department of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Reyhaneh Ebrahimi Khaksefid
- Department of Biotechnology, Shahrekord University, Shahrekord, Iran
- School of Agriculture Food and Wine, Department of Plant Science, The University of Adelaide, Adelaide, SA, Australia
| | - Mahdi Ebrahimi
- Max-Planck-Institute for Informatics, Saarbrucken, Germany
| | - Esmaeil Ebrahimie
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
- Faculty of Science and Engineering, School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
42
|
Duan F, Giehl RFH, Geldner N, Salt DE, von Wirén N. Root zone-specific localization of AMTs determines ammonium transport pathways and nitrogen allocation to shoots. PLoS Biol 2018; 16:e2006024. [PMID: 30356235 PMCID: PMC6218093 DOI: 10.1371/journal.pbio.2006024] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/05/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023] Open
Abstract
In plants, nutrient provision of shoots depends on the uptake and transport of nutrients across the root tissue to the vascular system. Nutrient delivery to the vasculature is mediated via the apoplastic transport pathway (ATP), which uses the free space in the cell walls and is controlled by apoplastic barriers and nutrient transporters at the endodermis, or via the symplastic transport pathway (STP). However, the relative importance of these transport routes remains elusive. Here, we show that the STP, mediated by the epidermal ammonium transporter 1;3 (AMT1;3), dominates the radial movement of ammonium across the root tissue when external ammonium is low, whereas apoplastic transport controlled by AMT1;2 at the endodermis prevails at high external ammonium. Then, AMT1;2 favors nitrogen (N) allocation to the shoot, revealing a major importance of the ATP for nutrient partitioning to shoots. When an endodermal bypass was introduced by abolishing Casparian strip (CS) formation, apoplastic ammonium transport decreased. By contrast, symplastic transport was increased, indicating synergism between the STP and the endodermal bypass. We further establish that the formation of apoplastic barriers alters the cell type–specific localization of AMTs and determines STP and ATP contributions. These results show how radial transport pathways vary along the longitudinal gradient of the root axis and contribute to nutrient partitioning between roots and shoots. Radial transport of nutrients from the soil to the vascular system of plant roots occurs via the symplastic transport pathway (STP) and apoplastic transport pathway (ATP). Nutrients move along the STP when crossing the plasma membrane of outer cells and moving to xylem through the cytoplasmic continuum formed by plasmodesmata. Nutrients following the ATP, in turn, initially move passively through the extracellular space but are eventually taken up by endodermal cells, in which Casparian strips (CSs) prevent further apoplastic movement. We assessed the contribution of these transport pathways to radial transport in roots and nutrient provision to shoots by expressing cell type–specific ammonium transporters in a CS-defective mutant. Our study reveals that i) symplastic transport is more efficient at low external ammonium supply; ii) when endodermal cells become sealed by the deposition of suberin lamellae, the expression of ammonium transporters shifts to cortical cells; and iii) apoplastic transport depends on a functional apoplastic barrier at the endodermis, favoring nitrogen (N) partitioning to shoots at high external ammonium.
Collapse
Affiliation(s)
- Fengying Duan
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr, Gatersleben, Germany
| | - Ricardo F. H. Giehl
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr, Gatersleben, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - David E. Salt
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr, Gatersleben, Germany
- * E-mail:
| |
Collapse
|
43
|
Garneau MG, Tan Q, Tegeder M. Function of pea amino acid permease AAP6 in nodule nitrogen metabolism and export, and plant nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5205-5219. [PMID: 30113690 PMCID: PMC6184819 DOI: 10.1093/jxb/ery289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/23/2018] [Indexed: 05/19/2023]
Abstract
Legumes fix atmospheric nitrogen through a symbiotic relationship with bacteroids in root nodules. Following fixation in pea (Pisum sativum L.) nodules, nitrogen is reduced to amino acids that are exported via the nodule xylem to the shoot, and in the phloem to roots in support of growth. However, the mechanisms involved in amino acid movement towards the nodule vasculature, and their importance for nodule function and plant nutrition, were unknown. We found that in pea nodules the apoplasmic pathway is an essential route for amino acid partitioning from infected cells to the vascular bundles, and that amino acid permease PsAAP6 is a key player in nitrogen retrieval from the apoplasm into inner cortex cells for nodule export. Using an miRNA interference (miR) approach, it was demonstrated that PsAAP6 function in nodules, and probably in roots, and affects both shoot and root nitrogen supply, which were strongly decreased in PsAAP6-miR plants. Further, reduced transporter function resulted in increased nodule levels of ammonium, asparagine, and other amino acids. Surprisingly, nitrogen fixation and nodule metabolism were up-regulated in PsAAP6-miR plants, indicating that under shoot nitrogen deficiency, or when plant nitrogen demand is high, systemic signaling leads to an increase in nodule activity, independent of the nodule nitrogen status.
Collapse
Affiliation(s)
- Matthew G Garneau
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Qiumin Tan
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
44
|
van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, Santuari L, Cao Q, Sharma T, Shen D, Roswanjaya Y, Wardhani TAK, Kalhor MS, Jansen J, van den Hoogen J, Güngör B, Hartog M, Hontelez J, Verver J, Yang WC, Schijlen E, Repin R, Schilthuizen M, Schranz ME, Heidstra R, Miyata K, Fedorova E, Kohlen W, Bisseling T, Smit S, Geurts R. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc Natl Acad Sci U S A 2018; 115:E4700-E4709. [PMID: 29717040 PMCID: PMC5960304 DOI: 10.1073/pnas.1721395115] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
Collapse
Affiliation(s)
- Robin van Velzen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Rens Holmer
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Luuk Rutten
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Arjan van Zeijl
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Wei Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Luca Santuari
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Qingqin Cao
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
- College of Biological Science and Engineering & Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Trupti Sharma
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Defeng Shen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Yuda Roswanjaya
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Titis A K Wardhani
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Maryam Seifi Kalhor
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Joelle Jansen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johan van den Hoogen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Berivan Güngör
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Marijke Hartog
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Jan Hontelez
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Jan Verver
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Wei-Cai Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Elio Schijlen
- Bioscience, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Rimi Repin
- Sabah Parks, 88806 Kota Kinabalu, Malaysia
| | - Menno Schilthuizen
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Malaysia
- Institute for Biology Leiden, Leiden University, 2333 BE, Leiden, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Kana Miyata
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Elena Fedorova
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Sandra Smit
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands;
| |
Collapse
|
45
|
Zhang J, Wang X, Lu Y, Bhusal SJ, Song Q, Cregan PB, Yen Y, Brown M, Jiang GL. Genome-wide Scan for Seed Composition Provides Insights into Soybean Quality Improvement and the Impacts of Domestication and Breeding. MOLECULAR PLANT 2018; 11:460-472. [PMID: 29305230 DOI: 10.1016/j.molp.2017.12.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/20/2017] [Accepted: 12/24/2017] [Indexed: 05/16/2023]
Abstract
The complex genetic architecture of quality traits has hindered efforts to modify seed nutrients in soybean. Genome-wide association studies were conducted for seed composition, including protein, oil, fatty acids, and amino acids, using 313 diverse soybean germplasm accessions genotyped with a high-density SNP array. A total of 87 chromosomal regions were identified to be associated with seed composition, explaining 8%-89% of genetic variances. The candidate genes GmSAT1, AK-HSDH, SACPD-C, and FAD3A of known function, and putative MtN21 nodulin, FATB, and steroid-5-α-reductase involved in N2 fixation, amino acid biosynthesis, and fatty acid metabolism were found at the major-effect loci. Further analysis of additional germplasm accessions indicated that these major-effect loci had been subjected to domestication or modern breeding selection, and the allelic variants and distributions were relevant to geographic regions. We also revealed that amino acid concentrations related to seed weight and to total protein had a different genetic basis. This helps uncover the in-depth genetic mechanism of the intricate relationships among the seed compounds. Thus, our study not only provides valuable genes and markers for soybean nutrient improvement, both quantitatively and qualitatively, but also offers insights into the alteration of soybean quality during domestication and breeding.
Collapse
Affiliation(s)
- Jiaoping Zhang
- Plant Science Department, South Dakota State University, Brookings, SD 57006, USA
| | - Xianzhi Wang
- Plant Science Department, South Dakota State University, Brookings, SD 57006, USA
| | - Yaming Lu
- Plant Science Department, South Dakota State University, Brookings, SD 57006, USA
| | - Siddhi J Bhusal
- Plant Science Department, South Dakota State University, Brookings, SD 57006, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Services (USDA-ARS), 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Perry B Cregan
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Services (USDA-ARS), 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Michael Brown
- Department of Natural Resource Management, South Dakota State University, Brookings, SD 57006, USA
| | - Guo-Liang Jiang
- Agricultural Research Station, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA.
| |
Collapse
|
46
|
Diédhiou I, Diouf D. Transcription factors network in root endosymbiosis establishment and development. World J Microbiol Biotechnol 2018; 34:37. [PMID: 29450655 DOI: 10.1007/s11274-018-2418-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022]
Abstract
Root endosymbioses are mutualistic interactions between plants and the soil microorganisms (Fungus, Frankia or Rhizobium) that lead to the formation of nitrogen-fixing root nodules and/or arbuscular mycorrhiza. These interactions enable many species to survive in different marginal lands to overcome the nitrogen-and/or phosphorus deficient environment and can potentially reduce the chemical fertilizers used in agriculture which gives them an economic, social and environmental importance. The formation and the development of these structures require the mediation of specific gene products among which the transcription factors play a key role. Three of these transcription factors, viz., CYCLOPS, NSP1 and NSP2 are well conserved between actinorhizal, legume, non-legume and mycorrhizal symbioses. They interact with DELLA proteins to induce the expression of NIN in nitrogen fixing symbiosis or RAM1 in mycorrhizal symbiosis. Recently, the small non coding RNA including micro RNAs (miRNAs) have emerged as major regulators of root endosymbioses. Among them, miRNA171 targets NSP2, a TF conserved in actinorhizal, legume, non-legume and mycorrhizal symbioses. This review will also focus on the recent advances carried out on the biological function of others transcription factors during the root pre-infection/pre-contact, infection or colonization. Their role in nodule formation and AM development will also be described.
Collapse
Affiliation(s)
- Issa Diédhiou
- Laboratoire Campus de Biotecnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Senegal.
| | - Diaga Diouf
- Laboratoire Campus de Biotecnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Senegal
| |
Collapse
|
47
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
48
|
Dechorgnat J, Francis KL, Dhugga KS, Rafalski JA, Tyerman SD, Kaiser BN. Root Ideotype Influences Nitrogen Transport and Assimilation in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:531. [PMID: 29740466 PMCID: PMC5928562 DOI: 10.3389/fpls.2018.00531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/05/2018] [Indexed: 05/02/2023]
Abstract
Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.
Collapse
Affiliation(s)
- Julie Dechorgnat
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW, Australia
| | - Karen L. Francis
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | | | - J. A. Rafalski
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Wilmington, DE, United States
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Brent N. Kaiser
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW, Australia
- *Correspondence: Brent N. Kaiser,
| |
Collapse
|
49
|
Santi C, Molesini B, Guzzo F, Pii Y, Vitulo N, Pandolfini T. Genome-Wide Transcriptional Changes and Lipid Profile Modifications Induced by Medicago truncatula N5 Overexpression at an Early Stage of the Symbiotic Interaction with Sinorhizobium meliloti. Genes (Basel) 2017; 8:E396. [PMID: 29257077 PMCID: PMC5748714 DOI: 10.3390/genes8120396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022] Open
Abstract
Plant lipid-transfer proteins (LTPs) are small basic secreted proteins, which are characterized by lipid-binding capacity and are putatively involved in lipid trafficking. LTPs play a role in several biological processes, including the root nodule symbiosis. In this regard, the Medicago truncatula nodulin 5 (MtN5) LTP has been proved to positively regulate the nodulation capacity, controlling rhizobial infection and nodule primordia invasion. To better define the lipid transfer protein MtN5 function during the symbiosis, we produced MtN5-downregulated and -overexpressing plants, and we analysed the transcriptomic changes occurring in the roots at an early stage of Sinorhizobium meliloti infection. We also carried out the lipid profile analysis of wild type (WT) and MtN5-overexpressing roots after rhizobia infection. The downregulation of MtN5 increased the root hair curling, an early event of rhizobia infection, and concomitantly induced changes in the expression of defence-related genes. On the other hand, MtN5 overexpression favoured the invasion of the nodules by rhizobia and determined in the roots the modulation of genes that are involved in lipid transport and metabolism as well as an increased content of lipids, especially galactolipids that characterize the symbiosome membranes. Our findings suggest the potential participation of LTPs in the synthesis and rearrangement of membranes occurring during the formation of the infection threads and the symbiosome membrane.
Collapse
Affiliation(s)
- Chiara Santi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | - Barbara Molesini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano BZ, Italy.
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | | |
Collapse
|
50
|
Giehl RFH, Laginha AM, Duan F, Rentsch D, Yuan L, von Wirén N. A Critical Role of AMT2;1 in Root-To-Shoot Translocation of Ammonium in Arabidopsis. MOLECULAR PLANT 2017; 10:1449-1460. [PMID: 29032248 DOI: 10.1016/j.molp.2017.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/01/2017] [Accepted: 10/01/2017] [Indexed: 05/24/2023]
Abstract
Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply, the transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to 15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amt1;1 amt1;2 amt1;3 amt2;1 quadruple mutant (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced 15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency, proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar substrate concentrations. Our results indicate that in addition to contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium, depending on its cell-type-specific expression in response to the plant nutritional status and to local ammonium gradients.
Collapse
Affiliation(s)
- Ricardo F H Giehl
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Alberto M Laginha
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Fengying Duan
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Lixing Yuan
- Key Lab of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|