1
|
Nukiwa R, Oda S, Matsumoto H, Al Kadi M, Murao S, Matsubara T, Nakao S, Okuzaki D, Ogura H, Oda J. Changes in gene expression in healthcare workers during night shifts: implications for immune response and health risks. J Intensive Care 2025; 13:14. [PMID: 40069845 PMCID: PMC11895378 DOI: 10.1186/s40560-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/13/2024] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Shift work is common in healthcare, especially in emergency and intensive care, to maintain the quality of patient care. Night shifts are linked to health risks such as cardiovascular disease, metabolic disorders, and poor mental health. It has been suggested that inflammatory responses due to the disruption of circadian rhythm may contribute to health risks, but the detailed mechanisms remain unclear. This study aimed to analyze changes in gene expression in whole blood of healthcare workers before and after a night shift and investigate the molecular pathogenesis of these changes and their impact on health. METHODS This was a single-center, prospective, observational study of four medical doctors working night shifts in the emergency department. Blood samples from the subjects were collected before and after the night shift, and RNA sequencing was performed to analyze changes in gene expression in whole blood. The data obtained were analyzed via Ingenuity Pathway Analysis (IPA) core analysis that included canonical pathway analysis, upstream regulator analysis, and functional network analysis. RNA bulk deconvolution was performed to estimate the relative abundance of immune cells. The IPA analysis match feature was also used to assess similarities of gene expression patterns with other diseases. RESULTS We identified 302 upregulated and 78 downregulated genes (p < 0.05, |log2-fold change|> 0.5) as genes whose expression changed after the night shift. Canonical pathway analysis revealed that Toll-like receptors and other innate immune response pathways were activated. Upstream regulator analysis and functional network analysis also consistently indicated a predicted activation of innate immune and inflammatory responses. RNA bulk deconvolution showed changes in the proportions of several immune cells. IPA analysis match indicated that gene expression patterns after night shifts were highly correlated with several diseases, including major depressive disorder, in terms of immune and inflammatory responses. CONCLUSION The results revealed that innate immune and inflammatory responses are elicited after night shifts in healthcare workers and that gene expression patterns correlate with several diseases in terms of immune and inflammatory responses. These findings suggest that shift work may affect health risks through innate immune and inflammatory responses.
Collapse
Affiliation(s)
- Ryota Nukiwa
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Emergency and Critical Care Medicine, Hachinohe City Hospital, Aomori, Japan
| | - Sayaka Oda
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mohamad Al Kadi
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shuhei Murao
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsunehiro Matsubara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shunichiro Nakao
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Oda
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Gloston GF, Ward KC, Rodriguez-Torres GC, Gamble KL, Thomas SJ. Integrating Assessment of Circadian Rhythmicity to Improve Treatment Outcomes for Circadian Rhythm Sleep-Wake Disorders: Updates on New Treatments. CURRENT SLEEP MEDICINE REPORTS 2025; 11:8. [PMID: 39975943 PMCID: PMC11832606 DOI: 10.1007/s40675-025-00325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
Purpose of Review Despite advancements in basic circadian research, development of new diagnostic and treatment strategies for circadian rhythm sleep-wake disorders (CRSWDs) has been slow. Here, we review the most recent innovations in human circadian assessment and emerging new therapies for CRSWDs. Recent Findings Researchers have improved existing circadian assessment methods to overcome logistical barriers and developed novel circadian assessment methods. New treatments for CRSWDs involve pharmacological and behavioral treatments that modulate circadian phase, amplitude, and/or robustness of the central circadian clock. Summary Commercialization of these emerging tools will require overcoming barriers, such as additional testing to confirm the underlying pathology and mechanism of action of potential treatments. Clinicians and scientists are also called to survey adjacent fields and adopt existing diagnostic tools that may offer diagnostic clarity in CRSWDs. Lastly, we must continue to advocate for medical insurance coverage of current and future tools and technologies to improve patient care.
Collapse
Affiliation(s)
- Gabrielle F. Gloston
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Katherine C. Ward
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL USA
| | - G. Carolina Rodriguez-Torres
- Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35294-0017 USA
| | - Karen L. Gamble
- Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35294-0017 USA
| | - S. Justin Thomas
- Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35294-0017 USA
| |
Collapse
|
3
|
Pieters LE, Deenik J, Hoogendoorn AW, van Someren EJW, van Harten PN. Sleep and physical activity patterns in relation to daily-life symptoms in psychosis: An actigraphy and experience sampling study. Psychiatry Res 2025; 344:116320. [PMID: 39673966 DOI: 10.1016/j.psychres.2024.116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Sleep disturbances and reduced physical activity (PA) are important risk factors for poor physical and mental health outcomes in people with psychosis. However, the precise interrelations between sleep, PA and psychopathology remain unclear. This study combined experience sampling (ESM) and actigraphy in thirty-two patients with a schizophrenia spectrum disorder to investigate interrelations of day-to-day variations in actigraphic estimates of PA and sleep and psychotic and affective symptoms. Multilevel mixed-models show that subjects reported more positive affect on more physically active days. Unexpectedly, participants reported worse next-day negative affect and/or psychotic symptoms after nights with higher sleep continuity, as consistently indicated by sleep efficiency and the mean duration of bouts of wake and sleep. Lastly, PA was higher after nights with higher sleep continuity and shorter total sleep duration. These results highlight that modifiable lifestyle factors such as PA and sleep have an intricate, but clinically relevant relationship with psychotic and affective symptoms. Future studies are needed to further examine the complex effects of these behaviors in order to develop effective, targeted treatment strategies to improve clinical outcome in psychosis.
Collapse
Affiliation(s)
- Lydia E Pieters
- Research Department, Psychiatric Centre GGz Centraal, Postbus 3051, Amersfoort 3800 DB, the Netherlands; Department of Mental Health and Neuroscience, Maastricht University, PO Box 616, Maastricht 6200 MD, the Netherlands.
| | - Jeroen Deenik
- Research Department, Psychiatric Centre GGz Centraal, Postbus 3051, Amersfoort 3800 DB, the Netherlands; Department of Mental Health and Neuroscience, Maastricht University, PO Box 616, Maastricht 6200 MD, the Netherlands
| | - Adriaan W Hoogendoorn
- Department of Psychiatry, Amsterdam UMC, VU University, Amsterdam Public Health Research Institute & Neuroscience, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Eus J W van Someren
- Department of Psychiatry, Amsterdam UMC, VU University, Amsterdam Public Health Research Institute & Neuroscience, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Peter N van Harten
- Research Department, Psychiatric Centre GGz Centraal, Postbus 3051, Amersfoort 3800 DB, the Netherlands; Department of Mental Health and Neuroscience, Maastricht University, PO Box 616, Maastricht 6200 MD, the Netherlands
| |
Collapse
|
4
|
Yang L, Wang XZ, Wang CZ, Wang DH, Wang ZS, Zhang XY. Time-restricted feeding modulates gene expression related with rhythm and inflammation in Mongolian gerbils. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110038. [PMID: 39260783 DOI: 10.1016/j.cbpc.2024.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/11/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Time-restricted feeding (TRF) has the potential to modulate circadian rhythm and widely studied in humans and laboratory mice. However, less is known about the physiological responses to TRF in wild mammals. Here, we used Mongolian gerbils, Meriones unguiculatus, to explore the effect of 6-week TRF on gene expression related with circadian rhythm and inflammation. The TRF gerbils had higher cumulative food intake than the ad libitum (AL) group, but body mass, feeding frequency/time and metabolic rate did not differ between groups. In the hypothalamus, downregulation of rhythm-related genes Per3, Cry1 and Dbp was detected in the daytime-restricted feeding (DRF) group and Cry1 was downregulated in the nighttime-restricted feeding (NRF) group. In the liver, the expression of Per1/3, Rev-erbα/β and Dbp was lower, and Bmal1 was higher in the DRF than in AL group, while NRF gerbils showed no changes. In the colon, the expression of Bmal1 and Cry1 was higher but Per3, Rev-erbα/β and Dbp were lower in the DRF than in AL group. Further, the expression of inflammation-related genes such as NF-κB, IL-1β, IL-18 and Nlrp3 was lower in the liver of DRF gerbils, and IL-1β was lower both in the hypothalamus and liver of NRF gerbils. Moreover, the genes related with inflammation such as NF-κB, Nlrp3, IL-10/18/1β and Tnf-α were positively or negatively correlated with multiple rhythm-related genes in the central and peripheral organs. In conclusion, TRF, particularly DRF, could modulate rhythm-related genes in the central and peripheral tissues and reduce hepatic expression of inflammation-related genes in gerbils.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi-Zhi Wang
- School of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Shan Wang
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Mansbach P, Fadden JS, McGovern L. Registry and survey of circadian rhythm sleep-wake disorder patients. Sleep Med X 2024; 7:100100. [PMID: 38229915 PMCID: PMC10790090 DOI: 10.1016/j.sleepx.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Objective Circadian Sleep Disorders Network has created a registry of circadian rhythm sleep-wake disorder (CRSWD) patients, and a survey of their experiences. The purpose of the registry is to provide volunteers willing to participate in research; the purpose of the survey is to fill some of the knowledge gaps on these disorders, including information on subjective patient experience and the efficacy and durability of treatments.Researchers are invited to contact Circadian Sleep Disorders Network for permission to use the registry to find potential research participants, and to further analyze the survey data. Patients Over 1627 patients have participated; 1298 have completed the entire survey. Here we present results based on the 479 clinically diagnosed CRSWD patients. Methods The survey covers a variety of topics relating to CRSWDs, including diagnosis, comorbidities, treatments, and work/educational accommodations. Conclusions Results of this survey diverged from much of the literature. More than half the participants reported tiredness even when sleeping on their preferred schedule. While depression may cause sleep problems, our data suggests that sleep/circadian problems often precede depression.There were more people suffering from sighted non-24-hour sleep-wake rhythm disorder than some of the literature would lead us to expect.Current treatments did not appear to be helpful to a large percentage of our participants. Most of them did not find light therapy helpful and nearly all participants who tried phase-delay chronotherapy reported at best only short-term improvement. A sizable proportion of people who tried phase-delay chronotherapy subsequently developed non-24-hour sleep-wake rhythm disorder.
Collapse
Affiliation(s)
- Peter Mansbach
- c/o Circadian Sleep Disorders Network, 4619 Woodfield Rd, Bethesda, MD, 20814, USA
| | - James S.P. Fadden
- c/o Circadian Sleep Disorders Network, 4619 Woodfield Rd, Bethesda, MD, 20814, USA
| | - Lynn McGovern
- c/o Circadian Sleep Disorders Network, 4619 Woodfield Rd, Bethesda, MD, 20814, USA
| |
Collapse
|
6
|
Ma F, Li Z, Liu H, Chen S, Zheng S, Zhu J, Shi H, Ye H, Qiu Z, Gao L, Han B, Yang Q, Wang X, Zhang Y, Cheng L, Fan H, Lv S, Zhao X, Zhou H, Li J, Hong M. Dietary-timing-induced gut microbiota diurnal oscillations modulate inflammatory rhythms in rheumatoid arthritis. Cell Metab 2024; 36:2367-2382.e5. [PMID: 39260371 DOI: 10.1016/j.cmet.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune condition characterized by inflammatory activity with distinct rhythmic fluctuations. However, the precise mechanisms governing these inflammatory rhythms remain elusive. Here, we explore the interaction between dietary patterns, gut microbiota diurnal oscillations, and the rhythmicity of RA in both collagen-induced arthritis (CIA) mice and patients with RA and highlight the significance of dietary timing in modulating RA inflammatory rhythms linked to gut microbiota. Specifically, we discovered that Parabacteroides distasonis (P. distasonis) uses β-glucosidase (β-GC) to release glycitein (GLY) from the diet in response to daily nutritional cues, influencing RA inflammatory rhythms dependent on the sirtuin 5-nuclear factor-κB (SIRT5-NF-κB) axis. Notably, we validated the daily fluctuations of P. distasonis-β-GC-GLY in patients with RA through continuous sampling across day-night cycles. These findings underscore the crucial role of dietary timing in RA rhythmicity and propose potential clinical implications for novel therapeutic strategies to alleviate arthritis.
Collapse
Affiliation(s)
- Fopei Ma
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Haihua Liu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shixian Chen
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Songyuan Zheng
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Junqing Zhu
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Hao Shi
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Haixin Ye
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Zhantu Qiu
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Lei Gao
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Bingqi Han
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Qian Yang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xing Wang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yang Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Lifang Cheng
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Shuaijun Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Juan Li
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China.
| | - Mukeng Hong
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
7
|
Yi ZY, Liang QX, Zhou Q, Yang L, Meng QR, Li J, Lin YH, Cao YP, Zhang CH, Schatten H, Qiao J, Sun QY. Maternal total sleep deprivation causes oxidative stress and mitochondrial dysfunction in oocytes associated with fertility decline in mice. PLoS One 2024; 19:e0306152. [PMID: 39413105 PMCID: PMC11482706 DOI: 10.1371/journal.pone.0306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024] Open
Abstract
Previous studies have shown sleep deprivation is increasingly reported as one of the causes of female infertility. However, how and by what relevant mechanisms it affects female fertility remains unclear. In this study, female mice underwent 72 hours of total sleep deprivation (TSD) caused by rotating wheel or 2 different controls: a stationary wheel, or forced movement at night. Even though, there was no significant difference in the number of eggs ovulated by the TSD mice compared to the control groups. Overall levels of estrogen and FSH were lower throughout the estrus cycle. A total of 42 genes showed significant differential expression in GV oocytes after TSD by RNA sequencing (RNA-Seq). These included genes were enriched in gene ontology terms of mitochondrial protein complex, oxidoreductase activity, cell division, cell cycle G1/S phase transition, as well as others. The increased concentrations of reactive oxygen species (ROS) in germinal vesicle (GV) and metaphase II (MII) oocytes from TSD mice were observed, which might be induced by impaired mitochondrial function caused by TSD. The GV oocytes displayed increased mitochondrial DNA (mtDNA) copy number and a significant transient increase in inner mitochondrial membrane potential (Δψm) from the TSD mice probably due to compensatory effect. In contrast, MII oocytes in the TSD group showed a decrease in the mtDNA copy number and a lower Δψm compared with the controls. Furthermore, abnormal distribution of mitochondria in the GV and MII oocytes was also observed in TSD mice, suggesting mitochondrial dysfunction. In addition, abnormal spindle and abnormal arrangement of chromosomes in MII oocytes were markedly increased in the TSD mice compared with the control mice. In conclusion, our results suggest that TSD significantly alters the oocyte transcriptome, contributing to oxidative stress and disrupted mitochondrial function, which then resulted in oocyte defects and impaired early embryo development in female mice.
Collapse
Affiliation(s)
- Zi-Yun Yi
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qiu-Xia Liang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Lin Yang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, China
| | - Qing-Ren Meng
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jian Li
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yi-hua Lin
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yan-pei Cao
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chun-Hui Zhang
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Jie Qiao
- Reproductive Medical Center, Peking University Third Hospital, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
8
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 PMCID: PMC11040316 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
9
|
Chen S, Liu H, Yan C, Li Y, Xiao J, Zhao X. Fecal microbiota transplantation provides insights into the consequences of transcriptome profiles and cell energy in response to circadian misalignment of chickens. Poult Sci 2024; 103:103926. [PMID: 38964253 PMCID: PMC11278332 DOI: 10.1016/j.psj.2024.103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
The circadian misalignment (CM) disordered circadian rhythms exert adverse effects on animals. Poultry as one of animals suffers health and welfare problems due to long-term lighting photoperiods caused by CM. However, the roles of CM on organ development, cell growth, metabolism and immune are still unclear in chickens. In this study, a Chinese dual-purpose native breed, was used to explore the effects of CM on transcriptomic pattern of brain and cell energy biogenesis, and further fecal microbiota transplantation (FMT) was applied to investigate its "therapy" effect from CM suffering. Our results showed that the CM led to stunting in brain and small intestine of chicken. CM decreased of cell proliferation, and energy production, mtDNA copies and expression of genes related to cell cycle or mitochondrial biogenetics, while it upregulated the reactive oxygen species (ROS) level and the sensitivity to inflammation. Interestingly, FMT rescued the organ developmental defects and cell dysfunctions induced by CM. Circadian misalignment brought about abnormal tissue and cell developments, energy biogenesis, and immune response in birds. This study provided a comprehensive perspective on understanding the regulation of CM and FMT on bird development and welfare.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528000, China; State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Hao Liu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Chao Yan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yushan Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528000, China
| | - Jinlong Xiao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Xingbo Zhao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Jan M, Jimenez S, Hor CN, Dijk DJ, Skeldon AC, Franken P. Model integration of circadian- and sleep-wake-driven contributions to rhythmic gene expression reveals distinct regulatory principles. Cell Syst 2024; 15:610-627.e8. [PMID: 38986625 DOI: 10.1016/j.cels.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Maxime Jan
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland.
| | - Sonia Jimenez
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Charlotte N Hor
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK
| | - Anne C Skeldon
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK; School of Mathematics and Physics, University of Surrey, Guildford, UK
| | - Paul Franken
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Song YM, Kim JK. What's driving rhythmic gene expression: Sleep or the clock? Cell Syst 2024; 15:595-596. [PMID: 39024922 DOI: 10.1016/j.cels.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
Rhythmic gene expression can originate not only from the autonomous rhythm of clock genes but likely also from sleep-wake cycles. Jan and colleagues used a novel model-based approach to dissect these individual effects and found that both factors contribute to gene expression rhythms, varying in degree within and across tissues.
Collapse
Affiliation(s)
- Yun Min Song
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Schrader LA, Ronnekleiv-Kelly SM, Hogenesch JB, Bradfield CA, Malecki KM. Circadian disruption, clock genes, and metabolic health. J Clin Invest 2024; 134:e170998. [PMID: 39007272 PMCID: PMC11245155 DOI: 10.1172/jci170998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
A growing body of research has identified circadian-rhythm disruption as a risk factor for metabolic health. However, the underlying biological basis remains complex, and complete molecular mechanisms are unknown. There is emerging evidence from animal and human research to suggest that the expression of core circadian genes, such as circadian locomotor output cycles kaput gene (CLOCK), brain and muscle ARNT-Like 1 gene (BMAL1), period (PER), and cyptochrome (CRY), and the consequent expression of hundreds of circadian output genes are integral to the regulation of cellular metabolism. These circadian mechanisms represent potential pathophysiological pathways linking circadian disruption to adverse metabolic health outcomes, including obesity, metabolic syndrome, and type 2 diabetes. Here, we aim to summarize select evidence from in vivo animal models and compare these results with epidemiologic research findings to advance understanding of existing foundational evidence and potential mechanistic links between circadian disruption and altered clock gene expression contributions to metabolic health-related pathologies. Findings have important implications for the treatment, prevention, and control of metabolic pathologies underlying leading causes of death and disability, including diabetes, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
| | - Sean M Ronnekleiv-Kelly
- Molecular and Environmental Toxicology Center and
- Department of Surgery, Division of Surgical Oncology, School of Medicine and Public Health, University of Wisconsin, Madison Wisconsin, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Kristen Mc Malecki
- Molecular and Environmental Toxicology Center and
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Division of Environmental and Occupational Health Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Mei YX, Yang K, Zhang L, Jin Y, Yang N, Yang H, Zheng YL, Pang YS, Gong YJ, Zhou H, Zuo YL, Ding WJ. Dysrhythmic saliva microbiota in mobile phone addicts with sleep disorders and restored by acupuncture. Front Psychiatry 2024; 15:1335554. [PMID: 38957739 PMCID: PMC11217316 DOI: 10.3389/fpsyt.2024.1335554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Background Mobile phone addiction (MPA) greatly affects the biological clock and sleep quality and is emerging as a behavioral disorder. The saliva microbiota has been linked to circadian rhythms, and our previous research revealed dysrhythmic saliva metabolites in MPA subjects with sleep disorders (MPASD). In addition, acupuncture had positive effects. However, the dysbiotic saliva microbiota in MPASD patients and the restorative effects of acupuncture are unclear. Objectives To probe the circadian dysrhythmic characteristics of the saliva microbiota and acupunctural restoration in MPASD patients. Methods MPASD patients and healthy volunteers were recruited by the Mobile Phone Addiction Tendency Scale (MPATS) and the Pittsburgh Sleep Quality Index (PSQI). Saliva samples were collected every 4 h for 72 h. After saliva sampling, six MPDSD subjects (group M) were acupuncturally treated (group T), and subsequent saliva sampling was conducted posttreatment. Finally, all the samples were subjected to 16S rRNA gene sequencing and bioinformatic analysis. Results Significantly increased MPATS and PSQI scores were observed in MPDSD patients (p< 0.01), but these scores decreased (p<0.001) after acupuncture intervention. Compared with those in healthy controls, the diversity and structure of the saliva microbiota in MPASD patients were markedly disrupted. Six genera with circadian rhythms were detected in all groups, including Sulfurovum, Peptostreptococcus, Porphyromonas and Prevotella. There were five genera with circadian rhythmicity in healthy people, of which the rhythmicities of the genera Rothia and Lautropia disappeared in MPASD patients but effectively resumed after acupuncture intervention. Conclusions This work revealed dysrhythmic salivary microbes in MPASD patients, and acupuncture, as a potential intervention, could be effective in mitigating this ever-rising behavioral epidemic.
Collapse
Affiliation(s)
- Ying-Xiu Mei
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Jin
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-Li Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue-Shan Pang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Yan-Ju Gong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hang Zhou
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lin Zuo
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Yang Z, Black K, Ohman-Strickland P, Graber JM, Kipen H, Fang M, Zarbl H. Disruption of central and peripheral circadian clocks and circadian controlled estrogen receptor rhythms in night shift nurses in working environments. FASEB J 2024; 38:e23719. [PMID: 38837828 PMCID: PMC11884403 DOI: 10.1096/fj.202302261rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Chronic disruption of circadian rhythms by night shift work is associated with an increased breast cancer risk. However, little is known about the impact of night shift on peripheral circadian genes (CGs) and circadian-controlled genes (CCGs) associated with breast cancer. Hence, we assessed central clock markers (melatonin and cortisol) in plasma, and peripheral CGs (PER1, PER2, PER3, and BMAL1) and CCGs (ESR1 and ESR2) in peripheral blood mononuclear cells (PBMCs). In day shift nurses (n = 12), 24-h rhythms of cortisol and melatonin were aligned with day shift-oriented light/dark schedules. The mRNA expression of PER2, PER3, BMAL1, and ESR2 showed 24-h rhythms with peak values in the morning. In contrast, night shift nurses (n = 10) lost 24-h rhythmicity of cortisol with a suppressed morning surge but retained normal rhythmic patterns of melatonin, leading to misalignment between cortisol and melatonin. Moreover, night shift nurses showed disruption of rhythmic expressions of PER2, PER3, BMAL1, and ESR2 genes, resulting in an impaired inverse correlation between PER2 and BMAL1 compared to day shift nurses. The observed trends of disrupted circadian markers were recapitulated in additional day (n = 20) and night (n = 19) shift nurses by measurement at early night and midnight time points. Taken together, this study demonstrated the misalignment of cortisol and melatonin, associated disruption of PER2 and ESR2 circadian expressions, and internal misalignment in peripheral circadian network in night shift nurses. Morning plasma cortisol and PER2, BMAL1, and ESR2 expressions in PBMCs may therefore be useful biomarkers of circadian disruption in shift workers.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Pamela Ohman-Strickland
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Judith M Graber
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Current affiliation: Research and Early Development, Nonclinical Safety, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
15
|
González-Suárez M, Aguilar-Arnal L. Histone methylation: at the crossroad between circadian rhythms in transcription and metabolism. Front Genet 2024; 15:1343030. [PMID: 38818037 PMCID: PMC11137191 DOI: 10.3389/fgene.2024.1343030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms, essential 24-hour cycles guiding biological functions, synchronize organisms with daily environmental changes. These rhythms, which are evolutionarily conserved, govern key processes like feeding, sleep, metabolism, body temperature, and endocrine secretion. The central clock, located in the suprachiasmatic nucleus (SCN), orchestrates a hierarchical network, synchronizing subsidiary peripheral clocks. At the cellular level, circadian expression involves transcription factors and epigenetic remodelers, with environmental signals contributing flexibility. Circadian disruption links to diverse diseases, emphasizing the urgency to comprehend the underlying mechanisms. This review explores the communication between the environment and chromatin, focusing on histone post-translational modifications. Special attention is given to the significance of histone methylation in circadian rhythms and metabolic control, highlighting its potential role as a crucial link between metabolism and circadian rhythms. Understanding these molecular intricacies holds promise for preventing and treating complex diseases associated with circadian disruption.
Collapse
Affiliation(s)
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
16
|
McDermott JE, Jacobs JM, Merrill NJ, Mitchell HD, Arshad OA, McClure R, Teeguarden J, Gajula RP, Porter KI, Satterfield BC, Lundholm KR, Skene DJ, Gaddameedhi S, Van Dongen HPA. Molecular-Level Dysregulation of Insulin Pathways and Inflammatory Processes in Peripheral Blood Mononuclear Cells by Circadian Misalignment. J Proteome Res 2024; 23:1547-1558. [PMID: 38619923 DOI: 10.1021/acs.jproteome.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Circadian misalignment due to night work has been associated with an elevated risk for chronic diseases. We investigated the effects of circadian misalignment using shotgun protein profiling of peripheral blood mononuclear cells taken from healthy humans during a constant routine protocol, which was conducted immediately after participants had been subjected to a 3-day simulated night shift schedule or a 3-day simulated day shift schedule. By comparing proteomic profiles between the simulated shift conditions, we identified proteins and pathways that are associated with the effects of circadian misalignment and observed that insulin regulation pathways and inflammation-related proteins displayed markedly different temporal patterns after simulated night shift. Further, by integrating the proteomic profiles with previously assessed metabolomic profiles in a network-based approach, we found key associations between circadian dysregulation of protein-level pathways and metabolites of interest in the context of chronic metabolic diseases. Endogenous circadian rhythms in circulating glucose and insulin differed between the simulated shift conditions. Overall, our results suggest that circadian misalignment is associated with a tug of war between central clock mechanisms controlling insulin secretion and peripheral clock mechanisms regulating insulin sensitivity, which may lead to adverse long-term outcomes such as diabetes and obesity. Our study provides a molecular-level mechanism linking circadian misalignment and adverse long-term health consequences of night work.
Collapse
Affiliation(s)
- Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Jon M Jacobs
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nathaniel J Merrill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hugh D Mitchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Justin Teeguarden
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Rajendra P Gajula
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Kenneth I Porter
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Brieann C Satterfield
- Sleep and Performance Research Center, Washington State University, Spokane, Washington 99202, United States
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Kirsie R Lundholm
- Sleep and Performance Research Center, Washington State University, Spokane, Washington 99202, United States
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| | - Debra J Skene
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, Washington 99202, United States
- Department of Translational Medicine and Physiology, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
17
|
Pandi-Perumal SR, Saravanan KM, Paul S, Namasivayam GP, Chidambaram SB. Waking Up the Sleep Field: An Overview on the Implications of Genetics and Bioinformatics of Sleep. Mol Biotechnol 2024; 66:919-931. [PMID: 38198051 DOI: 10.1007/s12033-023-01009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Sleep genetics is an intriguing, as yet less understood, understudied, emerging area of biological and medical discipline. A generalist may not be aware of the current status of the field given the variety of journals that have published studies on the genetics of sleep and the circadian clock over the years. For researchers venturing into this fascinating area, this review thus includes fundamental features of circadian rhythm and genetic variables impacting sleep-wake cycles. Sleep/wake pathway medication exposure and susceptibility are influenced by genetic variations, and the responsiveness of sleep-related medicines is influenced by several functional polymorphisms. This review highlights the features of the circadian timing system and then a genetic perspective on wakefulness and sleep, as well as the relationship between sleep genetics and sleep disorders. Neurotransmission genes, as well as circadian and sleep/wake receptors, exhibit functional variability. Experiments on animals and humans have shown that these genetic variants impact clock systems, signaling pathways, nature, amount, duration, type, intensity, quality, and quantity of sleep. In this regard, the overview covers research on sleep genetics, the genomic properties of several popular model species used in sleep studies, homologs of mammalian genes, sleep disorders, and related genes. In addition, the study includes a brief discussion of sleep, narcolepsy, and restless legs syndrome from the viewpoint of a model organism. It is suggested that the understanding of genetic clues on sleep function and sleep disorders may, in future, result in an evidence-based, personalized treatment of sleep disorders.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Ganesh Pandian Namasivayam
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), A210, Kyoto University Institute for Advanced Study, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Saravana Babu Chidambaram
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
- Special Interest Group - Brain, Behaviour and Cognitive Neurosciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
18
|
Sumová A, Sládek M. Circadian Disruption as a Risk Factor for Development of Cardiovascular and Metabolic Disorders - From Animal Models to Human Population. Physiol Res 2024; 73:S321-S334. [PMID: 38634651 PMCID: PMC11412342 DOI: 10.33549/physiolres.935304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The lifestyle of human society is drifting apart from the natural environmental cycles that have influenced it since its inception. These cycles were fundamental in structuring the daily lives of people in the pre-industrial era, whether they were seasonal or daily. Factors that disrupt the regularity of human behaviour and its alignment with solar cycles, such as late night activities accompanied with food intake, greatly disturb the internal temporal organization in the body. This is believed to contribute to the rise of the so-called diseases of civilization. In this review, we discuss the connection between misalignment in daily (circadian) regulation and its impact on health, with a focus on cardiovascular and metabolic disorders. Our aim is to review selected relevant research findings from laboratory and human studies to assess the extent of evidence for causality between circadian clock disruption and pathology. Keywords: Circadian clock, Chronodisruption, Metabolism, Cardiovascular disorders, Spontaneously hypertensive rat, Human, Social jetlag, Chronotype.
Collapse
Affiliation(s)
- A Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
19
|
Archer SN, Möller-Levet C, Bonmatí-Carrión MÁ, Laing EE, Dijk DJ. Extensive dynamic changes in the human transcriptome and its circadian organization during prolonged bed rest. iScience 2024; 27:109331. [PMID: 38487016 PMCID: PMC10937834 DOI: 10.1016/j.isci.2024.109331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Physiological and molecular processes including the transcriptome change across the 24-h day, driven by molecular circadian clocks and behavioral and systemic factors. It is not known how the temporal organization of the human transcriptome responds to a long-lasting challenge. This may, however, provide insights into adaptation, disease, and recovery. We investigated the human 24-h time series transcriptome in 20 individuals during a 90-day constant bed rest protocol. We show that the protocol affected 91% of the transcriptome with 76% of the transcriptome still affected after 10 days of recovery. Dimensionality-reduction approaches revealed that many affected transcripts were associated with mRNA translation and immune function. The number, amplitude, and phase of rhythmic transcripts, including clock genes, varied significantly across the challenge. These findings of long-lasting changes in the temporal organization of the transcriptome have implications for understanding the mechanisms underlying health consequences of conditions such as microgravity and bed rest.
Collapse
Affiliation(s)
- Simon N. Archer
- Surrey Sleep Research Centre, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Carla Möller-Levet
- Bioinformatics Core Facility, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - María-Ángeles Bonmatí-Carrión
- Surrey Sleep Research Centre, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
- Chronobiology Laboratory, Department of Physiology, University of Murcia, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emma E. Laing
- Department of Microbiology, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research & Technology Centre, Imperial College London & University of Surrey, Guildford, UK
| |
Collapse
|
20
|
Mok H, Ostendorf E, Ganninger A, Adler AJ, Hazan G, Haspel JA. Circadian immunity from bench to bedside: a practical guide. J Clin Invest 2024; 134:e175706. [PMID: 38299593 PMCID: PMC10836804 DOI: 10.1172/jci175706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
The immune system is built to counteract unpredictable threats, yet it relies on predictable cycles of activity to function properly. Daily rhythms in immune function are an expanding area of study, and many originate from a genetically based timekeeping mechanism known as the circadian clock. The challenge is how to harness these biological rhythms to improve medical interventions. Here, we review recent literature documenting how circadian clocks organize fundamental innate and adaptive immune activities, the immunologic consequences of circadian rhythm and sleep disruption, and persisting knowledge gaps in the field. We then consider the evidence linking circadian rhythms to vaccination, an important clinical realization of immune function. Finally, we discuss practical steps to translate circadian immunity to the patient's bedside.
Collapse
Affiliation(s)
- Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elaine Ostendorf
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Ganninger
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avi J. Adler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guy Hazan
- Department of Pediatrics, Soroka University Medical Center, Beer-Sheva, Israel
- Research and Innovation Center, Saban Children’s Hospital, Beer-Sheva, Israel
| | - Jeffrey A. Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Klerman EB, Wright KP, Duffy JF, Scheer FAJL, Chang AM, Czeisler CA, Rajaratnam SM. A perspective on the Festschrift of Charles A. Czeisler, PhD MD. Sleep Health 2024; 10:S4-S10. [PMID: 38331654 PMCID: PMC11031332 DOI: 10.1016/j.sleh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Affiliation(s)
- Elizabeth B Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology., University of Colorado Boulder, USA
| | - Jeanne F Duffy
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anne-Marie Chang
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Charles A Czeisler
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Shantha Mw Rajaratnam
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| |
Collapse
|
22
|
Kosmadopoulos A, Boudreau P, Kervezee L, Boivin DB. Circadian Adaptation of Melatonin and Cortisol in Police Officers Working Rotating Shifts. J Biol Rhythms 2024; 39:49-67. [PMID: 37750410 PMCID: PMC10785562 DOI: 10.1177/07487304231196280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Misalignment of behavior and circadian rhythms due to night work can impair sleep and waking function. While both simulated and field-based studies suggest that circadian adaptation to a nocturnal schedule is slow, the rates of adaptation in real-world shift-work conditions are still largely unknown. The aim of this study was to evaluate the extent of adaptation of 24-h rhythms with 6-sulfatoxymelatonin (aMT6s) and cortisol in police officers working rotating shifts, with a special attention to night shifts. A total of 76 police officers (20 women; aged 32 ± 5.4 years, mean ± SD) from the province of Quebec, Canada, participated in a field study during their 28- or 35-day work cycle. Urine samples were collected for ~32 h before a series of day, evening, and night shifts to assess circadian phase. Before day, evening, and night shifts, 60%-89% of officers were adapted to a day schedule based on aMT6 rhythms, and 71%-78% were adapted based on cortisol rhythms. To further quantify the rate of circadian adaptation to night shifts, initial and final phases were determined in a subset of 37 officers with suitable rhythms for both hormones before and after 3-8 consecutive shifts (median = 7). Data were analyzed with circular and linear mixed-effects models. After night shifts, 30% and 24% of officers were adapted to a night-oriented schedule for aMT6s and cortisol, respectively. Significantly larger phase-delay shifts (aMT6s: -7.3 ± 0.9 h; cortisol: -6.3 ± 0.8 h) were observed in police officers who adapted to night shifts than in non-adapted officers (aMT6s: 0.8 ± 0.9 h; cortisol: 0.2 ± 1.1 h). Consistent with prior research, our results from both urinary aMT6s and cortisol midpoints indicate that a large proportion of police officers remained in a state of circadian misalignment following a series of night shifts in dim-light working environments.
Collapse
Affiliation(s)
- Anastasi Kosmadopoulos
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Appleton Institute for Behavioural Sciences, Central Queensland University, Adelaide, South Australia, Australia
| | - Philippe Boudreau
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Laura Kervezee
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Diane B. Boivin
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Huang Y, Braun R. Platform-independent estimation of human physiological time from single blood samples. Proc Natl Acad Sci U S A 2024; 121:e2308114120. [PMID: 38190520 PMCID: PMC10801856 DOI: 10.1073/pnas.2308114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/25/2023] [Indexed: 01/10/2024] Open
Abstract
Abundant epidemiological evidence links circadian rhythms to human health, from heart disease to neurodegeneration. Accurate determination of an individual's circadian phase is critical for precision diagnostics and personalized timing of therapeutic interventions. To date, however, we still lack an assay for physiological time that is accurate, minimally burdensome to the patient, and readily generalizable to new data. Here, we present TimeMachine, an algorithm to predict the human circadian phase using gene expression in peripheral blood mononuclear cells from a single blood draw. Once trained on data from a single study, we validated the trained predictor against four independent datasets with distinct experimental protocols and assay platforms, demonstrating that it can be applied generalizably. Importantly, TimeMachine predicted circadian time with a median absolute error ranging from 1.65 to 2.7 h, regardless of systematic differences in experimental protocol and assay platform, without renormalizing the data or retraining the predictor. This feature enables it to be flexibly applied to both new samples and existing data without limitations on the transcriptomic profiling technology (microarray, RNAseq). We benchmark TimeMachine against competing approaches and identify the algorithmic features that contribute to its performance.
Collapse
Affiliation(s)
- Yitong Huang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL60208
| | - Rosemary Braun
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL60208
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL60208
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL60208
- Santa Fe Institute, Santa Fe, NM87501
| |
Collapse
|
24
|
Seol J, So R, Murai F, Matsuo T. Association between physical activity patterns of working-age adults and social jetlag, depressive symptoms, and presenteeism. J Occup Health 2024; 66:uiae068. [PMID: 39535530 PMCID: PMC11643347 DOI: 10.1093/joccuh/uiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the association of physical activity with social jetlag, depressive symptoms, and presenteeism. METHODS This cross-sectional study included 8247 working-age adults (females, 44.6%; age, 20-64 years). Social jetlag was defined as the absolute difference between the midpoint of bedtime and wake time on workdays and free days. Depression symptoms were assessed using the Center for Epidemiologic Studies Depression Scale, and presenteeism was evaluated using the Work Functioning Impairment Scale. Exercise habits were classified into 4 groups based on the World Health Organization guidelines: nonactive (NA; n = 4223), insufficiently active (IA; n = 3009: exercise below guideline levels), weekend warriors (WW; n = 220: exercise 1-2 times per week meeting guideline levels), and regularly active (RA; n = 793: exercise at least 3 d/wk meeting guideline levels). Using multiple and Poisson regression analyses, we examined the association between exercise habits and each outcome. RESULTS Social jetlag, depression, and presenteeism were more favorable with shorter sedentary times and longer durations of moderate- and vigorous-intensity exercise. Compared with the RA group, the NA group had a significantly higher prevalence of social jetlag (prevalence ratio [PR] = 1.30), depression (PR = 1.31), and presenteeism (PR = 1.35). The IA group had a significantly higher prevalence of depression (PR = 1.33) and presenteeism (PR = 1.38). CONCLUSIONS Exercising with a certain frequency and intensity may help prevent symptoms of depression and social jetlag, and consequently prevent presenteeism.
Collapse
Affiliation(s)
- Jaehoon Seol
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Department of Frailty Research, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-0038, Japan
| | - Rina So
- Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, Japan (JNIOSH), 6-21-1 Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan
- Ergonomics Research Group, National Institute of Occupational Safety and Health, Japan (JNIOSH), 6-21-1 Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan
| | - Fumiko Murai
- Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, Japan (JNIOSH), 6-21-1 Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan
| | - Tomoaki Matsuo
- Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, Japan (JNIOSH), 6-21-1 Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan
- Ergonomics Research Group, National Institute of Occupational Safety and Health, Japan (JNIOSH), 6-21-1 Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan
| |
Collapse
|
25
|
Franken P, Dijk DJ. Sleep and circadian rhythmicity as entangled processes serving homeostasis. Nat Rev Neurosci 2024; 25:43-59. [PMID: 38040815 DOI: 10.1038/s41583-023-00764-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/03/2023]
Abstract
Sleep is considered essential for the brain and body. A predominant concept is that sleep is regulated by circadian rhythmicity and sleep homeostasis, processes that were posited to be functionally and mechanistically separate. Here we review and re-evaluate this concept and its assumptions using findings from recent human and rodent studies. Alterations in genes that are central to circadian rhythmicity affect not only sleep timing but also putative markers of sleep homeostasis such as electroencephalogram slow-wave activity (SWA). Perturbations of sleep change the rhythmicity in the expression of core clock genes in tissues outside the central clock. The dynamics of recovery from sleep loss vary across sleep variables: SWA and immediate early genes show an early response, but the recovery of non-rapid eye movement and rapid eye movement sleep follows slower time courses. Changes in the expression of many genes in response to sleep perturbations outlast the effects on SWA and time spent asleep. These findings are difficult to reconcile with the notion that circadian- and sleep-wake-driven processes are mutually independent and that the dynamics of sleep homeostasis are reflected in a single variable. Further understanding of how both sleep and circadian rhythmicity contribute to the homeostasis of essential physiological variables may benefit from the assessment of multiple sleep and molecular variables over longer time scales.
Collapse
Affiliation(s)
- Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|
26
|
Erren TC, Morfeld P. Circadian epidemiology: Structuring circadian causes of disease and practical implications. Chronobiol Int 2024; 41:38-52. [PMID: 38047448 DOI: 10.1080/07420528.2023.2288219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
That disruptions of the body's internal clockwork can lead to negative health consequences, including cancer, is a plausible hypothesis. Yet, despite strong mechanistic and animal support, the International Agency for Research on Cancer (IARC) experts considered epidemiological evidence as limited regarding the carcinogenicity of "shift-work involving circadian disruption" (2007) and "night shift work" (2019). We use directed acyclic graphs (DAGs) to outline a concept of circadian causes that discloses challenges when choosing appropriate exposure variables. On this basis, we propose to move beyond shift-work alone as a direct cause of disease. Instead, quantifying chronodisruption as individual doses can lead to interpretable circadian epidemiology. The hypothesis is that doses of chronodisruption cause disrupted circadian organisation by leading to desynchronization of circadian rhythms. Chronodisruption can be conceptualized as the split physiological nexus of internal and external times. Biological (or internal) night - an individual's intrinsically favoured sleep time window - could be the backbone of circadian epidemiology. In practice, individual doses that cause disrupted circadian organisation are derived from the intersection of time intervals of being awake and an individual's biological night. After numerous studies counted work shifts, chronobiology may now advance circadian epidemiology with more specific dose estimation - albeit with greater challenges in measurement (time-dependent individual data) and analysis (time-dependent confounding).
Collapse
Affiliation(s)
- Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Köln, Germany
| | - Peter Morfeld
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Köln, Germany
| |
Collapse
|
27
|
Johanns M, Haas JT, Raverdy V, Vandel J, Chevalier-Dubois J, Guille L, Derudas B, Legendre B, Caiazzo R, Verkindt H, Gnemmi V, Leteurtre E, Derhourhi M, Bonnefond A, Froguel P, Eeckhoute J, Lassailly G, Mathurin P, Pattou F, Staels B, Lefebvre P. Time-of-day-dependent variation of the human liver transcriptome and metabolome is disrupted in MASLD. JHEP Rep 2024; 6:100948. [PMID: 38125300 PMCID: PMC10730870 DOI: 10.1016/j.jhepr.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background & Aims Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and metabolome are significantly altered in human steatotic and MASH livers. Methods Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared between histologically normal, steatotic and MASH livers. Results Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in steatotic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes were affected in pathological livers. Both TNFα and PPARγ signaling were predicted as important contributors to altered rhythmicity. Conclusion MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential expression of core molecular clock components is maintained. Impact and implications This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may significantly affect data interpretation in animal and human studies of liver diseases.
Collapse
Affiliation(s)
- Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Violetta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Jimmy Vandel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Julie Chevalier-Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Loic Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Benjamin Legendre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Helene Verkindt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | | | | | - Mehdi Derhourhi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Philippe Froguel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | | | | | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| |
Collapse
|
28
|
González-Vila A, Luengo-Mateos M, Silveira-Loureiro M, Garrido-Gil P, Ohinska N, González-Domínguez M, Labandeira-García JL, García-Cáceres C, López M, Barca-Mayo O. Astrocytic insulin receptor controls circadian behavior via dopamine signaling in a sexually dimorphic manner. Nat Commun 2023; 14:8175. [PMID: 38071352 PMCID: PMC10710518 DOI: 10.1038/s41467-023-44039-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity. Here, we show that astrocytic insulin signaling sets the free-running period of locomotor activity in female mice and food entrainment in male mice. Additionally, ablating the insulin receptor in hypothalamic astrocytes alters cyclic energy homeostasis differently in male and female mice. Remarkably, the mutants exhibit altered dopamine metabolism, and the pharmacological modulation of dopaminergic signaling partially restores distinct circadian traits in both male and female mutant mice. Our findings highlight the role of astrocytic insulin-dopaminergic signaling in conveying time-of-feeding or lighting cues to the astrocyte clock, thus governing circadian behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Antía González-Vila
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Luengo-Mateos
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Silveira-Loureiro
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nataliia Ohinska
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Marco González-Domínguez
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis Labandeira-García
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Xu Y, Barnes VA, Harris RA, Altvater M, Williams C, Norland K, Looney J, Crandall R, Su S, Wang X. Sleep Variability, Sleep Irregularity, and Nighttime Blood Pressure Dipping. Hypertension 2023; 80:2621-2626. [PMID: 37800322 PMCID: PMC10873041 DOI: 10.1161/hypertensionaha.123.21497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Circadian rhythm regulates many important biological functions in humans. The goal of this study is to explore the impact of day-to-day deviations in the sleep-wake cycle on nighttime blood pressure (BP) dipping and further examine whether the ethnic difference in day-to-day deviations in sleep patterns can explain the ethnic difference in nighttime BP dipping. METHODS Twenty-four-hour ambulatory BP monitoring and 7-day accelerometer data were obtained from 365 adult participants (age range, 18.7-50.1 years; 52.6% Black participants and 47.3% European Americans; 64.1% females). Systolic BP dipping level was used to represent nighttime BP dipping. The SD of sleep duration was calculated as the index of sleep variability, and the SD of sleep midpoint was calculated as the index of sleep irregularity. RESULTS A 1-hour increase in the SD of sleep midpoint was associated with a 1.16% decrease in nighttime BP dipping (P<0.001). A 1-hour increase in the SD of sleep duration was associated with a 1.39% decrease in nighttime BP dipping (P=0.017). The ethnic difference in the SD of sleep midpoint can explain 29.2% of the ethnicity difference in BP dipping (P=0.008). CONCLUSIONS Sleep variability and sleep irregularity are associated with blunted BP dipping in the general population. In addition, data from the present investigation also demonstrate that the ethnic difference in sleep irregularity could partly explain the ethnic difference in BP dipping, an important finding that may help reduce the health disparity between Black participants and European Americans.
Collapse
Affiliation(s)
- Yanyan Xu
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
- Center for Biotechnology and Genomic Medicine (Y.X., X.W.), Medical College of Georgia, Augusta University, GA
| | - Vernon A Barnes
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
| | - Ryan A Harris
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
| | - Michelle Altvater
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
| | - Celestine Williams
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
| | - Kimberly Norland
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
| | - Jacob Looney
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
| | - Reva Crandall
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
| | - Shaoyong Su
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
| | - Xiaoling Wang
- Georgia Prevention Institute (Y.X., V.A.B., R.A.H., M.A., C.W., K.N., J.L., R.C., S.S., X.W.), Medical College of Georgia, Augusta University, GA
- Center for Biotechnology and Genomic Medicine (Y.X., X.W.), Medical College of Georgia, Augusta University, GA
| |
Collapse
|
30
|
Joshi A, Sundar IK. Circadian Disruption in Night Shift Work and Its Association with Chronic Pulmonary Diseases. Adv Biol (Weinh) 2023; 7:e2200292. [PMID: 36797209 DOI: 10.1002/adbi.202200292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Indexed: 02/18/2023]
Abstract
Globalization and the expansion of essential services over continuous 24 h cycles have necessitated the adaptation of the human workforce to shift-based schedules. Night shift work (NSW) causes a state of desynchrony between the internal circadian machinery and external environmental cues, which can impact inflammatory and metabolic pathways. The discovery of clock genes in the lung has shed light on potential mechanisms of circadian misalignment in chronic pulmonary disease. Here, the current knowledge of circadian clock disruption caused by NSW and its impact on lung inflammation and associated pathophysiology in chronic lung diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and COVID-19, is reviewed. Furthermore, the limitations of the current understanding of circadian disruption and potential future chronotherapeutic advances are discussed.
Collapse
Affiliation(s)
- Amey Joshi
- Department of Internal Medicine, Manipal Hospitals, Bangalore, Karnataka, 560066, India
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| |
Collapse
|
31
|
Fang G, Wang S, Chen Q, Luo H, Lian X, Shi D. Time-restricted feeding affects the fecal microbiome metabolome and its diurnal oscillations in lung cancer mice. Neoplasia 2023; 45:100943. [PMID: 37852131 PMCID: PMC10590998 DOI: 10.1016/j.neo.2023.100943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
The homeostasis of the gut microbiota and circadian rhythm is critical to host health, and both are inextricably intertwined with lung cancer. Although time-restricted feeding (TRF) can maintain circadian synchronization and improve metabolic disorders, the effects of TRF on the fecal microbiome, metabolome and their diurnal oscillations in lung cancer have not been discussed. We performed 16S rRNA sequencing and untargeted metabonomic sequencing of the feces prepared from models of tumor-bearing BALB/c nude mice and urethane-induced lung cancer. We demonstrated for the first time that TRF significantly delayed the growth of lung tumors. Moreover, TRF altered the abundances of the fecal microbiome, metabolome and circadian clocks, as well as their rhythmicity, in lung cancer models of tumor-bearing BALB/c nude mice and/or urethane-induced lung cancer C57BL/6J mice. The results of fecal microbiota transplantation proved that the antitumor effects of TRF occur by regulating the fecal microbiota. Notably, Lactobacillus and Bacillus were increased upon TRF and were correlated with most differential metabolites. Pathway enrichment analysis of metabolites revealed that TRF mainly affected immune and inflammatory processes, which might further explain how TRF exerted its anticancer benefits. These findings underscore the possibility that the fecal microbiome/metabolome regulates lung cancer following a TRF paradigm.
Collapse
Affiliation(s)
- Gaofeng Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Shengquan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Qianyao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Han Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Lian
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China.
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
32
|
Gosch A, Bhardwaj A, Courts C. TrACES of time: Transcriptomic analyses for the contextualization of evidential stains - Identification of RNA markers for estimating time-of-day of bloodstain deposition. Forensic Sci Int Genet 2023; 67:102915. [PMID: 37598452 DOI: 10.1016/j.fsigen.2023.102915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Obtaining forensically relevant information beyond who deposited a biological stain on how and under which circumstances it was deposited is a question of increasing importance in forensic molecular biology. In the past few years, several studies have been produced on the potential of gene expression analysis to deliver relevant contextualizing information, e.g. on nature and condition of a stain as well as aspects of stain deposition timing. However, previous attempts to predict the time-of-day of sample deposition were all based on and thus limited by previously described diurnal oscillators. Herein, we newly approached this goal by applying current sequencing technologies and statistical methods to identify novel candidate markers for forensic time-of-day predictions from whole transcriptome analyses. To this purpose, we collected whole blood samples from ten individuals at eight different time points throughout the day, performed whole transcriptome sequencing and applied biostatistical algorithms to identify 81 mRNA markers with significantly differential expression as candidates to predict the time of day. In addition, we performed qPCR analysis to assess the characteristics of a subset of 13 candidate predictors in dried and aged blood stains. While we demonstrated the general possibility of using the selected candidate markers to predict time-of-day of sample deposition, we also observed notable variation between different donors and storage conditions, highlighting the relevance of employing accurate quantification methods in combination with robust normalization procedures.This study's results are foundational and may be built upon when developing a targeted assay for time-of-day predictions from forensic blood samples in the future.
Collapse
Affiliation(s)
- A Gosch
- Institute of Legal Medicine, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - A Bhardwaj
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - C Courts
- Institute of Legal Medicine, Medical Faculty, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
33
|
Barton A, Hill J, O'Connor D, Jones C, Jones E, Camara S, Shrestha S, Jin C, Gibani MM, Dobinson HC, Waddington C, Darton TC, Blohmke CJ, Pollard AJ. Early transcriptional responses to human enteric fever challenge. Infect Immun 2023; 91:e0010823. [PMID: 37725060 PMCID: PMC10581002 DOI: 10.1128/iai.00108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023] Open
Abstract
Enteric fever, caused by oral infection with typhoidal Salmonella serovars, presents as a non-specific febrile illness preceded by an incubation period of 5 days or more. The enteric fever human challenge model provides a unique opportunity to investigate the innate immune response during this incubation period, and how this response is altered by vaccination with the Vi polysaccharide or conjugate vaccine. We find that on the same day as ingestion of typhoidal Salmonella, there is already evidence of an immune response, with 199 genes upregulated in the peripheral blood transcriptome 12 hours post-challenge (false discovery rate <0.05). Gene sets relating to neutrophils, monocytes, and innate immunity were over-represented (false discovery rate <0.05). Estimating cell proportions from gene expression data suggested a possible increase in activated monocytes 12 hours post-challenge (P = 0.036, paired Wilcoxon signed-rank test). Furthermore, plasma TNF-α rose following exposure (P = 0.011, paired Wilcoxon signed-rank test). There were no significant differences in gene expression (false discovery rate <0.05) in the 12 hours response between those who did and did not subsequently develop clinical or blood culture confirmed enteric fever or between vaccination groups. Together, these results demonstrate early perturbation of the peripheral blood transcriptome after enteric fever challenge and provide initial insight into early mechanisms of protection.
Collapse
Affiliation(s)
- Amber Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sonu Shrestha
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Malick M. Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Hazel C. Dobinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
34
|
Matsumoto Y, Hino A, Kumadaki K, Itani O, Otsuka Y, Kaneita Y. Relationship between Telework Jetlag and Perceived Psychological Distress among Japanese Hybrid Workers. Clocks Sleep 2023; 5:604-614. [PMID: 37873841 PMCID: PMC10667991 DOI: 10.3390/clockssleep5040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Social jetlag is associated with physical and mental health problems. With the increased popularity of telework, we investigated a specific form of social jetlag that we termed "telework jetlag". This study aimed to clarify the relationship between telework jetlag-the difference in sleep and wake-up times between in-office and telework days-and mental health problems among Japanese hybrid workers. A cross-sectional study was conducted with 1789 participants from October to December 2021 using an online-based questionnaire. Telework jetlag, defined as the difference in the midsleep point between in-office and telework days, was investigated using two groups according to telework jetlag-those lagging <1 h versus ≥1 h. We used the six-item Kessler Scale as a nonspecific psychological distress scale for the outcome. Telework jetlag was significantly associated with psychological distress, and the ≥1 h group had a higher risk (odds ratio: 1.80) of developing high psychological distress (HPD) than the <1 h group in the multivariate analysis. Since most teleworkers are forced to have a hybrid work style that mixes going to work and teleworking, telework jetlag must be addressed to maintain the health of teleworkers.
Collapse
Affiliation(s)
- Yuuki Matsumoto
- Department of Nursing, School of Medicine, Kurume University School of Nursing, Kurume 830-0003, Japan
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Ayako Hino
- Department of Mental Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kunitaka Kumadaki
- Department of Internal Medicine, Univer sity of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Osamu Itani
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yuichiro Otsuka
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshitaka Kaneita
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
35
|
Hoopes EK, Witman MA, D'Agata MN, Brewer B, Edwards DG, Robson SM, Malone SK, Keiser T, Patterson F. Sleep Variability, Eating Timing Variability, and Carotid Intima-Media Thickness in Early Adulthood. J Am Heart Assoc 2023; 12:e029662. [PMID: 37776217 PMCID: PMC10727236 DOI: 10.1161/jaha.123.029662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/24/2023] [Indexed: 10/02/2023]
Abstract
Background Day-to-day variability in sleep patterns and eating timing may disrupt circadian rhythms and has been linked with various adverse cardiometabolic outcomes. However, the extent to which variability in sleep patterns and eating timing relate to atherosclerotic development in subclinical stages remains unclear. Methods and Results Generally healthy adults (N=62, 29.3±7.3 years, 66% female) completed 14 days of sleep and dietary assessments via wrist accelerometry and photo-assisted diet records, respectively. Variability in sleep duration, sleep onset, eating onset (time of first caloric consumption), eating offset (time of last caloric consumption), and caloric midpoint (time at which 50% of total daily calories are consumed) were operationalized as the SD across 14 days for each variable. Separate regression models evaluated the cross-sectional associations between sleep and eating variability metrics with end-diastolic carotid intima-media thickness (CIMT) measured via ultrasonography. Models adjusted for age, sex, systolic blood pressure, sleep duration, and total energy intake. Each 60-minute increase in sleep duration SD and sleep onset SD were associated with a 0.049±0.016 mm (P=0.003) and 0.048±0.017 mm (P=0.007) greater CIMT, respectively. Variability in eating onset and offset were not associated with CIMT; however, each 60-minute increase in caloric midpoint SD was associated with a 0.033±0.015 mm greater CIMT (P=0.029). Exploratory post hoc analyses suggested that sleep duration SD and sleep onset SD were stronger correlates of CIMT than caloric midpoint SD. Conclusions Variability in sleep patterns and eating timing are positively associated with clinically relevant increases in CIMT, a biomarker of subclinical atherosclerosis, in early adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Keiser
- College of Health SciencesUniversity of DelawareNewarkDE
| | | |
Collapse
|
36
|
Diao T, Liu K, Wang Q, Lyu J, Zhou L, Yuan Y, Wang H, Yang H, Wu T, Zhang X. Bedtime, sleep pattern, and incident cardiovascular disease in middle-aged and older Chinese adults: The dongfeng-tongji cohort study. Sleep Med 2023; 110:82-88. [PMID: 37544277 DOI: 10.1016/j.sleep.2023.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVES To investigate the associations of bedtime and a low-risk sleep pattern with incident cardiovascular disease (CVD). METHODS A total of 31,500 retirees were included from the Dongfeng-Tongji cohort in 2008-2010 and 2013. Sleep information was collected by questionnaires. CVD events were identified through the health care system until December 31, 2018. Cox proportional hazards regression models were performed to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS During an average follow-up of 7.2 years, 8324 cases of incident CVD, including 6557 coronary heart disease (CHD) and 1767 stroke, were documented. U-shaped associations of bedtime with the risks of incident CVD and stroke were observed. Compared with bedtime between 10:01 p.m.-11:00 p.m., the HR (95% CI) for CVD was 1.10 (1.01-1.20) for ≤9:00 p.m., 1.07 (1.01-1.13) for 9:01 p.m.-10:00 p.m., and 1.32 (1.11-1.58) for >12:00 a.m., respectively, mainly driven by stroke risk (22%, 14%, and 70% higher for ≤9:00 p.m., 9:01 p.m.-10:00 p.m., and >12:00 a.m., respectively). The number of low-risk sleep factors, namely bedtime between 10:01 p.m.-12:00 a.m., sleep duration of 7-< 8 h/night, good/fair sleep quality, and midday napping ≤60 min, exhibited dose-dependent relationships with CVD, CHD, and stroke risks. Participants with 4 low-risk sleep factors had a respective 24%, 21%, and 30% lower risk of CVD, CHD, and stroke than those with 0-1 low-risk sleep factor. CONCLUSIONS Individuals with early or late bedtimes had a higher CVD risk, especially stroke. Having low-risk sleep habits is associated with lower CVD risks.
Collapse
Affiliation(s)
- Tingyue Diao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Qiuhong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junrui Lyu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Diao T, Zhou L, Yang L, Yuan Y, Liu K, Peng R, Wang Q, Wang H, Niu R, Long P, Yang H, Guo H, He M, Wu T, Zhang X. Bedtime, sleep duration, and sleep quality and all-cause mortality in middle-aged and older Chinese adults: The Dongfeng-Tongji cohort study. Sleep Health 2023; 9:751-757. [PMID: 37648645 DOI: 10.1016/j.sleh.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE This study aims to investigate the associations of bedtime and its combination with sleep duration and sleep quality with all-cause mortality. METHODS We conducted a prospective cohort study using data collected from 2008 to 2018 in the Dongfeng-Tongji cohort. Among 40,097 participants aged 62.1 on average at baseline, we applied Cox regression models to assess hazard ratios and 95% confidence intervals for mortality risk. RESULTS During a mean follow-up of 8.2years, 4345 deaths were documented. U-shaped associations of bedtime and sleep duration with all-cause mortality were observed. Compared with bedtime between 10:01 PM and 11:00 PM, the hazard ratio (95% confidence interval) for all-cause mortality was 1.34 (1.20-1.49) for ≤9:00 PM, 1.18 (1.09-1.27) for 9:01-10:00 PM, and 1.50 (1.13-2.00) for >12:00 AM, respectively. Participants with sleep duration of <6, 6-<7, 8-<9, and ≥9 h/night had a respective 39%, 21%, 11%, and 25% higher all-cause mortality risk than those sleeping 7-<8 h/night. Additionally, participants with a healthy sleep score of 3, characterized as proper bedtime (10:01 PM-12:00 AM), moderate sleep duration (7-<8h/night), and good/fair sleep quality, had a significantly 36% (hazard ratio, 0.64; 95% confidence interval, 0.56-0.74) lower all-cause mortality risk than those with a score of 0. CONCLUSIONS Individuals with early or late bedtimes and short or long sleep duration were at higher all-cause mortality risks. Having healthy sleep habits may significantly reduce death risk.
Collapse
Affiliation(s)
- Tingyue Diao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rong Peng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuhong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rundong Niu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
38
|
Thorkildsen MS, Gustad LT, Damås JK. The Effects of Shift Work on the Immune System: A Narrative Review. Sleep Sci 2023; 16:e368-e374. [PMID: 38196768 PMCID: PMC10773516 DOI: 10.1055/s-0043-1772810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/23/2022] [Indexed: 01/11/2024] Open
Abstract
Working a shift work schedule has been hypothesized to have negative effects on health. One such described consequence is altered immune response and increased risk of infections. Former reviews have concluded that more knowledge is needed to determine how shift work affects the immune system. Since the last review focusing on this subject was published in 2016, new insight has emerged. We performed a search of the topic in PubMed, Scopus and Embase, identifying papers published after 2016, finding a total of 13 new studies. The articles identified showed inconsistent effect on immune cells, cytokines, circadian rhythms, self-reported infections, and vaccine response as a result of working a shift schedule. Current evidence suggests working shifts influence the immune system, however the clinical relevance and the mechanism behind this potential association remains elusive. Further studies need to include longitudinal design and objective measures of shift work and immune response.
Collapse
Affiliation(s)
- Marianne Stenbekk Thorkildsen
- Gemini Center for Sepsis Research at Institute of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Lise Tuset Gustad
- Gemini Center for Sepsis Research at Institute of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
- Faculty of Nursing and Health Sciences, Nord University, Levanger, Trøndelag, Norway
- Department of Medicine and Rehabilitation, Levanger Hospital, Levanger, Trøndelag, Norway
| | - Jan Kristian Damås
- Gemini Center for Sepsis Research at Institute of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
- Centre of Molecular Inflammation Research, Norwegian University og Science and Technology, Trondheim, Trøndelag, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim, Trøndelag, Norway
| |
Collapse
|
39
|
Rahman SA, Gathungu RM, Marur VR, St Hilaire MA, Scheuermaier K, Belenky M, Struble JS, Czeisler CA, Lockley SW, Klerman EB, Duffy JF, Kristal BS. Age-related changes in circadian regulation of the human plasma lipidome. Commun Biol 2023; 6:756. [PMID: 37474677 PMCID: PMC10359364 DOI: 10.1038/s42003-023-05102-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Aging alters the amplitude and phase of centrally regulated circadian rhythms. Here we evaluate whether peripheral circadian rhythmicity in the plasma lipidome is altered by aging through retrospective lipidomics analysis on plasma samples collected in 24 healthy individuals (9 females; mean ± SD age: 40.9 ± 18.2 years) including 12 younger (4 females, 23.5 ± 3.9 years) and 12 middle-aged older, (5 females, 58.3 ± 4.2 years) individuals every 3 h throughout a 27-h constant routine (CR) protocol, which allows separating evoked changes from endogenously generated oscillations in physiology. Cosinor regression shows circadian rhythmicity in 25% of lipids in both groups. On average, the older group has a ~14% lower amplitude and a ~2.1 h earlier acrophase of the lipid circadian rhythms (both, p ≤ 0.001). Additionally, more rhythmic circadian lipids have a significant linear component in addition to the sinusoidal across the 27-h CR in the older group (44/56) compared to the younger group (18/58, p < 0.0001). Results from individual-level data are consistent with group-average results. Results indicate that prevalence of endogenous circadian rhythms of the human plasma lipidome is preserved with healthy aging into middle-age, but significant changes in rhythmicity include a reduction in amplitude, earlier acrophase, and an altered temporal relationship between central and lipid rhythms.
Collapse
Grants
- R01 HL128538 NHLBI NIH HHS
- T32 HL007901 NHLBI NIH HHS
- R01 AG006072 NIA NIH HHS
- R01 HD107064 NICHD NIH HHS
- U01 NS114001 NINDS NIH HHS
- R01 HL132556 NHLBI NIH HHS
- UL1 TR001102 NCATS NIH HHS
- UL1 RR025758 NCRR NIH HHS
- R01 HL162102 NHLBI NIH HHS
- R01 HL166205 NHLBI NIH HHS
- R01 HL159207 NHLBI NIH HHS
- U54 AG062322 NIA NIH HHS
- R01 NS114526 NINDS NIH HHS
- R01 HL140335 NHLBI NIH HHS
- R01 HL114088 NHLBI NIH HHS
- R01 NS099055 NINDS NIH HHS
- R21 DA052861 NIDA NIH HHS
- R03 AG071922 NIA NIH HHS
- The work was supported by grants from the NIH: R01-HL132556 (BSK), R01-HL140335 (BSK), R01-HL114088 (EBK), R01-AG06072 (JFD), and R01-HL159207 (SAR). KS was supported by a T32 HL07901 and a NIA F32 AG316902. EBK was supported by NIH R01NS099055, U01NS114001, U54AG062322, R21DA052861, R21DA052861, R01NS114526-02S1, R01-HD107064, DoD W81XWH201076; and Leducq Foundation for Cardiovascular Research. The clinical research projects described were supported by NIH grant 1UL1 TR001102-01, 8UL1TR000170-05, UL1 RR025758, Harvard Clinical and Translational Science Center, from the National Center for Advancing Translational Science. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources, the National Center for Advancing Translational Science or the National Institutes of Health.
Collapse
Affiliation(s)
- Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Rose M Gathungu
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Enara Bio, The Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford, OX4 4GA, UK
| | - Vasant R Marur
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Quantitative Biosciences, Merck & Co., Inc, 320 Bent St, Cambridge, MA, 02141, USA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Computer and Data Sciences, School of Science and Engineering, Merrimack College, 315 Turnpike Street, North Andover, MA, 01845, USA
| | - Karine Scheuermaier
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Marina Belenky
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Jackson S Struble
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Schwartz PB, Nukaya M, Berres ME, Rubinstein CD, Wu G, Hogenesch JB, Bradfield CA, Ronnekleiv-Kelly SM. The circadian clock is disrupted in pancreatic cancer. PLoS Genet 2023; 19:e1010770. [PMID: 37262074 PMCID: PMC10263320 DOI: 10.1371/journal.pgen.1010770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/13/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
Disruption of the circadian clock is linked to cancer development and progression. Establishing this connection has proven beneficial for understanding cancer pathogenesis, determining prognosis, and uncovering novel therapeutic targets. However, barriers to characterizing the circadian clock in human pancreas and human pancreatic cancer-one of the deadliest malignancies-have hindered an appreciation of its role in this cancer. Here, we employed normalized coefficient of variation (nCV) and clock correlation analysis in human population-level data to determine the functioning of the circadian clock in pancreas cancer and adjacent normal tissue. We found a substantially attenuated clock in the pancreatic cancer tissue. Then we exploited our existing mouse pancreatic transcriptome data to perform an analysis of the human normal and pancreas cancer samples using a machine learning method, cyclic ordering by periodic structure (CYCLOPS). Through CYCLOPS ordering, we confirmed the nCV and clock correlation findings of an intact circadian clock in normal pancreas with robust cycling of several core clock genes. However, in pancreas cancer, there was a loss of rhythmicity of many core clock genes with an inability to effectively order the cancer samples, providing substantive evidence of a dysregulated clock. The implications of clock disruption were further assessed with a Bmal1 knockout pancreas cancer model, which revealed that an arrhythmic clock caused accelerated cancer growth and worse survival, accompanied by chemoresistance and enrichment of key cancer-related pathways. These findings provide strong evidence for clock disruption in human pancreas cancer and demonstrate a link between circadian disruption and pancreas cancer progression.
Collapse
Affiliation(s)
- Patrick B. Schwartz
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mark E. Berres
- Biotechnology Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Clifford D. Rubinstein
- Biotechnology Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Gang Wu
- Division of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - John B. Hogenesch
- Division of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Christopher A. Bradfield
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Sean M. Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
41
|
Woelders T, Revell VL, Middleton B, Ackermann K, Kayser M, Raynaud FI, Skene DJ, Hut RA. Machine learning estimation of human body time using metabolomic profiling. Proc Natl Acad Sci U S A 2023; 120:e2212685120. [PMID: 37094145 PMCID: PMC10161018 DOI: 10.1073/pnas.2212685120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/26/2023] Open
Abstract
Circadian rhythms influence physiology, metabolism, and molecular processes in the human body. Estimation of individual body time (circadian phase) is therefore highly relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a partial least squares regression (PLSR) machine learning approach that uses plasma-derived metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) as a proxy for circadian phase of the human body. For this purpose, our protocol was aimed to stay close to real-life conditions. We found that a metabolomics approach optimized for either women or men under entrained conditions performed equally well or better than existing approaches using more labor-intensive RNA sequencing-based methods. Although estimation of circadian body time using blood-targeted metabolomics requires further validation in shift work and other real-world conditions, it currently may offer a robust, feasible technique with relatively high accuracy to aid personalized optimization of behavior and clinical treatment after appropriate validation in patient populations.
Collapse
Affiliation(s)
- Tom Woelders
- Chronobiology unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, 9700 CCGroningen, the Netherlands
| | - Victoria L. Revell
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, GuildfordGU2 7XH, United Kingdom
| | - Benita Middleton
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, GuildfordGU2 7XH, United Kingdom
| | - Katrin Ackermann
- Department of Genetic Identification, Erasmus University Medical Center, 3000 CARotterdam, the Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus University Medical Center, 3000 CARotterdam, the Netherlands
| | - Florence I. Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, LondonSM2 5NG, United Kingdom
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, GuildfordGU2 7XH, United Kingdom
| | - Roelof A. Hut
- Chronobiology unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, 9700 CCGroningen, the Netherlands
| |
Collapse
|
42
|
Carvalhas-Almeida C, Serra J, Moita J, Cavadas C, Álvaro AR. Understanding neuron-glia crosstalk and biological clocks in insomnia. Neurosci Biobehav Rev 2023; 147:105100. [PMID: 36804265 DOI: 10.1016/j.neubiorev.2023.105100] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
According to the World Health Organization, about one-third of the population experiences insomnia symptoms, and about 10-15% suffer from chronic insomnia, the most common sleep disorder. Sleeping difficulties associated with insomnia are often linked to chronic sleep deprivation, which has a negative health impact partly due to disruption in the internal synchronisation of biological clocks. These are regulated by clock genes and modulate most biological processes. Most studies addressing circadian rhythm regulation have focused on the role of neurons, yet glial cells also impact circadian rhythms and sleep regulation. Chronic insomnia and sleep loss have been associated with glial cell activation, exacerbated neuroinflammation, oxidative stress, altered neuronal metabolism and synaptic plasticity, accelerated age-related processes and decreased lifespan. It is, therefore, essential to highlight the importance of glia-neuron interplay on sleep/circadian regulation and overall healthy brain function. Hence, in this review, we aim to address the main neurobiological mechanisms involved in neuron-glia crosstalk, with an emphasis on microglia and astrocytes, in both healthy sleep, chronic sleep deprivation and chronic insomnia.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Joana Serra
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
43
|
Stenger S, Grasshoff H, Hundt JE, Lange T. Potential effects of shift work on skin autoimmune diseases. Front Immunol 2023; 13:1000951. [PMID: 36865523 PMCID: PMC9972893 DOI: 10.3389/fimmu.2022.1000951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 02/16/2023] Open
Abstract
Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
44
|
Wang W, Yuan RK, Mitchell JF, Zitting KM, St Hilaire MA, Wyatt JK, Scheer FAJL, Wright KP, Brown EN, Ronda JM, Klerman EB, Duffy JF, Dijk DJ, Czeisler CA. Desynchronizing the sleep---wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period. Nat Protoc 2023; 18:579-603. [PMID: 36376588 DOI: 10.1038/s41596-022-00746-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Circadian clocks drive cyclic variations in many aspects of physiology, but some daily variations are evoked by periodic changes in the environment or sleep-wake state and associated behaviors, such as changes in posture, light levels, fasting or eating, rest or activity and social interactions; thus, it is often important to quantify the relative contributions of these factors. Yet, circadian rhythms and these evoked effects cannot be separated under typical 24-h day conditions, because circadian phase and the length of time awake or asleep co-vary. Nathaniel Kleitman's forced desynchrony (FD) protocol was designed to assess endogenous circadian rhythmicity and to separate circadian from evoked components of daily rhythms in multiple parameters. Under FD protocol conditions, light intensity is kept low to minimize its impact on the circadian pacemaker, and participants have sleep-wake state and associated behaviors scheduled to an imposed non-24-h cycle. The period of this imposed cycle, Τ, is chosen so that the circadian pacemaker cannot entrain to it and therefore continues to oscillate at its intrinsic period (τ, ~24.15 h), ensuring circadian components are separated from evoked components of daily rhythms. Here we provide detailed instructions and troubleshooting techniques on how to design, implement and analyze the data from an FD protocol. We provide two procedures: one with general guidance for designing an FD study and another with more precise instructions for replicating one of our previous FD studies. We discuss estimating circadian parameters and quantifying the separate contributions of circadian rhythmicity and the sleep-wake cycle, including statistical analysis procedures and an R package for conducting the non-orthogonal spectral analysis method that enables an accurate estimation of period, amplitude and phase.
Collapse
Affiliation(s)
- Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Robin K Yuan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James K Wyatt
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Data Systems and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph M Ronda
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Chaput JP, McHill AW, Cox RC, Broussard JL, Dutil C, da Costa BGG, Sampasa-Kanyinga H, Wright KP. The role of insufficient sleep and circadian misalignment in obesity. Nat Rev Endocrinol 2023; 19:82-97. [PMID: 36280789 PMCID: PMC9590398 DOI: 10.1038/s41574-022-00747-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Traditional risk factors for obesity and the metabolic syndrome, such as excess energy intake and lack of physical activity, cannot fully explain the high prevalence of these conditions. Insufficient sleep and circadian misalignment predispose individuals to poor metabolic health and promote weight gain and have received increased research attention in the past 10 years. Insufficient sleep is defined as sleeping less than recommended for health benefits, whereas circadian misalignment is defined as wakefulness and food intake occurring when the internal circadian system is promoting sleep. This Review discusses the impact of insufficient sleep and circadian misalignment in humans on appetite hormones (focusing on ghrelin, leptin and peptide-YY), energy expenditure, food intake and choice, and risk of obesity. Some potential strategies to reduce the adverse effects of sleep disruption on metabolic health are provided and future research priorities are highlighted. Millions of individuals worldwide do not obtain sufficient sleep for healthy metabolic functions. Furthermore, modern working patterns, lifestyles and technologies are often not conducive to adequate sleep at times when the internal physiological clock is promoting it (for example, late-night screen time, shift work and nocturnal social activities). Efforts are needed to highlight the importance of optimal sleep and circadian health in the maintenance of metabolic health and body weight regulation.
Collapse
Affiliation(s)
- Jean-Philippe Chaput
- Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, ON, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Rebecca C Cox
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Josiane L Broussard
- Sleep and Metabolism Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caroline Dutil
- Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, ON, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Bruno G G da Costa
- Research Center in Physical Activity and Health, Department of Physical Education, School of Sports, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Hugues Sampasa-Kanyinga
- Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
46
|
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
47
|
Yang H, Yang K, Zhang L, Yang N, Mei YX, Zheng YL, He Y, Gong YJ, Ding WJ. Acupuncture ameliorates Mobile Phone Addiction with sleep disorders and restores salivary metabolites rhythm. Front Psychiatry 2023; 14:1106100. [PMID: 36896350 PMCID: PMC9989025 DOI: 10.3389/fpsyt.2023.1106100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVES Mobile Phone Addiction (MPA) is a novel behavioral addiction resulting in circadian rhythm disorders that severely affect mental and physical health. The purpose of this study is to detect rhythmic salivary metabolites in MPA with sleep disorder (MPASD) subjects and investigate the effects of acupuncture. METHODS Six MPASD patients and six healthy controls among the volunteers were enrolled by MPA Tendency Scale (MPATS) and Pittsburgh Sleep Quality Index (PSQI), then the salivary samples of MPASD and healthy controls were collected every 4-h for three consecutive days. Acupuncture was administered for 7 days to MPASD subjects, then saliva samples were collected again. Salivary metabolomes were analyzed with the method of LC-MS. RESULT According to our investigation, 70 (57.85%) MPA patients and 56 (46.28%) MPASD patients were identified among 121 volunteers. The symptoms of the 6 MPASD subjects were significantly alleviated after acupuncture intervention. The number of rhythmic saliva metabolites dropped sharply in MPASD subjects and restored after acupuncture. Representative rhythmic saliva metabolites including melatonin, 2'-deoxyuridine, thymidine, thymidine 3',5'-cyclic monophosphate lost rhythm and restored after acupuncture, which may attribute to promising MPASD treatment and diagnosis biomarkers. The rhythmic saliva metabolites of healthy controls were mainly enriched in neuroactive ligand-receptor interaction, whereas polyketide sugar unit biosynthesis was mainly enriched in MPASD patients. CONCLUSION This study revealed circadian rhythm characteristics of salivary metabolites in MPASD and that acupuncture could ameliorate MPASD by restoring part of the dysrhythmia salivary metabolites.
Collapse
Affiliation(s)
- Hong Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying-Xiu Mei
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-Li Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Ju Gong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
48
|
Dose B, Yalçin M, Dries SPM, Relógio A. TimeTeller for timing health: The potential of circadian medicine to improve performance, prevent disease and optimize treatment. Front Digit Health 2023; 5:1157654. [PMID: 37153516 PMCID: PMC10155816 DOI: 10.3389/fdgth.2023.1157654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Circadian medicine, the study of the effects of time on health and disease has seen an uprising in recent years as a means to enhance health and performance, and optimize treatment timing. Our endogenous time generating system -the circadian clock- regulates behavioural, physiological and cellular processes. Disruptions of the clock, via external factors like shift work or jet lag, or internal perturbations such as genetic alterations, are linked to an increased risk of various diseases like obesity, diabetes, cardiovascular diseases and cancer. By aligning an individual's circadian clock with optimal times for performing daily routines, physical and mental performance, and also the effectiveness of certain therapies can be improved. Despite the benefits of circadian medicine, the lack of non-invasive tools for characterizing the clock limits the potential of the field. TimeTeller is a non-invasive molecular/digital tool for the characterization of circadian rhythms and prediction of daily routines, including treatment timing, to unlock the potential of circadian medicine and implementing it in various settings. Given the multiple known and potentially yet unknown dependent health factors of individual circadian rhythms, the utility of this emerging biomarker is best exploited in data driven, personalized medicine use cases, using health information across lifestyle, care, and research settings.
Collapse
Affiliation(s)
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | | | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Correspondence: Angela Relógio
| |
Collapse
|
49
|
Xiao Z, Xu C, Liu Q, Yan Q, Liang J, Weng Z, Zhang X, Xu J, Hang D, Gu A. Night Shift Work, Genetic Risk, and Hypertension. Mayo Clin Proc 2022; 97:2016-2027. [PMID: 35995626 DOI: 10.1016/j.mayocp.2022.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To perform a prospective cohort study to investigate whether night shift work is associated with incident hypertension and whether this association is modified by genetic susceptibility to hypertension because evidence on the association between night shift work and hypertension is insufficient. METHODS A total of 232,665 participants of UK Biobank who were recruited from 2006 to 2010 and observed to January 31, 2018, were included in this study. A Cox proportional hazards model with covariate adjustment was performed to assess the association between night shift work exposure and hypertension risk. We constructed a polygenic risk score (PRS) for genetic susceptibility to hypertension, which was used to explore whether genetic susceptibility to hypertension modified the effect of night shift work. The robustness of the results was assessed by sensitivity analysis. RESULTS Night shift workers had a higher hypertension risk than day shift workers, which increased with increasing frequency of night shift work (Ptrend<.001). The association was attenuated but still remained statistically significant in the fully adjusted model. We explored the joint effect of night shift work and genetic susceptibility on hypertension. Permanent night shift workers with higher hypertension PRSs had higher risk of hypertension than day workers with low PRSs. CONCLUSION Night shift work exposure was associated with increased hypertension risk, which was modified by the genetic risk for hypertension, indicating that there is a joint effect of night shift work and genetic risk on hypertension.
Collapse
Affiliation(s)
- Zhihao Xiao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Nanjing, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
50
|
Meyer N, Harvey AG, Lockley SW, Dijk DJ. Circadian rhythms and disorders of the timing of sleep. Lancet 2022; 400:1061-1078. [PMID: 36115370 DOI: 10.1016/s0140-6736(22)00877-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
The daily alternation between sleep and wakefulness is one of the most dominant features of our lives and is a manifestation of the intrinsic 24 h rhythmicity underlying almost every aspect of our physiology. Circadian rhythms are generated by networks of molecular oscillators in the brain and peripheral tissues that interact with environmental and behavioural cycles to promote the occurrence of sleep during the environmental night. This alignment is often disturbed, however, by contemporary changes to our living environments, work or social schedules, patterns of light exposure, and biological factors, with consequences not only for sleep timing but also for our physical and mental health. Characterised by undesirable or irregular timing of sleep and wakefulness, in this Series paper we critically examine the existing categories of circadian rhythm sleep-wake disorders and the role of the circadian system in their development. We emphasise how not all disruption to daily rhythms is driven solely by an underlying circadian disturbance, and take a broader, dimensional approach to explore how circadian rhythms and sleep homoeostasis interact with behavioural and environmental factors. Very few high-quality epidemiological and intervention studies exist, and wider recognition and treatment of sleep timing disorders are currently hindered by a scarcity of accessible and objective tools for quantifying sleep and circadian physiology and environmental variables. We therefore assess emerging wearable technology, transcriptomics, and mathematical modelling approaches that promise to accelerate the integration of our knowledge in sleep and circadian science into improved human health.
Collapse
Affiliation(s)
- Nicholas Meyer
- Insomnia and Behavioural Sleep Medicine Clinic, University College London Hospitals NHS Foundation Trust, London, UK; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK
| | - Allison G Harvey
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|