1
|
Sutton PJ, Mosqueda N, Brownlee CW. Palmitoylated importin α regulates mitotic spindle orientation through interaction with NuMA. EMBO Rep 2025:10.1038/s44319-025-00484-8. [PMID: 40425783 DOI: 10.1038/s44319-025-00484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Regulation of cell division orientation is a fundamental process critical to differentiation and tissue homeostasis. Microtubules emanating from the mitotic spindle pole bind a conserved complex of proteins at the cell cortex which orients the spindle and ultimately the cell division plane. Control of spindle orientation is of particular importance in developing tissues, such as the developing brain. Misorientation of the mitotic spindle and thus subsequent division plane misalignment can contribute to improper segregation of cell fate determinants in developing neuroblasts, leading to a rare neurological disorder known as microcephaly. We demonstrate that the nuclear transport protein importin α, when palmitoylated, plays a critical role in mitotic spindle orientation through localizing factors, such as NuMA, to the cell cortex. We also observe craniofacial developmental defects in Xenopus laevis when importin α palmitoylation is abrogated, including smaller head and brains, a hallmark of spindle misorientation and microcephaly. These findings characterize not only a role for importin α in spindle orientation, but also a broader role for importin α palmitoylation which has significance for many cellular processes.
Collapse
Affiliation(s)
- Patrick James Sutton
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, USA.
| | - Natalie Mosqueda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, USA
| | - Christopher W Brownlee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, USA.
| |
Collapse
|
2
|
McLellan MM, Aerne BL, Banerjee Dhoul JJ, Holder MV, Auchynnikava T, Tapon N. Meru co-ordinates spindle orientation with cell polarity and cell cycle progression. EMBO J 2025; 44:2949-2975. [PMID: 40169811 DOI: 10.1038/s44318-025-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Correct mitotic spindle alignment is essential for tissue architecture and plays an important role in cell fate specification through asymmetric cell division. Spindle tethering factors such as Drosophila Mud (NuMA in mammals) are recruited to the cell cortex and capture astral microtubules, pulling the spindle in the correct orientation. However, how spindle tethering complexes read the cell polarity axis and how spindle attachment is coupled to mitotic progression remains poorly understood. We explore these questions in Drosophila sensory organ precursors (SOPs), which divide asymmetrically to give rise to epidermal mechanosensory bristles. We show that the scaffold protein Meru, which is enriched at the posterior cortex by the Frizzled/Dishevelled planar cell polarity complex, in turn recruits Mud, linking the spindle tethering and polarity machineries. Furthermore, Cyclin A/Cdk1 associates with Meru at the posterior cortex, promoting the formation of the Mud/Meru/Dsh complex via Meru and Dsh phosphorylation. Thus, Meru couples spindle orientation with cell polarity and provides a cell cycle-dependent cue for spindle tethering.
Collapse
Affiliation(s)
- Melissa M McLellan
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Birgit L Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jennifer J Banerjee Dhoul
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Maxine V Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Tania Auchynnikava
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
3
|
Sutton PJ, Mosqueda N, Brownlee CW. Palmitoylated Importin α Regulates Mitotic Spindle Orientation Through Interaction with NuMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.25.620315. [PMID: 39484393 PMCID: PMC11527331 DOI: 10.1101/2024.10.25.620315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulation of cell division orientation is a fundamental process critical to differentiation and tissue homeostasis. Microtubules emanating from the mitotic spindle pole bind a conserved complex of proteins at the cell cortex which orients the spindle and ultimately the cell division plane. Control of spindle orientation is of particular importance in developing tissues, such as the developing brain. Misorientation of the mitotic spindle and thus subsequent division plane misalignment can contribute to improper segregation of cell fate determinants in developing neuroblasts, leading to a rare neurological disorder known as microcephaly. We demonstrate that the nuclear transport protein importin α, when palmitoylated, plays a critical role in mitotic spindle orientation through localizing factors, such as NuMA, to the cell cortex. We also observe craniofacial developmental defects in Xenopus laevis when importin α palmitoylation is abrogated, including smaller head and brains, a hallmark of spindle misorientation and microcephaly. These findings characterize not only a role for importin α in spindle orientation, but also a broader role for importin α palmitoylation which has significance for many cellular processes.
Collapse
|
4
|
Ren K, Luan Y, Yang Y, Xia C, Zhao X, Yan D, He H, Jue B, Yin F, Wu K, Zhang X, Qin B. METTL3-mediated CEP170 m6A modifications in spindle orientation and esophageal cancer cell proliferation. Int Immunopharmacol 2025; 146:113780. [PMID: 39708485 DOI: 10.1016/j.intimp.2024.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/23/2024]
Abstract
Esophageal cancer is a major malignancy with a high incidence and poor prognosis. To elucidate the mechanisms underlying its progression, particularly with respect to cell division and spindle orientation, we investigated the role of m6A modifications and the centrosomal protein CEP170. Using m6A-seq and RNA-seq of esophageal cancer tissues and adjacent normal tissues, we identified significant alterations in m6A modifications and gene expression, highlighting the upregulation and m6A enrichment of CEP170 in tumor tissues. Functional assays, including cell cycle synchronization, qPCR, immunoblotting, immunofluorescence, coimmunoprecipitation, methylated RNA immunoprecipitation, and cell proliferation assays, demonstrated that CEP170 plays a critical role in mitotic progression and spindle orientation. m6A-seq and RNA-seq revealed significant alterations in m6A modifications and gene expression in esophageal cancer. CEP170 was upregulated and highly enriched in m6A modifications in tumor tissues. Functional assays revealed that CEP170 plays a critical role in proper mitotic progression and spindle orientation. Knockdown of CEP170 led to spindle misorientation and impaired the stability of astral microtubules. Additionally, CEP170 affected the localization of the dynein/dynactin motor complex in the cell cortex. METTL3 was upregulated in tumor tissues and regulated CEP170 expression. RNA-seq upon CEP170 depletion revealed that ASPM was significantly downregulated, indicating its involvement as a downstream target of CEP170 in regulating cell proliferation and mitosis. Our findings provide novel insights into the molecular mechanisms by which CEP170 and m6A modifications regulate esophageal cancer progression, revealing that CEP170 is a potential therapeutic target.
Collapse
Affiliation(s)
- Kaidi Ren
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yi Luan
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yang Yang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Chaoyuan Xia
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xian Zhao
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Dan Yan
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Hongbo He
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Bolin Jue
- College of Basic Medical Sciences, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Fanxiang Yin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xiang Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Bo Qin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
5
|
Zheng M, Wang S, Tang K, Kong R, Wang X, Zhou J, Chen Y, Wang Y. The CYLD-PARP1 feedback loop regulates DNA damage repair and chemosensitivity in breast cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2413890121. [PMID: 39739815 PMCID: PMC11725943 DOI: 10.1073/pnas.2413890121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DNA repair and genomic stability maintenance. However, the regulatory mechanisms governing PARP1 activity, particularly through deubiquitination, remain poorly elucidated. Using a deubiquitinase (DUB) library binding screen, we identified cylindromatosis (CYLD) as a bona fide DUB for PARP1 in breast cancer cells. Mechanistically, CYLD is recruited by PARP1 to DNA lesions upon genotoxic stress, where it cleaves K63-linked polyubiquitin chains on PARP1 at residues K748, K940, and K949, resulting in compromised PARP1 activation. In a reciprocal manner, PARP1 PARylates CYLD at sites E191, E231, E259, and E509, thereby enhancing its DUB activity. Consequently, depletion of CYLD leads to increased efficiency in base excision repair and confers breast cancer cells with resistance to alkylating agents. Conversely, overexpression of CYLD enhances sensitivity to PARP inhibitors (PARPi) even in homologous recombination-proficient breast cancer cells. These findings offer unique insights into the intricate interplay between CYLD and PARP1 in DNA repair, underscoring the pivotal role of targeting this regulatory axis for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Miaomiao Zheng
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong250014, China
| | - Shuo Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong250014, China
| | - Kexin Tang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong250014, China
| | - Ruixue Kong
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong250014, China
| | - Xuemeng Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong250014, China
| | - Yan Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong250014, China
| | - Yijie Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
6
|
Yang S, Yu F, Yang M, Ni H, Bu W, Yin H, Yang J, Wang W, Zhai D, Wu X, Ma N, Li T, Hao H, Ran J, Song T, Li D, Yoshida S, Lu Q, Yang Y, Zhou J, Liu M. CYLD Maintains Retinal Homeostasis by Deubiquitinating ENKD1 and Promoting the Phagocytosis of Photoreceptor Outer Segments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404067. [PMID: 39373352 PMCID: PMC11615780 DOI: 10.1002/advs.202404067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Phagocytosis of shed photoreceptor outer segments by the retinal pigment epithelium (RPE) is essential for retinal homeostasis. Dysregulation of the phagocytotic process is associated with irreversible retinal degenerative diseases. However, the molecular mechanisms underlying the phagocytic activity of RPE cells remain elusive. In an effort to uncover proteins orchestrating retinal function, the cylindromatosis (CYLD) deubiquitinase is identified as a critical regulator of photoreceptor outer segment phagocytosis. CYLD-deficient mice exhibit abnormal retinal structure and function. Mechanistically, CYLD interacts with enkurin domain containing protein 1 (ENKD1) and deubiquitinates ENKD1 at lysine residues K141 and K242. Deubiquitinated ENKD1 interacts with Ezrin, a membrane-cytoskeleton linker, and stimulates the microvillar localization of Ezrin, which is essential for the phagocytic activity of RPE cells. These findings thus reveal a crucial role for the CYLD-ENKD1-Ezrin axis in regulating retinal homeostasis and may have important implications for the prevention and treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Song Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Fan Yu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Mulin Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Hua Ni
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Weiwen Bu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Hanxiao Yin
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Jia Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Weishu Wang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Denghui Zhai
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Xuemei Wu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Nan Ma
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Te Li
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Huijie Hao
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Ting Song
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Dengwen Li
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Sei Yoshida
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Quanlong Lu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jun Zhou
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjin300462China
| |
Collapse
|
7
|
Yanagida S, Yuki R, Saito Y, Nakayama Y. LAT1 supports mitotic progression through Golgi unlinking in an amino acid transport activity-independent manner. J Biol Chem 2024; 300:107761. [PMID: 39270820 PMCID: PMC11490712 DOI: 10.1016/j.jbc.2024.107761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Amino acid transporters play a vital role in cellular homeostasis by maintaining protein synthesis. L-type amino acid transporter 1 (LAT1/SLC7A5/CD98lc) is a major transporter of large neutral amino acids in cancer cells because of its predominant expression. Although amino acid restriction with various amino acid analog treatments is known to induce mitotic defects, the involvement of amino acid transporters in cell division remains unclear. In this study, we identified that LAT1 is responsible for mitotic progression in a transport activity-independent manner. LAT1 knockdown activates the spindle assembly checkpoint, leading to a delay in metaphase. LAT1 maintains proper spindle orientation with confinement of the lateral cortex localization of the NuMA protein, which mediates the pulling force against the mitotic spindle toward the lateral cortex. Unexpectedly, JPH203, an inhibitor of LAT1 amino acid transport activity, does not affect mitotic progression. Moreover, the transport activity-deficient LAT1 mutant maintains the proper spindle orientation and mitotic progression. LAT1 forms a heterodimer with CD98 (SLC3A2/CD98hc) both in interphase and mitosis. Although CD98 knockdown decreases the plasma membrane localization of LAT1, it does not affect mitotic progression. LAT1 is localized to the Golgi and ER not only at the plasma membrane in interphase, and promotes Golgi unlinking during the mitotic entry, leading to centrosome maturation. These results suggest that LAT1 supports mitotic progression in an amino acid transport activity-independent manner and that Golgi-localized LAT1 is important for mitotic progression through the acceleration of Golgi unlinking and centrosome maturation. These findings reveal a novel LAT1 function in mitosis.
Collapse
Affiliation(s)
- Sakura Yanagida
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuzaburo Yuki
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Youhei Saito
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
8
|
Ni H, Chen M, Dong D, Zhou Y, Cao Y, Ge R, Luo X, Wang Y, Dong X, Zhou J, Li D, Xie S, Liu M. CYLD/HDAC6 signaling regulates the interplay between epithelial-mesenchymal transition and ciliary homeostasis during pulmonary fibrosis. Cell Death Dis 2024; 15:581. [PMID: 39122680 PMCID: PMC11316090 DOI: 10.1038/s41419-024-06972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The primary cilium behaves as a platform for sensing and integrating extracellular cues to control a plethora of cellular activities. However, the functional interaction of this sensory organelle with epithelial-mesenchymal transition (EMT) during pulmonary fibrosis remains unclear. Here, we reveal a critical role for cylindromatosis (CYLD) in reciprocally linking the EMT program and ciliary homeostasis during pulmonary fibrosis. A close correlation between the EMT program and primary cilia is observed in bleomycin-induced pulmonary fibrosis as well as TGF-β-induced EMT model. Mechanistic study reveals that downregulation of CYLD underlies the crosstalk between EMT and ciliary homeostasis by inactivating histone deacetylase 6 (HDAC6) during pulmonary fibrosis. Moreover, manipulation of primary cilia is an effective means to modulate the EMT program. Collectively, these results identify a pivotal role for the CYLD/HDAC6 signaling in regulating the reciprocal interplay between the EMT program and ciliary homeostasis during pulmonary fibrosis.
Collapse
Affiliation(s)
- Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dan Dong
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunqiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Cao
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ruixin Ge
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiangrui Luo
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yutao Wang
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Xifeng Dong
- Department of Hematology, Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin Institute of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China.
| | - Songbo Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, 300052, China.
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| |
Collapse
|
9
|
Kikuchi K, Arata M. The interplay between Wnt signaling pathways and microtubule dynamics. In Vitro Cell Dev Biol Anim 2024; 60:502-512. [PMID: 38349554 DOI: 10.1007/s11626-024-00860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Wnt signaling pathways represent an evolutionarily highly conserved, intricate network of molecular interactions that regulates various aspects of cellular behavior, including embryonic development and tissue homeostasis. Wnt signaling pathways share the β-catenin-dependent (canonical) and the multiple β-catenin-independent (non-canonical) pathways. These pathways collectively orchestrate a wide range of cellular processes through distinct mechanisms of action. Both the β-catenin-dependent and β-catenin-independent pathways are closely intertwined with microtubule dynamics, underscoring the complex crosstalk between Wnt signaling and the cellular cytoskeleton. This interplay involves several mechanisms, including how the components of Wnt signaling can influence the stability, organization, and distribution of microtubules. The modulation of microtubule dynamics by Wnt signaling plays a crucial role in coordinating cellular behaviors and responses to external signals. In this comprehensive review, we discussed the current understanding of how Wnt signaling and microtubule dynamics intersect in various aspects of cellular behavior. This study provides insights into our understanding of these crucial cellular processes.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
| | - Masaki Arata
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
10
|
Bu W, Di J, Zhao J, Liu R, Wu Y, Ran J, Li T. Dynein Light Intermediate Chains Exhibit Different Arginine Methylation Patterns. J Clin Lab Anal 2024; 38:e25030. [PMID: 38525916 PMCID: PMC11033342 DOI: 10.1002/jcla.25030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.
Collapse
Affiliation(s)
- Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Jie Di
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Junkui Zhao
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Ruming Liu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Yue Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Te Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
11
|
Xie W, Gao S, Yang Y, Li H, Zhou J, Chen M, Yang S, Zhang Y, Zhang L, Meng X, Xie S, Liu M, Li D, Chen Y, Zhou J. CYLD deubiquitinates plakoglobin to promote Cx43 membrane targeting and gap junction assembly in the heart. Cell Rep 2022; 41:111864. [PMID: 36577382 DOI: 10.1016/j.celrep.2022.111864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
During heart maturation, gap junctions assemble into hemichannels and polarize to the intercalated disc at cell borders to mediate electrical impulse conduction. However, the molecular mechanism underpinning cardiac gap junction assembly remains elusive. Herein, we demonstrate an important role for the deubiquitinating enzyme cylindromatosis (CYLD) in this process. Depletion of CYLD in mice impairs the formation of cardiac gap junctions, accelerates cardiac fibrosis, and increases heart failure. Mechanistically, CYLD interacts with plakoglobin and removes lysine 63-linked polyubiquitin chains from plakoglobin. The deubiquitination of plakoglobin enhances its interaction with the desmoplakin/end-binding protein 1 complex localized at the microtubule plus end, thereby promoting microtubule-dependent transport of connexin 43 (Cx43), a key component of gap junctions, to the cell membrane. These findings establish CYLD as a critical player in regulating gap junction assembly and have important implications in heart development and diseases.
Collapse
Affiliation(s)
- Wei Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Siqi Gao
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Hongjie Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Junyan Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Mingzhen Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Song Yang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yijun Zhang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liang Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaoqian Meng
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Habib SJ, Acebrón SP. Wnt signalling in cell division: from mechanisms to tissue engineering. Trends Cell Biol 2022; 32:1035-1048. [PMID: 35717422 DOI: 10.1016/j.tcb.2022.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/21/2023]
Abstract
Wnt signalling is an essential player in tissue formation, notably in the regulation of stem cell function. Wnt signalling is best known for its roles in G1/S progression. However, a complex Wnt programme that also mediates mitotic progression and asymmetric cell division (ACD) is emerging. Recent developments in this area have provided mechanistic insights as well as tools to engineer or target Wnt signalling for translational and therapeutic purposes. Here, we discuss the bidirectional relationship between Wnt activity and mitosis. We emphasise how various Wnt-dependent mechanisms control spindle dynamics, chromosome segregation, and ACD. Finally, we illustrate how knowledge about these mechanisms has been successfully employed in tissue engineering for regenerative medicine applications.
Collapse
Affiliation(s)
- Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7a, CH-1005 Lausanne, Switzerland.
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Zhong T, Gongye X, Wang M, Yu J. Understanding the underlying mechanisms governing spindle orientation: How far are we from there? J Cell Mol Med 2022; 26:4904-4910. [PMID: 36029193 PMCID: PMC9549511 DOI: 10.1111/jcmm.17526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.
Collapse
Affiliation(s)
- Tao Zhong
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Xiaoxiao Gongye
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Minglei Wang
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
14
|
GPR125 (ADGRA3) is an autocleavable adhesion GPCR that traffics with Dlg1 to the basolateral membrane and regulates epithelial apico-basal polarity. J Biol Chem 2022; 298:102475. [PMID: 36089063 PMCID: PMC9539791 DOI: 10.1016/j.jbc.2022.102475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/12/2023] Open
Abstract
The adhesion family of G protein–coupled receptors (GPCRs) is defined by an N-terminal large extracellular region that contains various adhesion-related domains and a highly-conserved GPCR-autoproteolysis-inducing (GAIN) domain, the latter of which is located immediately before a canonical seven-transmembrane domain. These receptors are expressed widely and involved in various functions including development, angiogenesis, synapse formation, and tumorigenesis. GPR125 (ADGRA3), an orphan adhesion GPCR, has been shown to modulate planar cell polarity in gastrulating zebrafish, but its biochemical properties and role in mammalian cells have remained largely unknown. Here, we show that human GPR125 likely undergoes cis-autoproteolysis when expressed in canine kidney epithelial MDCK cells and human embryonic kidney HEK293 cells. The cleavage appears to occur at an atypical GPCR proteolysis site within the GAIN domain during an early stage of receptor biosynthesis. The products, i.e., the N-terminal and C-terminal fragments, seem to remain associated after self-proteolysis, as observed in other adhesion GPCRs. Furthermore, in polarized MDCK cells, GPR125 is exclusively recruited to the basolateral domain of the plasma membrane. The recruitment likely requires the C-terminal PDZ-domain–binding motif of GPR125 and its interaction with the cell polarity protein Dlg1. Knockdown of GPR125 as well as that of Dlg1 results in formation of aberrant cysts with multiple lumens in Matrigel 3D culture of MDCK cells. Consistent with the multilumen phenotype, mitotic spindles are incorrectly oriented during cystogenesis in GPR125-KO MDCK cells. Thus, the basolateral protein GPR125, an autocleavable adhesion GPCR, appears to play a crucial role in apicobasal polarization in epithelial cells.
Collapse
|
15
|
Zhong T, Wu X, Xie W, Luo X, Song T, Sun S, Luo Y, Li D, Liu M, Xie S, Zhou J. ENKD1 promotes epidermal stratification by regulating spindle orientation in basal keratinocytes. Cell Death Differ 2022; 29:1719-1729. [PMID: 35197565 PMCID: PMC9433399 DOI: 10.1038/s41418-022-00958-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Stratification of the epidermis is essential for the barrier function of the skin. However, the molecular mechanisms governing epidermal stratification are not fully understood. Herein, we demonstrate that enkurin domain-containing protein 1 (ENKD1) contributes to epidermal stratification by modulating the cell-division orientation of basal keratinocytes. The epidermis of Enkd1 knockout mice is thinner than that of wild-type mice due to reduced generation of suprabasal cells from basal keratinocytes through asymmetric division. Depletion of ENKD1 impairs proper orientation of the mitotic spindle and delays mitotic progression in cultured cells. Mechanistic investigation further reveals that ENKD1 is a novel microtubule-binding protein that promotes the stability of astral microtubules. Introduction of the microtubule-binding domain of ENKD1 can largely rescue the spindle orientation defects in ENKD1-depleted cells. These findings establish ENKD1 as a critical regulator of astral microtubule stability and spindle orientation that stimulates epidermal stratification in mammalian cells.
Collapse
Affiliation(s)
- Tao Zhong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiaofan Wu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiangrui Luo
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Ting Song
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shuang Sun
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Youguang Luo
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Dengwen Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Nankai University, Tianjin, 300071, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
16
|
Erol A. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. Cancer Manag Res 2022; 14:2339-2356. [PMID: 35958947 PMCID: PMC9362849 DOI: 10.2147/cmar.s373557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, which can cause DNA damage, can both activate TNF-R1 directly in the absence of TNF stimulation and phosphorylate c-Abl, thus promoting its cytoplasmic translocation. Persistent cytoplasmic localization of c-Abl has been associated with cellular transformation. c-Abl phosphorylates OTULIN at tyrosine 56, thereby disrupting its relationship with LUBAC. OTULIN-released LUBAC interacts with SPATA2 and is recruited to the TNF-R1sc, facilitating SPATA2-CYLD interaction. All these interactions are required for the activation of IKKβ to stimulate NF-κB transcriptional activity following genotoxic stress. IKKβ also induces the critical phosphorylation of CYLD at serine 568 to increase its deubiquitinating (DUB) activity required for the termination of signaling cascades. Contrary to the widespread belief that CYLD is an absolute tumor suppressor, CYLD initiates and terminates NF-κB activity by alternately using its oncoprotein and tumor suppressor activities, respectively. If IKKβ fails to achieve the DUB activity-inducing phosphorylation at serine 568, CYLD would operate in a sustained mode of oncogenic activity. The resulting dysregulated NF-κB activation and other accompanying pathologies will disrupt cellular homeostasis in favor of transformation.
Collapse
Affiliation(s)
- Adnan Erol
- Independent Researcher, Istanbul, Turkey
| |
Collapse
|
17
|
Pirooznia SK, Wang H, Panicker N, Kumar M, Neifert S, Dar MA, Lau E, Kang BG, Redding-Ochoa J, Troncoso JC, Dawson VL, Dawson TM. Deubiquitinase CYLD acts as a negative regulator of dopamine neuron survival in Parkinson's disease. SCIENCE ADVANCES 2022; 8:eabh1824. [PMID: 35363524 PMCID: PMC10938605 DOI: 10.1126/sciadv.abh1824] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Mutations in PINK1 and parkin highlight the mitochondrial axis of Parkinson's disease (PD) pathogenesis. PINK1/parkin regulation of the transcriptional repressor PARIS bears direct relevance to dopamine neuron survival through augmentation of PGC-1α-dependent mitochondrial biogenesis. Notably, knockout of PARIS attenuates dopaminergic neurodegeneration in mouse models, indicating that interventions that prevent dopaminergic accumulation of PARIS could have therapeutic potential in PD. To this end, we have identified the deubiquitinase cylindromatosis (CYLD) to be a regulator of PARIS protein stability and proteasomal degradation via the PINK1/parkin pathway. Knockdown of CYLD in multiple models of PINK1 or parkin inactivation attenuates PARIS accumulation by modulating its ubiquitination levels and relieving its repressive effect on PGC-1α to promote mitochondrial biogenesis. Together, our studies identify CYLD as a negative regulator of dopamine neuron survival, and inhibition of CYLD may potentially be beneficial in PD by lowering PARIS levels and promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sheila K. Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart Neifert
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohamad Aasif Dar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan Lau
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C. Troncoso
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Feng X, Guo J, An G, Wu Y, Liu Z, Meng B, He N, Zhao X, Chen S, Zhu Y, Xia J, Li X, Yu Z, Li R, Ren G, Chen J, Wu M, He Y, Qiu L, Zhou J, Zhou W. Genetic Aberrations and Interaction of NEK2 and TP53 Accelerate Aggressiveness of Multiple Myeloma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104491. [PMID: 35088582 PMCID: PMC8948659 DOI: 10.1002/advs.202104491] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Indexed: 05/31/2023]
Abstract
It has been previously shown that (never in mitosis gene A)-related kinase 2 (NEK2) is upregulated in multiple myeloma (MM) and contributes to drug resistance. However, the mechanisms behind this upregulation remain poorly understood. In this study, it is found that amplification of NEK2 and hypermethylation of distal CpG islands in its promoter correlate strongly with increased NEK2 expression. Patients with NEK2 amplification have a poor rate of survival and often exhibit TP53 deletion, which is an independent prognostic factor in MM. This combination of TP53 knockout and NEK2 overexpression induces asymmetric mitosis, proliferation, drug resistance, and tumorigenic behaviors in MM in vitro and in vivo. In contrast, delivery of wild type p53 and suppression of NEK2 in TP53-/- MM cell lines inhibit tumor formation and enhance the effect of Bortezomib against MM. It is also discovered that inactivating p53 elevates NEK2 expression genetically by inducing NEK2 amplification, transcriptionally by increased activity of cell cycle-related genes like E2F8 and epigenetically by upregulating DNA methyltransferases. Dual defects of TP53 and NEK2 may define patients with the poorest outcomes in MM with p53 inactivation, and NEK2 may serve as a novel therapeutic target in aggressive MM with p53 abnormalities.
Collapse
Affiliation(s)
- Xiangling Feng
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Jiaojiao Guo
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Gang An
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Yangbowen Wu
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Zhenhao Liu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Shanghai Center for Bioinformation TechnologyShanghai201203China
| | - Bin Meng
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Nihan He
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Xinying Zhao
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Shilian Chen
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Yinghong Zhu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Jiliang Xia
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Xin Li
- The third Xiangya Hospital of Central South UniversityChangshaHunan410013China
| | - Zhiyong Yu
- Department of PathologyChangsha eighth hospitalChangshaHunan410199China
| | - Ruixuan Li
- The third Xiangya Hospital of Central South UniversityChangshaHunan410013China
| | - Guofeng Ren
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Jihua Chen
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Minghua Wu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Yanjuan He
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Lugui Qiu
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Wen Zhou
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| |
Collapse
|
19
|
Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nat Chem Biol 2021; 17:1314-1323. [PMID: 34608293 DOI: 10.1038/s41589-021-00875-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Spindle position control is essential for cell fate determination and organogenesis. Early studies indicate the essential role of the evolutionarily conserved Gαi/LGN/NuMA network in spindle positioning. However, the regulatory mechanisms that couple astral microtubules dynamics to the spindle orientation remain elusive. Here we delineated a new mitosis-specific crotonylation-regulated astral microtubule-EB1-NuMA interaction in mitosis. EB1 is a substrate of TIP60, and TIP60-dependent crotonylation of EB1 tunes accurate spindle positioning in mitosis. Mechanistically, TIP60 crotonylation of EB1 at Lys66 forms a dynamic link between accurate attachment of astral microtubules to the lateral cell cortex defined by NuMA-LGN and fine tune of spindle positioning. Real-time imaging of chromosome movements in HeLa cells expressing genetically encoded crotonylated EB1 revealed the importance of crotonylation dynamics for accurate control of spindle orientation during metaphase-anaphase transition. These findings delineate a general signaling cascade that integrates protein crotonylation with accurate spindle positioning for chromosome stability in mitosis.
Collapse
|
20
|
Lechler T, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 2021; 22:691-708. [PMID: 34158639 PMCID: PMC10544824 DOI: 10.1038/s41580-021-00384-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
21
|
Huang SC, Vu LV, Yu FH, Nguyen DT, Benz EJ. Multifunctional protein 4.1R regulates the asymmetric segregation of Numb during terminal erythroid maturation. J Biol Chem 2021; 297:101051. [PMID: 34364872 PMCID: PMC8408529 DOI: 10.1016/j.jbc.2021.101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 10/25/2022] Open
Abstract
The asymmetric cell division of stem or progenitor cells generates daughter cells with distinct fates that balance proliferation and differentiation. Asymmetric segregation of Notch signaling regulatory protein Numb plays a crucial role in cell diversification. However, the molecular mechanism remains unclear. Here, we examined the unequal distribution of Numb in the daughter cells of murine erythroleukemia cells (MELCs) that undergo DMSO-induced erythroid differentiation. In contrast to the cytoplasmic localization of Numb during uninduced cell division, Numb is concentrated at the cell boundary in interphase, near the one-spindle pole in metaphase, and is unequally distributed to one daughter cell in anaphase in induced cells. The inheritance of Numb guides this daughter cell toward erythroid differentiation while the other cell remains a progenitor cell. Mitotic spindle orientation, critical for distribution of cell fate determinants, requires complex communication between the spindle microtubules and the cell cortex mediated by the NuMA-LGN-dynein/dynactin complex. Depletion of each individual member of the complex randomizes the position of Numb relative to the mitotic spindle. Gene replacement confirms that multifunctional erythrocyte protein 4.1R (4.1R) functions as a member of the NuMA-LGN-dynein/dynactin complex and is necessary for regulating spindle orientation, in which interaction between 4.1R and NuMA plays an important role. These results suggest that mispositioning of Numb is the result of spindle misorientation. Finally, disruption of the 4.1R-NuMA-LGN complex increases Notch signaling and decreases the erythroblast population. Together, our results identify a critical role for 4.1R in regulating the asymmetric segregation of Numb to mediate erythropoiesis.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Long V Vu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Faye H Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dan T Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Edward J Benz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts, USA; Leukemia Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Yang S, Ma N, Wu X, Ni H, Gao S, Sun L, Zhou P, Tala, Ran J, Zhou J, Liu M, Li D. CYLD deficiency causes auditory neuropathy due to reduced neurite outgrowth. J Clin Lab Anal 2021; 35:e23783. [PMID: 33934395 PMCID: PMC8183908 DOI: 10.1002/jcla.23783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Auditory neuropathy is a cause of hearing loss that has been studied in a number of animal models. Signal transmission from hair cells to spiral ganglion neurons plays an important role in normal hearing. CYLD is a microtubule-binding protein, and deubiquitinase involved in the regulation of various cellular processes. In this study, we used Cyld knockout (KO) mice and nerve cell lines to examine whether CYLD is associated with auditory neuropathy. METHODS Hearing of Cyld KO mice was studied using the TDT RZ6 auditory physiology workstation. The expression and localization of CYLD in mouse cochlea and cell lines were examined by RT-PCR, immunoblotting, and immunofluorescence. CYLD expression was knocked down in SH-SY5Y cells by shRNAs and in PC12 and N2A cells by siRNAs. Nerve growth factor and retinoic acid were used to induce neurite outgrowth, and the occurrence and length of neurites were statistically analyzed between knockdown and control groups. RESULTS Cyld KO mice had mild hearing impairment. Moreover, CYLD was widely expressed in mouse cochlear tissues and different nerve cell lines. Knocking down CYLD significantly reduced the length and proportion of neurites growing from nerve cells. CONCLUSIONS The abnormal hearing of Cyld KO mice might be caused by a decrease in the length and number of neurites growing from auditory nerve cells in the cochlea, suggesting that CYLD is a key protein affecting hearing.
Collapse
Affiliation(s)
- Song Yang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Nan Ma
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Xuemei Wu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Siqi Gao
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Lei Sun
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Peng Zhou
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Tala
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
23
|
Li T, Wang Y, Li D, Zhou J, Zhang B, He X. Potential role for the tumor suppressor CYLD in brain and notochord development. Thorac Cancer 2021; 12:1900-1908. [PMID: 33982884 PMCID: PMC8201528 DOI: 10.1111/1759-7714.13973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background The cylindromatosis (CYLD) tumor suppressor is a microtubule‐associated deubiquitinase that plays a critical role in the regulation of cell signaling and contributes to a variety of physiological and pathological processes. However, the functions of CYLD in zebrafish are less well known, particularly with regard to their development and physiology. In this context, we investigated the loss of function of CYLD in zebrafish via transcription activator‐like effector nuclease (TALEN)‐based gene deletion. Methods Semi‐quantitative RT‐PCR was used to quantify CYLD mRNA expression in zebrafish embryos at various developmental stages. We also performed whole‐mount in situ hybridization to further assess the dynamic expression and distribution of CYLD in the entire zebrafish embryos at different stages. In addition, we deleted CYLD in zebrafish with TALENs to investigate its potential impact on embryonic development. Results The expression of CYLD mRNA varied during early embryonic development. The CYLD mRNA localized to the brain and notochord of developing zebrafish embryos. Homozygous deletion of CYLD resulted in embryonic death before 8 h post‐fertilization. Conclusions CYLD appears to play an important role in central nervous system development in zebrafish. Although severe embryonic death restricted analysis of homozygous mutants, further research into the role of CYLD in central nervous system development is warranted.
Collapse
Affiliation(s)
- Te Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yiyan Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xianfei He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
24
|
Yang Y, Chen M, Li J, Hong R, Yang J, Yu F, Li T, Yang S, Ran J, Guo C, Zhao Y, Luan Y, Liu M, Li D, Xie S, Zhou J. A cilium-independent role for intraflagellar transport 88 in regulating angiogenesis. Sci Bull (Beijing) 2021; 66:727-739. [PMID: 36654447 DOI: 10.1016/j.scib.2020.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023]
Abstract
Endothelial cilia are microtubule-based hair-like protrusions in the lumen ofblood vessels that function as fluid mechanosensors to regulate vascular hemodynamics.However, the functions of endothelial cilia in vascular development remain controversial. In this study, depletion of several key proteins responsible for ciliogenesis allows us to identify a cilium-independent role for intraflagellartransport88 (IFT88) in mammalian angiogenesis. Disruption of primary cilia by heat shock does not affect the angiogenic process. However, depletion of IFT88 significantly inhibits angiogenesis both in vitro and in vivo. IFT88 mediates angiogenesis by regulating the migration, polarization, proliferation, and oriented division of vascular endothelial cells. Further mechanistic studies demonstrate that IFT88 interacts with γ-tubulin and microtubule plus-end tracking proteins and promotes microtubule stability. Our findings indicate that IFT88 regulates angiogenesis through its actions in microtubule-based cellular processes, independent of its role in ciliogenesis.
Collapse
Affiliation(s)
- Yang Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingrui Li
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Renjie Hong
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Jia Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Fan Yu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Te Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Song Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Jie Ran
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Chunyue Guo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China.
| | - Jun Zhou
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
25
|
Chen M, Wang J, Yang Y, Zhong T, Zhou P, Ma H, Li J, Li D, Zhou J, Xie S, Liu M. Redox-dependent regulation of end-binding protein 1 activity by glutathionylation. SCIENCE CHINA. LIFE SCIENCES 2021; 64:575-583. [PMID: 32737853 DOI: 10.1007/s11427-020-1765-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Cytoskeletal proteins are susceptible to glutathionylation under oxidizing conditions, and oxidative damage has been implicated in several neurodegenerative diseases. End-binding protein 1 (EB1) is a master regulator of microtubule plus-end tracking proteins (+TIPs) and is critically involved in the control of microtubule dynamics and cellular processes. However, the impact of glutathionylation on EB1 functions remains unknown. Here we reveal that glutathionylation is important for controlling EB1 activity and protecting EB1 from irreversible oxidation. In vitro biochemical and cellular assays reveal that EB1 is glutathionylated. Diamide, a mild oxidizing reagent, reduces EB1 comet number and length in cells, indicating the impairment of microtubule dynamics. Three cysteine residues of EB1 are glutathionylated, with mutations of these three cysteines to serines attenuating microtubule dynamics but buffering diamide-induced decrease in microtubule dynamics. In addition, glutaredoxin 1 (Grx1) deglutathionylates EB1, and Grx1 depletion suppresses microtubule dynamics and leads to defects in cell division orientation and cell migration, suggesting a critical role of Grx1-mediated deglutathionylation in maintaining EB1 activity. Collectively, these data reveal that EB1 glutathionylation is an important protective mechanism for the regulation of microtubule dynamics and microtubule-based cellular activities.
Collapse
Affiliation(s)
- Miao Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tao Zhong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Peng Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Huixian Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jingrui Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
26
|
Ge LP, Jin X, Yang YS, Liu XY, Shao ZM, Di GH, Jiang YZ. Tektin4 loss promotes triple-negative breast cancer metastasis through HDAC6-mediated tubulin deacetylation and increases sensitivity to HDAC6 inhibitor. Oncogene 2021; 40:2323-2334. [PMID: 33654196 DOI: 10.1038/s41388-021-01655-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/11/2020] [Accepted: 01/13/2021] [Indexed: 02/03/2023]
Abstract
Progression of triple-negative breast cancer (TNBC) constitutes a major unresolved clinical challenge, and effective targeted therapies are lacking. Because microtubule dynamics play pivotal roles in breast cancer metastasis, we performed RNA sequencing on 245 samples from TNBC patients to characterize the landscape of microtubule-associated proteins (MAPs). Here, our transcriptome analyses revealed that low expression of one MAP, tektin4, indicated poor patient outcomes. Tektin4 loss led to a marked increase in TNBC migration, invasion, and metastasis and a decrease in microtubule stability. Mechanistically, we identified a novel microtubule-associated complex containing tektin4 and histone deacetylase 6 (HDAC6). Tektin4 loss increased the interaction between HDAC6 and α-tubulin, thus decreasing microtubule stability through HDAC6-mediated tubulin deacetylation. Significantly, we found that tektin4 loss sensitized TNBC cells, xenograft models, and patient-derived organoid models to the HDAC6-selective inhibitor ACY1215. Furthermore, tektin4 expression levels were positively correlated with microtubule stability levels in clinical samples. Together, our findings uncover a metastasis suppressor function of tektin4 and support clinical development of HDAC6 inhibition as a new therapeutic strategy for tektin4-deficient TNBC patients.
Collapse
Affiliation(s)
- Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Human Phenome Institute, Fudan University, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Yun-Song Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Xi-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Human Phenome Institute, Fudan University, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| |
Collapse
|
27
|
Chippalkatti R, Egger B, Suter B. Mms19 promotes spindle microtubule assembly in Drosophila neural stem cells. PLoS Genet 2020; 16:e1008913. [PMID: 33211700 PMCID: PMC7714366 DOI: 10.1371/journal.pgen.1008913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/03/2020] [Accepted: 10/13/2020] [Indexed: 01/27/2023] Open
Abstract
Mitotic divisions depend on the timely assembly and proper orientation of the mitotic spindle. Malfunctioning of these processes can considerably delay mitosis, thereby compromising tissue growth and homeostasis, and leading to chromosomal instability. Loss of functional Mms19 drastically affects the growth and development of mitotic tissues in Drosophila larvae and we now demonstrate that Mms19 is an important factor that promotes spindle and astral microtubule (MT) growth, and MT stability and bundling. Mms19 function is needed for the coordination of mitotic events and for the rapid progression through mitosis that is characteristic of neural stem cells. Surprisingly, Mms19 performs its mitotic activities through two different pathways. By stimulating the mitotic kinase cascade, it triggers the localization of the MT regulatory complex TACC/Msps (Transforming Acidic Coiled Coil/Minispindles, the homolog of human ch-TOG) to the centrosome. This activity of Mms19 can be rescued by stimulating the mitotic kinase cascade. However, other aspects of the Mms19 phenotypes cannot be rescued in this way, pointing to an additional mechanism of Mms19 action. We provide evidence that Mms19 binds directly to MTs and that this stimulates MT stability and bundling.
Collapse
Affiliation(s)
- Rohan Chippalkatti
- Cell Biology, University of Bern, Berne, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Berne, Switzerland
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Beat Suter
- Cell Biology, University of Bern, Berne, Switzerland
| |
Collapse
|
28
|
Wu X, Zhou J, Li D. Orientation of the Mitotic Spindle in Blood Vessel Development. Front Cell Dev Biol 2020; 8:583325. [PMID: 33072763 PMCID: PMC7533553 DOI: 10.3389/fcell.2020.583325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis requires coordinated endothelial cell specification, proliferation, and collective migration. The orientation of endothelial cell division is tightly regulated during the earliest stages of blood vessel formation in response to morphogenetic cues and the controlled orientation of the mitotic spindle. Consequently, oriented cell division is a vital mechanism in vessel morphogenesis, and defective spindle orientation can perturb the spatial arrangement of daughter cells and consequently contribute to several diseases related to vascular development. Many factors affect endothelial cell proliferation and orientation and therefore blood vessel formation, with the relationship between improper spindle orientation in endothelial cells and various diseases extensively studied. Here we review the molecular mechanisms driving the orientation of endothelial cell division, particularly with respect to the mitotic spindle, and how these processes affect vascular development, disease pathogenesis, and their potential as novel targets.
Collapse
Affiliation(s)
- Xuemei Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
29
|
The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel) 2020; 12:cancers12082047. [PMID: 32722292 PMCID: PMC7466024 DOI: 10.3390/cancers12082047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Downregulation of the cylindromatosis (CYLD) tumor suppressor has been associated with breast cancer development and progression. Here, we report a critical role for CYLD in maintaining the phenotype of mammary epithelial cells in vitro and in vivo. CYLD downregulation or inactivation induced an epithelial to mesenchymal transition of mammary epithelial cells that was dependent on the concomitant activation of the transcription factors Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and transforming growth factor beta (TGF)signaling. CYLD inactivation enhanced the nuclear localization of YAP/TAZ and the phosphorylation of Small Mothers Against Decapentaplegic (SMAD)2/3 proteins in confluent cell culture conditions. Consistent with these findings were the hyperplastic alterations of CYLD-deficient mouse mammary epithelia, which were associated with enhanced nuclear expression of the YAP/TAZ transcription factors. Furthermore, in human breast cancer samples, downregulation of CYLD expression correlates with enhanced YAP/TAZ-regulated target gene expression. Our results identify CYLD as a critical regulator of a signaling node that prevents the coordinated activation of YAP/TAZ and the TGF pathway in mammary epithelial cells, in order to maintain their phenotypic identity and homeostasis. Consequently, they provide a novel conceptual framework that supports and explains a causal implication of deficient CYLD expression in aggressive human breast cancers.
Collapse
|
30
|
Pérez-Benavente B, Nasresfahani AF, Farràs R. Ubiquitin-Regulated Cell Proliferation and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:3-28. [PMID: 32274751 DOI: 10.1007/978-3-030-38266-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ubiquitin ligases (E3) play a crucial role in the regulation of different cellular processes such as proliferation and differentiation via recognition, interaction, and ubiquitination of key cellular proteins in a spatial and temporal regulated manner. The type of ubiquitin chain formed determines the fate of the substrates. The ubiquitinated substrates can be degraded by the proteasome, display altered subcellular localization, or can suffer modifications on their interaction with functional protein complexes. Deregulation of E3 activities is frequently found in various human pathologies, including cancer. The illegitimated or accelerated degradation of oncosuppressive proteins or, inversely, the abnormally high accumulation of oncoproteins, contributes to cell proliferation and transformation. Anomalies in protein abundance may be related to mutations that alter the direct or indirect recognition of proteins by the E3 enzymes or alterations in the level of expression or activity of ubiquitin ligases. Through a few examples, we illustrate here the complexity and diversity of the molecular mechanisms related to protein ubiquitination involved in cell cycle regulation. We will discuss the role of ubiquitin-dependent degradation mediated by the proteasome, the role of non-proteolytic ubiquitination during cell cycle progression, and the consequences of this deregulation on cellular transformation. Finally, we will highlight the novel opportunities that arise from these studies for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Rosa Farràs
- Oncogenic Signaling Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
31
|
Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int J Mol Sci 2019; 20:ijms20235997. [PMID: 31795161 PMCID: PMC6929034 DOI: 10.3390/ijms20235997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mitosis is a complex and dynamic process that is tightly regulated by a large number of mitotic proteins. Dysregulation of these proteins can generate daughter cells that exhibit genomic instability and aneuploidy, and such cells can transform into tumorigenic cells. Thus, it is important for faithful mitotic progression to regulate mitotic proteins at specific locations in the cells at a given time in each phase of mitosis. Ubiquitin-dependent modifications play critical roles in this process by regulating the degradation, translocation, or signal transduction of mitotic proteins. Here, we review how ubiquitination and deubiquitination regulate the progression of mitosis. In addition, we summarize the substrates and roles of some deubiquitinating enzymes (DUBs) crucial for mitosis and describe how they contribute error correction during mitosis and control the transition between the mitotic phases.
Collapse
|
32
|
Porter AP, White GRM, Mack NA, Malliri A. The interaction between CASK and the tumour suppressor Dlg1 regulates mitotic spindle orientation in mammalian epithelia. J Cell Sci 2019; 132:jcs230086. [PMID: 31289196 PMCID: PMC6679578 DOI: 10.1242/jcs.230086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Oriented cell divisions are important for the formation of normal epithelial structures. Dlg1, a tumour suppressor, is required for mitotic spindle orientation in Drosophila epithelia and chick neuroepithelia, but how Dlg1 is localised to the membrane and its importance in mammalian epithelia are unknown. We show that Dlg1 is required in non-transformed mammalian epithelial cells for oriented cell divisions and normal lumen formation. We demonstrate that the MAGUK protein CASK, a membrane-associated scaffold, is the factor responsible for Dlg1 membrane localisation during spindle orientation, thereby identifying a new cellular function for CASK. Depletion of CASK leads to misoriented divisions in 3D, and to the formation of multilumen structures in cultured kidney and breast epithelial cells. Blocking the CASK-Dlg1 interaction with an interfering peptide, or by deletion of the CASK-interaction domain of Dlg1, disrupts spindle orientation and causes multilumen formation. We show that the CASK-Dlg1 interaction is important for localisation of the canonical LGN-NuMA complex known to be required for spindle orientation. These results establish the importance of the CASK-Dlg1 interaction in oriented cell division and epithelial integrity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Andrew P Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Gavin R M White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Natalie A Mack
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| |
Collapse
|
33
|
Chiticariu E, Regamey A, Huber M, Hohl D. CENPV Is a CYLD-Interacting Molecule Regulating Ciliary Acetylated α-Tubulin. J Invest Dermatol 2019; 140:66-74.e4. [PMID: 31260673 DOI: 10.1016/j.jid.2019.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 11/30/2022]
Abstract
CYLD is a deubiquitylase with tumor suppressor functions, first identified in patients with familial cylindromatosis. Despite many molecular mechanisms in which a function of CYLD was reported, affected patients only develop skin appendage tumors, and their precise pathogenesis remains enigmatic. To elucidate how CYLD contributes to tumor formation, we aimed to identify molecular partners in keratinocytes. By using yeast two-hybrid, coprecipitation, and proximity ligation experiments, we identified CENPV as a CYLD-interacting partner. CENPV, a constituent of mitotic chromosomes associating with cytoplasmic microtubules, interacts with CYLD through the region between the third cytoskeleton-associated protein-glycine domain and the active site. CENPV is deubiquitylated by CYLD and localizes in interphase to primary cilia where it increases the ciliary levels of acetylated α-tubulin. CENPV is overexpressed in basal cell carcinoma. Our results support the notion that centromeric proteins have functions in ciliogenesis.
Collapse
Affiliation(s)
- Elena Chiticariu
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Alexandre Regamey
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Marcel Huber
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Daniel Hohl
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
34
|
Kakihana A, Oto Y, Saito Y, Nakayama Y. Heat shock-induced mitotic arrest requires heat shock protein 105 for the activation of spindle assembly checkpoint. FASEB J 2018; 33:3936-3953. [PMID: 30496702 DOI: 10.1096/fj.201801369r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat shock causes proteotoxic stress that induces various cellular responses, including delayed mitotic progression and the generation of an aberrant number of chromosomes. In this study, heat shock delayed the onset of anaphase by increasing the number of misoriented cells, accompanied by the kinetochore localization of budding uninhibited by benzimidazole-related (BubR)1 in a monopolar spindle (Mps)1-dependent manner. The mitotic delay was canceled by knockdown of mitotic arrest defect (Mad)2. Knockdown of heat shock protein (Hsp)105 partially abrogated the mitotic delay with the loss of the kinetochore localization of BubR1 under heat shock conditions and accelerated mitotic progression under nonstressed conditions. Consistent with this result, Hsp105 knockdown increased the number of anaphase cells with lagging chromosomes, through mitotic slippage, and decreased taxol sensitivity more than Mad2 knockdown. Hsp105 was coprecipitated with cell division cycle (Cdc)20 in an Mps1-dependent manner; however, its knockdown did not affect coprecipitation of Mad2 and BubR1 with Cdc20. We propose that heat shock delays the onset of anaphase via the activation of the spindle assembly checkpoint (SAC). Hsp105 prevents abnormal cell division by contributing to SAC activation under heat shock and nonstressed conditions by interacting with Cdc20 but not affecting formation of the mitotic checkpoint complex.-Kakihana, A., Oto, Y., Saito, Y., Nakayama, Y. Heat shock-induced mitotic arrest requires heat shock protein 105 for the activation of spindle assembly checkpoint.
Collapse
Affiliation(s)
- Ayana Kakihana
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yui Oto
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
35
|
Hu K, Li Y, Wu W, Chen H, Chen Z, Zhang Y, Guo Y, Dong Y. High-performance gene expression and knockout tools using sleeping beauty transposon system. Mob DNA 2018; 9:33. [PMID: 30534207 PMCID: PMC6260868 DOI: 10.1186/s13100-018-0139-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
Background Similar to retro-/lenti- virus system, DNA transposons are useful tools for stable expression of exogenous genes in mammalian cells. Sleeping Beauty (SB) transposon has adopted for integrating genes into host genomes in recent studies. However, SB-derived vector system for proteins purifying/tracking and gene knockout are still not available. Results In this study, we generated a series of vectors (termed as pSB vectors) containing Sleeping Beauty IRDR-L/R that can be transposed by SB transposase. Gateway cassette was combined to the pSB vectors to facilitate the cloning. Vectors with various tags, Flag, Myc, HA, V5 and SFB, were generated for multiple options. Moreover, we incorporated the CRISPR-Cas9 cassette into the pSB plasmids for gene knockout. Indeed, using one of these vectors (pSB-SFB-GFP), we performed Tandem Affinity Purification and identified that NFATc1 is a novel binding partner of FBW7. We also knocked out RCC2 and BRD7 using pSB-CRISPR vector respectively, and revealed the novel roles of these two proteins in mitosis. Conclusion Our study demonstrated that the pSB series vectors are convenient and powerful tools for gene overexpression and knockout in mammalian cells, providing a new alternative approach for molecular cell biology research.
Collapse
Affiliation(s)
- Kaishun Hu
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yu Li
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Wenjing Wu
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China.,2Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Hengxing Chen
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Zhen Chen
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yin Zhang
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yabin Guo
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yin Dong
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| |
Collapse
|
36
|
Zhang L, Wei N, Cui Y, Hong Z, Liu X, Wang Q, Li S, Liu H, Yu H, Cai Y, Wang Q, Zhu J, Meng W, Chen Z, Wang C. The deubiquitinase CYLD is a specific checkpoint of the STING antiviral signaling pathway. PLoS Pathog 2018; 14:e1007435. [PMID: 30388174 PMCID: PMC6235404 DOI: 10.1371/journal.ppat.1007435] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 10/24/2018] [Indexed: 01/05/2023] Open
Abstract
Stimulator of interferon genes (STING) is critical for cytosolic DNA-triggered innate immunity. STING is modified by several types of polyubiquitin chains. Here, we report that the deubiquitinase CYLD sustains STING signaling by stabilizing the STING protein. CYLD deficiency promoted the K48-linked polyubiquitination and degradation of STING, attenuating the induction of IRF3-responsive genes after HSV-1 infection or the transfection of DNA ligands. Additionally, CYLD knockout mice were more susceptible to HSV-1 infection than their wild-type (WT) littermates. Mechanistically, STING translocated from the ER to the Golgi upon HSV-1 stimulation; CYLD partially accumulated with STING and interacted selectively with K48-linked polyubiquitin chains on STING, specifically removing the K48-linked polyubiquitin chains from STING and ultimately boosting the innate antiviral response. Our study reveals that CYLD is a novel checkpoint in the cGAS-STING signaling pathway and sheds new light on the dynamic regulation of STING activity by ubiquitination.
Collapse
Affiliation(s)
- Lele Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Wei
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Ye Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ze Hong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Xing Liu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Senlin Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huansha Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanni Cai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- * E-mail: (ZC); (CW)
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
- * E-mail: (ZC); (CW)
| |
Collapse
|
37
|
Xie S, Wu Y, Hao H, Li J, Guo S, Xie W, Li D, Zhou J, Gao J, Liu M. CYLD deficiency promotes pancreatic cancer development by causing mitotic defects. J Cell Physiol 2018; 234:9723-9732. [PMID: 30362575 DOI: 10.1002/jcp.27658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
Successful treatment of pancreatic cancer, which has the highest mortality rate among all types of malignancies, has challenged oncologists for decades, and early detection would undoubtedly increase favorable patient outcomes. The identification of proteins involved in pancreatic cancer progression could lead to biomarkers for early detection of this disease. This study identifies one potential candidate, cylindromatosis (CYLD), a deubiquitinase and microtubule-binding protein that plays a suppressive role in pancreatic cancer development. In pancreatic cancer samples, downregulation of CYLD expression resulted from a loss in the copy number of the CYLD gene; additionally, reduced expression of CYLD negatively correlated with the clinicopathological parameters. Further study demonstrated that CYLD deficiency promoted colony formation in vitro and pancreatic cancer growth in vivo. Mechanistic studies revealed that CYLD is essential for spindle orientation and properly oriented cell division; CYLD deficiency resulted in a substantial increase in chromosome missegregation. Taken together, these data indicate a critical role for CYLD in suppressing pancreatic tumorigenesis, implicating its potential as a biomarker for early detection of pancreatic cancer and a prognostic indicator of patient outcomes.
Collapse
Affiliation(s)
- Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yuhan Wu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Huijie Hao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingrui Li
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Song Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China.,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinmin Gao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
38
|
Monda JK, Cheeseman IM. Dynamic regulation of dynein localization revealed by small molecule inhibitors of ubiquitination enzymes. Open Biol 2018; 8:rsob.180095. [PMID: 30257893 PMCID: PMC6170511 DOI: 10.1098/rsob.180095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/29/2018] [Indexed: 11/27/2022] Open
Abstract
Cytoplasmic dynein is a minus-end-directed microtubule-based motor that acts at diverse subcellular sites. During mitosis, dynein localizes simultaneously to the mitotic spindle, spindle poles, kinetochores and the cell cortex. However, it is unclear what controls the relative targeting of dynein to these locations. As dynein is heavily post-translationally modified, we sought to test a role for these modifications in regulating dynein localization. We find that dynein rapidly and strongly accumulates at mitotic spindle poles following treatment with NSC697923, a small molecule that inhibits the ubiquitin E2 enzyme, Ubc13, or treatment with PYR-41, a ubiquitin E1 inhibitor. Subsets of dynein regulators such as Lis1, ZW10 and Spindly accumulate at the spindle poles, whereas others do not, suggesting that NSC697923 differentially affects specific dynein populations. We additionally find that dynein relocalization induced by NSC697923 or PYR-41 can be suppressed by simultaneous treatment with the non-selective deubiquitinase inhibitor, PR-619. However, we did not observe altered dynein localization following treatment with the selective E1 inhibitor, TAK-243. Although it is possible that off-target effects of NSC697923 and PYR-41 are responsible for the observed changes in dynein localization, the rapid relocalization upon drug treatment highlights the highly dynamic nature of dynein regulation during mitosis.
Collapse
Affiliation(s)
- Julie K Monda
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
39
|
Catalytic domain mutation in CYLD inactivates its enzyme function by structural perturbation and induces cell migration and proliferation. Biochim Biophys Acta Gen Subj 2018; 1862:2081-2089. [DOI: 10.1016/j.bbagen.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 01/31/2023]
|
40
|
Liu M, Ran J, Zhou J. Non-canonical functions of the mitotic kinesin Eg5. Thorac Cancer 2018; 9:904-910. [PMID: 29927078 PMCID: PMC6068462 DOI: 10.1111/1759-7714.12792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/25/2023] Open
Abstract
Kinesins are widely expressed, microtubule-dependent motors that play vital roles in microtubule-associated cellular activities, such as cell division and intracellular transport. Eg5, also known as kinesin-5 or kinesin spindle protein, is a member of the kinesin family that contributes to the formation and maintenance of the bipolar mitotic spindle during cell division. Small-molecule compounds that inhibit Eg5 activity have been shown to impair spindle assembly, block mitotic progression, and possess anti-cancer activity. Recent studies focusing on the localization and functions of Eg5 in plants have demonstrated that in addition to spindle organization, this motor protein has non-canonical functions, such as chromosome segregation and cytokinesis, that have not been observed in animals. In this review, we discuss the structure, function, and localization of Eg5 in various organisms, highlighting the specific role of this protein in plants. We also propose directions for the future studies of novel Eg5 functions based on the lessons learned from plants.
Collapse
Affiliation(s)
- Min Liu
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| | - Jie Ran
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| | - Jun Zhou
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| |
Collapse
|
41
|
Yan B, Xie S, Liu Y, Liu W, Li D, Liu M, Luo HR, Zhou J. Histone deacetylase 6 modulates macrophage infiltration during inflammation. Am J Cancer Res 2018; 8:2927-2938. [PMID: 29896294 PMCID: PMC5996364 DOI: 10.7150/thno.25317] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Mice with histone deacetylase 6 (HDAC6) deficiency grow and develop normally but exhibit impaired immune response. The molecular mechanisms for this phenotype remain largely elusive. Methods: A mouse acute peritonitis model was used to study the infiltration of neutrophils and monocyte-derived macrophages. In vitro cell motility assays were performed to analyze monocyte/macrophage recruitment. Fluorescence microscopy and flow cytometry were performed to examine the phagocytic ability of macrophages. Immunofluorescence microscopy was used to investigate protein localization, protrusion formation, and microtubule acetylation. Results: HDAC6 deficiency does not affect neutrophil infiltration, but instead attenuates the infiltration of monocyte-derived macrophages into the peritoneal cavity. HDAC6 plays a specific role in monocyte/macrophage recruitment. Loss of HDAC6 suppresses the phagocytic capacity of macrophages challenged with E. coli. Lipopolysaccharide stimulation results in the translocation of HDAC6 and cortactin from the cytosol to the cell periphery, promotes the formation of filopodial protrusions, and enhances microtubule acetylation around the microtubule-organizing center, all of which are abrogated by HDAC6 deficiency. Conclusion: These findings implicate HDAC6 in the innate immune response and suggest that it may serve as a promising target for the treatment of macrophage-associated immune diseases.
Collapse
|
42
|
Chen M, Li Y, Liu Z, Qu Y, Zhang H, Li D, Zhou J, Xie S, Liu M. Exopolysaccharides from a Codonopsis pilosula endophyte activate macrophages and inhibit cancer cell proliferation and migration. Thorac Cancer 2018; 9:630-639. [PMID: 29577649 PMCID: PMC5928371 DOI: 10.1111/1759-7714.12630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Exopolysaccharides with structural diversity have shown wide applications in biomaterial, food, and pharmaceutical industries. Herein, we isolated an endophytic strain, 14-DS-1, from the traditional medicinal plant Codonopsis pilosula to elucidate the characteristics and anti-cancer activities of purified exopolysaccharides. METHODS HPLC and GC-MS were conducted to purify and characterize the exopolysaccharides isolated from 14-DS-1. Quantitative RT-PCR, cell migration assays, immunofluorescence staining, and flow cytometry analysis were conducted to investighate the biological activity of DSPS. RESULTS We demonstrated that exopolysaccharides isolated from 14-DS-1 (DSPS), which were predominately composed of six monosaccharides, showed anti-cancer activities. Biological activity analysis revealed that exposure to DSPS induced macrophage activation and polarization by promoting the production of TNF-α and nitric oxide. Further analysis revealed that DSPS treatment promoted macrophage infiltration, whereas cancer cell migration was suppressed. In addition, DSPS exposure led to S-phase arrest and apoptosis in cancer cells. Immunofluorescence staining revealed that treatment with DSPS resulted in defects in spindle orientation and positioning. CONCLUSION These findings thus suggest that DSPS may have promising potential in cancer therapy.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Microbial Technology, School of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong University, Jinan, Shandong, China
| | - Yuanyuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhu Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yajun Qu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong University, Jinan, Shandong, China
| | - Huajie Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong University, Jinan, Shandong, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
43
|
Qin J, Li D, Zhou Y, Xie S, Du X, Hao Z, Liu R, Liu X, Liu M, Zhou J. Apoptosis-linked gene 2 promotes breast cancer growth and metastasis by regulating the cytoskeleton. Oncotarget 2018; 8:2745-2757. [PMID: 27926525 PMCID: PMC5356838 DOI: 10.18632/oncotarget.13740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most prevalent cancer in women. Although it begins as local disease, breast cancer frequently metastasizes to the lymph nodes and distant organs. Therefore, novel therapeutic targets are needed for the management of this disease. Apoptosis-linked gene 2 (ALG-2) is a calcium-binding protein crucial for diverse physiological processes and has recently been implicated in cancer development. However, it remains unclear whether this protein is involved in the pathogenesis of breast cancer. Here, we demonstrate that the expression of ALG-2 is significantly upregulated in breast cancer tissues and is correlated with clinicopathological characteristics indicative of tumor malignancy. Our data further show that ALG-2 stimulates breast cancer growth and metastasis in mice. ALG-2 also promotes breast cancer cell proliferation, survival, and motility in vitro. Mechanistic data reveal that ALG-2 disrupts the localization of centrosome proteins, resulting in spindle multipolarity and chromosome missegregation. In addition, ALG-2 drives the polarization and migration of breast cancer cells by facilitating the rearrangement of microtubules and microfilaments. These findings reveal a critical role for ALG-2 in the pathogenesis of breast cancer and have important implications for its diagnosis and therapy.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunqiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Xin Du
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Ziwei Hao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruming Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.,Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
44
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
45
|
Xie S, Yang Y, Lin X, Zhou J, Li D, Liu M. Characterization of a novel EB1 acetylation site important for the regulation of microtubule dynamics and cargo recruitment. J Cell Physiol 2018; 233:2581-2589. [PMID: 28777446 DOI: 10.1002/jcp.26133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/03/2017] [Indexed: 01/20/2023]
Abstract
Microtubule plus ends undergo highly dynamic modifications to regulate different aspects of cellular activities. Most microtubule plus-end tracking proteins (+TIPs) are recruited to the microtubule ends by the master loading factor, end-binding protein 1 (EB1). These proteins coordinately regulate microtubule dynamics and cellular plasticity. Acetylation is known to modulate EB1 function; however, the molecular details of EB1 acetylation remain largely unclear. We mapped the acetylation pattern of EB1 and identified several previously uncharacterized sites of EB1 acetylation. We examined the effects of lysine-212 (K212) acetylation and found that acetylation of this site accelerates autophagy-mediated EB1 degradation. By time-lapse microscopy, we found that the acetylation-deficient K212R mutant increased the percentage of fast-growing and long-lived microtubules. Although K212 acetylation did not affect microtubule stability in vitro and the association of EB1 with microtubules, the K212R mutant significantly promoted microtubule regrowth in cells. Coimmunoprecipitation assays further revealed that the K212 site was critical for the recruitment of different +TIP cargoes. These data thus uncover a critical role for a novel EB1 acetylation site in regulating the dynamic structure of microtubules.
Collapse
Affiliation(s)
- Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaochen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
46
|
Functional interplay between cylindromatosis and histone deacetylase 6 in ciliary homeostasis revealed by phenotypic analysis of double knockout mice. Oncotarget 2018; 7:27527-37. [PMID: 27028867 PMCID: PMC5053669 DOI: 10.18632/oncotarget.8374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/16/2016] [Indexed: 01/04/2023] Open
Abstract
Cilia are present in most vertebrate tissues with a wide variety of functions, and abnormalities of cilia are linked to numerous human disorders. However, the molecular events underlying ciliary homeostasis are poorly understood. In this study, we generated double knockout (DKO) mice for the deubiquitinase cylindromatosis (CYLD) and histone deacetylase 6 (HDAC6), two critical ciliary regulators. The Cyld/Hdac6 DKO mice were phenotypically normal and showed no obvious variances in weight or behavior compared with their wild-type littermates. Strikingly, Cyld loss-induced ciliary defects in the testis, trachea, and kidney were abrogated in the Cyld/Hdac6 DKO mice. In addition, the diminished α-tubulin acetylation and impaired sonic hedgehog signaling caused by loss of Cyld were largely restored by simultaneous deletion of Hdac6. We further found by immunofluorescence microscopy a colocalization of CYLD and HDAC6 at the centrosome/basal body and, interestingly, loss of Cyld promoted the localization of HDAC6 at the centrosome/basal body. These findings provide physiological insight into the ciliary role of the CYLD/HDAC6 axis and suggest a functional interplay between these two proteins in ciliary homeostasis.
Collapse
|
47
|
Klei LR, Hu D, Panek R, Alfano DN, Bridwell RE, Bailey KM, Oravecz-Wilson KI, Concel VJ, Hess EM, Van Beek M, Delekta PC, Gu S, Watkins SC, Ting AT, Gough PJ, Foley KP, Bertin J, McAllister-Lucas LM, Lucas PC. MALT1 Protease Activation Triggers Acute Disruption of Endothelial Barrier Integrity via CYLD Cleavage. Cell Rep 2017; 17:221-232. [PMID: 27681433 DOI: 10.1016/j.celrep.2016.08.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 07/14/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022] Open
Abstract
Microvascular endothelial cells maintain a tight barrier to prevent passage of plasma and circulating immune cells into the extravascular tissue compartment, yet endothelial cells respond rapidly to vasoactive substances, including thrombin, allowing transient paracellular permeability. This response is a cornerstone of acute inflammation, but the mechanisms responsible are still incompletely understood. Here, we demonstrate that thrombin triggers MALT1 to proteolytically cleave cylindromatosis (CYLD). Fragmentation of CYLD results in microtubule disruption and a cascade of events leading to endothelial cell retraction and an acute permeability response. This finding reveals an unexpected role for the MALT1 protease, which previously has been viewed mostly as a driver of pro-inflammatory NF-κB signaling in lymphocytes. Thus, MALT1 not only promotes immune cell activation but also acutely regulates endothelial cell biology, actions that together facilitate tissue inflammation. Pharmacologic inhibition of MALT1 may therefore have synergistic impact by targeting multiple disparate steps in the overall inflammatory response.
Collapse
Affiliation(s)
- Linda R Klei
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Dong Hu
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Robert Panek
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Danielle N Alfano
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Rachel E Bridwell
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Kelly M Bailey
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Vincent J Concel
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Emily M Hess
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Matthew Van Beek
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Phillip C Delekta
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shufang Gu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Adrian T Ting
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19406, USA
| | - Kevin P Foley
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19406, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19406, USA
| | - Linda M McAllister-Lucas
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Peter C Lucas
- Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
48
|
Yang Y, Mu T, Li T, Xie S, Zhou J, Liu M, Li D. Effects of FSTL1 on the proliferation and motility of breast cancer cells and vascular endothelial cells. Thorac Cancer 2017; 8:606-612. [PMID: 28857515 PMCID: PMC5668505 DOI: 10.1111/1759-7714.12491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Treatments that prevent the motility of breast cancer cells and inhibit formation of new capillary vessels are urgently needed. FSTL1 is a secreted protein that has been implicated in maintaining the normal physiological function of the cardiovascular system, in addition to a variety of other biological functions. We investigated the role of FSTL1 in the proliferation and migration of breast cancer and vascular endothelial cells. METHODS Human umbilical vein endothelial cells and human breast cancer BT-549 cells were used to test the effects of FSTL1 and the N-terminal domain of FSTL1. Immunofluorescence microscopy and 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide, transwell invasion, and wound healing assays were conducted. RESULTS Different doses of the N-terminal fragment of FSTL1 (FSTL-N) have variable effects on the migration of these cells. However, FSTL1 does not significantly affect tube formation in vitro from vascular endothelial cells. FSTL1-FL and FSTL1-N have modest effects on the invasion of breast cancer and vascular endothelial cells. Interestingly, FSTL1-FL, but not FSTL-N, modulates vascular endothelial cell polarization. CONCLUSION FSTL1 modestly affects the proliferation of breast cancer cells and vascular endothelial cells. Our findings improve our understanding of the functions of FSTL1 in breast cancer development and angiogenesis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Tianhao Mu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Te Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Songbo Xie
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
49
|
Qin J, Yang Y, Gao S, Liu Y, Yu F, Zhou Y, Lyu R, Liu M, Liu X, Li D, Zhou J. Deregulated ALG-2/HEBP2 axis alters microtubule dynamics and mitotic spindle behavior to stimulate cancer development. J Cell Physiol 2017; 232:3067-3076. [PMID: 28004381 DOI: 10.1002/jcp.25754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
Abstract
Cancer cells are characterized by genomic instability, resulting in the accumulation of mutations that promote cancer progression. One way that genomic instability can arise is through improper regulation of the microtubule cytoskeleton that impacts the function of the mitotic spindle. In this study, we have identified a critical role for the interaction between apoptosis-linked gene 2 (ALG-2) and heme-binding protein 2 (HEBP2) in the above processes. Our data show that the gene copy numbers and mRNA levels for both ALG-2 and HEBP2 are significantly upregulated in breast and lung cancer. Coexpression of ALG-2 and HEBP2 markedly increases the cytoplasmic pool of ALG-2 and alters the subcellular distribution of HEBP2. Our data further reveal that abnormality in the ALG-2/HEBP2 interaction impairs spindle orientation and positioning during mitosis. In addition, this complex appears to modulate the dynamic properties of microtubules in cancer cells. These finding thus uncover an important function for deregulated ALG-2/HEBP2 axis in cancer development by influencing microtubule dynamics and spindle behavior, providing novel insight into the etiology and pathogenesis of cancer.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Yu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunqiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Rui Lyu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
50
|
Darling S, Fielding AB, Sabat-Pośpiech D, Prior IA, Coulson JM. Regulation of the cell cycle and centrosome biology by deubiquitylases. Biochem Soc Trans 2017; 45:1125-1136. [PMID: 28900014 PMCID: PMC5652225 DOI: 10.1042/bst20170087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Post-translational modification of proteins by ubiquitylation is increasingly recognised as a highly complex code that contributes to the regulation of diverse cellular processes. In humans, a family of almost 100 deubiquitylase enzymes (DUBs) are assigned to six subfamilies and many of these DUBs can remove ubiquitin from proteins to reverse signals. Roles for individual DUBs have been delineated within specific cellular processes, including many that are dysregulated in diseases, particularly cancer. As potentially druggable enzymes, disease-associated DUBs are of increasing interest as pharmaceutical targets. The biology, structure and regulation of DUBs have been extensively reviewed elsewhere, so here we focus specifically on roles of DUBs in regulating cell cycle processes in mammalian cells. Over a quarter of all DUBs, representing four different families, have been shown to play roles either in the unidirectional progression of the cell cycle through specific checkpoints, or in the DNA damage response and repair pathways. We catalogue these roles and discuss specific examples. Centrosomes are the major microtubule nucleating centres within a cell and play a key role in forming the bipolar mitotic spindle required to accurately divide genetic material between daughter cells during cell division. To enable this mitotic role, centrosomes undergo a complex replication cycle that is intimately linked to the cell division cycle. Here, we also catalogue and discuss DUBs that have been linked to centrosome replication or function, including centrosome clustering, a mitotic survival strategy unique to cancer cells with supernumerary centrosomes.
Collapse
Affiliation(s)
- Sarah Darling
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Andrew B Fielding
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Dorota Sabat-Pośpiech
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Ian A Prior
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Judy M Coulson
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|