1
|
Dissanayake UC, Roy A, Maghsoud Y, Polara S, Debnath T, Cisneros GA. Computational studies on the functional and structural impact of pathogenic mutations in enzymes. Protein Sci 2025; 34:e70081. [PMID: 40116283 PMCID: PMC11926659 DOI: 10.1002/pro.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Enzymes are critical biological catalysts involved in maintaining the intricate balance of metabolic processes within living organisms. Mutations in enzymes can result in disruptions to their functionality that may lead to a range of diseases. This review focuses on computational studies that investigate the effects of disease-associated mutations in various enzymes. Through molecular dynamics simulations, multiscale calculations, and machine learning approaches, computational studies provide detailed insights into how mutations impact enzyme structure, dynamics, and catalytic activity. This review emphasizes the increasing impact of computational simulations in understanding molecular mechanisms behind enzyme (dis)function by highlighting the application of key computational methodologies to selected enzyme examples, aiding in the prediction of mutation effects and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Upeksha C. Dissanayake
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Arkanil Roy
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Yazdan Maghsoud
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Biochemistry and Molecular PharmacologyBaylor College of MedicineHoustonTexasUSA
| | - Sarthi Polara
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Tanay Debnath
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - G. Andrés Cisneros
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
2
|
Hu Q, Sitsel O, Bågenholm V, Grønberg C, Lyu P, Pii Svane AS, Andersen KR, Laursen NS, Meloni G, Nissen P, Juhl DW, Nielsen JT, Nielsen NC, Gourdon P. Transition metal transporting P-type ATPases: terminal metal-binding domains serve as sensors for autoinhibitory tails. FEBS J 2025; 292:1654-1674. [PMID: 39609265 PMCID: PMC11970713 DOI: 10.1111/febs.17330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
Copper is an essential micronutrient and yet is highly toxic to cells at elevated concentrations. P1B-ATPase proteins are critical for this regulation, providing active extrusion across cellular membranes. One unique molecular adaptation of P1B-ATPases compared to other P-type ATPases is the presence of metal-binding domains (MBDs) at the cytosolic termini, which however are poorly characterized with an elusive mechanistic role. Here we present the MBD architecture in metal-free and metal-bound forms of the archetype Cu+-specific P1B-ATPase LpCopA, determined using NMR. The MBD is composed of a flexible tail and a structured core with a metal ion binding site defined by three sulfur atoms, one of which is pertinent to the so-called CXXC motif. Furthermore, we demonstrate that the MBD rather than being involved in ion delivery likely serves a regulatory role, which is dependent on the classical P-type ATPase E1-E2 transport mechanism. Specifically, the flexible tail appears responsible for autoinhibition while the metal-binding core is used for copper sensing. This model is validated by a conformation-sensitive and MBD-targeting nanobody that can structurally and functionally replace the flexible tail. We propose that autoinhibition of Cu+-ATPases occurs at low copper conditions via MBD-mediated interference with the soluble domains of the ATPase core and that metal transport is enabled when copper levels rise, through metal-induced dissociation of the MBD. This allows P1B-ATPase 'vacuum cleaners' to tune their own activity, balancing the levels of critical micronutrients in the cells.
Collapse
Affiliation(s)
- Qiaoxia Hu
- Department of Biomedical SciencesUniversity of CopenhagenDenmark
| | - Oleg Sitsel
- Department of Molecular Biology and GeneticsAarhus UniversityDenmark
- Present address:
Marine Structural Biology UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | | | | | - Pin Lyu
- Department of Biomedical SciencesUniversity of CopenhagenDenmark
| | - Anna Sigrid Pii Svane
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | | | - Nick Stub Laursen
- Department of Molecular Biology and GeneticsAarhus UniversityDenmark
| | - Gabriele Meloni
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Poul Nissen
- Department of Molecular Biology and GeneticsAarhus UniversityDenmark
| | - Dennis W. Juhl
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | - Jakob Toudahl Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | - Niels Chr. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | - Pontus Gourdon
- Department of Biomedical SciencesUniversity of CopenhagenDenmark
- Department of Experimental Medical ScienceLund UniversitySweden
| |
Collapse
|
3
|
Yu HF, Zeng QR, Xiao P, Yang D, Ping Y, Liu M, Yu Z, Wang C, Teng CB. Hippo-YAP signaling alleviates copper-induced mitochondrial dysfunction and oxidative damage via the ATOX1-PPA2 pathway. Int J Biol Macromol 2025; 290:138908. [PMID: 39706439 DOI: 10.1016/j.ijbiomac.2024.138908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Hippo signaling plays a crucial role in the cellular response to various stressors, such as mechanical stress, metabolic stress, and hypoxic stress. However, its physiological significance in copper (Cu) stress remains poorly understood. Here, we demonstrated aberrant activation of Hippo-YAP signaling in sheep pancreas and pancreatic organoids exposed to excessive Cu, accompanied by significant pathological changes, elevated levels of oxidative stress, and impaired mitochondrial structure and function. The inhibition of Hippo signaling or overexpression of YAP protected against Cu-induced damage by improving mitochondrial function and maintaining cellular Cu homeostasis. YAP interacted with TEAD and upregulated the expression of Cu chaperone ATOX1, a key regulator of intracellular Cu homeostasis. ATOX1 restored mitochondrial function under Cu stress by reducing mitochondrial superoxide levels, increasing ATP production and mitochondrial membrane potential. Additionally, our findings confirmed that ATOX1 indirectly bound to the PPA2 promoter and increased its transcription. Notably, the restoration of ATP production in mitochondria mediated by PPA2 overexpression facilitated efficient intracellular Cu efflux, allowing rapid and precise reestablishment of intracellular Cu homeostasis under Cu stress. Collectively, Hippo-YAP signaling alleviates Cu-induced oxidative damage by restoring mitochondrial function through activation of PPA2 transcription depending on ATOX1, thereby ensuring cellular Cu efflux and enhancing antioxidant capacity.
Collapse
Affiliation(s)
- Hai-Fan Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Qi-Ran Zeng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pengyu Xiao
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dian Yang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yue Ping
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Miao Liu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ze Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunsheng Wang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bo Teng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Yang W, Yang Y, Wang H, Wang J, Zhang S. Clinical and genetic characterization of patients with late onset Wilson's disease. NPJ Genom Med 2024; 9:71. [PMID: 39719440 DOI: 10.1038/s41525-024-00459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024] Open
Abstract
Wilson's disease (WD) typically manifests in children and young adults, with little knowledge of its late-onset forms. In this study, we performed a retrospective cohort study of 105 WD patients (99 index cases, 6 siblings) with an onset age ≥35 years. We compared 99 index late-onset patients with 1237 early-onset patients and analyzed the ATP7B variant penetrance referring to the Genome Aggregation Database (gnomAD). Sixty-two ATP7B variants were identified in the late-onset patients, among which A874V, V1106I, R919G, and T935M were correlated with late presentation of WD. Regarding gnomAD, V1106I and T935M exhibited significantly low penetrance, and there is a lack of patients carrying a genotype of V1106I/V1106I, R919G/R919G, T935M/T935M, V1106I/T935M, V1106I/R919G, or T935M/R919G. Our data revealed that patients carrying a combination of two late-onset variants may be overlooked due to atypical or lack of WD symptoms, which may provide valuable insights into the genetic basis and diagnosis of WD.
Collapse
Affiliation(s)
- Wenming Yang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Han Wang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiuxiang Wang
- Experimental Center of Clinical Research, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shijie Zhang
- Experimental Center of Clinical Research, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
5
|
La Rosa A, Covone AE, Coviello D, Arrigo S, Ferro J, Gandullia P, Madeo A. Early Onset of Wilson's Disease and Possible Role of Disease-Modifying Genes: A Case Report and Literature Review. Case Reports Hepatol 2024; 2024:3815089. [PMID: 39628766 PMCID: PMC11614511 DOI: 10.1155/crhe/3815089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Wilson's disease (WD) is a rare autosomal recessive disorder caused by mutations in the ATP7B gene, resulting in copper accumulation. Symptoms rarely appear before the age of 5, almost never before 3. The phenotypic variability of WD suggests the presence of modifying factors, making early diagnosis challenging. We present a case of symptomatic WD in a toddler, emphasizing the importance of considering WD in differential diagnoses and exploring genetic modifiers influencing disease onset. Clinical and laboratory assessments, including liver biopsy, were performed on a 4.2-year-old boy presenting with hypertransaminasemia and mild hepatomegaly. Histological evaluation revealed chronic hepatitis with fibrosis and severe steatosis, indicating long-standing active disease. Genetic analysis identified a missense variant and a 15-nucleotide deletion in the 5' UTR promoter region of the ATP7B gene, confirming the WD diagnosis. Additionally, homozygosity for the HFE H63D variant was detected, with transferrin saturations at the upper limit of normal. The patient's clinical management included a trial of D-penicillamine, discontinued due to side effects, followed by successful zinc acetate therapy. This case underscores the consideration of WD in the differential diagnosis of toddlers. The Ferenci-Leipzig score remains a valid diagnostic tool for WD even in the presence of a single ATP7B variant, although extended genetic analysis should still be considered. Normal ceruloplasmin levels do not rule out WD. Environmental, epigenetic, and genetic factors appear to influence the WD phenotype; HFE variants may act as modifiers given the link between iron and copper homeostasis, possibly explaining the early symptomatic onset in our patient.
Collapse
Affiliation(s)
- Alessandro La Rosa
- Paediatric Gastroenterology and Digestive Endoscopy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Arrigo
- Paediatric Gastroenterology and Digestive Endoscopy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Jacopo Ferro
- Department of Laboratory Medicine, Division of Anatomic Pathology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Gandullia
- Paediatric Gastroenterology and Digestive Endoscopy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annalisa Madeo
- Paediatric Gastroenterology and Digestive Endoscopy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
6
|
Ruturaj, Mishra M, Saha S, Maji S, Rodriguez-Boulan E, Schreiner R, Gupta A. Regulation of the apico-basolateral trafficking polarity of the homologous copper-ATPases ATP7A and ATP7B. J Cell Sci 2024; 137:jcs261258. [PMID: 38032054 PMCID: PMC10729821 DOI: 10.1242/jcs.261258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The homologous P-type copper-ATPases (Cu-ATPases) ATP7A and ATP7B are the key regulators of copper homeostasis in mammalian cells. In polarized epithelia, upon copper treatment, ATP7A and ATP7B traffic from the trans-Golgi network (TGN) to basolateral and apical membranes, respectively. We characterized the sorting pathways of Cu-ATPases between TGN and the plasma membrane and identified the machinery involved. ATP7A and ATP7B reside on distinct domains of TGN in limiting copper conditions, and in high copper, ATP7A traffics to basolateral membrane, whereas ATP7B traverses common recycling, apical sorting and apical recycling endosomes en route to apical membrane. Mass spectrometry identified regulatory partners of ATP7A and ATP7B that include the adaptor protein-1 complex. Upon knocking out pan-AP-1, sorting of both Cu-ATPases is disrupted. ATP7A loses its trafficking polarity and localizes on both apical and basolateral surfaces in high copper. By contrast, ATP7B loses TGN retention but retained its trafficking polarity to the apical domain, which became copper independent. Using isoform-specific knockouts, we found that the AP-1A complex provides directionality and TGN retention for both Cu-ATPases, whereas the AP-1B complex governs copper-independent trafficking of ATP7B solely. Trafficking phenotypes of Wilson disease-causing ATP7B mutants that disrupts putative ATP7B-AP1 interaction further substantiates the role of AP-1 in apical sorting of ATP7B.
Collapse
Affiliation(s)
- Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Monalisa Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumyendu Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
7
|
Ovchinnikova EV, Garbuz MM, Ovchinnikova AA, Kumeiko VV. Epidemiology of Wilson's Disease and Pathogenic Variants of the ATP7B Gene Leading to Diversified Protein Disfunctions. Int J Mol Sci 2024; 25:2402. [PMID: 38397079 PMCID: PMC10889319 DOI: 10.3390/ijms25042402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper in the liver, brain, and other organs. The disease is caused by pathogenic variants in the ATP7B gene, which encodes a P-type copper transport ATPase. Diagnosing WD is associated with numerous difficulties due to the wide range of clinical manifestations and its unknown dependence on the physiological characteristics of the patient. This leads to a delay in the start of therapy and the subsequent deterioration of the patient's condition. However, in recent years, molecular genetic testing of patients using next generation sequencing (NGS) has been gaining popularity. This immediately affected the detection speed of WD. If, previously, the frequency of this disease was estimated at 1:35,000-45,000 people, now, when conducting large molecular genetic studies, the frequency is calculated as 1:7026 people. This certainly points to the problem of identifying WD patients. This review provides an update on the performance of epidemiological studies of WD and describes normal physiological functions of the protein and diversified disfunctions depending on pathogenic variants of the ATP7B gene. Future prospects in the development of WD genetic diagnostics are also discussed.
Collapse
Affiliation(s)
- Elena Vasilievna Ovchinnikova
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
| | - Mikhail Maksimovich Garbuz
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
| | - Anna Aleksandrovna Ovchinnikova
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
| | - Vadim Vladimirovich Kumeiko
- Institute of Life Sciences and Biomedicine, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690922, Russia (M.M.G.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Federal University, Vladivostok 690041, Russia
| |
Collapse
|
8
|
Maji S, Pirozzi M, Ruturaj, Pandey R, Ghosh T, Das S, Gupta A. Copper-independent lysosomal localisation of the Wilson disease protein ATP7B. Traffic 2023; 24:587-609. [PMID: 37846526 DOI: 10.1111/tra.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.
Collapse
Affiliation(s)
- Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Tamal Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
9
|
Pilot M, Moura AE, Okhlopkov IM, Mamaev NV, Manaseryan NH, Hayrapetyan V, Kopaliani N, Tsingarska E, Alagaili AN, Mohammed OB, Ostrander EA, Bogdanowicz W. Human-modified canids in human-modified landscapes: The evolutionary consequences of hybridization for grey wolves and free-ranging domestic dogs. Evol Appl 2021; 14:2433-2456. [PMID: 34745336 PMCID: PMC8549620 DOI: 10.1111/eva.13257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Introgressive hybridization between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression patterns in admixed populations of Eurasian wolves and free-ranging domestic dogs (FRDs), identifying chromosomal regions with significantly overrepresented hybrid ancestry and assessing whether genes located within these regions show signatures of selection. Although the dog admixture proportion in West Eurasian wolves (2.7%) was greater than the wolf admixture proportion in FRDs (0.75%), the number and average length of chromosomal blocks showing significant overrepresentation of hybrid ancestry were smaller in wolves than FRDs. In wolves, 6% of genes located within these blocks showed signatures of positive selection compared to 23% in FRDs. We found that introgression from wolves may provide a considerable adaptive advantage to FRDs, counterbalancing some of the negative effects of domestication, which can include reduced genetic diversity and excessive tameness. In wolves, introgression from FRDs is mostly driven by drift, with a small number of positively selected genes associated with brain function and behaviour. The predominance of drift may be the consequence of small effective size of wolf populations, which reduces efficiency of selection for weakly advantageous or against weakly disadvantageous introgressed variants. Small wolf population sizes result largely from human-induced habitat loss and hunting, thus linking introgression rates to anthropogenic processes. Our results imply that maintenance of large population sizes should be an important element of wolf management strategies aimed at reducing introgression rates of dog-derived variants.
Collapse
Affiliation(s)
- Małgorzata Pilot
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Andre E. Moura
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Innokentiy M. Okhlopkov
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Nikolay V. Mamaev
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Ninna H. Manaseryan
- Scientific Center of Zoology and HydroecologyNational Academy of SciencesYerevanArmenia
| | | | | | | | - Abdulaziz N. Alagaili
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Osama B. Mohammed
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | | |
Collapse
|
10
|
Das S, Maji S, Ruturaj, Bhattacharya I, Saha T, Naskar N, Gupta A. Retromer retrieves the Wilson disease protein ATP7B from endolysosomes in a copper-dependent manner. J Cell Sci 2020; 133:jcs246819. [PMID: 33268466 PMCID: PMC7611186 DOI: 10.1242/jcs.246819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
The Wilson disease protein, ATP7B maintains copper (herein referring to the Cu+ ion) homeostasis in the liver. ATP7B traffics from trans-Golgi network to endolysosomes to export excess copper. Regulation of ATP7B trafficking to and from endolysosomes is not well understood. We investigated the fate of ATP7B after copper export. At high copper levels, ATP7B traffics primarily to acidic, active hydrolase (cathepsin-B)-positive endolysosomes and, upon subsequent copper chelation, returns to the trans-Golgi network (TGN). At high copper, ATP7B colocalizes with endolysosomal markers and with a core member of retromer complex, VPS35. Knocking down VPS35 did not abrogate the copper export function of ATP7B or its copper-responsive anterograde trafficking to vesicles; rather upon subsequent copper chelation, ATP7B failed to relocalize to the TGN, which was rescued by overexpressing wild-type VPS35. Overexpressing mutants of the retromer complex-associated proteins Rab7A and COMMD1 yielded a similar non-recycling phenotype of ATP7B. At high copper, VPS35 and ATP7B are juxtaposed on the same endolysosome and form a large complex that is stabilized by in vivo photoamino acid labeling and UV-crosslinking. We demonstrate that retromer regulates endolysosome to TGN trafficking of copper transporter ATP7B in a manner that is dependent upon intracellular copper.
Collapse
Affiliation(s)
- Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Tanusree Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
11
|
Zhang Y, Zeng B, Liu Y, Li P, Chen L, Zhao J. A Penta‐Eu
III
Sandwiched Dawson Selenotungstate and Its Unique Luminescence Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yan Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Yifan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Pan Li
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| |
Collapse
|
12
|
Roy S, McCann CJ, Ralle M, Ray K, Ray J, Lutsenko S, Jayakanthan S. Analysis of Wilson disease mutations revealed that interactions between different ATP7B mutants modify their properties. Sci Rep 2020; 10:13487. [PMID: 32778786 PMCID: PMC7418023 DOI: 10.1038/s41598-020-70366-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Wilson disease (WD) is an autosomal-recessive disorder caused by mutations in the copper (Cu)-transporter ATP7B. Thus far, studies of WD mutations have been limited to analysis of ATP7B mutants in the homozygous states. However, the majority of WD patients are compound-heterozygous, and how different mutations on two alleles impact ATP7B properties is unclear. We characterized five mutations identified in Indian WD patients, first by expressing each alone and then by co-expressing two mutants with dissimilar properties. Mutations located in the regulatory domains of ATP7B-A595T, S1362A, and S1426I-do not affect ATP7B targeting to the trans-Golgi network (TGN) but reduce its Cu-transport activity. The S1362A mutation also inhibits Cu-dependent trafficking from the TGN. The G1061E and G1101R mutations, which are located within the ATP-binding domain, cause ATP7B retention in the endoplasmic reticulum, inhibit Cu-transport, and lower ATP7B protein abundance. Co-expression of the A595T and G1061E mutations, which mimics the compound-heterozygous state of some WD patients, revealed an interaction between these mutants that altered their intracellular localization and trafficking under both low and high Cu conditions. These findings highlight the need to study WD variants in both the homozygous and compound-heterozygous states to better understand the genotype-phenotype correlations and incomplete penetrance observed in WD.
Collapse
Affiliation(s)
- Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institute, Baltimore, MD, USA. .,S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| | - Courtney J McCann
- Department of Physiology, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Martina Ralle
- Oregon Health and Science University, Portland, OR, USA
| | - Kunal Ray
- ATGC Diagnostics Private Ltd, Kolkata, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institute, Baltimore, MD, USA.
| | - Samuel Jayakanthan
- Department of Physiology, Johns Hopkins Medical Institute, Baltimore, MD, USA
| |
Collapse
|
13
|
Merico D, Spickett C, O’Hara M, Kakaradov B, Deshwar AG, Fradkin P, Gandhi S, Gao J, Grant S, Kron K, Schmitges FW, Shalev Z, Sun M, Verby M, Cahill M, Dowling JJ, Fransson J, Wienholds E, Frey BJ. ATP7B variant c.1934T > G p.Met645Arg causes Wilson disease by promoting exon 6 skipping. NPJ Genom Med 2020; 5:16. [PMID: 32284880 PMCID: PMC7142117 DOI: 10.1038/s41525-020-0123-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
Wilson disease is a recessive genetic disorder caused by pathogenic loss-of-function variants in the ATP7B gene. It is characterized by disrupted copper homeostasis resulting in liver disease and/or neurological abnormalities. The variant NM_000053.3:c.1934T > G (Met645Arg) has been reported as compound heterozygous, and is highly prevalent among Wilson disease patients of Spanish descent. Accordingly, it is classified as pathogenic by leading molecular diagnostic centers. However, functional studies suggest that the amino acid change does not alter protein function, leading one ClinVar submitter to question its pathogenicity. Here, we used a minigene system and gene-edited HepG2 cells to demonstrate that c.1934T > G causes ~70% skipping of exon 6. Exon 6 skipping results in frameshift and stop-gain, leading to loss of ATP7B function. The elucidation of the mechanistic effect for this variant resolves any doubt about its pathogenicity and enables the development of genetic medicines for restoring correct splicing.
Collapse
Affiliation(s)
- Daniele Merico
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Carl Spickett
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Matthew O’Hara
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Boyko Kakaradov
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Amit G. Deshwar
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Phil Fradkin
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Shreshth Gandhi
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Jiexin Gao
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Solomon Grant
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Ken Kron
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Frank W. Schmitges
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
- Present Address: WuXi AppTec, East Windsor, NJ USA
| | - Zvi Shalev
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Mark Sun
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Marta Verby
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Matthew Cahill
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - James J. Dowling
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Johan Fransson
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| | - Erno Wienholds
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
- Present Address: Tesseraqt Optimization Inc., 222 College Street, Toronto, ON M5J 3J1 Canada
| | - Brendan J. Frey
- Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, ON M5G 1M1 Canada
| |
Collapse
|
14
|
Tang N, Sandahl TD, Ott P, Kepp KP. Computing the Pathogenicity of Wilson's Disease ATP7B Mutations: Implications for Disease Prevalence. J Chem Inf Model 2019; 59:5230-5243. [PMID: 31751128 DOI: 10.1021/acs.jcim.9b00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic variations in the gene encoding the copper-transport protein ATP7B are the primary cause of Wilson's disease. Controversially, clinical prevalence seems much smaller than the prevalence estimated by genetic screening tools, causing fear that many people are undiagnosed, although early diagnosis and treatment is essential. To address this issue, we benchmarked 16 state-of-the-art computational disease-prediction methods against established data of missense ATP7B mutations. Our results show that the quality of the methods varies widely. We show the importance of optimizing the threshold of the methods used to distinguish pathogenic from nonpathogenic mutations against data of clinically confirmed pathogenic and nonpathogenic mutations. We find that most methods use thresholds that predict too many ATP7B mutations to be pathogenic. Thus, our findings explain the current controversy on Wilson's disease prevalence because meta-analysis and text search methods include many computational estimates that lead to higher disease prevalence than clinically observed. As proteins and diseases differ widely, a one-size-fits-all threshold cannot distinguish pathogenic and nonpathogenic mutations efficiently, as shown here. We also show that amino acid changes with small evolutionary substitution probability, mainly due to amino acid volume, are more associated with the disease, implying a pathological effect on the conformational state of the protein, which could affect copper transport or adenosine triphosphate recognition and hydrolysis. These findings may be a first step toward a more quantitative genotype-phenotype relationship of Wilson's disease.
Collapse
Affiliation(s)
- Ning Tang
- DTU Chemistry , Technical University of Denmark , Kemitorvet 206 , 2800 Kongens Lyngby , Denmark
| | - Thomas D Sandahl
- Department of Hepatology and Gastroenterology , Aarhus University Hospital , 8200 Aarhus , Denmark
| | - Peter Ott
- Department of Hepatology and Gastroenterology , Aarhus University Hospital , 8200 Aarhus , Denmark
| | - Kasper P Kepp
- DTU Chemistry , Technical University of Denmark , Kemitorvet 206 , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
15
|
Shanmugavel KP, Kumar R, Li Y, Wittung-Stafshede P. Wilson disease missense mutations in ATP7B affect metal-binding domain structural dynamics. Biometals 2019; 32:875-885. [PMID: 31598802 DOI: 10.1007/s10534-019-00219-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/28/2019] [Indexed: 12/23/2022]
Abstract
Wilson disease (WD) is caused by mutations in the gene for ATP7B, a copper transport protein that regulates copper levels in cells. A large number of missense mutations have been reported to cause WD but genotype-phenotype correlations are not yet established. Since genetic screening for WD may become reality in the future, it is important to know how individual mutations affect ATP7B function, with the ultimate goal to predict pathophysiology of the disease. To begin to assess mechanisms of dysfunction, we investigated four proposed WD-causing missense mutations in metal-binding domains 5 and 6 of ATP7B. Three of the four variants showed reduced ATP7B copper transport ability in a traditional yeast assay. To probe mutation-induced structural dynamic effects at the atomic level, molecular dynamics simulations (1.5 μs simulation time for each variant) were employed. Upon comparing individual metal-binding domains with and without mutations, we identified distinct differences in structural dynamics via root-mean square fluctuation and secondary structure content analyses. Most mutations introduced distant effects resulting in increased dynamics in the copper-binding loop. Taken together, mutation-induced long-range alterations in structural dynamics provide a rationale for reduced copper transport ability.
Collapse
Affiliation(s)
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Yaozong Li
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden.,Department of Biochemistry, University of Zurich, 8006, Zurich, Switzerland
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
16
|
Hermann W, Hennig C, Hoffmann J. [Misdiagnosis of Wilson's disease despite positive genetics]. DER NERVENARZT 2019; 89:1408-1410. [PMID: 29564470 DOI: 10.1007/s00115-018-0506-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- W Hermann
- Neurologie, SRO AG Langenthal, St. Urbanstraße 67, 4900, Langenthal, Schweiz.
| | - C Hennig
- Mitteldeutscher Praxisverbund Humangenetik, Dresden, Deutschland
| | - J Hoffmann
- Praxis für Humangenetik Tübingen, Tübingen, Deutschland
| |
Collapse
|
17
|
Overeem AW, Klappe K, Parisi S, Klöters-Planchy P, Mataković L, du Teil Espina M, Drouin CA, Weiss KH, van IJzendoorn SCD. Pluripotent stem cell-derived bile canaliculi-forming hepatocytes to study genetic liver diseases involving hepatocyte polarity. J Hepatol 2019; 71:344-356. [PMID: 30965071 DOI: 10.1016/j.jhep.2019.03.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Hepatocyte polarity is essential for the development of bile canaliculi and for safely transporting bile and waste products from the liver. Functional studies of autologous mutated proteins in the context of the polarized hepatocyte have been challenging because of the lack of appropriate cell models. The aims of this study were to obtain a patient-specific hepatocyte model that recapitulated hepatocyte polarity and to employ this model to study endogenous mutant proteins in liver diseases that involve hepatocyte polarity. METHODS Urine cell-derived pluripotent stem cells, taken from a patient with a homozygous mutation in ATP7B and a patient with a heterozygous mutation, were differentiated towards hepatocyte-like cells (hiHeps). HiHeps were also derived from a patient with MEDNIK syndrome. RESULTS Polarized hiHeps that formed in vivo-like bile canaliculi could be generated from embryonic and patient urine cell-derived pluripotent stem cells. HiHeps recapitulated polarized protein trafficking processes, exemplified by the Cu2+-induced redistribution of the copper transporter protein ATP7B to the bile canalicular domain. We demonstrated that, in contrast to the current dogma, the most frequent yet enigmatic Wilson disease-causing ATP7B-H1069Q mutation per se did not preclude trafficking of ATP7B to the trans-Golgi Network. Instead, it prevented its Cu2+-induced polarized redistribution to the bile canalicular domain, which could not be reversed by pharmacological folding chaperones. Finally, we demonstrate that hiHeps from a patient with MEDNIK syndrome, suffering from liver copper overload of unclear etiology, showed no defect in the Cu2+-induced redistribution of ATP7B to the bile canaliculi. CONCLUSIONS Functional cell polarity can be achieved in patient pluripotent stem cell-derived hiHeps, enabling, for the first time, the study of the endogenous mutant proteins, patient-specific pathogenesis and drug responses for diseases where hepatocyte polarity is a key factor. LAY SUMMARY This study demonstrates that cells that are isolated from urine can be reprogrammed in a dish towards hepatocytes that display architectural characteristics similar to those seen in the intact liver. The application of this methodology to cells from patients diagnosed with inherited copper metabolism-related liver diseases (that is, Wilson disease and MEDNIK syndrome) revealed unexpected and novel insights into patient mutation-specific disease mechanisms and drug responses.
Collapse
Affiliation(s)
- Arend W Overeem
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Lavinija Mataković
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marines du Teil Espina
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian A Drouin
- Service de Dermatologie, Centre Hospitalier du Grand Portage, Rivière du Loup, Québec, Canada
| | - Karl Heinz Weiss
- University Hospital Heidelberg, Internal Medicine IV, Heidelberg, Germany
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Famiglietti ML, Estreicher A, Breuza L, Poux S, Redaschi N, Xenarios I, Bridge A. An enhanced workflow for variant interpretation in UniProtKB/Swiss-Prot improves consistency and reuse in ClinVar. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5424995. [PMID: 30937429 PMCID: PMC6444058 DOI: 10.1093/database/baz040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/07/2019] [Accepted: 03/07/2019] [Indexed: 12/28/2022]
Abstract
Personalized genomic medicine depends on integrated analyses that combine genetic and phenotypic data from individual patients with reference knowledge of the functional and clinical significance of sequence variants. Sources of this reference knowledge include the ClinVar repository of human genetic variants, a community resource that accepts submissions from external groups, and UniProtKB/Swiss-Prot, an expert-curated resource of protein sequences and functional annotation. UniProtKB/Swiss-Prot provides knowledge on the functional impact and clinical significance of over 30 000 human protein-coding sequence variants, curated from peer-reviewed literature reports. Here we present a pilot study that lays the groundwork for the integration of curated knowledge of protein sequence variation from UniProtKB/Swiss-Prot with ClinVar. We show that existing interpretations of variant pathogenicity in UniProtKB/Swiss-Prot and ClinVar are highly concordant, with 88% of variants that are common to the two resources having interpretations of clinical significance that agree. Re-curation of a subset of UniProtKB/Swiss-Prot variants according to American College of Medical Genetics and Genomics (ACMG) guidelines using ClinGen tools further increases this level of agreement, mainly due to the reclassification of supposedly pathogenic variants as benign, based on newly available population frequency data. We have now incorporated ACMG guidelines and ClinGen tools into the UniProt Knowledgebase (UniProtKB) curation workflow and routinely submit variant data from UniProtKB/Swiss-Prot to ClinVar. These efforts will increase the usability and utilization of UniProtKB variant data and will facilitate the continuing (re-)evaluation of clinical variant interpretations as data sets and knowledge evolve.
Collapse
Affiliation(s)
- M L Famiglietti
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, Geneva 4, Switzerland
| | - A Estreicher
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, Geneva 4, Switzerland
| | - L Breuza
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, Geneva 4, Switzerland
| | - S Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, Geneva 4, Switzerland
| | - N Redaschi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, Geneva 4, Switzerland
| | - I Xenarios
- University of Lausanne, Lausanne, Switzerland
| | - A Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, Geneva 4, Switzerland
| | | |
Collapse
|
19
|
Nunes EA, Manieri TM, Matias AC, Bertuchi FR, da Silva DA, Lago L, Sato RH, Cerchiaro G. Protective effects of neocuproine copper chelator against oxidative damage in NSC34 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:62-71. [DOI: 10.1016/j.mrgentox.2018.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 11/28/2022]
|
20
|
Kumari N, Kumar A, Thapa BR, Modi M, Pal A, Prasad R. Characterization of mutation spectrum and identification of novel mutations in ATP7B gene from a cohort of Wilson disease patients: Functional and therapeutic implications. Hum Mutat 2018; 39:1926-1941. [PMID: 30120852 DOI: 10.1002/humu.23614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Wilson disease (WD), a copper metabolism disorder, occurs due to the presence of mutations in the gene encoding ATP7B, a protein that primarily facilitates hepatic copper excretion. A better understanding of spectrum and functional significance of ATP7B variants is critical to formulating targeted and personalized therapies. Henceforth, we screened and sequenced 21 exons of ATP7B gene from 50 WD patients and 60 healthy subjects. We identified 28 variants comprising, seven novels in 20% alleles, while eight variations affecting 23% alleles were first time reported in Indian cohort. The c.813C>A, p.(Cys271*) (10%) was the most frequent mutation. Bioinformatics analysis revealed five of seven novel variants viz. c.1600C>A, p.(Pro534Thr); c.1616C>A, p.(Pro539His); c.1924G>T, p.(Asp642Tyr); c.2168G>C, p.(Arg723Thr); c.2174G>C, p.(Arg725Thr) resulted in protein misfolding. Sequence conservation analysis of ATP7B regions containing novel variants documented an evolutionarily conserved nature. Functional analysis of these novel variants in five different cell lines lacking inherent ATP7B expression demonstrated sensitivity to CuCl2 -treatment, experiencing augmented cellular copper retention and decreased copper excretion as well as ceruloplasmin secretion to that of wildtype-ATP7B expressing cells. Interestingly, pharmacological chaperone 4-phenylbutyrate, a clinically approved compound, partially restored protein function of ATP7B mutants. These findings might enable novel treatment strategies in WD by clinically enhancing the protein expression of mutant ATP7B with residual copper export activity.
Collapse
Affiliation(s)
- Niti Kumari
- Department of Biochemistry, PGIMER, Chandigarh, India
| | - Aman Kumar
- Department of Biochemistry, PGIMER, Chandigarh, India
| | - Babu Ram Thapa
- Department of Paediatrics Gastroenterology, PGIMER, Chandigarh, India
| | - Manish Modi
- Department of Neurology, PGIMER, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | |
Collapse
|
21
|
Thompson KJ, Hein J, Baez A, Sosa JC, Wessling-Resnick M. Manganese transport and toxicity in polarized WIF-B hepatocytes. Am J Physiol Gastrointest Liver Physiol 2018; 315:G351-G363. [PMID: 29792530 PMCID: PMC6335010 DOI: 10.1152/ajpgi.00103.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Manganese (Mn) toxicity arises from nutritional problems, community and occupational exposures, and genetic risks. Mn blood levels are controlled by hepatobiliary clearance. The goals of this study were to determine the cellular distribution of Mn transporters in polarized hepatocytes, to establish an in vitro assay for hepatocyte Mn efflux, and to examine possible roles the Mn transporters would play in metal import and export. For these experiments, hepatocytoma WIF-B cells were grown for 12-14 days to achieve maximal polarity. Immunoblots showed that Mn transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14 were present. Indirect immunofluorescence microscopy localized Fpn and ZIP14 to WIF-B cell basolateral domains whereas ZnT10 and ZIP8 associated with intracellular vesicular compartments. ZIP8-positive structures were distributed uniformly throughout the cytoplasm, but ZnT10-positive vesicles were adjacent to apical bile compartments. WIF-B cells were sensitive to Mn toxicity, showing decreased viability after 16 h exposure to >250 μM MnCl2. However, the hepatocytes were resistant to 4-h exposures of up to 500 μM MnCl2 despite 50-fold increased Mn content. Washout experiments showed time-dependent efflux with 80% Mn released after a 4 h chase period. Hepcidin reduced levels of Fpn in WIF-B cells, clearing Fpn from the cell surface, but Mn efflux was unaffected. The secretory inhibitor, brefeldin A, did block release of Mn from WIF-B cells, suggesting vesicle fusion may be involved in export. These results point to a possible role of ZnT10 to import Mn into vesicles that subsequently fuse with the apical membrane and empty their contents into bile. NEW & NOTEWORTHY Polarized WIF-B hepatocytes express manganese (Mn) transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14. Fpn and ZIP14 localize to basolateral domains. ZnT10-positive vesicles were adjacent to apical bile compartments, and ZIP8-positive vesicles were distributed uniformly throughout the cytoplasm. WIF-B hepatocyte Mn export was resistant to hepcidin but inhibited by brefeldin A, pointing to an efflux mechanism involving ZnT10-mediated uptake of Mn into vesicles that subsequently fuse with and empty their contents across the apical bile canalicular membrane.
Collapse
Affiliation(s)
- Khristy J. Thompson
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jennifer Hein
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Andrew Baez
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jose Carlo Sosa
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| |
Collapse
|
22
|
Gao J, Yin J, Tao Z, Liu Y, Lin X, Deng J, Wang S. An Ultrasensitive Fluorescence Sensor with Simple Operation for Cu 2+ Specific Detection in Drinking Water. ACS OMEGA 2018; 3:3045-3050. [PMID: 31458569 PMCID: PMC6641449 DOI: 10.1021/acsomega.7b01497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/05/2018] [Indexed: 06/10/2023]
Abstract
Whether short-term or long-term, overexposure to an abnormal amount of copper ion does significant harm to human health. Considering its nonbiodegradability, it is critical to sensitively detect copper ion. Herein, a novel fluorescent strategy with a "turn-on" signal was developed for highly sensitive and specific detection of copper ion (Cu2+). In the present investigation, we found that Cu2+ exhibits excellent peroxidase-like catalytic activity toward oxidizing the nonfluorescent substrate of Amplex Red into the product of resofurin with outstanding fluorescence emission under the aid of H2O2. Thus, an enzyme-free and label-free sensing system was constructed for copper ion detection with quite simple operation. To ensure the detection sensitivity and reproducibility, the amount of H2O2 and incubation time were optimized. The limit of detection can reach as low as 1.0 nM. In addition, the developed assay demonstrated excellent specificity and could be utilized to detect copper ion in water samples including tap water and bottled purified water without standing recovery.
Collapse
Affiliation(s)
- Jinting Gao
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinjin Yin
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhanhui Tao
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaqing Liu
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaodong Lin
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiankang Deng
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key
Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin
Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin
Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 30071, China
| |
Collapse
|
23
|
Gupta A, Das S, Ray K. A glimpse into the regulation of the Wilson disease protein, ATP7B, sheds light on the complexity of mammalian apical trafficking pathways. Metallomics 2018; 10:378-387. [PMID: 29473088 DOI: 10.1039/c7mt00314e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wilson disease (WD), a Mendelian disorder of copper metabolism caused by mutations in the ATP7B gene, manifests a large spectrum of phenotypic variability. This phenomenon of extensive symptom variation is not frequently associated with a monogenic disorder. We hypothesize that the phenotypic variability in WD is primarily driven by the variations in interacting proteins that regulate the ATP7B function and localization in the cell. Based on existing literature, we delineated a potential molecular mechanism for ATP7B mediated copper transport in the milieu of its interactome, its dysfunction in WD and the resulting variability in the phenotypic manifestation. Understanding the copper-induced apical trafficking of ATP7B also significantly contributes to the appreciation of the complexities of the ligand-induced transport pathway. We believe that this holistic view of WD will pave the way for a better opportunity for rational drug design and therapeutics.
Collapse
Affiliation(s)
- Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata (IISER K), Mohanpur 741246, West Bengal, India.
| | - Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata (IISER K), Mohanpur 741246, West Bengal, India.
| | - Kunal Ray
- Academy of Scientific & Innovative Research (AcSIR), CSIR - HRDC Campus, Ghaziabad, Uttar Pradesh - 201002, India
| |
Collapse
|
24
|
Ariöz C, Li Y, Wittung-Stafshede P. The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations. Biometals 2017; 30:823-840. [PMID: 29063292 PMCID: PMC5684295 DOI: 10.1007/s10534-017-0058-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022]
Abstract
Wilson Disease (WD) is a hereditary genetic disorder, which coincides with a dysfunctional copper (Cu) metabolism caused by mutations in ATP7B, a membrane-bound P1B-type ATPase responsible for Cu export from hepatic cells. The N-terminal part (~ 600 residues) of the multi-domain 1400-residue ATP7B constitutes six metal binding domains (MBDs), each of which can bind a copper ion, interact with other ATP7B domains as well as with different proteins. Although the ATP7B's MBDs have been investigated in vitro and in vivo intensively, it remains unclear how these domains modulate overall structure, dynamics, stability and function of ATP7B. The presence of six MBDs is unique to mammalian ATP7B homologs, and many WD causing missense mutations are found in these domains. Here, we have summarized previously reported in vitro biophysical data on the MBDs of ATP7B and WD point mutations located in these domains. Besides the demonstration of where the research field stands today, this review showcasts the need for further biophysical investigation about the roles of MBDs in ATP7B function. Molecular mechanisms of ATP7B are important not only in the development of new WD treatment but also for other aspects of human physiology where Cu transport plays a role.
Collapse
Affiliation(s)
- Candan Ariöz
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Yaozong Li
- Department of Chemistry, Umeå University, Kemihuset A, Linnaeus väg 10, 901 87 Umeå, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| |
Collapse
|
25
|
Ye S, Dai T, Leng B, Tang L, Jin L, Cao L. Genotype and clinical course in 2 Chinese Han siblings with Wilson disease presenting with isolated disabling premature osteoarthritis: A case report. Medicine (Baltimore) 2017; 96:e8641. [PMID: 29381936 PMCID: PMC5708935 DOI: 10.1097/md.0000000000008641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Premature osteoarthritis (POA) is a rare condition in Wilson disease (WD). Particularly, when POA is the only complaint of a WD patient for a long time, there would be misdiagnosis or missed diagnosis and then treatment delay. PATIENT CONCERNS AND DIAGNOSIS Two Chinese Han siblings were diagnosed as WD by corneal K-F rings, laboratory test, and mutation analysis. They presented with isolated POA during the first 2 decades or more of their disease course, and were of missed diagnosis during that long time. The older affected sib became disabled due to his severe osteoarthritis when he was as young as 38 years old. Two compound heterozygous pathogenic variants c.2790_2792del and c.2621C>T were revealed in the ATP7B gene through targeted next-generation sequencing (NGS). LESSONS Adolescent-onset POA could be the only complaint of WD individual for at least 2 decades. Long delay in the treatment of WD's POA could lead to disability in early adulthood. Detailed physical examination, special biochemical test, and genotyping through targeted NGS should greatly reduce diagnosis delay in atypical WD patients with isolated POA phenotype.
Collapse
Affiliation(s)
- Siyuan Ye
- Department of Neurology, Tianjin Huanhu Hospital
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin
| | - Tingjun Dai
- Department of Neurology, Qilu Hospital of Shandong University, Jinan
| | - Bingquan Leng
- Department of Neurology, Central Hospital of Rizhao, Rizhao, China
| | - Lei Tang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan
| | - Liang Jin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan
| | - Lili Cao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan
| |
Collapse
|
26
|
Kieffer DA, Medici V. Wilson disease: At the crossroads between genetics and epigenetics-A review of the evidence. LIVER RESEARCH 2017; 1:121-130. [PMID: 29270329 PMCID: PMC5734098 DOI: 10.1016/j.livres.2017.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Environmental factors, including diet, exercise, stress, and toxins, profoundly impact disease phenotypes. This review examines how Wilson disease (WD), an autosomal recessive genetic disorder, is influenced by genetic and environmental inputs. WD is caused by mutations in the copper-transporter gene ATP7B, leading to the accumulation of copper in the liver and brain, resulting in hepatic, neurological, and psychiatric symptoms. These symptoms range in severity and can first appear anytime between early childhood and old age. Over 300 disease-causing mutations in ATP7B have been identified, but attempts to link genotype to the phenotypic presentation have yielded little insight, prompting investigators to identify alternative mechanisms, such as epigenetics, to explain the highly varied clinical presentation. Further, WD is accompanied by structural and functional abnormalities in mitochondria, potentially altering the production of metabolites that are required for epigenetic regulation of gene expression. Notably, environmental exposure affects the regulation of gene expression and mitochondrial function. We present the "multi-hit" hypothesis of WD progression, which posits that the initial hit is an environmental factor that affects fetal gene expression and epigenetic mechanisms and subsequent "hits" are environmental exposures that occur in the offspring after birth. These environmental hits and subsequent changes in epigenetic regulation may impact copper accumulation and ultimately WD phenotype. Lifestyle changes, including diet, increased physical activity, stress reduction, and toxin avoidance, might influence the presentation and course of WD, and therefore may serve as potential adjunctive or replacement therapies.
Collapse
|
27
|
Jayakanthan S, Braiterman LT, Hasan NM, Unger VM, Lutsenko S. Human copper transporter ATP7B (Wilson disease protein) forms stable dimers in vitro and in cells. J Biol Chem 2017; 292:18760-18774. [PMID: 28842499 DOI: 10.1074/jbc.m117.807263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Indexed: 11/06/2022] Open
Abstract
ATP7B is a copper-transporting P1B-type ATPase (Cu-ATPase) with an essential role in human physiology. Mutations in ATP7B cause the potentially fatal Wilson disease, and changes in ATP7B expression are observed in several cancers. Despite its physiologic importance, the biochemical information about ATP7B remains limited because of a complex multidomain organization of the protein. By analogy with the better characterized prokaryotic Cu-ATPases, ATP7B is assumed to be a single-chain monomer. We show that in eukaryotic cells, human ATP7B forms dimers that can be purified following solubilization. Deletion of the four N-terminal metal-binding domains, characteristic for human ATP7B, does not disrupt dimerization, i.e. the dimer interface is formed by the domains that are conserved among Cu-ATPases. Unlike the full-length ATP7B, which is targeted to the trans-Golgi network, 1-4ΔMBD-7B is targeted primarily to vesicles. This result and the analysis of differentially tagged ATP7B variants indicate that the dimeric structure is retained during ATP7B trafficking between the intracellular compartments. Purified dimeric species of 1-4ΔMBD-7B were characterized by a negative stain electron microscopy in the presence of ADP/MgCl2 Single-particle analysis yielded a low-resolution 3D model that provides the first insight into an overall architecture of a human Cu-ATPase, positions of the main domains, and a dimer interface.
Collapse
Affiliation(s)
| | - Lelita T Braiterman
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | | | - Vinzenz M Unger
- the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
28
|
Deng S, Liu H, Qiu K, You H, Lei Q, Lu W. Role of the Golgi Apparatus in the Blood-Brain Barrier: Golgi Protection May Be a Targeted Therapy for Neurological Diseases. Mol Neurobiol 2017; 55:4788-4801. [PMID: 28730529 DOI: 10.1007/s12035-017-0691-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) protects the brain from toxic material in the blood, provides nutrients for brain tissues, and screens harmful substances from the brain. The specific brain microvascular endothelial cells (BMVECs), tight junction between endothelial cells, and astrocytes ensure proper function of the central nervous system (CNS). Pathological factors disrupt the integrity of the BBB by destroying the normal function of endothelial cells and decreasing the production of tight junction proteins or the expression of proteins specifically localized on astrocytes. Interestingly, fragmentation of the Golgi apparatus is observed in neurological diseases and is involved in the destruction of the BBB function. The Golgi acts as a processing center in which proteins are transported after being processed in the endoplasmic reticulum. Besides reprocessing, classifying, and packaging proteins, the Golgi apparatus (GA) also acts as a signaling platform and calcium pool. In this review, we summarized the current literature on the potential relationship between the Golgi and endothelial cells, tight junction, and astrocytes. The normal function of the BBB is maintained as long as the normal function and morphology of the GA are not disturbed. Furthermore, we speculate that protecting the Golgi may be a novel therapeutic approach to protect the BBB and treat neurological diseases due to BBB dysfunction.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Hui Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Ke Qiu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Hong You
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
29
|
Mercer SW, Wang J, Burke R. In Vivo Modeling of the Pathogenic Effect of Copper Transporter Mutations That Cause Menkes and Wilson Diseases, Motor Neuropathy, and Susceptibility to Alzheimer's Disease. J Biol Chem 2017; 292:4113-4122. [PMID: 28119449 DOI: 10.1074/jbc.m116.756163] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
Copper is an essential biometal, and several inherited diseases are directly associated with a disruption to normal copper homeostasis. The best characterized are the copper deficiency and toxicity disorders Menkes and Wilson diseases caused by mutations in the p-type Cu-ATPase genes ATP7A and ATP7B, respectively. Missense mutations in the C-terminal portion of ATP7A have also been shown to cause distal motor neuropathy, whereas polymorphisms in ATP7B are associated with increased risk of Alzheimer's disease. We have generated a single, in vivo model for studying multiple pathogenic mutations in ATP7 proteins using Drosophila melanogaster, which has a single orthologue of ATP7A and ATP7B. Four pathogenic ATP7A mutations and two ATP7B mutations were introduced into a genomic ATP7 rescue construct containing an in-frame C-terminal GFP tag. Analysis of the wild type ATP7-GFP transgene confirmed that ATP7 is expressed at the basolateral membrane of larval midgut copper cells and that the transgene can rescue a normally early lethal ATP7 deletion allele to adulthood. Analysis of the gATP7-GFP transgenes containing pathogenic mutations showed that the function of ATP7 was affected, to varying degrees, by all six of the mutations investigated in this study. Of particular interest, the ATP7BK832R Alzheimer's disease susceptibility allele was found, for the first time, to be a loss of function allele. This in vivo system allows us to assess the severity of individual ATP7A/B mutations in an invariant genetic background and has the potential to be used to screen for therapeutic compounds able to restore function to faulty copper transport proteins.
Collapse
Affiliation(s)
- Stephen W Mercer
- From the School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jianbin Wang
- From the School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Richard Burke
- From the School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
30
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
31
|
Abstract
Copper (Cu) is indispensible for growth and development of human organisms. It is required for such fundamental and ubiquitous processes as respiration and protection against reactive oxygen species. Cu also enables catalytic activity of enzymes that critically contribute to the functional identity of many cells and tissues. Pigmentation, production of norepinephrine by the adrenal gland, the key steps in the formation of connective tissue, neuroendocrine signaling, wound healing - all these processes require Cu and depend on Cu entering the secretory pathway. To reach the Cu-dependent enzymes in a lumen of the trans-Golgi network and various vesicular compartments, Cu undertakes a complex journey crossing the extracellular and intracellular membranes and staying firmly on course while traveling in a cytosol. The proteins that assist Cu in this journey by mediating its entry, distribution, and export, have been identified. The accumulating data also indicate that the current model of cellular Cu homeostasis is still a "skeleton" that has to be fleshed out with many new details. This review summarizes recent data on the mechanisms responsible for Cu transfer to the secretory pathway. The emerging new concepts and gaps in our knowledge are discussed.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe street, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Chandhok G, Horvath J, Aggarwal A, Bhatt M, Zibert A, Schmidt HHJ. Functional analysis and drug response to zinc and D-penicillamine in stable ATP7B mutant hepatic cell lines. World J Gastroenterol 2016; 22:4109-4119. [PMID: 27122662 PMCID: PMC4837429 DOI: 10.3748/wjg.v22.i16.4109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/24/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of anti-copper treatment for survival of hepatic cells expressing different ATP7B mutations in cell culture.
METHODS: The most common Wilson disease (WD) mutations p.H1069Q, p.R778L and p.C271*, found in the ATP7B gene encoding a liver copper transporter, were studied. The mutations represent major genotypes of the United States and Europe, China, and India, respectively. A human hepatoma cell line previously established to carry a knockout of ATP7B was used to stably express WD mutants. mRNA and protein expression of mutant ATP7B, survival of cells, apoptosis, and protein trafficking were determined.
RESULTS: Low temperature increased ATP7B protein expression in several mutants. Intracellular ATP7B localization was significantly impaired in the mutants. Mutants were classified as high, moderate, and no survival based on their viability on exposure to toxic copper. Survival of mutant p.H1069Q and to a lesser extent p.C271* improved by D-penicillamine (DPA) treatment, while mutant p.R778L showed a pronounced response to zinc (Zn) treatment. Overall, DPA treatment resulted in higher cell survival as compared to Zn treatment; however, only combined Zn + DPA treatment fully restored cell viability.
CONCLUSION: The data indicate that the basic impact of a genotype might be characterized by analysis of mutant hepatic cell lines.
Collapse
|
33
|
Braiterman LT, Gupta A, Chaerkady R, Cole RN, Hubbard AL. Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B). J Biol Chem 2015; 290:8803-19. [PMID: 25666620 DOI: 10.1074/jbc.m114.627414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated ("hyperphosphorylated") in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration.
Collapse
Affiliation(s)
| | | | - Raghothama Chaerkady
- the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N Cole
- the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
34
|
Ivanova II, Kotzev IA, Atanassova MV, Gancheva DT, Pavlov SI, Krasnaliev IJ, Konstantinova DH. Wilson’s disease in association with anetoderma. Clin J Gastroenterol 2015; 8:52-6. [DOI: 10.1007/s12328-015-0550-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/07/2015] [Indexed: 12/28/2022]
|
35
|
Nyasae LK, Schell MJ, Hubbard AL. Copper directs ATP7B to the apical domain of hepatic cells via basolateral endosomes. Traffic 2014; 15:1344-65. [PMID: 25243755 DOI: 10.1111/tra.12229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/16/2014] [Indexed: 01/01/2023]
Abstract
Physiologic Cu levels regulate the intracellular location of the Cu ATPase ATP7B. Here, we determined the routes of Cu-directed trafficking of endogenous ATP7B in the polarized hepatic cell line WIF-B and in the liver in vivo. Copper (10 µm) caused ATP7B to exit the trans-Golgi network (TGN) in vesicles, which trafficked via large basolateral endosomes to the apical domain within 1 h. Although perturbants of luminal acidification had little effect on the TGN localization of ATP7B in low Cu, they blocked delivery to the apical membrane in elevated Cu. If the vesicular proton-pump inhibitor bafilomycin-A1 (Baf) was present with Cu, ATP7B still exited the TGN, but accumulated in large endosomes located near the coverslip, in the basolateral region. Baf washout restored ATP7B trafficking to the apical domain. If ATP7B was staged apically in high Cu, Baf addition promoted the accumulation of ATP7B in subapical endosomes, indicating a blockade of apical recycling, with concomitant loss of ATP7B at the apical membrane. The retrograde pathway to the TGN, induced by Cu removal, was far less affected by Baf than the anterograde (Cu-stimulated) case. Overall, loss of acidification-impaired Cu-regulated trafficking of ATP7B at two main sites: (i) sorting and exit from large basolateral endosomes and (ii) recycling via endosomes near the apical membrane.
Collapse
Affiliation(s)
- Lydia K Nyasae
- Department of Cell Biology, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 20184, USA
| | | | | |
Collapse
|
36
|
Huang Y, Nokhrin S, Hassanzadeh-Ghassabeh G, Yu CH, Yang H, Barry AN, Tonelli M, Markley JL, Muyldermans S, Dmitriev OY, Lutsenko S. Interactions between metal-binding domains modulate intracellular targeting of Cu(I)-ATPase ATP7B, as revealed by nanobody binding. J Biol Chem 2014; 289:32682-93. [PMID: 25253690 DOI: 10.1074/jbc.m114.580845] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1-3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell.
Collapse
Affiliation(s)
- Yiping Huang
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sergiy Nokhrin
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Gholamreza Hassanzadeh-Ghassabeh
- the Vrije Universiteit Brussel, Structural Biology Research Center, and Nanobody Service Facility, VIB, 1050 Brussels, Belgium, and
| | - Corey H Yu
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Haojun Yang
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Amanda N Barry
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Marco Tonelli
- the Department of Biochemistry, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - John L Markley
- the Department of Biochemistry, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Serge Muyldermans
- the Vrije Universiteit Brussel, Structural Biology Research Center, and
| | - Oleg Y Dmitriev
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| | - Svetlana Lutsenko
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,
| |
Collapse
|
37
|
Copper: toxicological relevance and mechanisms. Arch Toxicol 2014; 88:1929-38. [PMID: 25199685 DOI: 10.1007/s00204-014-1355-y] [Citation(s) in RCA: 441] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/28/2014] [Indexed: 01/14/2023]
Abstract
Copper (Cu) is a vital mineral essential for many biological processes. The vast majority of all Cu in healthy humans is associated with enzyme prosthetic groups or bound to proteins. Cu homeostasis is tightly regulated through a complex system of Cu transporters and chaperone proteins. Excess or toxicity of Cu, which is associated with the pathogenesis of hepatic disorder, neurodegenerative changes and other disease conditions, can occur when Cu homeostasis is disrupted. The capacity to initiate oxidative damage is most commonly attributed to Cu-induced cellular toxicity. Recently, altered cellular events, including lipid metabolism, gene expression, alpha-synuclein aggregation, activation of acidic sphingomyelinase and release of ceramide, and temporal and spatial distribution of Cu in hepatocytes, as well as Cu-protein interaction in the nerve system, have been suggested to play a role in Cu toxicity. However, whether these changes are independent of, or secondary to, an altered cellular redox state of Cu remain to be elucidated.
Collapse
|
38
|
Abstract
To achieve permanent correction of Wilson's disease by a cell therapy approach, replacement of diseased hepatocytes with healthy hepatocytes is desirable. There is a physiological requirement for hepatic ATP7B-dependent copper (Cu) transport in bile, which is deficient in Wilson's disease, producing progressive Cu accumulation in the liver or brain with organ damage. The ability to repopulate the liver with healthy hepatocytes raises the possibility of cell therapy in Wilson's disease. Therapeutic principles included reconstitution of bile canalicular network as well as proliferation in transplanted hepatocytes, despite toxic amounts of Cu in the liver. Nonetheless, cell therapy studies in animal models elicited major differences in the mechanisms driving liver repopulation with transplanted hepatocytes in Wilson's disease versus nondiseased settings. Recently, noninvasive imaging was developed to demonstrate Cu removal from the liver, including after cell therapy in Wilson's disease. Such developments will help advance cell/gene therapy approaches, particularly by offering roadmaps for clinical trials in people with Wilson's disease.
Collapse
Affiliation(s)
- Sanjeev Gupta
- Marion Bessin Liver Research Center, Cancer Research Center, Diabetes Center, Departments of Medicine and Pathology, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|