1
|
Lamichhane T, Su H, Huang X, Wang N. Exploration of the Interactions Between Xanthomonas citri subsp. citri-Agrobacterium-Citrus to Improve Agrobacterium-Mediated Transient Expression in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025:MPMI12240164R. [PMID: 39889224 DOI: 10.1094/mpmi-12-24-0164-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Agrobacterium-mediated transient expression (AMTE) is an important tool in plant genetics studies and biotechnology. AMTE remains problematic in citrus and many plant species. Previous research has shown that pretreatment of citrus leaves with Xanthomonas citri subsp. citri (Xcc), which causes citrus canker, significantly improves the AMTE efficacy. Here, we have shown that Xcc promotes AMTE mainly through triggering cell division and upregulating plant cell wall-degrading enzymes. We demonstrate that Xcc improves AMTE via PthA, a transcription activator-like effector known to trigger cell division in citrus, and mutation of pthA4 abolished the promoting effect of Xcc. Mutation of the effector (PthA4)-binding element in the promoter region and coding region of CsLOB1, which is known to be directly activated by PthA4, significantly reduced Xcc promotion of AMTE. Mutation of PthA4 significantly reduced the expression of cell division-related genes (CDKA, CDKB1-2, and CDKB2-2) compared with wild-type Xcc and the complemented strain. Cell division inhibitor mimosine but not colchicine also significantly decreased Xcc promotion of AMTE. In addition, PthA4 is known to upregulate plant growth hormones auxin (indole-3-acetic acid), gibberellin, and cytokinin, as well as cell wall-degrading enzymes (e.g., cellulase). Exogenous application of indole-3-acetic acid, cytokinin, and cellulase but not gibberellin significantly improved AMTE in leaves of sweet orange, pummelo, Meiwa kumquat, lucky bamboo, and rose mallow. Our study provides a mechanistic understanding of how Xcc promotes AMTE and develops practical measures to improve AMTE via pretreatment with plant hormones (i.e., auxin and cytokinin) and cellulase. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tirtha Lamichhane
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, U.S.A
- Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, U.S.A
| | - Hang Su
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, U.S.A
| | - Xiaoen Huang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, U.S.A
- Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, U.S.A
| |
Collapse
|
2
|
Im JH, Choi N, Lee J, Jung MY, Park SR, Hwang DJ. Transcription activator-like effectors of Xanthomonas oryzae pv. oryzae hijack host transcriptional regulation through OsWRKYs. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40432507 DOI: 10.1111/jipb.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Transcription activator-like effectors (TALEs) mimic eukaryotic transcriptional activators and translocate into host plant cells via the bacterial type III secretion system (T3SS) during pathogenic interactions. They play a crucial role in disease development by regulating host genes. Despite this, the regulatory mechanisms by which TALEs control OsWRKY transcription factors (TFs) remain poorly understood. In this study, we show that two TALEs from Xanthomonas oryzae pv. oryzae (Xoo) individually modulate two OsWRKY TFs, resulting in increased susceptibility and reduced host defense. Specifically, Xoo1219 and Xoo2145 activate the expression of OsWRKY104 and OsWRKY55, respectively, through direct interactions. OsWRKY104 increases the susceptibility to Xoo by activating OsSWEET11 and OsSWEET14, while OsWRKY55 suppresses host defense against Xoo by directly regulating OsWRKY62. These findings suggest that TALEs hijack the host's OsWRKY TFs to create a favorable environment for bacterial survival.
Collapse
Affiliation(s)
- Jong Hee Im
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Korea
- Interdisciplinary Graduate Programme in Advanced Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Korea
- Bio-Health Materials Core Facility Center, Jeju, National University, Jeju, 63243, Korea
| | - Naeyeoung Choi
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Korea
- Department of Plant Pathology, The Ohio State University, Columbus, 43210, Ohio, USA
| | - Jinjeong Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advanced Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Korea
- Bio-Health Materials Core Facility Center, Jeju, National University, Jeju, 63243, Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Korea
- Mediprogen Inc, 1447 Pyeongchang-gun, 25354, Korea
| |
Collapse
|
3
|
Lei M, Wang X, Chen K, Wei Q, Zhou M, Chen G, Su S, Tai Y, Zhuang K, Li D, Liu M, Zhang S, Wang Y. Sugar transporters: mediators of carbon flow between plants and microbes. FRONTIERS IN PLANT SCIENCE 2025; 16:1536969. [PMID: 40308299 PMCID: PMC12042665 DOI: 10.3389/fpls.2025.1536969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
Pathogens and symbiotic microorganisms significantly influence plant growth and crop productivity. Enhancing crop disease resistance and maximizing the beneficial role of symbiotic microorganisms in agriculture constitute critical areas of scientific investigation. A fundamental aspect of plant-microorganisms interactions revolves around nutritional dynamics, characterized by either "food shortage" or "food supply" scenarios. Notably, pathogenic and symbiotic microorganisms predominantly utilize photosynthetic sugars as their primary carbon source during host colonization. This phenomenon has generated substantial interest in the regulatory mechanisms governing sugar transport and redistribution at the plant-microorganism interface. Sugar transporters, which primarily mediate the allocation of sugars to various sink organs, have emerged as crucial players in plant-pathogen interactions and the establishment of beneficial symbiotic associations. This review systematically categorized plant sugar transporters and highlighted their functional significance in mediating plant interactions with pathogenic and beneficial microorganisms. Furthermore, we synthesized recent advancements in understanding the molecular regulatory mechanisms of these transporters and identified key scientific questions warranting further investigation. Elucidating the roles of sugar transporters offers novel strategies for enhancing crop health and productivity, thereby contributing to agricultural sustainability and global food security.
Collapse
Affiliation(s)
- Mengyu Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodi Wang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kuan Chen
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Miaomiao Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Gong Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuai Su
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yuying Tai
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kexin Zhuang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dexiao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Mengjuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Senlei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Youning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Dai W, Li Y, Chen Z, He F, Wang H, Peng J, Liu K, Wang H, An X, Zhao S. Gibberellin Regulates LBD38-1 Responses to Xanthomonas arboricola pv. juglandis Infection in Walnut Bacterial Blight Pathogenesis. BMC Genomics 2025; 26:370. [PMID: 40229735 PMCID: PMC11995547 DOI: 10.1186/s12864-025-11518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Plant responses to biotic and abiotic stresses are complex processes. Previous studies have shown that the LBD gene family plays important roles in plant growth and development as well as in plant defense against biotic and abiotic stresses. The expression of LBD genes was investigated in walnuts under biotic and abiotic stresses, revealing that LBD38-1 may be a key gene in the plant stress response. This study provides new insights into the roles of LBD genes in plant responses to biotic stress. RESULTS Forty-nine members of the JrLBD gene family were identified in the walnut genome and classified into six subfamilies. Comparative homology analysis through phylogenetic trees revealed that the presence of Group I-a and Group VI plays an important role in resistance to stressors. The expression of walnut LBD genes under cold-temperature, high-temperature, mechanical damage, and biotic stresses was analyzed via transcriptome sequencing, and the expression of JrLBD38-1 in the Group VI subfamily was particularly prominent. According to transcriptome profile analysis, JrLBD38-1 is highly expressed in different tissues of walnuts, suggesting that it plays a regulatory role in the growth and development of different tissues. The function of the Gibberellin (GA) response element in the JrLBD38-1 promoter was further analyzed and verified. These findings confirmed that GA regulated JrLBD38-1 expression changes during Xanthomonas arboricola pv. juglandis infestation of walnut leaves. CONCLUSION Forty-nine walnut JrLBDs were identified and classified into six subfamilies. JrLBD38-1 has GA-inducible expression, is regulated by GA under pathogenic bacterial stress, and is involved in the response to biotic stress. This function of JrLBD38-1 provides new insights into walnut disease resistance mechanisms.
Collapse
Affiliation(s)
- Wenqiang Dai
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Yaoling Li
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Zhenghan Chen
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Fuqiang He
- College of Biochemical and Environmental Engineering, Baoding University, Baoding, 071001, China
| | - Hui Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Jiali Peng
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Kai Liu
- College of Biological Engineering, Binzhou Polytechnic, Binzhou, 256603, China
| | - Hongxia Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Xiuhong An
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Shugang Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
5
|
Yan Y, Tang X, Zhu Z, Yin K, Zhang Y, Xu Z, Xu Q, Zou L, Chen G. Two TAL effectors of Xanthomonas citri promote pustule formation by directly repressing the expression of GRAS transcription factor in citrus. MOLECULAR HORTICULTURE 2025; 5:30. [PMID: 40083016 PMCID: PMC11907795 DOI: 10.1186/s43897-024-00131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/02/2024] [Indexed: 03/16/2025]
Abstract
Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), poses a significant threat to the citrus industry. Xcc employs the transcription activator-like effector (TALE) PthA4 to target the major susceptibility (S) gene CsLOB1 in citrus, promoting host susceptibility to bacterial canker. However, the contribution of other Xcc TALEs, aside from PthA4, to virulence remains underexplored. In this study, we characterized two PthA1 variants, designated PthA5 and PthA6, which facilitate Xcc infection in susceptible citrus species by promoting the formation of hypertrophy and hyperplasia symptoms. Both PthA5 and PthA6 bind directly to effector-binding elements (EBEs) in the promoter of CsGRAS9, suppressing its expression. CsGRAS9 negatively regulates Xcc growth in citrus and contributes to CBC resistance. Notably, natural variations in the EBEs of the FhGRAS9 promoter, a homolog of CsGRAS9 in Hong Kong kumquat, prevent Xcc from affecting FhGRAS9 expression. Using the PTG/Cas9 system, we generated proCsGRAS9-edited sweet orange lines #18-2 and #23, which contain 86-bp and 62-bp deletions in the EBE regions of the CsGRAS9 promoter. These mutant lines showed enhanced CsGRAS9 expression and increased resistance to CBC during Xcc infection. Several GA-related genes and CsTAC1, regulated by CsGRAS9, were also identified. This is the first report that TALEs act as repressors of a resistance gene to confer host susceptibility.
Collapse
Affiliation(s)
- Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Xiaomei Tang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Anhui Engineering Laboratory for Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhongfeng Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Ke Yin
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Yikun Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China.
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| |
Collapse
|
6
|
Gao H, Chen M, Jin N, Ye L, Zhang G, Shen Q, Xu Z. A comprehensive analytical method 'Regulatome' revealed a novel pathway for aerenchyma formation under waterlogging in wheat. PHYSIOLOGIA PLANTARUM 2025; 177:e70157. [PMID: 40083176 DOI: 10.1111/ppl.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Waterlogging is a major abiotic stress restricting crop yield globally, and aerenchyma formation is one of the most important adaptive strategies in waterlogging-tolerant plants. However, the conservation of this process remains poorly understood, and additional pathways are yet to be identified. Here, physiological, anatomical, transcriptomic, and metabolomic analyses were conducted on wheat seedlings under normal and waterlogging conditions. Waterlogging caused growth inhibition and physiological damage, as well as induced aerenchyma formation in roots. A total of 10,346 differentially expressed genes and 3,419 differential metabolites were identified in roots. In addition to the AP2/ERF (APETALA2/ETHYLENE RESPONSIVE FACTOR) gene family, integrating analyses also revealed the role of LOB/AS2 (LATERAL ORGAN BOUNDARIES/ASYMMETRIC LEAVES2) in aerenchyma formation under waterlogging. It was revealed that the classical pathway of aerenchyma formation mediated by ethylene response, as well as synergy of calcium ion and reactive oxygen species, was deeply conserved in both monocots and eudicots during 160 million years of evolution through gene co-expression networks of cross-species. The newly introduced concept 'Regulatome' supported the classical pathway of aerenchyma formation, with a proposed model of the jasmonic acid signalling pathway involved in waterlogging, suggesting its usefulness in gene identification and function exploration. These findings provide a novel insight into the regulatory mechanisms of aerenchyma formation and breeding approaches for developing wheat cultivars with high waterlogging tolerance.
Collapse
Affiliation(s)
- Hao Gao
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Mingjiong Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Nanfei Jin
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lingzhen Ye
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Zhengyuan Xu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| |
Collapse
|
7
|
Liu S, Xu Y, Yang K, Huang Y, Lu Z, Chen S, Gao X, Xiao G, Chen P, Zeng X, Wang L, Zheng W, Liu Z, Liao G, He F, Liu J, Wan P, Ding F, Ye J, Jiao W, Chai L, Pan Z, Zhang F, Lin Z, Zan Y, Guo W, Larkin RM, Xie Z, Wang X, Deng X, Xu Q. Origin and de novo domestication of sweet orange. Nat Genet 2025; 57:754-762. [PMID: 40045092 PMCID: PMC11906365 DOI: 10.1038/s41588-025-02122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Sweet orange is cultivated worldwide but suffers from various devastating diseases because of its monogenetic background. The elucidation of the origin of a crop facilitates the domestication of new crops that may better cope with new challenges. Here we collected and sequenced 226 citrus accessions and assembled telomere-to-telomere phased diploid genomes of sweet orange and sour orange. On the basis of a high-resolution haplotype-resolved genome analysis, we inferred that sweet orange originated from a sour orange × mandarin cross and confirmed this model using artificial hybridization experiments. We identified defense-related metabolites that potently inhibited the growth of multiple industrially important pathogenic bacteria. We introduced diversity to sweet orange, which showed wide segregation in fruit flavor and disease resistance and produced canker-resistant sweet orange by selecting defense-related metabolites. Our findings elucidate the origin of sweet orange and de novo domesticated disease-resistant sweet oranges, illuminating a strategy for the rapid domestication of perennial crops.
Collapse
Affiliation(s)
- Shengjun Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Kun Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zhihao Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Shulin Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Xiang Gao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Gongao Xiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Peng Chen
- Horticulture Institute, Hunan Academy of Agricultural Sciences, Changsha, P. R. China
| | - Xiuli Zeng
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station, Ministry of Agriculture and Rural Affairs, Lhasa, P. R. China
| | - Lun Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Weikang Zheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Zishuang Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Guanglian Liao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Fa He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Junjie Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Pengfei Wan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Wenbiao Jiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zhiyong Pan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Fei Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zongcheng Lin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yanjun Zan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, P. R. China
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
8
|
Zhang J, Liu L, Dong D, Xu J, Li H, Deng Q, Zhang Y, Huang W, Zhang H, Guo YD. The transcription factor SlLBD40 regulates seed germination by inhibiting cell wall remodeling enzymes during endosperm weakening. PLANT PHYSIOLOGY 2025; 197:kiaf022. [PMID: 39823429 DOI: 10.1093/plphys/kiaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Uniform seed germination is crucial for consistent seedling emergence and efficient seedling production. In this study, we identified a seed-expressed protein in tomato (Solanum lycopersicum), lateral organ boundaries domain 40 (SlLBD40), that regulates germination speed. CRISPR/Cas9-generated SlLBD40 knockout mutants exhibited faster germination due to enhanced seed imbibition, independent of the seed coat. The expression of SlLBD40 was induced during the imbibition process, particularly in the micropylar endosperm, suggesting its role in endosperm weakening. Gene ontology analysis of RNA-seq data indicated that differentially expressed genes were enriched in cell wall-related processes. SlLBD40 directly targeted genes encoding cell wall remodeling enzymes implicated in endosperm weakening, including expansin 6 (SlEXP6), xyloglucan endotransglucosylase/hydrolase 23 (SlXTH23), and endo-β-mannanase 1 (SlMAN1). Our findings shed light on the role of endosperm weakening in regulating seed germination and propose potential gene targets for improving germination in species constrained by endosperm strength.
Collapse
Affiliation(s)
- Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiayi Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongxin Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qilin Deng
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yan Zhang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Haijun Zhang
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Chen L, Bin M, Lin J, Shen W, Zhang X. Characterization of MPK family members in the genus Citrus (Rutaceae) and analysis of the function of AbMPK13 in the response to citrus canker in Atalantia buxifolia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109418. [PMID: 39708698 DOI: 10.1016/j.plaphy.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Citrus bacterial canker has deleterious effects on global citrus production. The mitogen-activated protein kinase (MAPK) signaling cascade regulates plant defense against pathogen infection. Here, we identified 11 MAPKs in Atalantia buxifolia, a wild citrus species with high stress tolerance. Phylogenetic and gene structure analysis of the identified MAP kinases (MPKs) was conducted, and conserved motifs were identified. MPK expression was altered in Xanthomonas citri subsp. citri (Xcc)-resistant Atalantia buxifolia and Xcc-sensitive sweet orange after Xcc infection. AbMPK13 expression was significantly up-regulated after Xcc infection. AbMPK13 was localized to the cytoplasm, and its overexpression enhanced the resistance of sweet orange to Xcc and activated the salicylic acid (SA) signaling pathway. These findings clarify the role of MPKs in the citrus canker resistance of A. buxifolia.
Collapse
Affiliation(s)
- Lijuan Chen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China
| | - Minliang Bin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China; College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jue Lin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China
| | - Wenzhong Shen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China
| | - Xinxin Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Xiao YX, Xiao C, Tong Z, He XJ, Wang ZQ, Zhang HY, Qiu WM. Four MES genes from calamondin ( Citrofortunella microcarpa) regulated citrus bacterial canker resistance through the plant hormone pathway. FRONTIERS IN PLANT SCIENCE 2025; 15:1513430. [PMID: 39902200 PMCID: PMC11788333 DOI: 10.3389/fpls.2024.1513430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025]
Abstract
Citrus bacterial canker (CBC) disease, caused by Xanthomonas citri subsp. citri (Xcc), is one of the major diseases that seriously endanger citrus production. Citrus regulates the balance of endogenous plant hormones to resist CBC through multiple synthetic pathways, including the demethylation pathways of methyl salicylate (MeSA), methyl jasmonate (MeJA) and methyl indole-3-acetic acid (MeIAA). Here, four methylesterase (MES) genes, MES1.1, MES17.3, MES10.2, and MES1.5 were screened in the transcriptomes of CBC-resistant and CBC-susceptible varieties after Xcc inoculation. Among these MES genes, the expression levels of MES10.2, MES1.1, and MES1.5 were up-regulated in CBC-resistant varieties, while MES17.3 was down-regulated in both CBC-resistant and susceptible varieties. Subcellular localization analysis showed that the four MES-encoding proteins were localized in the cytoplasm. Overexpression of CmMES1.1 and CmMES1.5 from calamondin (Citrofortunella microcarpa) significantly enhanced CBC resistance and increased the salicylic acid (SA) content in calamondin. Conversely, overexpression of CmMES10.2 and CmMES17.3 significantly reduced CBC resistance and increased the contents of jasmonic acid (JA) and indole-3-acetic acid (IAA), respectively. We concluded that the resistant varieties confer CBC-resistance by regulating the expression of CmMES1.1 and CmMES1.5 to increase SA content, and regulating CmMES10.2 and CmMES17.3 to inhibit the synthesis of JA and IAA, respectively. Their ability to regulate the endogenous SA, JA and IAA content through the demethylation pathway was an attractive breeding target for conferring CBC resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen-Ming Qiu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
11
|
Li Y, Lou H, Fu H, Su H, Hao C, Luo J, Cai N, Jin Y, Han J, Deng Z, Cao Y, Ma X. Identifying the role of cellulase gene CsCEL20 upon the infection of Xanthomonas citri subsp. citri in citrus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:10. [PMID: 39781329 PMCID: PMC11704107 DOI: 10.1007/s11032-024-01531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Citrus canker is a devastating disease caused by Xanthomonas citri subsp. citri (Xcc), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene CsLOB1, resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to Xcc remains elusive. This study identified CsCEL20 as a target gene positively regulated by CsLOB1. Cell expansion and cell wall degradation were observed in sweet orange leaves after Xcc infection. A total of 69 cellulase genes were retrieved within the Citrus sinensis genome, comprising 40 endoglucanase genes and 29 glucosidase genes. Transcriptomic analysis revealed that expression levels of CsCEL8, CsCEL9, CsCEL20, and CsCEL26 were induced by Xcc invasion in sweet orange leaves, but not in the resistant genotype Citron C-05. Among them, CsCEL20 exhibited the highest expression level, with an over 430-fold increase following Xcc infection. Additionally, RT-qPCR analysis confirmed that CsCEL20 expression was induced in susceptible genotypes (Sweet orange, Danna citron, Lemon) upon Xcc invasion, but not in resistant genotypes (Citron C-05, Aiguo citron, American citron). A Single-Nucleotide Polymorphism (SNP) at -423 bp was identified in the CEL20 promoters and exhibits a difference between eight susceptible citrus genotypes and three resistant ones. Moreover, CsCEL20 expression was upregulated in CsLOB1-overexpression transgenic lines compared to the wild type. Dual-luciferase reporter assays indicated that CsLOB1 can target the -505 bp to -168 bp region of CsCEL20 promoter to trans-activate its expression. These findings suggest that CsCEL20 may function as a candidate gene for citrus canker development and may be a promising target for biotechnological breeding of Xcc-resistant citrus genotypes. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01531-3.
Collapse
Affiliation(s)
- Yi Li
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Huijie Lou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Hongyan Fu
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Hanying Su
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Chenxing Hao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Jianming Luo
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Nan Cai
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Yan Jin
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Jian Han
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Ziniu Deng
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- Nanling Institute of Citrus Industry, Chenzhou, 423000 China
| | - Yunlin Cao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Xianfeng Ma
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
12
|
Ouyang Z, Wang X, Peng X, Zhong L, Zeng W, Huang T, Li R. Transcriptomic analysis reveals differential transcriptional regulation underlying Citrus Bacterial Canker (CBC) tolerance in Citrus sinensis. BMC Genomics 2024; 25:1136. [PMID: 39587469 PMCID: PMC11587780 DOI: 10.1186/s12864-024-11070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
The sustainable development of the citrus industry is greatly affected by citrus canker, an important bacterial disease. To explore the transcriptional regulatory mechanism of citrus resistance to canker disease, this study used the susceptible Citrus sinensis cv. 'Newhall' and its citrus canker-resistant bud mutation variety 'Longhuitian' (LHT) as materials. Through analysing the variances in leaf phenotypes between Newhall and LHT, as well as the variations in their transcriptional expression under Xanthomonas citri subsp. citri (Xcc) inoculation, our study concluded that LHT displays markedly greater resistance to Xcc compared to Newhall. Additionally, the spongy parenchyma of LHT leaves is significantly thicker than that of Newhall, and the stomatal number is significantly higher in LHT leaves, while the length and width of individual stomata in LHT leaves are significantly smaller than those in Newhall. RNA-seq analysis indicates that the differentially expressed genes between LHT and Newhall are involved in biotic stress-related biological processes, secondary metabolite biosynthesis, as well as phytohormone signalling pathways. Furthermore, significant differences were observed in reactive oxygen metabolism and phenylalanine metabolism pathways. The findings of our study provide data support for a deeper understanding of the citrus-Xcc interactions and offer valuable clues for unravelling citrus resistance to citrus canker.
Collapse
Affiliation(s)
- Zhigang Ouyang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, 341000, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Xi Peng
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Leijian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Wei Zeng
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Tongqi Huang
- Junping Fruit Industry Development Co., Ltd, Ganzhou, 341000, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China.
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
13
|
Long Q, Zhang L, Zhu T, Zhao S, Zou C, Xu L, He Y, Chen S, Zou X. Competitive control of CsNCED1-1 by CsLOB1 and CsbZIP40 triggers susceptibility to citrus canker. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1625-1642. [PMID: 39427329 DOI: 10.1111/tpj.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Pustule formation is pivotal for the development of the Xanthomonas citri subsp. citri (Xcc)-induced citrus canker disease (CCD). Although our previous study demonstrated that the exogenous application of abscisic acid (ABA) facilitated pustule formation induced by Xcc, the precise mechanism remains elusive. The 9-cis-epoxycarotenoid dioxygenase (NCED) is a crucial enzyme in ABA biosynthesis. This study explored the role of citrus CsNCED1-1 in CCD resistance through overexpression and RNA interference of CsNCED1-1 in Wanjincheng orange (Citrus sinensis). Our findings indicated that CsNCED1-1 negatively modulated CCD resistance by fostering ABA accumulation, concomitant with an increase in jasmonic acid (JA) and a decrease in salicylic acid (SA). Plants overexpressing CsNCED1-1 displayed shortened leaves with smaller and denser stomata along with irregular and increased palisade cells. CsLOB1 is a known susceptibility gene for CCD, and CsbZIP40 positively influences resistance to this disease. We further confirmed that CsLOB1 promoted and CsbZIP40 suppressed the transcription of CsNCED1-1 by directly binding to the CsNCED1-1 promoter. Notably, CsbZIP40 and CsLOB1 showed a competitive relationship in the regulation of CsNCED1-1 expression, with CsbZIP40 exhibiting greater competitiveness. Overall, our findings highlight that CsNCED1-1 promotes susceptibility to citrus canker by disrupting JA- and SA-mediated defense mechanisms and triggering the proliferation and remodeling of palisade cells, thereby facilitating pathogen colonization and pustule formation. This study offers novel insights into the regulatory mechanisms underlying citrus canker resistance and the role of CsNCED1-1 in citrus.
Collapse
Affiliation(s)
- Qin Long
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Lehuan Zhang
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Tianxiang Zhu
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Shuyang Zhao
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Changyu Zou
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Lanzhen Xu
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Yongrui He
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| |
Collapse
|
14
|
Yu Q, He H, Xian B, Zhang C, Zhong X, Liu Y, Zhang M, Li M, He Y, Chen S, Li Q. The wall-associated receptor-like kinase CsWAKL01, positively regulated by the transcription factor CsWRKY53, confers resistance to citrus bacterial canker via regulation of phytohormone signaling. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5805-5818. [PMID: 38820225 DOI: 10.1093/jxb/erae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
Citrus bacterial canker (CBC) is a disease that poses a major threat to global citrus production and is caused by infection with Xanthomonas citri subsp. citri (Xcc). Wall-associated receptor-like kinase (WAKL) proteins play an important role in shaping plant resistance to various bacterial and fungal pathogens. In a previous report, CsWAKL01 was identified as a candidate Xcc-inducible gene found to be up-regulated in CBC-resistant citrus plants. However, the functional role of CsWAKL01 and the mechanisms whereby it may influence resistance to CBC have yet to be clarified. Here, CsWAKL01 was found to localize to the plasma membrane, and the overexpression of the corresponding gene in transgenic sweet oranges resulted in pronounced enhancement of CBC resistance, whereas its knockdown had the opposite effect. Mechanistically, the effect of CsWAKL01 was linked to its ability to reprogram jasmonic acid, salicylic acid, and abscisic acid signaling activity. CsWRKY53 was further identified as a transcription factor capable of directly binding to the CsWAKL01 promoter and inducing its transcriptional up-regulation. CsWRKY53 silencing conferred greater CBC susceptibility to infected plants. Overall, these data support a model wherein CsWRKY53 functions as a positive regulator of CsWAKL01 to enhance resistance to CBC via the reprogramming of phytohormone signaling. Together these results offer new insights into the mechanisms whereby WAKLs shape phytopathogen resistance while underscoring the potential value of targeting the CsWRKY53-CsWAKL01 axis when seeking to breed CBC-resistant citrus plant varieties.
Collapse
Affiliation(s)
- Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Houzheng He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xin Zhong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yiqi Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Man Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
15
|
Rong M, Gao SX, Wen D, Xu YH, Wei JH. The LOB domain protein, a novel transcription factor with multiple functions: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108922. [PMID: 39038384 DOI: 10.1016/j.plaphy.2024.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) protein, named for its LATERAL ORGAN BOUNDARIES (LOB) domain, is a member of a class of specific transcription factors commonly found in plants and is absent from all other groups of organisms. LBD TFs have been systematically identified in about 35 plant species and are involved in regulating various aspects of plant growth and development. However, research on the signaling network and regulatory functions of LBD TFs is insufficient, and only a few members have been studied. Moreover, a comprehensive review of these existing studies is lacking. In this review, the structure, regulatory mechanism and function of LBD TFs in recent years were reviewed in order to better understand the role of LBD TFs in plant growth and development, and to provide a new perspective for the follow-up study of LBD TFs.
Collapse
Affiliation(s)
- Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shi-Xi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dong Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
16
|
Liu H, Liu J, Si X, Zhang S, Zhang L, Tong X, Yu X, Jiang X, Cheng Y. Sugar Transporter HmSWEET8 Cooperates with HmSTP1 to Enhance Powdery Mildew Susceptibility in Heracleum moellendorffii Hance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2302. [PMID: 39204738 PMCID: PMC11360598 DOI: 10.3390/plants13162302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The powdery mildew caused by Eeysiphe heraclei is a serious concern in Heracleum moellendorffii Hance. Therefore, exploring the mechanisms underlying sugar efflux from host cells to the fungus during the plant-fungus interaction showed great significance. The study successfully cloned HmSWEET8 and HmSTP1 genes based on RNA-seq technology. The complementation assays in yeast EBY.VW4000 found HmSWEET8 and HmSTP1 transporting hexose. Over-expressing or silencing HmSWEET8 in H. moellendorffii leaves increased or decreased powdery mildew susceptibility by changing glucose concentration in infective sites. Meanwhile, over-expressing HmSTP1 in H. moellendorffii leaves also increased powdery mildew susceptibility by elevating the glucose content of infective areas. Additionally, HmSTP1 expression was up-regulated obviously in HmSWEET8 over-expressed plants and inhibited significantly in HmSWEET8 silenced plants. Co-expressing HmSWEET8 and HmSTP1 genes significantly increased powdery mildew susceptibility compared with over-expressed HmSWEET8 or HmSTP1 plants alone. The results demonstrated that HmSTP1 may assist with HmSWEET8 to promote E. heraclei infection. Consequently, the infection caused by E. heraclei resulted in the activation of HmSWEET8, leading to an increased transfer of glucose to the apoplasmic spaces at the sites of infection, then, HmSTP1 facilitated the transport of glucose into host cells, promoting powdery mildew infection.
Collapse
Affiliation(s)
- Hanbing Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Junxia Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohui Si
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Shuhong Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
| | - Xuejiao Tong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Xihong Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Xinmei Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Yao Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Chen X, Zou H, Zhuo T, Rou W, Wu W, Fan X. Xanthomonas citri subsp. citri type III effector PthA4 directs the dynamical expression of a putative citrus carbohydrate-binding protein gene for canker formation. eLife 2024; 13:RP91684. [PMID: 39136681 PMCID: PMC11321762 DOI: 10.7554/elife.91684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker, elicits canker symptoms in citrus plants because of the transcriptional activator-like (TAL) effector PthA4, which activates the expression of the citrus susceptibility gene CsLOB1. This study reports the regulation of the putative carbohydrate-binding protein gene Cs9g12620 by PthA4-mediated induction of CsLOB1 during Xcc infection. We found that the transcription of Cs9g12620 was induced by infection with Xcc in a PthA4-dependent manner. Even though it specifically bound to a putative TAL effector-binding element in the Cs9g12620 promoter, PthA4 exerted a suppressive effect on the promoter activity. In contrast, CsLOB1 bound to the Cs9g12620 promoter to activate its expression. The silencing of CsLOB1 significantly reduced the level of expression of Cs9g12620, which demonstrated that Cs9g12620 was directly regulated by CsLOB1. Intriguingly, PhtA4 interacted with CsLOB1 and exerted feedback control that suppressed the induction of expression of Cs9g12620 by CsLOB1. Transient overexpression and gene silencing revealed that Cs9g12620 was required for the optimal development of canker symptoms. These results support the hypothesis that the expression of Cs9g12620 is dynamically directed by PthA4 for canker formation through the PthA4-mediated induction of CsLOB1.
Collapse
Affiliation(s)
- Xinyu Chen
- Plant Protection College, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Huasong Zou
- School of Life Sciences and Health, Huzhou CollegeHuzhouChina
| | - Tao Zhuo
- Plant Protection College, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Wei Rou
- Plant Protection College, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Wei Wu
- Plant Protection College, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaojing Fan
- Plant Protection College, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
18
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, Wang N. Cas12a RNP-mediated co-transformation enables transgene-free multiplex genome editing, long deletions, and inversions in citrus chromosome. FRONTIERS IN PLANT SCIENCE 2024; 15:1448807. [PMID: 39148610 PMCID: PMC11324552 DOI: 10.3389/fpls.2024.1448807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Introduction Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a devastating disease worldwide. Previously, we successfully generated canker-resistant Citrus sinensis cv. Hamlin lines in the T0 generation. This was achieved through the transformation of embryogenic protoplasts using the ribonucleoprotein (RNP) containing Cas12a and one crRNA to edit the canker susceptibility gene, CsLOB1, which led to small indels. Methods Here, we transformed embryogenic protoplasts of Hamlin with RNP containing Cas12a and three crRNAs. Results Among the 10 transgene-free genome-edited lines, long deletions were obtained in five lines. Additionally, inversions were observed in three of the five edited lines with long deletions, but not in any edited lines with short indel mutations, suggesting long deletions maybe required for inversions. Biallelic mutations were observed for each of the three target sites in four of the 10 edited lines when three crRNAs were used, demonstrating that transformation of embryogenic citrus protoplasts with Cas12a and three crRNAs RNP can be very efficient for multiplex editing. Our analysis revealed the absence of off-target mutations in the edited lines. These cslob1 mutant lines were canker- resistant and no canker symptoms were observed after inoculation with Xcc and Xcc growth was significantly reduced in the cslob1 mutant lines compared to the wild type plants. Discussion Taken together, RNP (Cas12a and three crRNAs) transformation of embryogenic protoplasts of citrus provides a promising solution for transgene-free multiplex genome editing with high efficiency and for deletion of long fragments.
Collapse
Affiliation(s)
- Hang Su
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jin Xu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jude W Grosser
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
19
|
de Lima LFF, Carvalho IGB, de Souza-Neto RR, Dos Santos LDS, Nascimento CA, Takita MA, Távora FTPK, Mehta A, de Souza AA. Antisense Oligonucleotide as a New Technology Application for CsLOB1 Gene Silencing Aiming at Citrus Canker Resistance. PHYTOPATHOLOGY 2024; 114:1802-1809. [PMID: 38748545 DOI: 10.1094/phyto-02-24-0058-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Citrus canker disease, caused by Xanthomonas citri subsp. citri, poses a significant threat to global citrus production. The control of the disease in the field relies mainly on the use of conventional tools such as copper compounds, which are harmful to the environment and could lead to bacterial resistance. This scenario stresses the need for new and sustainable technologies to control phytopathogens, representing a key challenge in developing studies that translate basic into applied knowledge. During infection, X. citri subsp. citri secretes a transcriptional activator-like effector that enters the nucleus of plant cells, activating the expression of the canker susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1). In this study, we explored the use of antisense oligonucleotides (ASOs) with phosphorothioate modifications to transiently inhibit the gene expression of CsLOB1 in Citrus sinensis. We designed and validated three potential ASO sequences, which led to a significant reduction in disease symptoms compared with the control. The selected ASO3-CsLOB1 significantly decreased the expression level of CsLOB1 when delivered through two distinct delivery methods, and the reduction of the symptoms ranged from approximately 15 to 83%. Notably, plants treated with ASO3 did not exhibit an increase in symptom development over the evaluation period. This study highlights the efficacy of ASO technology, based on short oligonucleotide chemically modified sequences, as a promising tool for controlling phytopathogens without the need for genetic transformation or plant regeneration. Our results demonstrate the potential of ASOs as a biotechnological tool for the management of citrus canker disease.
Collapse
Affiliation(s)
- Luiz Felipe Franco de Lima
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | | | - Reinaldo Rodrigues de Souza-Neto
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | | | | | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
| | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, CEP 70770917, Brasília, Brazil
| | | |
Collapse
|
20
|
Roeschlin RA, Azad SM, Grove RP, Chuan A, García L, Niñoles R, Uviedo F, Villalobos L, Massimino ME, Marano MR, Boch J, Gadea J. Designer TALEs enable discovery of cell death-inducer genes. PLANT PHYSIOLOGY 2024; 195:2985-2996. [PMID: 38723194 PMCID: PMC11288752 DOI: 10.1093/plphys/kiae230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 08/02/2024]
Abstract
Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.
Collapse
Affiliation(s)
- Roxana A Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Sepideh M Azad
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - René P Grove
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Ana Chuan
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Lucila García
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Regina Niñoles
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Liara Villalobos
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Maria E Massimino
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - María R Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - José Gadea
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| |
Collapse
|
21
|
Elliott K, Veley KM, Jensen G, Gilbert KB, Norton J, Kambic L, Yoder M, Weil A, Motomura-Wages S, Bart RS. CRISPR/Cas9-generated mutations in a sugar transporter gene reduce cassava susceptibility to bacterial blight. PLANT PHYSIOLOGY 2024; 195:2566-2578. [PMID: 38701041 PMCID: PMC11288762 DOI: 10.1093/plphys/kiae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Bacteria from the genus Xanthomonas are prolific phytopathogens that elicit disease in over 400 plant species. Xanthomonads carry a repertoire of specialized proteins called transcription activator-like (TAL) effectors that promote disease and pathogen virulence by inducing the expression of host susceptibility (S) genes. Xanthomonas phaseoli pv. manihotis (Xpm) causes bacterial blight on the staple food crop cassava (Manihot esculenta Crantz). The Xpm effector TAL20 induces ectopic expression of the S gene Manihot esculenta Sugars Will Eventually be Exported Transporter 10a (MeSWEET10a), which encodes a sugar transporter that contributes to cassava bacterial blight (CBB) susceptibility. We used CRISPR/Cas9 to generate multiple cassava lines with edits to the MeSWEET10a TAL20 effector binding site and/or coding sequence. In several of the regenerated lines, MeSWEET10a expression was no longer induced by Xpm, and in these cases, we observed reduced CBB disease symptoms post Xpm infection. Because MeSWEET10a is expressed in cassava flowers, we further characterized the reproductive capability of the MeSWEET10a promoter and coding sequence mutants. Lines were crossed to themselves and to wild-type plants. The results indicated that expression of MeSWEET10a in female, but not male, flowers is critical to produce viable F1 seed. In the case of promoter mutations that left the coding sequence intact, viable F1 progeny were recovered. Taken together, these results demonstrate that blocking MeSWEET10a induction is a viable strategy for decreasing cassava susceptibility to CBB and that ideal lines will contain promoter mutations that block TAL effector binding while leaving endogenous expression of MeSWEET10a unaltered.
Collapse
Affiliation(s)
- Kiona Elliott
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
- Division of Biological and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Kira M Veley
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Greg Jensen
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | | | - Joanna Norton
- College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Lukas Kambic
- College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Marisa Yoder
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Alex Weil
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Sharon Motomura-Wages
- College of Tropical Agriculture & Human Resources, University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Rebecca S Bart
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| |
Collapse
|
22
|
Dey R, Raghuwanshi R. An insight into pathogenicity and virulence gene content of Xanthomonas spp. and its biocontrol strategies. Heliyon 2024; 10:e34275. [PMID: 39092245 PMCID: PMC11292268 DOI: 10.1016/j.heliyon.2024.e34275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
The genus Xanthomonas primarily serves as a plant pathogen, targeting a diverse range of economically significant crops on a global scale. Xanthomonas spp. utilizes a collection of toxins, adhesins, and protein effectors as part of their toolkit to thrive in their surroundings, and establish themselves within plant hosts. The bacterial secretion systems (Type 1 to Type 6) assist in delivering the effector proteins to their intended destinations. These secretion systems are specialized multi-protein complexes responsible for transporting proteins into the extracellular milieu or directly into host cells. The potent virulence and systematic infection system result in rapid dissemination of the bacteria, posing significant challenges in management due to complexities and substantial loss incurred. Consequently, there has been a notable increase in the utilization of chemical pesticides, leading to bioaccumulation and raising concerns about adverse health effects. Biological control mechanisms through beneficial microorganism (Bacillus, Pseudomonas, Trichoderma, Burkholderia, AMF, etc.) have proven to be an appropriate alternative in integrative pest management system. This review details the pathogenicity and virulence factors of Xanthomonas, as well as its control strategies. It also encourages the use of biological control agents, which promotes sustainable and environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Riddha Dey
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Richa Raghuwanshi
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
23
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
24
|
Liu L, Zhang J, Xu J, Li Y, Lv H, Wang F, Guo J, Lin T, Zhao B, Li XX, Guo YD, Zhang N. SlMYC2 promotes SlLBD40-mediated cell expansion in tomato fruit development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1872-1888. [PMID: 38481350 DOI: 10.1111/tpj.16715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 06/14/2024]
Abstract
As a plant-specific transcription factor, lateral organ boundaries domain (LBD) protein was reported to regulate plant growth and stress response, but the functional research of subfamily II genes is limited. SlMYC2, a master regulator of Jasmonic acid response, has been found to exhibit high expression levels in fruit and has been implicated in the regulation of fruit ripening and resistance to Botrytis. However, its role in fruit expansion remains unknown. In this study, we present evidence that a subfamily II member of LBD, namely SlLBD40, collaborates with SlMYC2 in the regulation of fruit expansion. Overexpression of SlLBD40 significantly promoted fruit growth by promoting mesocarp cell expansion, while knockout of SlLBD40 showed the opposite result. Similarly, SlMYC2 knockout resulted in a significant decrease in cell expansion within the fruit. Genetic analysis indicated that SlLBD40-mediated cell expansion depends on the expression of SlMYC2. SlLBD40 bound to the promoter of SlEXPA5, an expansin gene, but did not activate its expression directly. While, the co-expression of SlMYC2 and SlLBD40 significantly stimulated the activation of SlEXPA5, leading to an increase in fruit size. SlLBD40 interacted with SlMYC2 and enhanced the stability and abundance of SlMYC2. Furthermore, SlMYC2 directly targeted and activated the expression of SlLBD40, which is essential for SlLBD40-mediated fruit expansion. In summary, our research elucidates the role of the interaction between SlLBD40 and SlMYC2 in promoting cell expansion in tomato fruits, thus providing novel insights into the molecular genetics underlying fruit growth.
Collapse
Affiliation(s)
- Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiayi Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junxin Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin-Xu Li
- Beijing Cuihu Agritech Co. Ltd., Beijing, 100095, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Kirolinko C, Hobecker K, Cueva M, Botto F, Christ A, Niebel A, Ariel F, Blanco FA, Crespi M, Zanetti ME. A lateral organ boundaries domain transcription factor acts downstream of the auxin response factor 2 to control nodulation and root architecture in Medicago truncatula. THE NEW PHYTOLOGIST 2024; 242:2746-2762. [PMID: 38666352 DOI: 10.1111/nph.19766] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/21/2024] [Indexed: 05/24/2024]
Abstract
Legume plants develop two types of root postembryonic organs, lateral roots and symbiotic nodules, using shared regulatory components. The module composed by the microRNA390, the Trans-Acting SIRNA3 (TAS3) RNA and the Auxin Response Factors (ARF)2, ARF3, and ARF4 (miR390/TAS3/ARFs) mediates the control of both lateral roots and symbiotic nodules in legumes. Here, a transcriptomic approach identified a member of the Lateral Organ Boundaries Domain (LBD) family of transcription factors in Medicago truncatula, designated MtLBD17/29a, which is regulated by the miR390/TAS3/ARFs module. ChIP-PCR experiments evidenced that MtARF2 binds to an Auxin Response Element present in the MtLBD17/29a promoter. MtLBD17/29a is expressed in root meristems, lateral root primordia, and noninfected cells of symbiotic nodules. Knockdown of MtLBD17/29a reduced the length of primary and lateral roots and enhanced lateral root formation, whereas overexpression of MtLBD17/29a produced the opposite phenotype. Interestingly, both knockdown and overexpression of MtLBD17/29a reduced nodule number and infection events and impaired the induction of the symbiotic genes Nodulation Signaling Pathway (NSP) 1 and 2. Our results demonstrate that MtLBD17/29a is regulated by the miR390/TAS3/ARFs module and a direct target of MtARF2, revealing a new lateral root regulatory hub recruited by legumes to act in the root nodule symbiotic program.
Collapse
Affiliation(s)
- Cristina Kirolinko
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Karen Hobecker
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Marianela Cueva
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Florencia Botto
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Aurélie Christ
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Martín Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| |
Collapse
|
26
|
Zhang YQ, Wang X, Shi H, Siddique F, Xian J, Song A, Wang B, Wu Z, Cui ZN. Design and Synthesis of Mandelic Acid Derivatives for Suppression of Virulence via T3SS against Citrus Canker. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9611-9620. [PMID: 38646906 DOI: 10.1021/acs.jafc.3c07681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Citrus canker, a highly contagious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), poses a substantial threat to citrus crops, leading to serious reductions in fruit yield and economic losses. Most commonly used bactericides against Xcc lead to the rapid development of resistant subpopulations. Therefore, it is imperative to create novel drugs, such as type III secretion system (T3SS) inhibitors, that specifically target bacterial virulence factors rather than bacterial viability. In our study, we designed and synthesized a series of mandelic acid derivatives including 2-mercapto-1,3,4-thiazole. Seven substances were found to reduce the level of transcription of hpa1 without affecting bacterial viability. In vivo bioassays indicated that compound F9 significantly inhibited hypersensitive response and pathogenicity. RT-qPCR assays showed that compound F9 visibly suppressed the expression of Xcc T3SS-related genes as well as citrus canker susceptibility gene CsLOB1. Furthermore, the combination with compound F9 and quorum-quenching bacteria HN-8 can also obviously alleviate canker symptoms.
Collapse
Affiliation(s)
- Yu-Qing Zhang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huabin Shi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Faisal Siddique
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxin Xian
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Aiting Song
- Guangdong ZhenGe Biotechnology Co., Ltd., Zhaoqing 526040, China
| | - Boli Wang
- Guangdong ZhenGe Biotechnology Co., Ltd., Zhaoqing 526040, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Jia H, Omar AA, Xu J, Dalmendray J, Wang Y, Feng Y, Wang W, Hu Z, Grosser JW, Wang N. Generation of transgene-free canker-resistant Citrus sinensis cv. Hamlin in the T0 generation through Cas12a/CBE co-editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1385768. [PMID: 38595767 PMCID: PMC11002166 DOI: 10.3389/fpls.2024.1385768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Citrus canker disease affects citrus production. This disease is caused by Xanthomonas citri subsp. citri (Xcc). Previous studies confirmed that during Xcc infection, PthA4, a transcriptional activator like effector (TALE), is translocated from the pathogen to host plant cells. PthA4 binds to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 (EBEPthA4-LOBP) to activate its expression and subsequently cause canker symptoms. Previously, the Cas12a/CBE co-editing method was employed to disrupt EBEPthA4-LOBP of pummelo, which is highly homozygous. However, most commercial citrus cultivars are heterozygous hybrids and more difficult to generate homozygous/biallelic mutants. Here, we employed Cas12a/CBE co-editing method to edit EBEPthA4-LOBP of Hamlin (Citrus sinensis), a commercial heterozygous hybrid citrus cultivar grown worldwide. Binary vector GFP-p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1 was constructed and shown to be functional via Xcc-facilitated agroinfiltration in Hamlin leaves. This construct allows the selection of transgene-free regenerants via GFP, edits ALS to generate chlorsulfuron-resistant regenerants as a selection marker for genome editing resulting from transient expression of the T-DNA via nCas9-mPBE:ALS2:ALS1, and edits gene(s) of interest (i.e., EBEPthA4-LOBP in this study) through ttLbCas12a, thus creating transgene-free citrus. Totally, 77 plantlets were produced. Among them, 8 plantlets were transgenic plants (#HamGFP1 - #HamGFP8), 4 plantlets were transgene-free (#HamNoGFP1 - #HamNoGFP4), and the rest were wild type. Among 4 transgene-free plantlets, three lines (#HamNoGFP1, #HamNoGFP2 and #HamNoGFP3) contained biallelic mutations in EBEpthA4, and one line (#HamNoGFP4) had homozygous mutations in EBEpthA4. We achieved 5.2% transgene-free homozygous/biallelic mutation efficiency for EBEPthA4-LOBP in C. sinensis cv. Hamlin, compared to 1.9% mutation efficiency for pummelo in a previous study. Importantly, the four transgene-free plantlets and 3 transgenic plantlets that survived were resistant against citrus canker. Taken together, Cas12a/CBE co-editing method has been successfully used to generate transgene-free canker-resistant C. sinensis cv. Hamlin in the T0 generation via biallelic/homozygous editing of EBEpthA4 of the canker susceptibility gene LOB1.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Javier Dalmendray
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Zhuyuan Hu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
28
|
Li Z, Guo Y, Jin S, Wu H. Genome-Wide Identification and Expression Profile Analysis of Sugars Will Eventually Be Exported Transporter ( SWEET) Genes in Zantedeschia elliottiana and Their Responsiveness to Pectobacterium carotovora subspecies Carotovora ( Pcc) Infection. Int J Mol Sci 2024; 25:2004. [PMID: 38396683 PMCID: PMC10888187 DOI: 10.3390/ijms25042004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
SWEET, sugars will eventually be exported transporter, is a novel class of sugar transporter proteins that can transport sugars across membranes down a concentration gradient. It plays a key role in plant photosynthetic assimilates, phloem loading, nectar secretion from nectar glands, seed grouting, pollen development, pathogen interactions, and adversity regulation, and has received widespread attention in recent years. To date, systematic analysis of the SWEET family in Zantedeschia has not been documented, although the genome has been reported in Zantedeschia elliottiana. In this study, 19 ZeSWEET genes were genome-wide identified in Z. elliottiana, and unevenly located in 10 chromosomes. They were further clustered into four clades by a phylogenetic tree, and almost every clade has its own unique motifs. Synthetic analysis confirmed two pairs of segmental duplication events of ZeSWEET genes. Heatmaps of tissue-specific and Pectobacterium carotovora subsp. Carotovora (Pcc) infection showed that ZeSWEET genes had different expression patterns, so SWEETs may play widely varying roles in development and stress tolerance in Zantedeschia. Moreover, quantitative reverse transcription-PCR (qRT-PCR) analysis revealed that some of the ZeSWEETs responded to Pcc infection, among which eight genes were significantly upregulated and six genes were significantly downregulated, revealing their potential functions in response to Pcc infection. The promoter sequences of ZeSWEETs contained 51 different types of the 1380 cis-regulatory elements, and each ZeSWEET gene contained at least two phytohormone responsive elements and one stress response element. In addition, a subcellular localization study indicated that ZeSWEET07 and ZeSWEET18 were found to be localized to the plasma membrane. These findings provide insights into the characteristics of SWEET genes and contribute to future studies on the functional characteristics of ZeSWEET genes, and then improve Pcc infection tolerance in Zantedeschia through molecular breeding.
Collapse
Affiliation(s)
- Ziwei Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Yanbing Guo
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Shoulin Jin
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China;
| | - Hongzhi Wu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
29
|
Wang X, He L, Zhang YQ, Tian H, He M, Herron AN, Cui ZN. Innovative Strategy for the Control of Citrus Canker: Inhibitors Targeting the Type III Secretion System of Xanthomonas citri Subsp. citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15971-15980. [PMID: 37831979 DOI: 10.1021/acs.jafc.3c05212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
To find potential type III secretion system (T3SS) inhibitors against citrus canker caused by Xanthomonas citri subsp. citri (Xcc), a new series of 5-phenyl-2-furan carboxylic acid derivatives stitched with 2-mercapto-1,3,4-thiadiazole were designed and synthesized. Among the 30 compounds synthesized, 14 compounds significantly inhibited the promoter activity of a harpin gene hpa1. Eight of the 14 compounds did not affect the growth of Xcc, but significantly reduced the hypersensitive response (HR) of tobacco and decreased the pathogenicity of Xcc on citrus plants. Subsequent studies have demonstrated that these inhibitory molecules effectively suppress the T3SS of Xcc and significantly impair the pathogen's ability to subvert citrus immunity, resulting in a reduction in the level of disease progression. As a result, our work has identified a series of potentially attractive agents for the control of citrus canker.
Collapse
Affiliation(s)
- Xin Wang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lulu He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Qing Zhang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hao Tian
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Min He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | | | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Huang X, Jia H, Xu J, Wang Y, Wen J, Wang N. Transgene-free genome editing of vegetatively propagated and perennial plant species in the T0 generation via a co-editing strategy. NATURE PLANTS 2023; 9:1591-1597. [PMID: 37723203 DOI: 10.1038/s41477-023-01520-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Transgene-free plant genome editing in the T0 generation is highly desirable but challenging1,2. Here we achieved such a goal using a co-editing strategy via Agrobacterium-mediated transient expression of cytosine base editor to edit ALS encoding acetolactate synthase to confer herbicide chlorsulfuron resistance as a selection marker, Cas12a/CRISPR RNA for editing gene(s) of interest, and green fluorescent protein for selecting transgene-free transformants. The biallelic/homozygous transgene-free mutation rates for target genes among herbicide-resistant transformants ranged from 1.9% to 42.1% in tomato, tobacco, potato and citrus. This co-editing strategy is particularly useful for transgene-free genome editing of vegetatively propagated and perennial plant species in the T0 generation.
Collapse
Affiliation(s)
- Xiaoen Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Jiawen Wen
- Citrus Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
31
|
Liu X, Yu Y, Yao W, Yin Z, Wang Y, Huang Z, Zhou J, Liu J, Lu X, Wang F, Zhang G, Chen G, Xiao Y, Deng H, Tang W. CRISPR/Cas9-mediated simultaneous mutation of three salicylic acid 5-hydroxylase (OsS5H) genes confers broad-spectrum disease resistance in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1873-1886. [PMID: 37323119 PMCID: PMC10440993 DOI: 10.1111/pbi.14099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Salicylic acid (SA) is an essential plant hormone that plays critical roles in basal defence and amplification of local immune responses and establishes resistance against various pathogens. However, the comprehensive knowledge of the salicylic acid 5-hydroxylase (S5H) in rice-pathogen interaction is still elusive. Here, we reported that three OsS5H homologues displayed salicylic acid 5-hydroxylase activity, converting SA into 2,5-dihydroxybenzoic acid (2,5-DHBA). OsS5H1, OsS5H2, and OsS5H3 were preferentially expressed in rice leaves at heading stage and responded quickly to exogenous SA treatment. We found that bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) strongly induced the expression of OsS5H1, OsS5H2, and OsS5H3. Rice plants overexpressing OsS5H1, OsS5H2, and OsS5H3 showed significantly decreased SA contents and increased 2,5-DHBA levels, and were more susceptible to bacterial blight and rice blast. A simple single guide RNA (sgRNA) was designed to create oss5h1oss5h2oss5h3 triple mutants through CRISPR/Cas9-mediated gene mutagenesis. The oss5h1oss5h2oss5h3 exhibited stronger resistance to Xoo than single oss5h mutants. And oss5h1oss5h2oss5h3 plants displayed enhanced rice blast resistance. The conferred pathogen resistance in oss5h1oss5h2oss5h3 was attributed to the significantly upregulation of OsWRKY45 and pathogenesis-related (PR) genes. Besides, flg22-induced reactive oxygen species (ROS) burst was enhanced in oss5h1oss5h2oss5h3. Collectively, our study provides a fast and effective approach to generate rice varieties with broad-spectrum disease resistance through OsS5H gene editing.
Collapse
Affiliation(s)
- Xiong Liu
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Yan Yu
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Wei Yao
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Zhongliang Yin
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Yubo Wang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Zijian Huang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Jie‐Qiang Zhou
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Jinling Liu
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Xuedan Lu
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Feng Wang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Guilian Zhang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Guihua Chen
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Yunhua Xiao
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Huabing Deng
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
| | - Wenbang Tang
- College of AgronomyHunan Agricultural UniversityChangshaChina
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease ResistanceChangshaChina
- Hunan Hybrid Rice Research CenterHunan Academy of Agricultural SciencesChangshaChina
- State Key Laboratory of Hybrid RiceChangshaChina
| |
Collapse
|
32
|
Zhao M, Peng Z, Qin Y, Tamang TM, Zhang L, Tian B, Chen Y, Liu Y, Zhang J, Lin G, Zheng H, He C, Lv K, Klaus A, Marcon C, Hochholdinger F, Trick HN, Liu Y, Cho MJ, Park S, Wei H, Zheng J, White FF, Liu S. Bacterium-enabled transient gene activation by artificial transcription factors for resolving gene regulation in maize. THE PLANT CELL 2023; 35:2736-2749. [PMID: 37233025 PMCID: PMC10396389 DOI: 10.1093/plcell/koad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.
Collapse
Affiliation(s)
- Mingxia Zhao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yang Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Ling Zhang
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yueying Chen
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junli Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Huakun Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang 150040, China
| | - Alina Klaus
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
33
|
Chen J, Sun M, Xiao G, Shi R, Zhao C, Zhang Q, Yang S, Xuan Y. Starving the enemy: how plant and microbe compete for sugar on the border. FRONTIERS IN PLANT SCIENCE 2023; 14:1230254. [PMID: 37600180 PMCID: PMC10433384 DOI: 10.3389/fpls.2023.1230254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
As the primary energy source for a plant host and microbe to sustain life, sugar is generally exported by Sugars Will Eventually be Exported Transporters (SWEETs) to the host extracellular spaces or the apoplast. There, the host and microbes compete for hexose, sucrose, and other important nutrients. The host and microbial monosaccharide transporters (MSTs) and sucrose transporters (SUTs) play a key role in the "evolutionary arms race". The result of this competition hinges on the proportion of sugar distribution between the host and microbes. In some plants (such as Arabidopsis, corn, and rice) and their interacting pathogens, the key transporters responsible for sugar competition have been identified. However, the regulatory mechanisms of sugar transporters, especially in the microbes require further investigation. Here, the key transporters that are responsible for the sugar competition in the host and pathogen have been identified and the regulatory mechanisms of the sugar transport have been briefly analyzed. These data are of great significance to the increase of the sugar distribution in plants for improvement in the yield.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Miao Sun
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Rujie Shi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Chanjuan Zhao
- Chongqing Three Gorges Vocational College, Wanzhou, China
| | - Qianqian Zhang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Shuo Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
34
|
Li Q, Qin X, Zhang M, Yu Q, Jia R, Fan J, Huang X, Fu J, Zhang C, Xian B, Yang W, Long Q, Peng A, Yao L, Chen S, He Y. CsBZIP40 confers resistance against citrus bacterial canker by repressing CsWRKY43-CsPrx53/CsSOD13 cascade mediated ROS scavenging. HORTICULTURE RESEARCH 2023; 10:uhad138. [PMID: 37575655 PMCID: PMC10421728 DOI: 10.1093/hr/uhad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
As the bacterial etiologic agent causing citrus bacterial canker (CBC), Xanthomonas citri subsp. citri (Xcc) seriously impacts citrus plantation and fruit production globally. In an earlier study, we demonstrated that CsBZIP40 can positively impact CBC resistance in the sweet orange (Citrus sinensis). However, the mechanistic basis for the protective benefits conferred by CsBZIP40 is yet to be delineated. Here, we show that CsBZIP40 positively regulates CBC resistance and reactive oxygen species (ROS) homeostasis in transgenic sweet orange overexpressing CsBZIP40. CsBZIP40 directly binds to the TGA-box of the CsWRKY43 promoter to repress its transcriptional activity. CsWRKY43 overexpression induces CBC susceptibility in transgenic sweet oranges. In contrast, its inhibition produces strong resistance to CBC. CsWRKY43 directly binds to the W-boxes of the CsPrx53 and CsSOD13 promoters to positively regulate the activities of these antioxidant enzymes, resulting in the negative regulation of ROS homeostasis and CBC resistance in sweet orange plants. CsPrx53/CsSOD13 knockdown enhances ROS accumulation and CBC resistance. Overall, our results outline a regulatory pathway through which CsBZIP40 transcriptionally represses CsWRKY43-CsPrx53/CsSOD13 cascade-mediated ROS scavenging in a manner conducive to CBC resistance. These mechanisms underscore the potential importance of CsBZIP40, CsWRKY43, CsPrx53, and CsSOD13, providing promising strategies for the prevention of CBC.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Miao Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Qiyuan Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Ruirui Jia
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Jie Fan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Xin Huang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Jia Fu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Chenxi Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Baohang Xian
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Wen Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Qin Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Aihong Peng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Lixiao Yao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
35
|
Campos PE, Pruvost O, Boyer K, Chiroleu F, Cao TT, Gaudeul M, Baider C, Utteridge TMA, Becker N, Rieux A, Gagnevin L. Herbarium specimen sequencing allows precise dating of Xanthomonas citri pv. citri diversification history. Nat Commun 2023; 14:4306. [PMID: 37474518 PMCID: PMC10359311 DOI: 10.1038/s41467-023-39950-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Herbarium collections are an important source of dated, identified and preserved DNA, whose use in comparative genomics and phylogeography can shed light on the emergence and evolutionary history of plant pathogens. Here, we reconstruct 13 historical genomes of the bacterial crop pathogen Xanthomonas citri pv. citri (Xci) from infected Citrus herbarium specimens. Following authentication based on ancient DNA damage patterns, we compare them with a large set of modern genomes to estimate their phylogenetic relationships, pathogenicity-associated gene content and several evolutionary parameters. Our results indicate that Xci originated in Southern Asia ~11,500 years ago (perhaps in relation to Neolithic climate change and the development of agriculture) and diversified during the beginning of the 13th century, after Citrus diversification and before spreading to the rest of the world (probably via human-driven expansion of citriculture through early East-West trade and colonization).
Collapse
Affiliation(s)
- Paola E Campos
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | | | - Karine Boyer
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | | | - Thuy Trang Cao
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | - Myriam Gaudeul
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
- Herbier national, Muséum national d'Histoire naturelle, CP39, 57 rue Cuvier, 75005, Paris, France
| | - Cláudia Baider
- The Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry and Food Security, R.E. Vaughan Building (MSIRI Compound), Reduit, 80835, Mauritius
| | | | - Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | - Adrien Rieux
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France.
| | - Lionel Gagnevin
- PHIM Plant Health Institute, Univ. Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
- CIRAD, UMR PHIM, Montpellier, France.
| |
Collapse
|
36
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, Calovic M, Zhang L, Feng Y, Vakulskas CA, Wang N. Generation of the transgene-free canker-resistant Citrus sinensis using Cas12a/crRNA ribonucleoprotein in the T0 generation. Nat Commun 2023; 14:3957. [PMID: 37402755 DOI: 10.1038/s41467-023-39714-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is a destructive citrus disease worldwide. Generating disease-resistant cultivars is the most effective, environmentally friendly and economic approach for disease control. However, citrus traditional breeding is lengthy and laborious. Here, we develop transgene-free canker-resistant Citrus sinensis lines in the T0 generation within 10 months through transformation of embryogenic protoplasts with Cas12a/crRNA ribonucleoprotein to edit the canker susceptibility gene CsLOB1. Among the 39 regenerated lines, 38 are biallelic/homozygous mutants, demonstrating a 97.4% biallelic/homozygous mutation rate. No off-target mutations are detected in the edited lines. Canker resistance of the cslob1-edited lines results from both abolishing canker symptoms and inhibiting Xcc growth. The transgene-free canker-resistant C. sinensis lines have received regulatory approval by USDA APHIS and are exempted from EPA regulation. This study provides a sustainable and efficient citrus canker control solution and presents an efficient transgene-free genome-editing strategy for citrus and other crops.
Collapse
Affiliation(s)
- Hang Su
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jude W Grosser
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Milica Calovic
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Liyang Zhang
- Integrated DNA Technologies, Inc, Coralville, IA, USA
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | | | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
37
|
de Souza-Neto RR, Vasconcelos FNDC, Teper D, Carvalho IGB, Takita MA, Benedetti CE, Wang N, de Souza AA. The Expansin Gene CsLIEXP1 Is a Direct Target of CsLOB1 in Citrus. PHYTOPATHOLOGY 2023; 113:1266-1277. [PMID: 36825333 DOI: 10.1094/phyto-11-22-0424-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transcription activator-like effectors are key virulence factors of Xanthomonas. They are secreted into host plant cells and mimic transcription factors inducing the expression of host susceptibility (S) genes. In citrus, CsLOB1 is a direct target of PthA4, the primary effector associated with citrus canker symptoms. CsLOB1 is a transcription factor, and its expression is required for canker symptoms induced by Xanthomonas citri subsp. citri. Several genes are up-regulated by PthA4; however, only CsLOB1 was described as an S gene induced by PthA4. Here, we investigated whether other up-regulated genes could be direct targets of PthA4 or CsLOB1. Seven up-regulated genes by PthA4 were investigated; however, an expansin-coding gene was more induced than CsLOB1. In Nicotiana benthamiana transient expression experiments, we demonstrate that the expansin-coding gene, referred here to as CsLOB1-INDUCED EXPANSIN 1 (CsLIEXP1), is not a direct target of PthA4, but CsLOB1. Interestingly, CsLIEXP1 was induced by CsLOB1 even without the predicted CsLOB1 binding site, which suggested that CsLOB1 has other unknown binding sites. We also investigated the minimum promoter regulated by CsLOB1, and this region and LOB1 domain were conserved among citrus species and relatives, which suggests that the interaction PthA4-CsLOB1-CsLIEXP1 is conserved in citrus species and relatives. This is the first study that experimentally demonstrated a CsLOB1 downstream target and lays the foundation to identify other new targets. In addition, we demonstrated that the CsLIEXP1 is a putative S gene indirectly induced by PthA4, which may serve as the target for genome editing to generate citrus canker-resistant varieties.
Collapse
Affiliation(s)
- Reinaldo Rodrigues de Souza-Neto
- Citrus Research Center "Sylvio Moreira", Agronomic Institute-IAC, Brazil
- Departament of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Brazil
| | | | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, Israel
| | | | | | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, U.S.A
| | | |
Collapse
|
38
|
Zárate-Chaves CA, Audran C, Medina Culma CA, Escalon A, Javegny S, Gagnevin L, Thomas E, Pimparé LL, López CE, Jacobs JM, Noël LD, Koebnik R, Bernal AJ, Szurek B. CRISPRi in Xanthomonas demonstrates functional convergence of transcription activator-like effectors in two divergent pathogens. THE NEW PHYTOLOGIST 2023; 238:1593-1604. [PMID: 36764921 DOI: 10.1111/nph.18808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.
Collapse
Affiliation(s)
| | - Corinne Audran
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - César Augusto Medina Culma
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Aline Escalon
- CIRAD, UMR PVBMT, Saint-Pierre, 97410, La Réunion, France
| | | | - Lionel Gagnevin
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Emilie Thomas
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Léa-Lou Pimparé
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Camilo E López
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| | - Jonathan M Jacobs
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, 43210-1358, USA
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - Ralf Koebnik
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Adriana Jimena Bernal
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Boris Szurek
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| |
Collapse
|
39
|
Teper D, White FF, Wang N. The Dynamic Transcription Activator-Like Effector Family of Xanthomonas. PHYTOPATHOLOGY 2023; 113:651-666. [PMID: 36449529 DOI: 10.1094/phyto-10-22-0365-kd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription activator-like effectors (TALEs) are bacterial proteins that are injected into the eukaryotic nucleus to act as transcriptional factors and function as key virulence factors of the phytopathogen Xanthomonas. TALEs are translocated into plant host cells via the type III secretion system and induce the expression of host susceptibility (S) genes to facilitate disease. The unique modular DNA binding domains of TALEs comprise an array of nearly identical direct repeats that enable binding to DNA targets based on the recognition of a single nucleotide target per repeat. The very nature of TALE structure and function permits the proliferation of TALE genes and evolutionary adaptations in the host to counter TALE function, making the TALE-host interaction the most dynamic story in effector biology. The TALE genes appear to be a relatively young effector gene family, with a presence in all virulent members of some species and absent in others. Genome sequencing has revealed many TALE genes throughout the xanthomonads, and relatively few have been associated with a cognate S gene. Several species, including Xanthomonas oryzae pv. oryzae and X. citri pv. citri, have near absolute requirement for TALE gene function, while the genes appear to be just now entering the disease interactions with new fitness contributions to the pathogens of tomato and pepper among others. Deciphering the simple and effective DNA binding mechanism also has led to the development of DNA manipulation tools in fields of gene editing and transgenic research. In the three decades since their discovery, TALE research remains at the forefront of the study of bacterial evolution, plant-pathogen interactions, and synthetic biology. We also discuss critical questions that remain to be addressed regarding TALEs.
Collapse
Affiliation(s)
- Doron Teper
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Frank F White
- Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, U.S.A
| |
Collapse
|
40
|
Li K, Wei Y, Wang Y, Tan B, Chen S, Li H. Genome-Wide Identification of LBD Genes in Foxtail Millet ( Setaria italica) and Functional Characterization of SiLBD21. Int J Mol Sci 2023; 24:ijms24087110. [PMID: 37108274 PMCID: PMC10138450 DOI: 10.3390/ijms24087110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-specific lateral organ boundaries domain (LBD) proteins play important roles in plant growth and development. Foxtail millet (Setaria italica) is one new C4 model crop. However, the functions of foxtail millet LBD genes are unknown. In this study, a genome-wide identification of foxtail millet LBD genes and a systematical analysis were conducted. A total of 33 SiLBD genes were identified. They are unevenly distributed on nine chromosomes. Among these SiLBD genes, six segmental duplication pairs were detected. The thirty-three encoded SiLBD proteins could be classified into two classes and seven clades. Members in the same clade have similar gene structure and motif composition. Forty-seven kinds of cis-elements were found in the putative promoters, and they are related to development/growth, hormone, and abiotic stress response, respectively. Meanwhile, the expression pattern was investigated. Most SiLBD genes are expressed in different tissues, while several genes are mainly expressed in one or two kinds of tissues. In addition, most SiLBD genes respond to different abiotic stresses. Furthermore, the function of SiLBD21, which is mainly expressed in roots, was characterized by ectopic expression in Arabidopsis and rice. Compared to controls, transgenic plants generated shorter primary roots and more lateral roots, indicating the function of SiLBD21 in root development. Overall, our study laid the foundation for further functional elucidation of SiLBD genes.
Collapse
Affiliation(s)
- Kunjie Li
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yaning Wei
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yimin Wang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Bin Tan
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shoukun Chen
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Haifeng Li
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
41
|
Andrade MDO, da Silva JC, Soprano AS, Shimo HM, Leme AFP, Benedetti CE. Suppression of citrus canker disease mediated by flagellin perception. MOLECULAR PLANT PATHOLOGY 2023; 24:331-345. [PMID: 36691963 PMCID: PMC10013774 DOI: 10.1111/mpp.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Citrus cancer, caused by strains of Xanthomonas citri (Xc) and Xanthomonas aurantifolii (Xa), is one of the most economically important citrus diseases. Although our understanding of the molecular mechanisms underlying citrus canker development has advanced remarkably in recent years, exactly how citrus plants fight against these pathogens remains largely unclear. Using a Xa pathotype C strain that infects Mexican lime only and sweet oranges as a pathosystem to study the immune response triggered by this bacterium in these hosts, we herein report that the Xa flagellin C protein (XaFliC) acts as a potent defence elicitor in sweet oranges. Just as Xa blocked canker formation when coinfiltrated with Xc in sweet orange leaves, two polymorphic XaFliC peptides designated flgIII-20 and flgIII-27, not related to flg22 or flgII-28 but found in many Xanthomonas species, were sufficient to protect sweet orange plants from Xc infection. Accordingly, ectopic expression of XaFliC in a Xc FliC-defective mutant completely abolished the ability of this mutant to grow and cause canker in sweet orange but not Mexican lime plants. Because XaFliC and flgIII-27 also specifically induced the expression of several defence-related genes, our data suggest that XaFliC acts as a main immune response determinant in sweet orange plants.
Collapse
Affiliation(s)
- Maxuel de Oliveira Andrade
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Jaqueline Cristina da Silva
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Adriana Santos Soprano
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Hugo Massayoshi Shimo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| |
Collapse
|
42
|
Wang N, Scherm H. Key Discoveries in Plant Pathology During the Past Half Century: Impacts on the Life Sciences and on Plant Disease Management. PHYTOPATHOLOGY 2023; 113:588-593. [PMID: 37116465 DOI: 10.1094/phyto-02-23-0070-kd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant pathology plays a critical role in safeguarding plant health, food security, and food safety through science-based solutions to protect plants against recurring and emerging diseases. In addition, plant pathology contributed significantly to basic discoveries that have had broad impacts on the life sciences beyond plant pathology. In December 2021, The American Phytopathological Society (APS) conducted a survey among its members and among the readership of its journals to identify and rank key discoveries in plant pathology that have had broad impacts on science and/or practical disease management during the past half century. Based on the responses received, key discoveries that have broadly impacted the life sciences during that period include the Agrobacterium Ti plasmid and its mechanism in T-DNA transfer, bacterial ice nucleation, cloning of resistance genes, discovery of viroids, effectors and their mechanisms, pattern-triggered immunity and effector-triggered immunity, RNA interference and gene silencing, structure and function of R genes, transcription activator-like effectors, and type-III secretion system and hrp/hrc. Major advances that significantly impacted practical disease management include the deployment and management of host resistance genes; the application of disease models and forecasting systems; the introduction of modern systemic fungicides and host resistance inducers, along with a better understanding of fungicide resistance mechanisms and management; and the utilization of biological controls and suppressive soils, including the implementation of methyl-bromide alternatives. In this special issue, experts from the pertinent fields review the discovery process, recent progress, and impacts of some of the highest ranked discoveries in each category while also pointing out future directions for new discoveries in fundamental and applied plant pathology.
Collapse
Affiliation(s)
- Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| | - Harald Scherm
- Department of Plant Pathology, University of Georgia, Athens, GA 30605
| |
Collapse
|
43
|
Fu J, Yu Q, Zhang C, Xian B, Fan J, Huang X, Yang W, Zou X, Chen S, Su L, He Y, Li Q. CsAP2-09 confers resistance against citrus bacterial canker by regulating CsGH3.1L-mediated phytohormone biosynthesis. Int J Biol Macromol 2023; 229:964-973. [PMID: 36587648 DOI: 10.1016/j.ijbiomac.2022.12.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/04/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Citrus bacterial canker (CBC) is a serious bacterial disease affecting citrus plantations and the citrus industry all over the world. We have previously shown that an apetala 2/ethylene response factor in Citrus sinensis, CsAP2-09, positively regulated resistance to CBC, although the regulatory mechanisms remained undetermined. Here, we demonstrated that CsAP2-09 positively and sustainably controlled resistance to CBC in three-year transgenic plants. CsAP2-09 was found to be a transcriptional activator, and qRT-PCR and dual luciferase assays showed that it controlled the expression CsGH3.1L. CsAP2-09 bound directly to the promotor of CsGH3.1L, shown by yeast one-hybrid assay, with the binding site confirmed by electrophoretic mobility shift assay. Biochemical assays showed that CsAP2-09 negatively regulated the biosynthesis of indole acetic acid (IAA) and positively regulated that of salicylic acid (SA) and ethylene, verified with transient overexpression of CsGH3.1L. The combination of these results with those of previous reports indicated that SA, ethylene, and IAA can directly regulate CBC resistance. Overall, we revealed a pathway whereby CsAP2-09 conferred CBC resistance by direct binding to the CsGH3.1L promoter, activating its expression and modulating IAA, SA, and ethylene biosynthesis. Our study indicates the potential value of manipulating CsAP2-09 and CsGH3.1L in the breeding of CBC-resistant citrus.
Collapse
Affiliation(s)
- Jia Fu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Qiyuan Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Chenxi Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Baohang Xian
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Jie Fan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Xin Huang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Wen Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Liyan Su
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi 710065, China
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| |
Collapse
|
44
|
Zhou Y, Zhao D, Duan Y, Chen L, Fan H, Wang Y, Liu X, Chen LQ, Xuan Y, Zhu X. AtSWEET1 negatively regulates plant susceptibility to root-knot nematode disease. FRONTIERS IN PLANT SCIENCE 2023; 14:1010348. [PMID: 36824200 PMCID: PMC9941640 DOI: 10.3389/fpls.2023.1010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes severe economic loss to agricultural production by forming a parasitic relationship with its hosts. During the development of M. incognita in the host plant roots, giant cells are formed as a nutrient sink. However, the roles of sugar transporters during the giant cells gain sugar from the plant cells are needed to improve. Meanwhile, the eventual function of sugars will eventually be exported transporters (SWEETs) in nematode-plant interactions remains unclear. In this study, the expression patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M. incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing stage). We found that few AtSWEETs responded sensitively to M. incognita inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose transporter gene. Histological analyses indicated that the β-glucuronidase (GUS) and green fluorescent protein (GFP) signals were observed specifically in the galls of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that AtSWEET1 was induced specifically in the galls. Genetic studies have shown that parasitism of M. incognita was significantly affected in atsweet1 compared to wild-type and complementation plants. In addition, parasitism of M. incognita was significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression of which was induced by inoculation with M. incognita. Taken together, these data prove that SWEETs play important roles in plant and nematode interactions.
Collapse
Affiliation(s)
- Yuan Zhou
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yuxi Duan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuanyuan Wang
- College of Biological Science and Technology, Shenyang Agriculture University, Shenyang, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agriculture University, Shenyang, China
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yuanhu Xuan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| |
Collapse
|
45
|
Biotechnological interventions in reducing losses of tropical fruits and vegetables. Curr Opin Biotechnol 2023; 79:102850. [PMID: 36481342 DOI: 10.1016/j.copbio.2022.102850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Tropical fruits and vegetables are predominantly cultivated in warm climate zones, resulting in cultivar diversity in terms of structure, features, and physiology. These constitute a variety of bioactive ingredients such as vitamins, minerals, phenolic acids, anthocyanins, flavonoids, fatty acids, fiber, and their distinctive appearances attract customers across the world. The global production of fruit and vegetables has been attained a tremendous increase for the last few decades. However, huge losses at pre- and postharvest levels are major constraints in their judicious use. Traditional breeding strategies were used to minimize these losses, but their functionality is limited due to their time and labor intensiveness. Recent biotechnological, computational, and multiomics approaches not only address the losses concern but also aid in boosting crop productivity and nutritional values. This article emphasizes molecular tools that have been used to reduce losses of tropical fruits and vegetables at pre- and postharvest levels.
Collapse
|
46
|
Xu M, Zhang Y, Yang X, Xing J, Qi J, Zhang S, Zhang Y, Ye D, Tang C. Genome-wide analysis of the SWEET genes in Taraxacum kok-saghyz Rodin: An insight into two latex-abundant isoforms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:440-448. [PMID: 36493591 DOI: 10.1016/j.plaphy.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Taraxacum kok-saghyz Rodin (Tk) is a promising alternative rubber-producing grass. However, low biomass and rubber-producing capability limit its commercial application. As a carbon source transporter in plants, sugar will eventually be exported transporters (SWEETs) have been reported to play pivotal roles in diverse physiological events in the context of carbon assimilate transport and utilization. Theoretically, SWEETs would participate in Tk growth, development and response to environmental cues with relation to the accumulation of rubber and biomass, both of which rely on the input of carbon assimilates. Here, we identified 22 TkSWEETs through homology searching of the Tk genomes and bioinformatics analyses. RNA-seq and qRT-PCR analysis revealed these TkSWEETs to have overlapping yet distinct tissue expression patterns. Two TkSWEET isofroms, TkSWEET1 and TkSWEET12 expressed substantially in the latex, the cytoplasm of rubber-producing laticifers as well as the rubber source. As revealed by the transient expression analysis using Tk mesophyll protoplasts, both TkSWEET1 and TkSWEET12 were located in the plasma membrane. Heterologous expressions of the two TkSWEETs in a yeast mutant revealed that only TkSWEET1 exhibited apparent sugar transport activities, with a preference for monosaccharides. Interestingly, TkSWEET12, the latex-predominant TkSWEET isoform, seemed to have evolved from a tandem duplication event that results in a cluster of six TkSWEET genes with the TkSWEET12 therein, suggesting its specialized roles in the laticifers.
Collapse
Affiliation(s)
- Menghao Xu
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Yi Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xue Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Jianfeng Xing
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Jiyan Qi
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Shengmin Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Yuhao Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - De Ye
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Chaorong Tang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
47
|
Singh J, Das S, Jagadis Gupta K, Ranjan A, Foyer CH, Thakur JK. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36529911 PMCID: PMC10363763 DOI: 10.1111/pbi.13982] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
48
|
Qiao P, Zhao M, Guan W, Walcott R, Ye Y, Yang Y, Zhao T. A putative multi-sensor hybrid histidine kinase, BarA Ac , inhibits the expression of the type III secretion system regulator HrpG in Acidovorax citrulli. Front Microbiol 2022; 13:1064577. [PMID: 36532489 PMCID: PMC9748350 DOI: 10.3389/fmicb.2022.1064577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, severely damages watermelon, melon, and other cucurbit crops worldwide. Although many virulence determinants have been identified in A. citrulli, including swimming motility, twitching motility, biofilm formation, and the type III secretion system (T3SS), research on their regulation is lacking. To study virulence regulation mechanisms, we found a putative histidine kinase BarA Ac that may be related to the T3SS regulator HrpG in A. citrulli. We deleted and characterized barAAc (Aave_2063) in A. citrulli Aac5 strain. Compared to the wild-type Aac5, virulence and early proliferation of barAAc mutant in host watermelon cotyledons were significantly increased, and induction of hypersensitive response in non-host tobacco was accelerated, while biofilm formation and swimming motility were significantly reduced. In addition, the transcriptomic analysis revealed that the expression of many T3SS-related genes was upregulated in the ΔbarAAc deletion mutant when cultured in KB medium. Meanwhile, the ΔbarAAc deletion mutant showed increased accumulation of the T3SS regulator HrpG in KB medium, which may account for the increased deployment of T3SS. This suggests that the putative histidine kinase BarA Ac is able to repress the T3SS expression by inhibiting HrpG in the KB medium, which appears to be important for rational energy allocation. In summary, our research provides further understanding of the regulatory network of A. citrulli virulence.
Collapse
Affiliation(s)
- Pei Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Yunfeng Ye
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
Li GB, He JX, Wu JL, Wang H, Zhang X, Liu J, Hu XH, Zhu Y, Shen S, Bai YF, Yao ZL, Liu XX, Zhao JH, Li DQ, Li Y, Huang F, Huang YY, Zhao ZX, Zhang JW, Zhou SX, Ji YP, Pu M, Qin P, Li S, Chen X, Wang J, He M, Li W, Wu XJ, Xu ZJ, Wang WM, Fan J. Overproduction of OsRACK1A, an effector-targeted scaffold protein promoting OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty. MOLECULAR PLANT 2022; 15:1790-1806. [PMID: 36245122 DOI: 10.1016/j.molp.2022.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Grain formation is fundamental for crop yield but is vulnerable to abiotic and biotic stresses. Rice grain production is threatened by the false smut fungus Ustilaginoidea virens, which specifically infects rice floral organs, disrupting fertilization and seed formation. However, little is known about the molecular mechanisms of the U. virens-rice interaction and the genetic basis of floral resistance. Here, we report that U. virens secretes a cytoplasmic effector, UvCBP1, to facilitate infection of rice flowers. Mechanistically, UvCBP1 interacts with the rice scaffold protein OsRACK1A and competes its interaction with the reduced nicotinamide adenine dinucleotide phosphate oxidase OsRBOHB, leading to inhibition of reactive oxygen species (ROS) production. Although the analysis of natural variation revealed no OsRACK1A variants that could avoid being targeted by UvCBP1, expression levels of OsRACK1A are correlated with field resistance against U. virens in rice germplasm. Overproduction of OsRACK1A restores the OsRACK1A-OsRBOHB association and promotes OsRBOHB phosphorylation to enhance ROS production, conferring rice floral resistance to U. virens without yield penalty. Taken together, our findings reveal a new pathogenic mechanism mediated by an essential effector from a flower-specific pathogen and provide a valuable genetic resource for balancing disease resistance and crop yield.
Collapse
Affiliation(s)
- Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xue He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Long Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Fei Bai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zong-Lin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian-Jun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng-Jun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
50
|
Zhang C, Zhu P, Zhang M, Huang Z, Hippolyte AR, Hou Y, Lou X, Ji K. Identification, Classification and Characterization of LBD Transcription Factor Family Genes in Pinus massoniana. Int J Mol Sci 2022; 23:13215. [PMID: 36362005 PMCID: PMC9658656 DOI: 10.3390/ijms232113215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 09/11/2024] Open
Abstract
Transcription factors (TFs) are a class of proteins that play an important regulatory role in controlling the expression of plant target genes by interacting with downstream regulatory genes. The lateral organ boundary (LOB) structural domain (LBD) genes are a family of genes encoding plant-specific transcription factors that play important roles in regulating plant growth and development, nutrient metabolism, and environmental stresses. However, the LBD gene family has not been systematically identified in Pinus massoniana, one of the most important conifers in southern China. Therefore, in this study, we combined cell biology and bioinformatics approaches to identify the LBD gene family of P. massoniana by systematic gene structure and functional evolutionary analysis. We obtained 47 LBD gene family members, and all PmLBD members can be divided into two subfamilies, (Class I and Class II). By treating the plants with abiotic stress and growth hormone, etc., under qPCR-based analysis, we found that the expression of PmLBD genes was regulated by growth hormone and abiotic stress treatments, and thus this gene family in growth and development may be actively involved in plant growth and development and responses to adversity stress, etc. By subcellular localization analysis, PmLBD is a nuclear protein, and two of the genes, PmLBD44 and PmLBD45, were selected for functional characterization; secondly, yeast self-activation analysis showed that PmLBD44, PmLBD45, PmLBD46 and PmLBD47 had no self-activating activity. This study lays the foundation for an in-depth study of the role of the LBD gene family in other physiological activities of P. massoniana.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kongshu Ji
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|