1
|
Kalita B, Martinez-Cebrian G, McEvoy J, Allensworth M, Knight M, Magli A, Perlingeiro RCR, Dyer MA, Stewart E, Dynlacht BD. PAX translocations remodel mitochondrial metabolism through altered leucine usage in rhabdomyosarcoma. Cell 2025; 188:2757-2777.e22. [PMID: 40185100 DOI: 10.1016/j.cell.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/09/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Alveolar rhabdomyosarcoma (ARMS) patients harboring paired-box fusion proteins (PAX3/7-FOXO1) exhibit a greater incidence of tumor relapse, metastasis, and poor survival outcome, thereby underscoring the urgent need to develop effective therapies to treat this subtype of childhood cancer. To uncover mechanisms that contribute to tumor initiation, we develop a muscle progenitor model and use epigenomic approaches to unravel genome rewiring events mediated by PAX3/7 fusion proteins. Among the key targets of PAX3/7 fusion proteins, we identify a cohort of oncogenes, fibroblast growth factor (FGF) receptors, tRNA-modifying enzymes, and genes essential for mitochondrial metabolism and protein translation, which we successfully targeted in preclinical trials. We identify leucine usage as a key factor driving the growth of aggressive PAX-fusion tumors, as limiting its bioavailability impaired oxidative phosphorylation and mitochondrial metabolism, delaying tumor progression and improving survival in vivo. Our data provide a compelling list of actionable targets and suggest promising new strategies to treat this tumor.
Collapse
Affiliation(s)
- Bhargab Kalita
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Gerard Martinez-Cebrian
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY 10016, USA; Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Justina McEvoy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA
| | - Melody Allensworth
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA
| | - Michelle Knight
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA; Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Genomic Medicine Unit, Sanofi, 225nd Avenue, Waltham, MA 02451, USA
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA; Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Brian David Dynlacht
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Paun RA, Li L, Mouncef A, Radzioch D, Tabrizian M. Liposome-Polymer Nanoparticles Loaded with Copper Diethyldithiocarbamate and 6-Bromo-Indirubin-3'-Oxime Enable the Treatment of Refractive Melanoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409012. [PMID: 40317886 DOI: 10.1002/smll.202409012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/26/2025] [Indexed: 05/07/2025]
Abstract
Despite significant advances in cancer immunotherapy, many patients fail to respond to current treatments, outlining the need to develop novel therapeutic modalities. Therapeutic resistance in cancer cells is mediated by significant genomic instability due to their oncogenic transformation and evolutionary pressures inside the tumor microenvironment (TME). However, these cellular and molecular adaptations can result in a significant increase in the baseline endoplasmic reticulum (ER) stress in TME-resident cells. This can be taken advantage of as a therapeutic strategy by using the metal chelate copper diethyldithiocarbamate (CuET), a potent inhibitor of the p97-UFD1-NPL4 protein complex to induce cytotoxicity and exacerbate ER stress in cancer cells. Here, CuET is combined with the anti-inflammatory drug 6-bromo-indirubin-3'-oxime (BIO), a potent GSK3 inhibitor, to modulate the aberrant inflammatory response inside the TME. However, both CuET and BIO are highly hydrophobic and exhibit poor bioavailability, requiring the development of an appropriate carrier. Herein, it is demonstrated that CuET and BIO can be efficiently loaded into liposomes that are stabilized by poly(vinylpyrrolidone). The liposome-loaded drug combination resulted in a significant decrease of 47% and 76% in the tumor burden of syngeneic B16F10 and YUMM1.7 mouse models, respectively, without any major acute toxicity.
Collapse
Affiliation(s)
- Radu A Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC, H3A 2B6, Canada
- Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Ling Li
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC, H3A 2B6, Canada
| | - Adam Mouncef
- Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Danuta Radzioch
- Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC, H3A 2B6, Canada
- Faculty of Dentistry and Oral Health Sciences, McGill University, McGill University, 2001 McGill College Ave, Montreal, QC, H3A 1G1, Canada
| |
Collapse
|
3
|
Grytsai O, Hamouda-Tekaya N, Gonçalves LCP, Bardovskyi R, Abbe P, Benhida R, Rocchi S, Ronco C. Optimised arylbiamidine derivative as potent in vivo antimelanoma agent: Drug-to-target approach reveals nanomolar GSK3β inhibition. Bioorg Chem 2025; 158:108315. [PMID: 40048875 DOI: 10.1016/j.bioorg.2025.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Melanoma, particularly in its metastatic form, remains highly lethal. Despite advancements in treatment, nearly half of melanoma patients experience therapeutic failure due to resistance. Consequently, the development of new antimelanoma drugs is critical for those unresponsive to current therapies. Here, we report the discovery of a potent antimelanoma scaffold and a promising inhibitor of glycogen synthase kinase 3 beta (GSK3β) through a drug-to-target approach. A phenotypic screening of arylbiamidine derivatives identified lead compound 35, N-(N-(benzo[d]thiazol-2-yl)carbamimidoyl)pyrazine-2-carboximidamide, which exhibited the highest in vitro potency against melanoma cell lines and nanomolar inhibition of oncogenic GSK3β (IC50 = 73.8 nM). Moreover, compound 35 demonstrated a favourable pharmacological profile, significantly reducing tumour growth in vivo in an A375 xenograft mouse model.
Collapse
Affiliation(s)
- Oleksandr Grytsai
- Institut de Chimie de Nice, CNRS UMR7272, Université Côte d'Azur, 28 avenue Valrose, Nice, France
| | - Nedra Hamouda-Tekaya
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, 151 route Saint Antoine de Ginestière, Nice, France
| | | | - Rostyslav Bardovskyi
- Institut de Chimie de Nice, CNRS UMR7272, Université Côte d'Azur, 28 avenue Valrose, Nice, France
| | - Patricia Abbe
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, 151 route Saint Antoine de Ginestière, Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice, CNRS UMR7272, Université Côte d'Azur, 28 avenue Valrose, Nice, France; Mohamed VI Polytechnic University, UM6P, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Stéphane Rocchi
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, 151 route Saint Antoine de Ginestière, Nice, France
| | - Cyril Ronco
- Institut de Chimie de Nice, CNRS UMR7272, Université Côte d'Azur, 28 avenue Valrose, Nice, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France.
| |
Collapse
|
4
|
Gao S, Li H, Li Z, Wang H, Li X, Yang S, Huang L, Zhang B, Zhang K, Tsoi JKH, He J, Dissanayaka WL. Multifunctional Injectable Bioadhesive with Toll-like Receptor 4 and Myeloid Differentiation Factor 2 Antagonistic Anti-inflammatory Potential for Periodontal Regeneration. ACS NANO 2025; 19:7098-7116. [PMID: 39951685 PMCID: PMC11867008 DOI: 10.1021/acsnano.4c15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Effectively addressing inflammation in periodontitis is challenging as conventional injectable hydrogels typically require the addition of drugs to provide sufficient anti-inflammatory effects. To overcome this limitation, we developed a multifunctional injectable hydrogel with inherent properties that antagonize the Toll-like receptor 4 and myeloid differentiation factor 2 complex (TLR4-MD2). This hydrogel allows for direct inhibition of inflammatory pathways without the need for additional drugs. We identified xylitol, caffeic acid, and citric acid as natural materials that effectively meet biological needs for anti-inflammatory and antibacterial effects as well as support bone regeneration. With this in mind, we developed a caffeic-acid-modified poly(xylitol succinate) (PXS)-based iCPC@MgO composite hydrogel and tested its potential application for periodontal regeneration. The iCPC@MgO hydrogel demonstrated rapid wet tissue adhesion and injectability, which are ascribed to incorporating catechol groups derived from caffeic acid. Intriguingly, the PXS polymer used for synthesizing the hydrogel was found to possess anti-inflammatory properties and act as an antagonist for the TLR4-MD2 complex. This hydrogel also exhibited outstanding antibacterial efficiency against Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans by stimulating antibiotic synthesis within bacteria and disrupting bacterial cell walls. In a periodontitis mouse model, the iCPC@MgO hydrogel demonstrated the therapeutic potential of reducing inflammatory factors, inhibiting dominant periodontitis-associated bacteria, and maintaining subgingival microbiota balance in addition to the regenerative effects. These properties, combined with their ecofriendly nature, firmly established the iCPC@MgO hydrogel as a highly promising option for use in periodontitis therapy as well as in tissue healing, repair, and regeneration in various other inflammatory conditions.
Collapse
Affiliation(s)
- Shuting Gao
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Huihua Li
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Zekun Li
- Department
of Chemistry, Faculty of Science, The University
of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Hong Wang
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Xinyue Li
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Shengyan Yang
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Lin Huang
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Baoping Zhang
- Department
of Stomatology Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Kailiang Zhang
- Department
of Stomatology Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - James Kit Hon Tsoi
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Jian He
- Department
of Chemistry, Faculty of Science, The University
of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Waruna Lakmal Dissanayaka
- Applied
Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Matsuzaka T, Matsugaki A, Ishihara K, Nakano T. Osteogenic tailoring of oriented bone matrix organization using on/off micropatterning for osteoblast adhesion on titanium surfaces. Acta Biomater 2025; 192:487-500. [PMID: 39644943 DOI: 10.1016/j.actbio.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Titanium (Ti) implants are well known for their mechanical reliability and chemical stability, crucial for successful bone regeneration. Various shape control and surface modification techniques to enhance biological activity have been developed. Despite the crucial importance of the collagen/apatite bone microstructure for mechanical function, antimicrobial properties, and biocompatibility, precise and versatile pattern control for regenerating the microstructure remains challenging. Here, we developed a novel osteogenic tailoring stripe-micropatterned MPC-Ti substrate that induces genetic-level control of oriented bone matrix organization. This biomaterial was created by micropatterning 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer onto a titanium (Ti) surface through a selective photoreaction. The stripe-micropatterned MPC-Ti substrate establishes a distinct interface for cell adhesion, robustly inducing osteoblast cytoskeleton alignment through actin cytoskeletal alignment, and facilitating the formation of a bone-mimicking-oriented collagen/apatite tissue. Moreover, our study revealed that this bone alignment process is promoted through the activation of the Wnt/β-catenin signaling pathway, which is triggered by nuclear deformation induced by strong cellular alignment guidance. This innovative material is essential for personalized next-generation medical devices, offering high customizability and active restoration of the bone microstructure. STATEMENT OF SIGNIFICANCE: This study demonstrates a novel osteogenic tailoring stripe-micropatterned MPC-Ti substrate that induces osteoblast alignment and bone matrix orientation based on genetic mechanism. By employing a light-reactive MPC polymer, we successfully micropatterned the titanium surface, creating a biomaterial that stimulates unidirectional osteoblast alignment and enhances the formation of natural bone-mimetic anisotropic microstructures. The innovative approach of regulating cell adhesion and cytoskeletal alignment activates the Wnt/β-catenin signaling pathway, crucial for both bone differentiation and orientation. This study presents the first biomaterial that artificially induces the construction of mechanically superior anisotropic bone tissue, and it is expected to promote functional bone regeneration by enhancing bone differentiation and orientation-targeting both the quantity and quality of bone tissue.
Collapse
Affiliation(s)
- Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Lawrence JM, Tan SH, Kim DC, Tan KE, Schroeder SE, Yeo KS, Schaefer MA, Sosic AM, Zhu S. Diverse Engraftment Capability of Neuroblastoma Cell Lines in Zebrafish Larvae. Zebrafish 2024; 21:385-393. [PMID: 39316469 DOI: 10.1089/zeb.2024.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Xenotransplantation of neuroblastoma cells into larval zebrafish allows the characterization of their in vivo tumorigenic abilities and high-throughput treatment screening. This established preclinical model traditionally relies on microinjection into the yolk or perivitelline space, leaving the engraftment ability of cells at the hindbrain ventricle (HBV) and pericardial space (PCS), sites valuable for evaluating metastasis, angiogenesis, and the brain microenvironment, unknown. To address this gap in knowledge, Casper zebrafish at 48 h postfertilization were microinjected with approximately 200 Kelly, Be(2)-C, SK-N-AS, or SY5Y cells into either the HBV or PCS. Fish were imaged at 1, 3, and 6 days postinjection and tumor growth was monitored at each timepoint. We hypothesized that engraftment ability and location preference would be cell line dependent. Kelly and SK-N-AS cells were able to engraft at both the HBV and PCS, with a near doubling in size of tumor volume during the 6 days observation period, with cells appearing to grow better in the HBV. Be(2)-C tumors remained static while SY5Y tumors decreased in size, with almost complete loss of volume at both sites. Therefore, the capability of neuroblastoma cell engraftment in zebrafish larvae is cell line dependent with a location preference.
Collapse
Affiliation(s)
- Josephine M Lawrence
- Department of Comparative Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Shyang Hong Tan
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Daniel C Kim
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ke-En Tan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sydney E Schroeder
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Madison A Schaefer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Alexis M Sosic
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Zhang F, Qu Z, Zeng J, Yu L, Zeng L, Li X. A novel goldfish orthotopic xenograft model of hepatocellular carcinoma developed to evaluate antitumor drug efficacy. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109998. [PMID: 39537120 DOI: 10.1016/j.fsi.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Tumor xenograft animal models play a crucial role in hepatocellular carcinoma (HCC) research. Mice xenograft models are time consuming, laborious and expensive while zebrafish tumor xenograft models are cost-effective and effortless. However, the development of orthotopic xenograft models for HCC in zebrafish embryos has been challenging due to the small size of zebrafish livers. In this study, we utilized 7-day-old goldfish embryos as hosts and successfully established an orthotopic xenograft model of HCC in goldfish livers. Through injecting fluorescence labeled HCC cells into the liver of goldfish, we could visualize the proliferation and migration of tumor cells in vivo. In addition, we found that the temperature of 36 °C was better for tumor cell survival in goldfish larvae compared to 28 °C, assessed by EdU and TUNEL assays. Moreover, macrophage infiltration in the goldfish liver could be evaluated by neutral red staining. Finally, we evaluated the efficacy of the targeted therapy drug Sorafenib and the traditional Chinese medicine, Huaier granules, alone or in combination in the goldfish HCC orthotopic xenograft model. We found that the combination therapy showed the best efficacy against HCC cells in terms of macrophage infiltration, polarization as well as tumor cells proliferation, metastasis and apoptosis. In conclusion, the proposed goldfish HCC orthotopic xenograft model opens new avenues for HCC related research, including evaluation of tumor progression, cell interactions in the immune microenvironment, drug efficacy, and screening of anti-tumor drugs.
Collapse
Affiliation(s)
- Fenghua Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China.
| | - Zhixin Qu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Jing Zeng
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Lanxin Yu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Laifeng Zeng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Xianmei Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| |
Collapse
|
8
|
Kalita B, Martinez-Cebrian G, McEvoy J, Allensworth M, Knight M, Magli A, Perlingeiro RCR, Dyer MA, Stewart E, Dynlacht BD. PAX fusion proteins deregulate gene networks controlling mitochondrial translation in pediatric rhabdomyosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606039. [PMID: 39211084 PMCID: PMC11360909 DOI: 10.1101/2024.07.31.606039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alveolar rhabdomyosarcoma (ARMS) patients harboring PAX3-FOXO1 and PAX7-FOXO1 fusion proteins exhibit a greater incidence of tumor relapse, metastasis, and poor survival outcome, thereby underscoring the urgent need to develop effective therapies to treat this subtype of childhood cancer. To uncover mechanisms that contribute to tumor initiation, we developed a novel muscle progenitor model and used epigenomic approaches to unravel genome re-wiring events mediated by PAX3/7 fusion proteins. Importantly, these regulatory mechanisms are conserved across established ARMS cell lines, primary tumors, and orthotopic-patient derived xenografts. Among the key targets of PAX3- and PAX7-fusion proteins, we identified a cohort of oncogenes, FGF receptors, and genes essential for mitochondrial metabolism and protein translation, which we successfully targeted in preclinical trials. Our data suggest an explanation for the relative paucity of recurring mutations in this tumor, provide a compelling list of actionable targets, and suggest promising new strategies to treat this tumor.
Collapse
|
9
|
Choudhary S, Singh MK, Kashyap S, Seth R, Singh L. Wnt/β-Catenin Signaling Pathway in Pediatric Tumors: Implications for Diagnosis and Treatment. CHILDREN (BASEL, SWITZERLAND) 2024; 11:700. [PMID: 38929279 PMCID: PMC11201634 DOI: 10.3390/children11060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved Wnt signaling has a significant and diverse role in maintaining cell homeostasis and tissue maintenance. It is necessary in the regulation of crucial biological functions such as embryonal development, proliferation, differentiation, cell fate, and stem cell pluripotency. The deregulation of Wnt/β-catenin signaling often leads to various diseases, including cancer and non-cancer diseases. The role of Wnt/β-catenin signaling in adult tumors has been extensively studied in literature. Although the Wnt signaling pathway has been well explored and recognized to play a role in the initiation and progression of cancer, there is still a lack of understanding on how it affects pediatric tumors. This review discusses the recent developments of this signaling pathway in pediatric tumors. We also focus on understanding how different types of variations in Wnt signaling pathway contribute to cancer development and provide an insight of tissue specific mutations that lead to clinical progression of these tumors.
Collapse
Affiliation(s)
- Sahar Choudhary
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | | | - Seema Kashyap
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | - Lata Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| |
Collapse
|
10
|
Inayatullah M, Mahesh A, Turnbull AK, Dixon JM, Natrajan R, Tiwari VK. Basal-epithelial subpopulations underlie and predict chemotherapy resistance in triple-negative breast cancer. EMBO Mol Med 2024; 16:823-853. [PMID: 38480932 PMCID: PMC11018633 DOI: 10.1038/s44321-024-00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.
Collapse
Affiliation(s)
- Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arun Mahesh
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arran K Turnbull
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Vijay K Tiwari
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
11
|
Kalita B, Sahu S, Bharadwaj A, Panneerselvam L, Martinez-Cebrian G, Agarwal M, Mathew SJ. The Wnt-pathway corepressor TLE3 interacts with the histone methyltransferase KMT1A to inhibit differentiation in Rhabdomyosarcoma. Oncogene 2024; 43:524-538. [PMID: 38177411 DOI: 10.1038/s41388-023-02911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Rhabdomyosarcoma tumor cells resemble differentiating skeletal muscle cells, which unlike normal muscle cells, fail to undergo terminal differentiation, underlying their proliferative and metastatic properties. We identify the corepressor TLE3 as a key regulator of rhabdomyosarcoma tumorigenesis by inhibiting the Wnt-pathway. Loss of TLE3 function leads to Wnt-pathway activation, reduced proliferation, decreased migration, and enhanced differentiation in rhabdomyosarcoma cells. Muscle-specific TLE3-knockout results in enhanced expression of terminal myogenic differentiation markers during normal mouse development. TLE3-knockout rhabdomyosarcoma cell xenografts result in significantly smaller tumors characterized by reduced proliferation, increased apoptosis and enhanced differentiation. We demonstrate that TLE3 interacts with and recruits the histone methyltransferase KMT1A, leading to repression of target gene activation and inhibition of differentiation in rhabdomyosarcoma. A combination drug therapy regime to promote Wnt-pathway activation by the small molecule BIO and inhibit KMT1A by the drug chaetocin led to significantly reduced tumor volume, decreased proliferation, increased expression of differentiation markers and increased survival in rhabdomyosarcoma tumor-bearing mice. Thus, TLE3, the Wnt-pathway and KMT1A are excellent drug targets which can be exploited for treating rhabdomyosarcoma tumors.
Collapse
Affiliation(s)
- Bhargab Kalita
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Subhashni Sahu
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Anushree Bharadwaj
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Lakshmikanthan Panneerselvam
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | | | - Megha Agarwal
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Affiliated to Manipal University, Manipal, Karnataka, 576104, India
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sam J Mathew
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
- Affiliated to Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
12
|
Mensah IK, Emerson ML, Tan HJ, Gowher H. Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells by WNT Switch Method. Cells 2024; 13:132. [PMID: 38247824 PMCID: PMC10814988 DOI: 10.3390/cells13020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The differentiation of ESCs into cardiomyocytes in vitro is an excellent and reliable model system for studying normal cardiomyocyte development in mammals, modeling cardiac diseases, and for use in drug screening. Mouse ESC differentiation still provides relevant biological information about cardiac development. However, the current methods for efficiently differentiating ESCs into cardiomyocytes are limiting. Here, we describe the "WNT Switch" method to efficiently commit mouse ESCs into cardiomyocytes using the small molecule WNT signaling modulators CHIR99021 and XAV939 in vitro. This method significantly improves the yield of beating cardiomyocytes, reduces number of treatments, and is less laborious.
Collapse
Affiliation(s)
| | | | | | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; (I.K.M.); (H.J.T.)
| |
Collapse
|
13
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
14
|
Chen J, Baxi K, Lipsitt AE, Hensch NR, Wang L, Sreenivas P, Modi P, Zhao XR, Baudin A, Robledo DG, Bandyopadhyay A, Sugalski A, Challa AK, Kurmashev D, Gilbert AR, Tomlinson GE, Houghton P, Chen Y, Hayes MN, Chen EY, Libich DS, Ignatius MS. Defining function of wild-type and three patient-specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma. eLife 2023; 12:e68221. [PMID: 37266578 PMCID: PMC10322150 DOI: 10.7554/elife.68221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/01/2023] [Indexed: 06/03/2023] Open
Abstract
In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical UniversityWenzhouChina
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Kunal Baxi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Amanda E Lipsitt
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Nicole Rae Hensch
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Long Wang
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Paulomi Modi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Xiang Ru Zhao
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Antoine Baudin
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Daniel G Robledo
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Abhik Bandyopadhyay
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Aaron Sugalski
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Anil K Challa
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Peter Houghton
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Yidong Chen
- Department of Population Health Sciences, UT Health Sciences CenterSan AntonioUnited States
| | - Madeline N Hayes
- Developmental and Stem Cell Biology, Hospital for Sick ChildrenTorontoCanada
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - David S Libich
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Myron S Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| |
Collapse
|
15
|
Fritzke M, Chen K, Tang W, Stinson S, Pham T, Wang Y, Xu L, Chen EY. The MYC-YBX1 Circuit in Maintaining Stem-like Vincristine-Resistant Cells in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2788. [PMID: 37345125 DOI: 10.3390/cancers15102788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that causes significant devastation, with no effective therapy for relapsed disease. The mechanisms behind treatment failures are poorly understood. Our study showed that treatment of RMS cells with vincristine led to an increase in CD133-positive stem-like resistant cells. Single cell RNAseq analysis revealed that MYC and YBX1 were among the top-scoring transcription factors in CD133-high expressing cells. Targeting MYC and YBX1 using CRISPR/Cas9 reduced stem-like characteristics and viability of the vincristine-resistant cells. MYC and YBX1 showed mutual regulation, with MYC binding to the YBX1 promoter and YBX1 binding to MYC mRNA. The MYC inhibitor MYC361i synergized with vincristine to reduce tumor growth and stem-like cells in a zebrafish model of RMS. MYC and YBX expression showed a positive correlation in RMS patients, and high MYC expression correlated with poor survival. Targeting the MYC-YBX1 axis holds promise for improving survival in RMS patients.
Collapse
Affiliation(s)
- Madeline Fritzke
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weiliang Tang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Spencer Stinson
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Thao Pham
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
- Astellas US Technologies, Universal Cells, Inc., Seattle, WA 98121, USA
| | - Yadong Wang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eleanor Y Chen
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
AlMuraikhi N, Binhamdan S, Alaskar H, Alotaibi A, Tareen S, Muthurangan M, Alfayez M. Inhibition of GSK-3β Enhances Osteoblast Differentiation of Human Mesenchymal Stem Cells through Wnt Signalling Overexpressing Runx2. Int J Mol Sci 2023; 24:ijms24087164. [PMID: 37108323 PMCID: PMC10139012 DOI: 10.3390/ijms24087164] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Small-molecule-inhibitor-based bone differentiation has been recently exploited as a novel approach to regulating osteogenesis-related signaling pathways. In this study, we identified 1-Azakenpaullone, a highly selective inhibitor of glycogen synthase kinase-3β (GSK-3β), as a powerful inducer of osteoblastic differentiation and mineralization of human mesenchymal stem cells (MSCs). GSK-3β is a serine-threonine protein kinase that plays a major role in different disease development. GSK-3β is a key regulator of Runx2 activity in osteoblastic formation. We evaluated alkaline phosphatase activity and staining assays to assess osteoblast differentiation and Alizarin Red staining to assess the mineralization of cultured human MSCs. Gene expression profiling was assessed using an Agilent microarray platform, and bioinformatics were performed using Ingenuity Pathway Analysis software. Human MSCs treated with 1-Azakenpaullone showed higher ALP activity, increased in vitro mineralized matrix formation, and the upregulation of osteoblast-specific marker gene expression. Global gene expression profiling of 1-Azakenpaullone-treated human MSCs identified 1750 upregulated and 2171 downregulated mRNA transcripts compared to control cells. It also suggested possible changes in various signaling pathways, including Wnt, TGFβ, and Hedgehog. Further bioinformatics analysis employing Ingenuity Pathway Analysis recognized significant enrichment in the 1-Azakenpaullone-treated cells of genetic networks involved in CAMP, PI3K (Complex), P38 MAPK, and HIF1A signaling and functional categories associated with connective tissue development. Our results suggest that 1-Azakenpaullone significantly induced the osteoblastic differentiation and mineralization of human MSCs mediated by the activation of Wnt signaling and the nuclear accumulation of β-catenin, leading to the upregulation of Runx2, a key transcription factor that ultimately promotes the expression of osteoblast-specific genes. Thus, 1-Azakenpaullone could be used as an osteo-promotor factor in bone tissue engineering.
Collapse
Affiliation(s)
- Nihal AlMuraikhi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Sarah Binhamdan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hanouf Alaskar
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Amal Alotaibi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Sumaiya Tareen
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Manikandan Muthurangan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
17
|
Xu N, Yu Y, Duan C, Wei J, Sun W, Jiang C, Jian B, Cao W, Jia L, Ma X. Quantitative proteomics identifies and validates urinary biomarkers of rhabdomyosarcoma in children. Clin Proteomics 2023; 20:10. [PMID: 36918772 PMCID: PMC10012572 DOI: 10.1186/s12014-023-09401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma with poor prognosis in children. The 5-year survival rate for early RMS has improved, whereas it remains unsatisfactory for advanced patients. Urine can rapidly reflect changes in the body and identify low-abundance proteins. Early screening of tumor markers through urine in RMS allows for earlier treatment, which is associated with better outcomes. METHODS RMS patients under 18 years old, including those newly diagnosed and after surgery, were enrolled. Urine samples were collected at the time points of admission and after four cycles of chemotherapy during follow-up. Then, a two-stage workflow was established. (1) In the discovery stage, differential proteins (DPs) were initially identified in 43 RMS patients and 12 healthy controls (HCs) using a data-independent acquisition method. (2) In the verification stage, DPs were further verified as biomarkers in 54 RMS patients and 25 HCs using parallel reaction monitoring analysis. Furthermore, a receiver operating characteristic (ROC) curve was used to construct the protein panels for the diagnosis of RMS. Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA) software were used to perform bioinformatics analysis. RESULTS A total of 251 proteins were significantly altered in the discovery stage, most of which were enriched in the head, neck and urogenital tract, consistent with the most common sites of RMS. The most overrepresented biological processes from GO analysis included immunity, inflammation, tumor invasion and neuronal damage. Pathways engaging the identified proteins revealed 33 common pathways, including WNT/β-catenin signaling and PI3K/AKT signaling. Finally, 39 proteins were confirmed as urinary biomarkers for RMS, and a diagnostic panel composed of 5 candidate proteins (EPS8L2, SPARC, HLA-DRB1, ACAN, and CILP) was constructed for the early screening of RMS (AUC: 0.79, 95%CI = 0.66 ~ 0.92). CONCLUSIONS These findings provide novel biomarkers in urine that are easy to translate into clinical diagnosis of RMS and illustrate the value of global and targeted urine proteomics to identify and qualify candidate biomarkers for noninvasive molecular diagnosis.
Collapse
Affiliation(s)
- Na Xu
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China.,Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuncui Yu
- Clinical Research Center, Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Chao Duan
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China
| | - Jing Wei
- Clinical Research Center, Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Wei Sun
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chiyi Jiang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China
| | - Binglin Jian
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China
| | - Wang Cao
- Clinical Research Center, Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Lulu Jia
- Clinical Research Center, Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, No. 56 Nanlishi Road, Beijing, 100045, China.
| | - Xiaoli Ma
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China.
| |
Collapse
|
18
|
Hensch NR, Bondra K, Wang L, Sreenivas P, Zhao XR, Modi P, Vaseva AV, Houghton PJ, Ignatius MS. Sensitization to Ionizing Radiation by MEK Inhibition Is Dependent on SNAI2 in Fusion-Negative Rhabdomyosarcoma. Mol Cancer Ther 2023; 22:123-134. [PMID: 36162055 PMCID: PMC10046682 DOI: 10.1158/1535-7163.mct-22-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/15/2022] [Accepted: 09/21/2022] [Indexed: 02/03/2023]
Abstract
In fusion-negative rhabdomyosarcoma (FN-RMS), a pediatric malignancy with skeletal muscle characteristics, >90% of high-risk patients have mutations that activate the RAS/MEK signaling pathway. We recently discovered that SNAI2, in addition to blocking myogenic differentiation downstream of MEK signaling in FN-RMS, represses proapoptotic BIM expression to protect RMS tumors from ionizing radiation (IR). As clinically relevant concentrations of the MEK inhibitor trametinib elicit poor responses in preclinical xenograft models, we investigated the utility of low-dose trametinib in combination with IR for the treatment of RAS-mutant FN-RMS. We hypothesized that trametinib would sensitize FN-RMS to IR through its downregulation of SNAI2 expression. While we observed little to no difference in myogenic differentiation or cell survival with trametinib treatment alone, robust differentiation and reduced survival were observed after IR. In addition, IR-induced apoptosis was significantly increased in FN-RMS cells treated concurrently with trametinib, as was increased BIM expression. SNAI2's role in these processes was established using overexpression rescue experiments, where overexpression of SNAI2 prevented IR-induced myogenic differentiation and apoptosis. Moreover, combining MEK inhibitor with IR resulted in complete tumor regression and a 2- to 4-week delay in event-free survival (EFS) in preclinical xenograft and patient-derived xenograft models. Our findings demonstrate that the combination of MEK inhibition and IR results in robust differentiation and apoptosis, due to the reduction of SNAI2, which leads to extended EFS in FN-RMS. SNAI2 thus is a potential biomarker of IR insensitivity and target for future therapies to sensitize aggressive sarcomas to IR.
Collapse
Affiliation(s)
- Nicole R. Hensch
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Kathryn Bondra
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Long Wang
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Xiang R. Zhao
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Paulomi Modi
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Angelina V. Vaseva
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Peter J. Houghton
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| | - Myron S. Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), Department of Molecular Medicine, UT Health Sciences Center, San Antonio, Texas, USA
| |
Collapse
|
19
|
Wei Y, Qin Q, Yan C, Hayes MN, Garcia SP, Xi H, Do D, Jin AH, Eng TC, McCarthy KM, Adhikari A, Onozato ML, Spentzos D, Neilsen GP, Iafrate AJ, Wexler LH, Pyle AD, Suvà ML, Dela Cruz F, Pinello L, Langenau DM. Single-cell analysis and functional characterization uncover the stem cell hierarchies and developmental origins of rhabdomyosarcoma. NATURE CANCER 2022; 3:961-975. [PMID: 35982179 PMCID: PMC10430812 DOI: 10.1038/s43018-022-00414-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/24/2022] [Indexed: 04/29/2023]
Abstract
Rhabdomyosarcoma (RMS) is a common childhood cancer that shares features with developing skeletal muscle. Yet, the conservation of cellular hierarchy with human muscle development and the identification of molecularly defined tumor-propagating cells has not been reported. Using single-cell RNA-sequencing, DNA-barcode cell fate mapping and functional stem cell assays, we uncovered shared tumor cell hierarchies in RMS and human muscle development. We also identified common developmental stages at which tumor cells become arrested. Fusion-negative RMS cells resemble early myogenic cells found in embryonic and fetal development, while fusion-positive RMS cells express a highly specific gene program found in muscle cells transiting from embryonic to fetal development at 7-7.75 weeks of age. Fusion-positive RMS cells also have neural pathway-enriched states, suggesting less-rigid adherence to muscle-lineage hierarchies. Finally, we identified a molecularly defined tumor-propagating subpopulation in fusion-negative RMS that shares remarkable similarity to bi-potent, muscle mesenchyme progenitors that can make both muscle and osteogenic cells.
Collapse
Affiliation(s)
- Yun Wei
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Qian Qin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Chuan Yan
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Madeline N Hayes
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Sara P Garcia
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
| | - Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel Do
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexander H Jin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Tiffany C Eng
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Karin M McCarthy
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Abhinav Adhikari
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Maristela L Onozato
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Dimitrios Spentzos
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gunnlaugur P Neilsen
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - A John Iafrate
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Mario L Suvà
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
20
|
Chen Z, Zhong Y, Chen J, Sun S, Liu W, Han Y, Liu X, Guo C, Li D, Hu W, Zhang P, Chen Z, Chen Z, Mou Y, Yan G, Zhu W, Yin W, Sai K. Disruption of β-catenin-mediated negative feedback reinforces cAMP-induced neuronal differentiation in glioma stem cells. Cell Death Dis 2022; 13:493. [PMID: 35610201 PMCID: PMC9130142 DOI: 10.1038/s41419-022-04957-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Accumulating evidence supports the existence of glioma stem cells (GSCs) and their critical role in the resistance to conventional treatments for glioblastoma multiforme (GBM). Differentiation therapy represents a promising alternative strategy against GBM by forcing GSCs to exit the cell cycle and reach terminal differentiation. In this study, we demonstrated that cAMP triggered neuronal differentiation and compromised the self-renewal capacity in GSCs. In addition, cAMP induced negative feedback to antagonize the differentiation process by activating β-catenin pathway. Suppression of β-catenin signaling synergized with cAMP activators to eliminate GSCs in vitro and extended the survival of animals in vivo. The cAMP/PKA pathway stabilized β-catenin through direct phosphorylation of the molecule and inhibition of GSK-3β. The activated β-catenin translocated into the nucleus and promoted the transcription of APELA and CARD16, which were found to be responsible for the repression of cAMP-induced differentiation in GSCs. Overall, our findings identified a negative feedback mechanism for cAMP-induced differentiation in GSCs and provided potential targets for the reinforcement of differentiation therapy for GBM.
Collapse
Affiliation(s)
- Zhijie Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.412558.f0000 0004 1762 1794Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University Lingnan Hospital, Guangzhou, 510530 China
| | - Yingqian Zhong
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Jiehong Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Shuxin Sun
- grid.410643.4Department of Pancreas Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Wenfeng Liu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yu Han
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Xincheng Liu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Cui Guo
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Depei Li
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Wanming Hu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Peiyu Zhang
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Zhuopeng Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Zhongping Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Yonggao Mou
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Guangmei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wenbo Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Ke Sai
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| |
Collapse
|
21
|
Karati D, Shaoo KK, Mahadik K, Kumr D. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Ma HC, Zhu YJ, Zhou R, Yu YY, Xiao ZZ, Zhang HB. Lung cancer organoids, a promising model still with long way to go. Crit Rev Oncol Hematol 2022; 171:103610. [DOI: 10.1016/j.critrevonc.2022.103610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
|
23
|
Giralt I, Gallo-Oller G, Navarro N, Zarzosa P, Pons G, Magdaleno A, Segura MF, Sábado C, Hladun R, Arango D, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Dickkopf-1 Inhibition Reactivates Wnt/β-Catenin Signaling in Rhabdomyosarcoma, Induces Myogenic Markers In Vitro and Impairs Tumor Cell Survival In Vivo. Int J Mol Sci 2021; 22:12921. [PMID: 34884726 PMCID: PMC8657544 DOI: 10.3390/ijms222312921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role during embryogenesis and its deregulation is a key mechanism in the origin and progression of several tumors. Wnt antagonists have been described as key modulators of Wnt/β-catenin signaling in cancer, with Dickkopf-1 (DKK-1) being the most studied member of the DKK family. Although the therapeutic potential of DKK-1 inhibition has been evaluated in several diseases and malignancies, little is known in pediatric tumors. Only a few works have studied the genetic inhibition and function of DKK-1 in rhabdomyosarcoma. Here, for the first time, we report the analysis of the therapeutic potential of DKK-1 pharmaceutical inhibition in rhabdomyosarcoma, the most common soft tissue sarcoma in children. We performed DKK-1 inhibition via shRNA technology and via the chemical inhibitor WAY-2626211. Its inhibition led to β-catenin activation and the modulation of focal adhesion kinase (FAK), with positive effects on in vitro expression of myogenic markers and a reduction in proliferation and invasion. In addition, WAY-262611 was able to impair survival of tumor cells in vivo. Therefore, DKK-1 could constitute a molecular target, which could lead to novel therapeutic strategies in RMS, especially in those patients with high DKK-1 expression.
Collapse
Affiliation(s)
- Irina Giralt
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Gabriel Gallo-Oller
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Natalia Navarro
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Patricia Zarzosa
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Guillem Pons
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Ainara Magdaleno
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Miguel F. Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Constantino Sábado
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Diego Arango
- Group of Molecular Oncology, IRB Lleida, 25198 Lleida, Spain;
| | - José Sánchez de Toledo
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Lucas Moreno
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Soledad Gallego
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Josep Roma
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| |
Collapse
|
24
|
Bell IJ, Horn MS, Van Raay TJ. Bridging the gap between non-canonical and canonical Wnt signaling through Vangl2. Semin Cell Dev Biol 2021; 125:37-44. [PMID: 34736823 DOI: 10.1016/j.semcdb.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/β-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/β-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/β-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/β-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.
Collapse
Affiliation(s)
- Ian James Bell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Matthew Sheldon Horn
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Terence John Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
25
|
Castillo-Rodríguez RA, Palencia G, Anaya-Rubio I, Pérez JCG, Jiménez-Farfán D, Escamilla-Ramírez Á, Zavala-Vega S, Cruz-Salgado A, Cervantes-Rebolledo C, Gracia-Mora I, Ruiz-Azuara L, Trejo-Solis C. Anti-proliferative, pro-apoptotic and anti-invasive effect of the copper coordination compound Cas III-La through the induction of reactive oxygen species and regulation of Wnt/β-catenin pathway in glioma. J Cancer 2021; 12:5693-5711. [PMID: 34475984 PMCID: PMC8408120 DOI: 10.7150/jca.59769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/11/2021] [Indexed: 01/12/2023] Open
Abstract
Gliomas are the most aggressive neoplasms that affect the central nervous system, being glioblastoma multiforme (GBM) the most malignant. The resistance of GBM to therapies is attributed to its high rate of cell proliferation, angiogenesis, invasion, and resistance to apoptosis; thus, finding alternative therapeutic approaches is vital. In this work, the anti-proliferative, pro-apoptotic, and anti-invasive effect of the copper coordination compound Casiopeina III-La (Cas III-La) on human U373 MG cells was determined in vitro and in vivo. Our results indicate that Cas III-La exerts an anti-proliferative effect, promoting apoptotic cell death and inactivating the invasive process by generating reactive oxygen species (ROS), inactivating GSK3β, activating JNK and ERK, and promoting the nuclear accumulation of β-catenin. The inhibition of ROS generation by N-acetyl-l-cysteine not only recovered cell migration and viability, but also reduced β-catenin accumulation and JNK and ERK activation. Additionally, Cas III-La significantly reduced tumor volume, cell proliferation and mitotic indices, and increased the apoptotic index in mice xenotransplanted with U373 glioma cells. Thus, Cas III-La is a promising agent to treat GBM.
Collapse
Affiliation(s)
| | - Guadalupe Palencia
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | - Isabel Anaya-Rubio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | | | - Dolores Jiménez-Farfán
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Ángel Escamilla-Ramírez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México.,Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, México
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | - Arturo Cruz-Salgado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | | | - Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Investigación Científica 70, Ciudad de México 04510, México
| | - Lena Ruiz-Azuara
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| |
Collapse
|
26
|
Trejo-Solis C, Escamilla-Ramirez A, Jimenez-Farfan D, Castillo-Rodriguez RA, Flores-Najera A, Cruz-Salgado A. Crosstalk of the Wnt/β-Catenin Signaling Pathway in the Induction of Apoptosis on Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090871. [PMID: 34577571 PMCID: PMC8465904 DOI: 10.3390/ph14090871] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a major role in cell survival and proliferation, as well as in angiogenesis, migration, invasion, metastasis, and stem cell renewal in various cancer types. However, the modulation (either up- or downregulation) of this pathway can inhibit cell proliferation and apoptosis both through β-catenin-dependent and independent mechanisms, and by crosstalk with other signaling pathways in a wide range of malignant tumors. Existing studies have reported conflicting results, indicating that the Wnt signaling can have both oncogenic and tumor-suppressing roles, depending on the cellular context. This review summarizes the available information on the role of the Wnt/β-catenin pathway and its crosstalk with other signaling pathways in apoptosis induction in cancer cells and presents a modified dual-signal model for the function of β-catenin. Understanding the proapoptotic mechanisms induced by the Wnt/β-catenin pathway could open new therapeutic opportunities.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
- Correspondence:
| | - Angel Escamilla-Ramirez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | | | - Athenea Flores-Najera
- Centro Médico Nacional 20 de Noviembre, Departamento de Cirugía General, Ciudad de Mexico 03229, Mexico;
| | - Arturo Cruz-Salgado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| |
Collapse
|
27
|
Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 2021; 20:611-628. [PMID: 34117457 PMCID: PMC9210578 DOI: 10.1038/s41573-021-00210-8] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
Numerous drug treatments that have recently entered the clinic or clinical trials have their genesis in zebrafish. Zebrafish are well established for their contribution to developmental biology and have now emerged as a powerful preclinical model for human disease, as their disease characteristics, aetiology and progression, and molecular mechanisms are clinically relevant and highly conserved. Zebrafish respond to small molecules and drug treatments at physiologically relevant dose ranges and, when combined with cell-specific or tissue-specific reporters and gene editing technologies, drug activity can be studied at single-cell resolution within the complexity of a whole animal, across tissues and over an extended timescale. These features enable high-throughput and high-content phenotypic drug screening, repurposing of available drugs for personalized and compassionate use, and even the development of new drug classes. Often, drugs and drug leads explored in zebrafish have an inter-organ mechanism of action and would otherwise not be identified through targeted screening approaches. Here, we discuss how zebrafish is an important model for drug discovery, the process of how these discoveries emerge and future opportunities for maximizing zebrafish potential in medical discoveries.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, Western General Hospital Campus, University of Edinburgh, Edinburgh, UK.
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School; Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| | - David M Langenau
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, USA.
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
28
|
Abstract
Zebrafish are rapidly becoming a leading model organism for cancer research. The genetic pathways driving cancer are highly conserved between zebrafish and humans, and the ability to easily manipulate the zebrafish genome to rapidly generate transgenic animals makes zebrafish an excellent model organism. Transgenic zebrafish containing complex, patient-relevant genotypes have been used to model many cancer types. Here we present a comprehensive review of transgenic zebrafish cancer models as a resource to the field and highlight important areas of cancer biology that have yet to be studied in the fish. The ability to image cancer cells and niche biology in an endogenous tumor makes zebrafish an indispensable model organism in which we can further understand the mechanisms that drive tumorigenesis and screen for potential new cancer therapies.
Collapse
Affiliation(s)
- Alicia M. McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haley R. Noonan
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Stem Cell and Regenerative Biology Department and Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts 02138, USA
| |
Collapse
|
29
|
Liu Y, Xue M, Cao D, Qin L, Wang Y, Miao Z, Wang P, Hu X, Shen J, Xiong B. Multi-omics characterization of WNT pathway reactivation to ameliorate BET inhibitor resistance in liver cancer cells. Genomics 2021; 113:1057-1069. [PMID: 33667649 DOI: 10.1016/j.ygeno.2021.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/17/2021] [Accepted: 02/28/2021] [Indexed: 01/10/2023]
Abstract
The Bromodomain and Extra-terminal domain (BET) proteins are promising targets in treating cancers. Although BET inhibitors have been in clinical trials, they are limited by lacking of suitable biomarkers to indicate drug responses in different cancers. Here we identify DHRS2, ETV4 and NOTUM as potential biomarkers to indicate drug resistance in liver cancer cells of a recently discovered BET inhibitor, Hjp-6-171. Furthermore, we confirm that reactivation of WNT pathway, the target of NOTUM, contributes to the drug sensitivity restoration in Hjp-6-171 resistant cells. Specially, combinations of Hjp-6-171 and a GSK3β inhibitor CHIR-98014 show remarkable therapeutic effects in vitro and in vivo. Integrating RNA-seq and ChIP-seq data, we reveal the expression signature of β-catenin regulated genes is contrary in sensitive cells to that in resistant cells. We propose WNT signaling molecules such as β-catenin and ETV4 to be candidate biomarkers to indicate BET inhibitor responses in liver cancer patients.
Collapse
Affiliation(s)
- Yuwei Liu
- SARI center for stem cell and nanomedicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengzhu Xue
- SARI center for stem cell and nanomedicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Danyan Cao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lihuai Qin
- Center for chemical biology and drug discovery, department of pharmacological sciences, Tisch cancer institute, Icahn School of medicine at Mount Sinai, New York 10029, USA
| | - Ying Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zehong Miao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng Wang
- Bio-Med Big Data Center, Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xin Hu
- Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Jingkang Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Xiong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
30
|
Zolghadr F, Bakhshinejad B, Davuchbabny S, Sarrafpour B, Seyedasli N. Critical regulatory levels in tumor differentiation: Signaling pathways, epigenetics and non-coding transcripts. Bioessays 2021; 43:e2000190. [PMID: 33644880 DOI: 10.1002/bies.202000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Approaches to induce tumor differentiation often result in manageable and therapy-naïve cellular states in cancer cells. This transformation is achieved by activating pathways that drive tumor cells away from plasticity, a state that commonly correlates with enhanced aggression, metastasis and resistance to therapy. Here, we discuss signaling pathways, epigenetics and non-coding RNAs as three main regulatory levels with the potential to drive tumor differentiation and hence as potential targets in differentiation therapy approaches. The success of an effective therapeutic regimen in one cancer, however, does not necessarily sustain across cancer types; a phenomenon largely resulting from heterogeneity in the genetic and physiological landscapes of tumor types necessitating an approach designed for each cancer's unique genetic and phenotypic build-up.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sapir Davuchbabny
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Sarrafpour
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
31
|
Vandernoot I, Haerlingen B, Gillotay P, Trubiroha A, Janssens V, Opitz R, Costagliola S. Enhanced Canonical Wnt Signaling During Early Zebrafish Development Perturbs the Interaction of Cardiac Mesoderm and Pharyngeal Endoderm and Causes Thyroid Specification Defects. Thyroid 2021; 31:420-438. [PMID: 32777984 DOI: 10.1089/thy.2019.0828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Congenital hypothyroidism due to thyroid dysgenesis is a frequent congenital endocrine disorder for which the molecular mechanisms remain unresolved in the majority of cases. This situation reflects, in part, our still limited knowledge about the mechanisms involved in the early steps of thyroid specification from the endoderm, in particular the extrinsic signaling cues that regulate foregut endoderm patterning. In this study, we used small molecules and genetic zebrafish models to characterize the role of various signaling pathways in thyroid specification. Methods: We treated zebrafish embryos during different developmental periods with small-molecule compounds known to manipulate the activity of Wnt signaling pathway and observed effects in thyroid, endoderm, and cardiovascular development using whole-mount in situ hybridization and transgenic fluorescent reporter models. We used the antisense morpholino (MO) technique to create a zebrafish acardiac model. For thyroid rescue experiments, bone morphogenetic protein (BMP) pathway induction in zebrafish embryos was obtained by manipulation of heat-shock inducible transgenic lines. Results: Combined analyses of thyroid and cardiovascular development revealed that overactivation of Wnt signaling during early development leads to impaired thyroid specification concurrent with severe defects in the cardiac specification. When using a model of MO-induced blockage of cardiomyocyte differentiation, a similar correlation was observed, suggesting that defective signaling between cardiac mesoderm and endodermal thyroid precursors contributes to thyroid specification impairment. Rescue experiments through transient overactivation of BMP signaling could partially restore thyroid specification in models with defective cardiac development. Conclusion: Collectively, our results indicate that BMP signaling is critically required for thyroid cell specification and identify cardiac mesoderm as a likely source of BMP signals.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Bone Morphogenetic Protein 2/genetics
- Bone Morphogenetic Protein 2/metabolism
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Congenital Hypothyroidism/genetics
- Congenital Hypothyroidism/metabolism
- Congenital Hypothyroidism/pathology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Disease Models, Animal
- Embryonic Development
- Endoderm/abnormalities
- Endoderm/metabolism
- Gene Expression Regulation, Developmental
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Mesoderm/abnormalities
- Mesoderm/metabolism
- Morpholinos/genetics
- Morpholinos/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Thyroid Dysgenesis/genetics
- Thyroid Dysgenesis/metabolism
- Thyroid Dysgenesis/pathology
- Thyroid Gland/abnormalities
- Thyroid Gland/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Isabelle Vandernoot
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Benoît Haerlingen
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Gillotay
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Achim Trubiroha
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Department Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Véronique Janssens
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
32
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
33
|
Narumi R, Liu S, Ikeda N, Morita O, Tasaki J. Chemical-Induced Cleft Palate Is Caused and Rescued by Pharmacological Modulation of the Canonical Wnt Signaling Pathway in a Zebrafish Model. Front Cell Dev Biol 2020; 8:592967. [PMID: 33381503 PMCID: PMC7767894 DOI: 10.3389/fcell.2020.592967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Cleft palate is one of the most frequent birth defects worldwide. It causes severe problems regarding eating and speaking and requires long-term treatment. Effective prenatal treatment would contribute to reducing the risk of cleft palate. The canonical Wnt signaling pathway is critically involved in palatogenesis, and genetic or chemical disturbance of this signaling pathway leads to cleft palate. Presently, preventative treatment for cleft palate during prenatal development has limited efficacy, but we expect that zebrafish will provide a useful high-throughput chemical screening model for effective prevention. To achieve this, the zebrafish model should recapitulate cleft palate development and its rescue by chemical modulation of the Wnt pathway. Here, we provide proof of concept for a zebrafish chemical screening model. Zebrafish embryos were treated with 12 chemical reagents known to induce cleft palate in mammals, and all 12 chemicals induced cleft palate characterized by decreased proliferation and increased apoptosis of palatal cells. The cleft phenotype was enhanced by combinatorial treatment with Wnt inhibitor and teratogens. Furthermore, the expression of tcf7 and lef1 as a readout of the pathway was decreased. Conversely, cleft palate was prevented by Wnt agonist and the cellular defects were also prevented. In conclusion, we provide evidence that chemical-induced cleft palate is caused by inhibition of the canonical Wnt pathway. Our results indicate that this zebrafish model is promising for chemical screening for prevention of cleft palate as well as modulation of the Wnt pathway as a therapeutic target.
Collapse
Affiliation(s)
- Rika Narumi
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Shujie Liu
- R&D, Safety Science Research, Kao Corporation, Ichikai-machi, Japan
| | - Naohiro Ikeda
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Osamu Morita
- R&D, Safety Science Research, Kao Corporation, Ichikai-machi, Japan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| |
Collapse
|
34
|
Pal A, Leung JY, Ang GCK, Rao VK, Pignata L, Lim HJ, Hebrard M, Chang KT, Lee VK, Guccione E, Taneja R. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. eLife 2020; 9:57683. [PMID: 33252038 PMCID: PMC7728445 DOI: 10.7554/elife.57683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt signaling is downregulated in embryonal rhabdomyosarcoma (ERMS) and contributes to the block of differentiation. Epigenetic mechanisms leading to its suppression are unknown and could pave the way toward novel therapeutic modalities. We demonstrate that EHMT2 suppresses canonical Wnt signaling by activating expression of the Wnt antagonist DKK1. Inhibition of EHMT2 expression or activity in human ERMS cell lines reduced DKK1 expression and elevated canonical Wnt signaling resulting in myogenic differentiation in vitro and in mouse xenograft models in vivo. Mechanistically, EHMT2 impacted Sp1 and p300 enrichment at the DKK1 promoter. The reduced tumor growth upon EHMT2 deficiency was reversed by recombinant DKK1 or LGK974, which also inhibits Wnt signaling. Consistently, among 13 drugs targeting chromatin modifiers, EHMT2 inhibitors were highly effective in reducing ERMS cell viability. Our study demonstrates that ERMS cells are vulnerable to EHMT2 inhibitors and suggest that targeting the EHMT2-DKK1-β-catenin node holds promise for differentiation therapy.
Collapse
Affiliation(s)
- Ananya Pal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Yu Leung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gareth Chin Khye Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luca Pignata
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maxime Hebrard
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kenneth Te Chang
- Department of Pathology, KK Women and Children's Hospital, Singapore, Singapore
| | - Victor Km Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Mukherjee A, Stathos ME, Varner C, Arsiwala A, Frey S, Hu Y, Smalley DM, Schaffer DV, Kane RS. One-pot synthesis of heterodimeric agonists that activate the canonical Wnt signaling pathway. Chem Commun (Camb) 2020; 56:3685-3688. [PMID: 32119023 DOI: 10.1039/d0cc00920b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fragment antigen-binding domains (Fabs) from anti-Frizzled and anti-LRP6 monoclonal antibodies were conjugated using SpyTag-SpyCatcher chemistry via a one-pot reaction. The resulting synthetic heterodimeric agonist outperformed the natural ligand, Wnt-3a, in activating canonical Wnt signaling in mammalian cells. This approach should be broadly applicable to activate receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Abhirup Mukherjee
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Mark E Stathos
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chad Varner
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Ammar Arsiwala
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Steven Frey
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yuge Hu
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - David M Smalley
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David V Schaffer
- Department of Chemical Engineering, Bioengineering, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ravi S Kane
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
36
|
HDAC6 promotes growth, migration/invasion, and self-renewal of rhabdomyosarcoma. Oncogene 2020; 40:578-591. [PMID: 33199827 PMCID: PMC7855743 DOI: 10.1038/s41388-020-01550-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023]
Abstract
Rhabdomyosarcoma (RMS) is a devastating pediatric sarcoma. The survival outcomes remain poor for patients with relapsed or metastatic disease. Effective targeted therapy is lacking due to our limited knowledge of the underlying cellular and molecular mechanisms leading to disease progression. In this study, we used functional assays in vitro and in vivo (zebrafish and xenograft mouse models) to demonstrate the crucial role of HDAC6, a cytoplasmic histone deacetylase, in driving RMS tumor growth, self-renewal, and migration/invasion. Treatment with HDAC6-selective inhibitors recapitulates the HDAC6 loss-of-function phenotypes. HDAC6 regulates cytoskeletal dynamics to promote tumor cell migration and invasion. RAC1, a Rho family GTPase, is an essential mediator of HDAC6 function, and is necessary and sufficient for RMS cell migration and invasion. High expression of RAC1 correlates with poor clinical prognosis in RMS patients. Targeting the HDAC6-RAC1 axis represents a promising therapeutic option for improving survival outcomes of RMS patients.
Collapse
|
37
|
Pasadi S, Muniyappa K. Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11-Rad50-Nbs1 complex in the repair of cisplatin-induced DNA cross-links. Oncotarget 2020; 11:4028-4044. [PMID: 33216839 PMCID: PMC7646826 DOI: 10.18632/oncotarget.27777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt/β-catenin signalling pathway plays a crucial role in a variety of functions including cell proliferation and differentiation, tumorigenic processes and radioresistance in cancer cells. The Mre11–Rad50–Nbs1 (MRN) complex has a pivotal role in sensing and repairing DNA damage. However, it remains unclear whether a connection exists between Wnt/β-catenin signalling and the MRN complex in the repair of cisplatin-induced DNA interstrand cross-links (ICLs). Here, we report that (1) cisplatin exposure results in a significant increase in the levels of MRN complex subunits in human tumour cells; (2) cisplatin treatment stimulates Wnt/β-catenin signalling through increased β-catenin expression; (3) the functional perturbation of Wnt/β-catenin signalling results in aberrant cell cycle dynamics and the activation of DNA damage response and apoptosis; (4) a treatment with CHIR99021, a potent and selective GSK3β inhibitor, augments cisplatin-induced cell death in cancer cells. On the other hand, inactivation of the Wnt/β-catenin signalling with FH535 promotes cell survival. Consistently, the staining pattern of γH2AX-foci is significantly reduced in the cells exposed simultaneously to cisplatin and FH535; and (5) inhibition of Wnt/β-catenin signalling impedes cisplatin-induced phosphorylation of Chk1, abrogates the G2/M phase arrest and impairs recombination-based DNA repair. Our data further show that Wnt signalling positively regulates the expression of β-catenin, Mre11 and FANCD2 at early time points, but declining thereafter due to negative feedback regulation. These results support a model wherein Wnt/β-catenin signalling and MRN complex crosstalk during DNA ICL repair, thereby playing an important role in the maintenance of genome stability.
Collapse
Affiliation(s)
- Sanjeev Pasadi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
38
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
39
|
Hagiwara R, Oki Y, Matsumaru T, Ibayashi S, Kano K. Generation of metabolically functional hepatocyte-like cells from dedifferentiated fat cells by Foxa2, Hnf4a and Sall1 transduction. Genes Cells 2020; 25:811-824. [PMID: 33064855 PMCID: PMC7894465 DOI: 10.1111/gtc.12814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 01/17/2023]
Abstract
Mature adipocyte-derived dedifferentiated fat (DFAT) cells have been identified to possess similar multipotency to mesenchymal stem cells, but a method for converting DFAT cells into hepatocytes was previously unknown. Here, using comprehensive analysis of gene expression profiles, we have extracted three transcription factors, namely Foxa2, Hnf4a and Sall1 (FHS), that can convert DFAT cells into hepatocytes. Hepatogenic induction has converted FHS-infected DFAT cells into an epithelial-like morphological state and promoted the expression of hepatocyte-specific features. Furthermore, the DFAT-derived hepatocyte-like (D-Hep) cells catalyzed the detoxification of several compounds. These results indicate that the transduction of DFAT cells with three genes, which were extracted by comprehensive gene expression analysis, efficiently generated D-Hep cells with detoxification abilities similar to those of primary hepatocytes. Thus, D-Hep cells may be useful as a new cell source for surrogate hepatocytes and may be applied to drug discovery studies, such as hepatotoxicity screening and drug metabolism tests.
Collapse
Affiliation(s)
- Reiko Hagiwara
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takashi Matsumaru
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shiho Ibayashi
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
40
|
Barboro P, Benelli R, Tosetti F, Costa D, Capaia M, Astigiano S, Venè R, Poggi A, Ferrari N. Aspartate β-hydroxylase targeting in castration-resistant prostate cancer modulates the NOTCH/HIF1α/GSK3β crosstalk. Carcinogenesis 2020; 41:1246-1252. [PMID: 32525968 DOI: 10.1093/carcin/bgaa053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/17/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an incurable stage of the disease. A multivariate principal component analysis on CRPC in vitro models identified aspartyl (asparaginyl) β hydrolase (ASPH) as the most relevant molecule associated with the CRPC phenotype. ASPH is overexpressed in various malignant neoplasms and catalyzes the hydroxylation of aspartyl and asparaginyl residues in the epidermal growth factor (EGF)-like domains of proteins like NOTCH receptors and ligands, enhancing cell motility, invasion and metastatic spread. Bioinformatics analyses of ASPH in prostate cancer (PCa) and CRPC datasets indicate that ASPH gene alterations have prognostic value both in PCa and CRPC patients. In CRPC cells, inhibition of ASPH expression obtained through specific small interfering RNA or culturing cells in hypoxic conditions, reduced cell proliferation, invasion and cyclin D1 expression through modulation of the NOTCH signaling. ASPH and HIF1α crosstalk, within a hydroxylation-regulated signaling pathway, might be transiently driven by the oxidative stress evidenced inside CRPC cells. In addition, increased phosphorylation of GSK3β by ASPH silencing demonstrates that ASPH regulates GSK3β activity inhibiting its interactions with upstream kinases. These findings demonstrate the critical involvement of ASPH in CRPC development and may represent an attractive molecular target for therapy.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Calcium-Binding Proteins/antagonists & inhibitors
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Glycogen Synthase Kinase 3 beta/genetics
- Glycogen Synthase Kinase 3 beta/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mixed Function Oxygenases/antagonists & inhibitors
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA, Small Interfering/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Paola Barboro
- Department of Oncology and Hematology, Academic Unit of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Benelli
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Tosetti
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Delfina Costa
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Capaia
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genova, Italy
| | - Simonetta Astigiano
- Department of Scientific Direction, Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Venè
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alessandro Poggi
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nicoletta Ferrari
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
41
|
Manzella G, Schreck LD, Breunis WB, Molenaar J, Merks H, Barr FG, Sun W, Römmele M, Zhang L, Tchinda J, Ngo QA, Bode P, Delattre O, Surdez D, Rekhi B, Niggli FK, Schäfer BW, Wachtel M. Phenotypic profiling with a living biobank of primary rhabdomyosarcoma unravels disease heterogeneity and AKT sensitivity. Nat Commun 2020; 11:4629. [PMID: 32934208 PMCID: PMC7492191 DOI: 10.1038/s41467-020-18388-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer therapy is currently shifting from broadly used cytotoxic drugs to patient-specific precision therapies. Druggable driver oncogenes, identified by molecular analyses, are present in only a subset of patients. Functional profiling of primary tumor cells could circumvent these limitations, but suitable platforms are unavailable for most cancer entities. Here, we describe an in vitro drug profiling platform for rhabdomyosarcoma (RMS), using a living biobank composed of twenty RMS patient-derived xenografts (PDX) for high-throughput drug testing. Optimized in vitro conditions preserve phenotypic and molecular characteristics of primary PDX cells and are compatible with propagation of cells directly isolated from patient tumors. Besides a heterogeneous spectrum of responses of largely patient-specific vulnerabilities, profiling with a large drug library reveals a strong sensitivity towards AKT inhibitors in a subgroup of RMS. Overall, our study highlights the feasibility of in vitro drug profiling of primary RMS for patient-specific treatment selection in a co-clinical setting. Patient-specific precision medicine approaches are important for future cancer therapies. Here, the authors show that functional drug profiling with Rhabdomyosarcoma cells isolated from PDX and primary patient tumors uncovers patient-specific vulnerabilities.
Collapse
Affiliation(s)
- Gabriele Manzella
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Leonie D Schreck
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Willemijn B Breunis
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland.,Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Jan Molenaar
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Hans Merks
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Frederic G Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Wenyue Sun
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michaela Römmele
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Luduo Zhang
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Joelle Tchinda
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Quy A Ngo
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Peter Bode
- University Hospital Zurich, Institute of Surgical Pathology, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland
| | - Olivier Delattre
- France INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Didier Surdez
- France INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Bharat Rekhi
- Tata Memorial Hospital, Department of Pathology, Dr E.B. road, Parel, Mumbai, 400012, India
| | - Felix K Niggli
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Beat W Schäfer
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland.
| | - Marco Wachtel
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| |
Collapse
|
42
|
Sobral LM, Hicks HM, Parrish JK, McCann TS, Hsieh J, Goodspeed A, Costello JC, Black JC, Jedlicka P. KDM3A/Ets1 epigenetic axis contributes to PAX3/FOXO1-driven and independent disease-promoting gene expression in fusion-positive Rhabdomyosarcoma. Mol Oncol 2020; 14:2471-2486. [PMID: 32697014 PMCID: PMC7530783 DOI: 10.1002/1878-0261.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and young adults. RMS exists as two major disease subtypes, oncofusion-negative RMS (FN-RMS) and oncofusion-positive RMS (FP-RMS). FP-RMS is characterized by recurrent PAX3/7-FOXO1 driver oncofusions and is a biologically and clinically aggressive disease. Recent studies have revealed FP-RMS to have a strong epigenetic basis. Epigenetic mechanisms represent potential new therapeutic vulnerabilities in FP-RMS, but their complex details remain to be defined. We previously identified a new disease-promoting epigenetic axis in RMS, involving the chromatin factor KDM3A and the Ets1 transcription factor. In the present study, we define the KDM3A and Ets1 FP-RMS transcriptomes and show that these interface with the recently characterized PAX3/FOXO1-driven gene expression program. KDM3A and Ets1 positively control numerous known and candidate novel PAX3/FOXO1-induced RMS-promoting genes, including subsets under control of PAX3/FOXO1-associated superenhancers (SE), such as MEST. Interestingly, KDM3A and Ets1 also positively control a number of known and candidate novel FP-RMS-promoting, but not PAX3/FOXO1-dependent, genes. Epistatically, Ets1 is downstream of, and exerts disease-promoting effects similar to, both KDM3A and PAX3/FOXO1. MEST also manifests disease-promoting properties in FP-RMS, and KDM3A and Ets1 each impacts activation of the PAX3/FOXO1-associated MEST SE. Taken together, our studies show that the KDM3A/Ets1 epigenetic axis plays an important role in disease promotion in FP-RMS, and provide insight into potential new ways to target aggressive phenotypes in this disease.
Collapse
Affiliation(s)
- Lays M Sobral
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Hannah M Hicks
- Cancer Biology Graduate Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Janet K Parrish
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Tyler S McCann
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Joseph Hsieh
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Cancer Biology Graduate Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Medical Scientist Training Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Andrew Goodspeed
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, CO, USA
| | - Joshua C Black
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Paul Jedlicka
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Cancer Biology Graduate Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Medical Scientist Training Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
43
|
Duda P, Akula SM, Abrams SL, Steelman LS, Gizak A, Rakus D, McCubrey JA. GSK-3 and miRs: Master regulators of therapeutic sensitivity of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118770. [PMID: 32524999 DOI: 10.1016/j.bbamcr.2020.118770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
Abstract
Glycogen synthetase kinase-3 (GSK-3) and microRNAs (miRs) affect many critical signaling pathways important in cell growth. GSK-3 is a serine/threonine (S/T) protein kinase. Often when GSK-3 phosphorylates other proteins, they are inactivated and the signaling pathway is shut down. The PI3K/PTEN/AKT/GSK3/mTORC1 pathway plays key roles in regulation of cell growth, apoptosis, drug resistance, malignant transformation and metastasis and is often deregulated in cancer. When GSK-3 is phosphorylated by AKT it is inactivated and this often leads to growth promotion. When GSK-3 is not phosphorylated by AKT or other kinases at specific negative-regulatory residues, it can modify the activity of many proteins by phosphorylation, some of these proteins promote while others inhibit cell proliferation. This is part of the conundrum regarding GSK-3. The central theme of this review is the ability of GSK-3 to serve as either a tumor suppressor or a tumor promoter in cancer which is likely due to its diverse protein substrates. The effects of multiple miRs which bind mRNAs encoding GSK-3 and other signaling molecules and how they affect cell growth and sensitivity to various therapeutics will be discussed as they serve to regulate GSK-3 and other proteins important in controlling proliferation.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA.
| |
Collapse
|
44
|
Glycogen Synthase Kinase 3β in Cancer Biology and Treatment. Cells 2020; 9:cells9061388. [PMID: 32503133 PMCID: PMC7349761 DOI: 10.3390/cells9061388] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase (GSK)3β is a multifunctional serine/threonine protein kinase with more than 100 substrates and interacting molecules. GSK3β is normally active in cells and negative regulation of GSK3β activity via phosphorylation of its serine 9 residue is required for most normal cells to maintain homeostasis. Aberrant expression and activity of GSK3β contributes to the pathogenesis and progression of common recalcitrant diseases such as glucose intolerance, neurodegenerative disorders and cancer. Despite recognized roles against several proto-oncoproteins and mediators of the epithelial–mesenchymal transition, deregulated GSK3β also participates in tumor cell survival, evasion of apoptosis, proliferation and invasion, as well as sustaining cancer stemness and inducing therapy resistance. A therapeutic effect from GSK3β inhibition has been demonstrated in 25 different cancer types. Moreover, there is increasing evidence that GSK3β inhibition protects normal cells and tissues from the harmful effects associated with conventional cancer therapies. Here, we review the evidence supporting aberrant GSK3β as a hallmark property of cancer and highlight the beneficial effects of GSK3β inhibition on normal cells and tissues during cancer therapy. The biological rationale for targeting GSK3β in the treatment of cancer is also discussed at length.
Collapse
|
45
|
Casey MJ, Stewart RA. Pediatric Cancer Models in Zebrafish. Trends Cancer 2020; 6:407-418. [PMID: 32348736 PMCID: PMC7194396 DOI: 10.1016/j.trecan.2020.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Pediatric cancer is a leading cause of death in children and adolescents. Improvements in pediatric cancer treatment that include the alleviation of long-term adverse effects require a deeper understanding of the genetic, epigenetic, and developmental factors driving these cancers. Here, we review how the unique attributes of the zebrafish model system in embryology, imaging, and scalability have been used to identify new mechanisms of tumor initiation, progression, and relapse and for drug discovery. We focus on zebrafish models of leukemias, neural tumors and sarcomas - the most common and difficult childhood cancers to treat.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
46
|
Pham T, Robinson K, Vleeshouwer-Neumann T, Annis JE, Chen EY. Characterization of GRK5 as a novel regulator of rhabdomyosarcoma tumor cell growth and self-renewal. Oncotarget 2020; 11:1448-1461. [PMID: 32363002 PMCID: PMC7185065 DOI: 10.18632/oncotarget.27562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft-tissue pediatric sarcoma. Clinical outcomes for RMS patients with relapsed or metastatic disease remain poor. Treatment options remain limited, presenting an urgent need for novel therapeutic targets. Using a high-throughput siRNA screen against the human kinome, we identified GRK5, a G-protein receptor kinase, as a novel regulator of RMS tumor cell growth and self-renewal. Through functional assays in vitro and in vivo, we show that GRK5 regulates cell cycle in a kinase-independent manner to promote RMS tumor cell growth. NFAT1 expression is regulated by GRK5 in a kinase independent manner, and loss of NFAT1 phenocopies GRK5 loss-of-function effects on the cell cycle alterations. Self-renewal of tumor propagating cells (TPCs) is thought to give rise to tumor relapse. We show that loss of GRK5 results in a significant reduction of RMS self-renewal capacity in part due to increased cell death. Treatment of human RMS xenografts in mice with CCG-215022, a GRK5-selective inhibitor, results in reduced tumor growth and self-renewal in both major subtypes of RMS. GRK5 represents a novel therapeutic target for the treatment of RMS.
Collapse
Affiliation(s)
- Thao Pham
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Kristin Robinson
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - James E. Annis
- Quellos HTS Core, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eleanor Y. Chen
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
Boscolo Sesillo F, Fox D, Sacco A. Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy. Cell Rep 2020; 26:689-701.e6. [PMID: 30650360 DOI: 10.1016/j.celrep.2018.12.089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
Most human cancers originate from high-turnover tissues, while low-proliferating tissues, like skeletal muscle, exhibit a lower incidence of tumor development. In Duchenne muscular dystrophy (DMD), which induces increased skeletal muscle regeneration, tumor incidence is increased. Rhabdomyosarcomas (RMSs), a rare and aggressive type of soft tissue sarcoma, can develop in this context, but the impact of DMD severity on RMS development and its cell of origin are poorly understood. Here, we show that RMS latency is affected by DMD severity and that muscle stem cells (MuSCs) can give rise to RMS in dystrophic mice. We report that even before tumor formation, MuSCs exhibit increased self-renewal and an expression signature associated with RMSs. These cells can form tumorspheres in vitro and give rise to RMSs in vivo. Finally, we show that the inflammatory genes Ccl11 and Rgs5 are involved in RMS growth. Together, our results show that DMD severity drives MuSC-mediated RMS development.
Collapse
Affiliation(s)
- Francesca Boscolo Sesillo
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Fox
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Stone TW. Dependence and Guidance Receptors-DCC and Neogenin-In Partial EMT and the Actions of Serine Proteases. Front Oncol 2020; 10:94. [PMID: 32117748 PMCID: PMC7010924 DOI: 10.3389/fonc.2020.00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
The Epithelial-Mesenchymal Transition (EMT) is an important concept in understanding the processes of oncogenesis, especially with respect to the relationship between cell proliferation and metastatic properties such as spontaneous cell motility, chemotaxic migration and tissue invasion. EMT is now recognized as a more complex phenomenon than an all-or-nothing event, in which different components of the EMT may have distinct roles in the physio-pathological regulation of cell function and which may in turn depend on differential interactions with cell constituents and metabolic products. This mini-review summarizes recent work on the induction of cancer properties in parallel with the presence of EMT activities in the presence of serine proteases, with the focus on those tumor suppressors known as "dependence" receptors such as neogenin and Deleted in Colorectal Cancer (DCC). It is concluded that various forms of partial EMT should be given more detailed investigation and consideration as the results could have valuable implications for the development of disease-specific and patient-specific therapies.
Collapse
|
49
|
Ong MS, Deng S, Halim CE, Cai W, Tan TZ, Huang RYJ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Proteins in Cancer and Intracellular Stress: A Therapeutic Perspective. Cancers (Basel) 2020; 12:cancers12010238. [PMID: 31963677 PMCID: PMC7017214 DOI: 10.3390/cancers12010238] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cytoskeletal proteins, which consist of different sub-families of proteins including microtubules, actin and intermediate filaments, are essential for survival and cellular processes in both normal as well as cancer cells. However, in cancer cells, these mechanisms can be altered to promote tumour development and progression, whereby the functions of cytoskeletal proteins are co-opted to facilitate increased migrative and invasive capabilities, proliferation, as well as resistance to cellular and environmental stresses. Herein, we discuss the cytoskeletal responses to important intracellular stresses (such as mitochondrial, endoplasmic reticulum and oxidative stresses), and delineate the consequences of these responses, including effects on oncogenic signalling. In addition, we elaborate how the cytoskeleton and its associated molecules present themselves as therapeutic targets. The potential and limitations of targeting new classes of cytoskeletal proteins are also explored, in the context of developing novel strategies that impact cancer progression.
Collapse
Affiliation(s)
- Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- School of Medicine, College of Medicine, National Taiwan University, No. 1 Ren Ai Road Sec. 1, Taipei City 10617, Taiwan
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| |
Collapse
|
50
|
La transplantation de cellules tumorales chez le poisson zèbre : de la recherche translationnelle à la médecine personnalisée. Bull Cancer 2020; 107:30-40. [DOI: 10.1016/j.bulcan.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022]
|