1
|
Fang M, Miao Y, Zhu L, Mei Y, Zeng H, Luo L, Ding Y, Zhou L, Quan X, Zhao Q, Zhao X, An Y. Age-Related Dynamics and Spectral Characteristics of the TCRβ Repertoire in Healthy Children: Implications for Immune Aging. Aging Cell 2025; 24:e14460. [PMID: 39745194 PMCID: PMC11984678 DOI: 10.1111/acel.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 04/12/2025] Open
Abstract
T-cell receptor (TCR) diversity is crucial for adaptive immunity, yet baseline characterizations in pediatric populations remain sparse. We sequenced the TCRβ chain of 325 healthy Chinese children aged 0-18, categorized into six age groups. We also analyzed cellular composition and TCRβ associations using flow cytometry in 81 of these samples. Our results indicate a decrease in TCRβ diversity with age, characterized by an increase in high-frequency clonotypes and notable changes in CDR3 length and V(D)J gene usage. These changes are influenced by early life vaccinations and antigen exposures. Additionally, we found a significant association between reduced TCRβ diversity and a decrease in CD4+ T naïve cells. We also developed a predictive model that identifies specific TCRβ features as potential biomarkers for biological age, validated by their significant correlation with changes in the immune repertoire. These findings enhance our understanding of age-related variations in the TCRβ repertoire among children, providing resourceful information for research on pediatric TCR in health and disease.
Collapse
MESH Headings
- Humans
- Child
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Child, Preschool
- Infant
- Aging/immunology
- Aging/genetics
- Male
- Female
- Adolescent
- Infant, Newborn
- CD4-Positive T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Mingyan Fang
- BGI ResearchShenzhenChina
- School of Life SciencesLanzhou UniversityLanzhouGansu ProvinceChina
| | - Yu Miao
- BGI ResearchShenzhenChina
- Henan Academy of SciencesZhengzhouChina
| | | | - Yunpeng Mei
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Hui Zeng
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | - Yuan Ding
- Department of Child Health CareChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqing Key Laboratory of Child Infection and ImmunityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xueping Quan
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqing Key Laboratory of Child Infection and ImmunityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Qin Zhao
- Department of EndocrinologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqing Key Laboratory of Child Infection and ImmunityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqing Key Laboratory of Child Infection and ImmunityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
2
|
Wu Y, Wu F, Ma Q, Li J, Ma L, Zhou H, Gong Y, Yao X. HTS and scRNA-seq revealed that the location and RSS quality of the mammalian TRBV and TRBJ genes impact biased rearrangement. BMC Genomics 2024; 25:1010. [PMID: 39472808 PMCID: PMC11520388 DOI: 10.1186/s12864-024-10887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
The quality of Recombination signal sequences (RSSs), location, and genetics of mammalian V, D, and J genes synergistically affect the recombination frequency of genes; however, the specific regulatory mechanism and efficiency have not been elucidated. By taking advantage of single-cell RNA-sequencing (scRNA-seq) and high-throughput sequencing (HTS) to investigate V(D)J rearrangement characteristics in the CDR3 repertoire, we found that the distal and proximal V genes (or J genes) "to D" gene were involved in rearrangement significantly more frequently than the middle V genes (or J genes) in the TRB locus among various species, including Primates (human and rhesus monkey), Rodentia (BALB/c, C57BL/6, and Kunming mice), Artiodactyla (buffalo), and Chiroptera (Rhinolophus affinis). The RSS quality of the V and J genes affected their frequency in rearrangement to varying degrees, especially when the V-RSSs with recombination signal information content (RIC) score < -45 significantly reduced the recombination frequency of the V gene. The V and J genes that were "away from D" had the dual advantages of recombinant structural accessibility and relatively high-quality RSSs, which promoted their preferential utilization in rearrangement. The quality of J-RSSs formed during mammalian evolution was apparently greater than that of V-RSSs, and the D-J distance was obviously shorter than that of V-D, which may be one of the reasons for guaranteeing that the "D-to-J preceding V-to-DJ rule" occurred when rearranged. This study provides a novel perspective on the mechanism and efficiency of V-D-J rearrangement in the mammalian TRB locus, as well as the biased utilization characteristics and application of V and J genes in the initial CDR3 repertoire.
Collapse
Affiliation(s)
- Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Laboratory, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qingqing Ma
- Department of Central Laboratory, Affiliated guizhou aerospace hospital of Zunyi Medical University, Zunyi City, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Hou Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yadong Gong
- Department of Central Laboratory, Affiliated guizhou aerospace hospital of Zunyi Medical University, Zunyi City, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Chen L, Hu Y, Zheng B, Luo L, Su Z. Human TCR repertoire in cancer. Cancer Med 2024; 13:e70164. [PMID: 39240157 PMCID: PMC11378360 DOI: 10.1002/cam4.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND T cells, the "superstar" of the immune system, play a crucial role in antitumor immunity. T-cell receptors (TCR) are crucial molecules that enable T cells to identify antigens and start immunological responses. The body has evolved a unique method for rearrangement, resulting in a vast diversity of TCR repertoires. A healthy TCR repertoire is essential for the particular identification of antigens by T cells. METHODS In this article, we systematically summarized the TCR creation mechanisms and analysis methodologies, particularly focusing on the application of next-generation sequencing (NGS) technology. We explore the TCR repertoire in health and cancer, and discuss the implications of TCR repertoire analysis in understanding carcinogenesis, cancer progression, and treatment. RESULTS The TCR repertoire analysis has enormous potential for monitoring the emergence and progression of malignancies, as well as assessing therapy response and prognosis. The application of NGS has dramatically accelerated our comprehension of TCR diversity and its role in cancer immunity. CONCLUSIONS To substantiate the significance of TCR repertoires as biomarkers, more thorough and exhaustive research should be conducted. The TCR repertoire analysis, enabled by advanced sequencing technologies, is poised to become a crucial tool in the future of cancer diagnosis, monitoring, and therapy evaluation.
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Bohao Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Limei Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhenzhen Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Xu Y, Shan W, Luo Q, Zhang M, Huo D, Chen Y, Li H, Ye Y, Yu X, Luo Y, Huang H. Establishment of a humanized mouse model using steady-state peripheral blood-derived hematopoietic stem and progenitor cells facilitates screening of cancer-targeted T-cell repertoires. CANCER INNOVATION 2024; 3:e118. [PMID: 38947755 PMCID: PMC11212321 DOI: 10.1002/cai2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 07/02/2024]
Abstract
Background Cancer-targeted T-cell receptor T (TCR-T) cells hold promise in treating cancers such as hematological malignancies and breast cancers. However, approaches to obtain cancer-reactive TCR-T cells have been unsuccessful. Methods Here, we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints. Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells, and then the expanded cells were applied to establish humanized mice. The human immune system was evaluated according to the kinetics of dendritic cells, monocytes, T-cell subsets, and cytokines. To fully stimulate the immune response and to obtain B-cell precursor NAML-6- and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells, we used the inactivated cells above to treat humanized mice twice a day every 7 days. Then, human T cells were processed for TCR β-chain (TRB) sequencing analysis. After the repertoires had been constructed, features such as the fraction, diversity, and immune signature were investigated. Results The results demonstrated an increase in diversity and clonality of T cells after treatment. The preferential usage and features of TRBV, TRBJ, and the V-J combination were also changed. The stress also induced highly clonal expansion. Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice. Conclusions We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools. Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells. It therefore has the potential to greatly benefit cancer treatment.
Collapse
Affiliation(s)
- Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Qian Luo
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Meng Zhang
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Dawei Huo
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Yijin Chen
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Honghu Li
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaohong Yu
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity TherapyHangzhouChina
- School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Roy P, Suthahar SSA, Makings J, Ley K. Identification of apolipoprotein B-reactive CDR3 motifs allows tracking of atherosclerosis-related memory CD4 +T cells in multiple donors. Front Immunol 2024; 15:1302031. [PMID: 38571941 PMCID: PMC10988780 DOI: 10.3389/fimmu.2024.1302031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Atherosclerosis is a major pathological condition that underlies many cardiovascular diseases (CVDs). Its etiology involves breach of tolerance to self, leading to clonal expansion of autoreactive apolipoprotein B (APOB)-reactive CD4+T cells that correlates with clinical CVD. The T-cell receptor (TCR) sequences that mediate activation of APOB-specific CD4+T cells are unknown. Methods In a previous study, we had profiled the hypervariable complementarity determining region 3 (CDR3) of CD4+T cells that respond to six immunodominant APOB epitopes in most donors. Here, we comprehensively analyze this dataset of 149,065 APOB-reactive and 199,211 non-reactive control CDR3s from six human leukocyte antigen-typed donors. Results We identified 672 highly expanded (frequency threshold > 1.39E-03) clones that were significantly enriched in the APOB-reactive group as compared to the controls (log10 odds ratio ≥1, Fisher's test p < 0.01). Analysis of 114,755 naïve, 91,001 central memory (TCM) and 29,839 effector memory (TEM) CDR3 sequences from the same donors revealed that APOB+ clones can be traced to the complex repertoire of unenriched blood T cells. The fraction of APOB+ clones that overlapped with memory CDR3s ranged from 2.2% to 46% (average 16.4%). This was significantly higher than their overlap with the naïve pool, which ranged from 0.7% to 2% (average 1.36%). CDR3 motif analysis with the machine learning-based in-silico tool, GLIPHs (grouping of lymphocyte interactions by paratope hotspots), identified 532 APOB+ motifs. Analysis of naïve and memory CDR3 sequences with GLIPH revealed that ~40% (209 of 532) of these APOB+ motifs were enriched in the memory pool. Network analysis with Cytoscape revealed extensive sharing of the memory-affiliated APOB+ motifs across multiple donors. We identified six motifs that were present in TCM and TEM CDR3 sequences from >80% of the donors and were highly enriched in the APOB-reactive TCR repertoire. Discussion The identified APOB-reactive expanded CD4+T cell clones and conserved motifs can be used to annotate and track human atherosclerosis-related autoreactive CD4+T cells and measure their clonal expansion.
Collapse
Affiliation(s)
- Payel Roy
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| | | | - Jeffrey Makings
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
6
|
Distinguishing between monozygotic twins' blood samples through immune repertoire sequencing. Forensic Sci Int Genet 2023; 64:102828. [PMID: 36682099 DOI: 10.1016/j.fsigen.2023.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Monozygotic (MZ) twins with highly similar genomic DNA sequences can not be distinguished by conventional forensic DNA testing. The immune repertoire (IR) reflects an individual's immune history, which is unique between individuals, has been applied to individualized treatment in precision medicine. However, the application of IR in forensic genetics has not been reported to date. In this study, the diversity in the complementary determining region 3 (CDR3) of both the T-cell receptor β chain (TCRβ) and B-cell receptor heavy chain (also known as immunoglobulin heavy chain, IGH) in four pairs of MZ twins were analyzed. The results showed that the amino acid sequences length distribution frequency of TCRβ CDR3 had 4-10 differences, and the nucleic acid sequences length distribution frequency of TCRβ CDR3 had 2-7 differences between MZ twins. The shared difference of four pairs of MZ twins focused on the length distribution frequency of 34 bp nucleotide sequences in TCRβ. By analyzing the usage frequency of V and J genes in TCRβ and IGH CDR3 DNA sequence rearrangements, we also found that there were biases between each pair of MZ twins, and the usage frequency of TRBJ2-3 showed common differences between each pair of MZ twins. Furthermore, each pair of MZ twins had its own unique V-J genes combination mode in TCRβ and IGH CDR3 DNA sequences. This study, for the first time, suggested that IR can be used as a potential biological marker to distinguish MZ twins.
Collapse
|
7
|
Rodriguez OL, Silver CA, Shields K, Smith ML, Watson CT. Targeted long-read sequencing facilitates phased diploid assembly and genotyping of the human T cell receptor alpha, delta, and beta loci. CELL GENOMICS 2022; 2:100228. [PMID: 36778049 PMCID: PMC9903726 DOI: 10.1016/j.xgen.2022.100228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/25/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022]
Abstract
T cell receptors (TCRs) recognize peptide fragments presented by the major histocompatibility complex (MHC) and are critical to T cell-mediated immunity. Recent data have indicated that genetic diversity within TCR-encoding gene regions is underexplored, limiting understanding of the impact of TCR loci polymorphisms on TCR function in disease, even though TCR repertoire signatures (1) are heritable and (2) associate with disease phenotypes. To address this, we developed a targeted long-read sequencing approach to generate highly accurate haplotype resolved assemblies of the TCR beta (TRB) and alpha/delta (TRA/D) loci, facilitating the genotyping of all variant types, including structural variants. We validate our approach using two mother-father-child trios and 5 unrelated donors representing multiple populations. This resulted in improved genotyping accuracy and the discovery of 84 undocumented V, D, J, and C alleles, demonstrating the utility of this framework for improving our understanding of TCR diversity and function in disease.
Collapse
Affiliation(s)
- Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Catherine A. Silver
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA,Corresponding author
| |
Collapse
|
8
|
Huuhtanen J, Chen L, Jokinen E, Kasanen H, Lönnberg T, Kreutzman A, Peltola K, Hernberg M, Wang C, Yee C, Lähdesmäki H, Davis MM, Mustjoki S. Evolution and modulation of antigen-specific T cell responses in melanoma patients. Nat Commun 2022; 13:5988. [PMID: 36220826 PMCID: PMC9553985 DOI: 10.1038/s41467-022-33720-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Analyzing antigen-specific T cell responses at scale has been challenging. Here, we analyze three types of T cell receptor (TCR) repertoire data (antigen-specific TCRs, TCR-repertoire, and single-cell RNA + TCRαβ-sequencing data) from 515 patients with primary or metastatic melanoma and compare it to 783 healthy controls. Although melanoma-associated antigen (MAA) -specific TCRs are restricted to individuals, they share sequence similarities that allow us to build classifiers for predicting anti-MAA T cells. The frequency of anti-MAA T cells distinguishes melanoma patients from healthy and predicts metastatic recurrence from primary melanoma. Anti-MAA T cells have stem-like properties and frequent interactions with regulatory T cells and tumor cells via Galectin9-TIM3 and PVR-TIGIT -axes, respectively. In the responding patients, the number of expanded anti-MAA clones are higher after the anti-PD1(+anti-CTLA4) therapy and the exhaustion phenotype is rescued. Our systems immunology approach paves the way for understanding antigen-specific responses in human disorders. Previous studies have characterized the diversity and dynamics of the T cell receptor (TCR) repertoire in patients with solid cancer. Here, by analyzing TCR repertoire data from multiple datasets, the authors report that melanoma-associated antigen-specific TCRs can be used to separate metastatic melanoma patients from healthy controls and to follow anti-tumor responses in patients treated with immunotherapy.
Collapse
|
9
|
Wilson TL, Kim H, Chou CH, Langfitt D, Mettelman RC, Minervina AA, Allen EK, Métais JY, Pogorelyy MV, Riberdy JM, Velasquez MP, Kottapalli P, Trivedi S, Olsen SR, Lockey T, Willis C, Meagher MM, Triplett BM, Talleur AC, Gottschalk S, Crawford JC, Thomas PG. Common Trajectories of Highly Effective CD19-Specific CAR T Cells Identified by Endogenous T-cell Receptor Lineages. Cancer Discov 2022; 12:2098-2119. [PMID: 35792801 PMCID: PMC9437573 DOI: 10.1158/2159-8290.cd-21-1508] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Current chimeric antigen receptor-modified (CAR) T-cell products are evaluated in bulk, without assessing functional heterogeneity. We therefore generated a comprehensive single-cell gene expression and T-cell receptor (TCR) sequencing data set using pre- and postinfusion CD19-CAR T cells from blood and bone marrow samples of pediatric patients with B-cell acute lymphoblastic leukemia. We identified cytotoxic postinfusion cells with identical TCRs to a subset of preinfusion CAR T cells. These effector precursor cells exhibited a unique transcriptional profile compared with other preinfusion cells, corresponding to an unexpected surface phenotype (TIGIT+, CD62Llo, CD27-). Upon stimulation, these cells showed functional superiority and decreased expression of the exhaustion-associated transcription factor TOX. Collectively, these results demonstrate diverse effector potentials within preinfusion CAR T-cell products, which can be exploited for therapeutic applications. Furthermore, we provide an integrative experimental and analytic framework for elucidating the mechanisms underlying effector development in CAR T-cell products. SIGNIFICANCE Utilizing clonal trajectories to define transcriptional potential, we find a unique signature of CAR T-cell effector precursors present in preinfusion cell products. Functional assessment of cells with this signature indicated early effector potential and resistance to exhaustion, consistent with postinfusion cellular patterns observed in patients. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Taylor L. Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hyunjin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Deanna Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Robert C. Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jean-Yves Métais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mikhail V. Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Janice M. Riberdy
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pratibha Kottapalli
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott R. Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Timothy Lockey
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Catherine Willis
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael M. Meagher
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aimee C. Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
10
|
T-Cell Receptor Repertoire Sequencing and Its Applications: Focus on Infectious Diseases and Cancer. Int J Mol Sci 2022; 23:ijms23158590. [PMID: 35955721 PMCID: PMC9369427 DOI: 10.3390/ijms23158590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The immune system is a dynamic feature of each individual and a footprint of our unique internal and external exposures. Indeed, the type and level of exposure to physical and biological agents shape the development and behavior of this complex and diffuse system. Many pathological conditions depend on how our immune system responds or does not respond to a pathogen or a disease or on how the regulation of immunity is altered by the disease itself. T-cells are important players in adaptive immunity and, together with B-cells, define specificity and monitor the internal and external signals that our organism perceives through its specific receptors, TCRs and BCRs, respectively. Today, high-throughput sequencing (HTS) applied to the TCR repertoire has opened a window of opportunity to disclose T-cell repertoire development and behavior down to the clonal level. Although TCR repertoire sequencing is easily accessible today, it is important to deeply understand the available technologies for choosing the best fit for the specific experimental needs and questions. Here, we provide an updated overview of TCR repertoire sequencing strategies, providers and applications to infectious diseases and cancer to guide researchers’ choice through the multitude of available options. The possibility of extending the TCR repertoire to HLA characterization will be of pivotal importance in the near future to understand how specific HLA genes shape T-cell responses in different pathological contexts and will add a level of comprehension that was unthinkable just a few years ago.
Collapse
|
11
|
Katayama Y, Yokota R, Akiyama T, Kobayashi TJ. Machine Learning Approaches to TCR Repertoire Analysis. Front Immunol 2022; 13:858057. [PMID: 35911778 PMCID: PMC9334875 DOI: 10.3389/fimmu.2022.858057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sparked by the development of genome sequencing technology, the quantity and quality of data handled in immunological research have been changing dramatically. Various data and database platforms are now driving the rapid progress of machine learning for immunological data analysis. Of various topics in immunology, T cell receptor repertoire analysis is one of the most important targets of machine learning for assessing the state and abnormalities of immune systems. In this paper, we review recent repertoire analysis methods based on machine learning and deep learning and discuss their prospects.
Collapse
Affiliation(s)
- Yotaro Katayama
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Yokota
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tetsuya J. Kobayashi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Arruda LCM, Gaballa A, Da Silva Rodrigues R, Makower B, Uhlin M. SARS-CoV-2 (COVID-19)-specific T cell and B cell responses in convalescent rheumatoid arthritis: Monozygotic twins pair case observation. Scand J Immunol 2022; 95:e13151. [PMID: 35212005 PMCID: PMC9115348 DOI: 10.1111/sji.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/01/2022]
Abstract
Rheumatoid arthritis (RA) patients present higher risk of SARS-CoV-2 infection (COVID-19), and proper management of the disease in this population requires a better understanding of how the immune system controls the virus. We analyzed the T cell and B cell phenotypes, and their repertoire in a pair of monozygotic twins with RA mismatched for COVID-19 infection. Twin- was not infected, while Twin+ was infected and effectively controlled the infection. We found no significant changes on the αβ T cell composition, while γδ T cells and B cells presented considerable expansion of memory population in Twin+ and robust T/B cell responses to several SARS-CoV-2 peptides. T cell receptor β/γ-chain and immunoglobulin heavy chain next-generation sequencing depicted a remarkable higher diversity in Twin+ compared with Twin-, despite no significant changes being found in variable/joining family usage. Repertoire overlap analyses showed that, although being identical twins, very few clones were shared between them, indicating that COVID-19 may lead to deep changes on the immune cell repertoire in RA patients. Altogether, our results indicate that RA patients may develop robust and persistent COVID-19-specific T/B cell responses; γδ T cells and B cells may play a key role in the management of COVID-19 in RA, and the infection may lead to a profound reshaping of immune cell receptor specificities.
Collapse
Affiliation(s)
- Lucas C. M. Arruda
- Department of Clinical Science, Intervention and TechnologyKarolinska InstituteStockholmSweden
| | - Ahmed Gaballa
- Department of Clinical Science, Intervention and TechnologyKarolinska InstituteStockholmSweden
| | - Rui Da Silva Rodrigues
- Department of Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
| | | | - Michael Uhlin
- Department of Clinical Science, Intervention and TechnologyKarolinska InstituteStockholmSweden
- Department of Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
- Department of Applied PhysicsScience for Life LaboratoryRoyal Institute of TechnologyStockholmSweden
| |
Collapse
|
13
|
Russell ML, Souquette A, Levine DM, Schattgen SA, Allen EK, Kuan G, Simon N, Balmaseda A, Gordon A, Thomas PG, Matsen FA, Bradley P. Combining genotypes and T cell receptor distributions to infer genetic loci determining V(D)J recombination probabilities. eLife 2022; 11:73475. [PMID: 35315770 PMCID: PMC8940181 DOI: 10.7554/elife.73475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Every T cell receptor (TCR) repertoire is shaped by a complex probabilistic tangle of genetically determined biases and immune exposures. T cells combine a random V(D)J recombination process with a selection process to generate highly diverse and functional TCRs. The extent to which an individual’s genetic background is associated with their resulting TCR repertoire diversity has yet to be fully explored. Using a previously published repertoire sequencing dataset paired with high-resolution genome-wide genotyping from a large human cohort, we infer specific genetic loci associated with V(D)J recombination probabilities using genome-wide association inference. We show that V(D)J gene usage profiles are associated with variation in the TCRB locus and, specifically for the functional TCR repertoire, variation in the major histocompatibility complex locus. Further, we identify specific variations in the genes encoding the Artemis protein and the TdT protein to be associated with biasing junctional nucleotide deletion and N-insertion, respectively. These results refine our understanding of genetically-determined TCR repertoire biases by confirming and extending previous studies on the genetic determinants of V(D)J gene usage and providing the first examples of trans genetic variants which are associated with modifying junctional diversity. Together, these insights lay the groundwork for further explorations into how immune responses vary between individuals.
Collapse
Affiliation(s)
- Magdalena L Russell
- Computational Biology Program, Fred Hutch Cancer Research Center
- Molecular and Cellular Biology Program, University of Washington
| | - Aisha Souquette
- Department of Immunology, St. Jude Children’s Research Hospital
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center
| | | | | | | | - Guillermina Kuan
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health
- Sustainable Sciences Institute
| | - Noah Simon
- Department of Biostatistics, University of Washington
| | - Angel Balmaseda
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health
- Sustainable Sciences Institute
| | | | - Paul G Thomas
- Department of Immunology, St. Jude Children’s Research Hospital
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutch Cancer Research Center
- Department of Genome Sciences, University of Washington
- Department of Statistics, University of Washington
- Howard Hughes Medical Institute
| | - Philip Bradley
- Computational Biology Program, Fred Hutch Cancer Research Center
- Institute for Protein Design, Department of Biochemistry, University of Washington
| |
Collapse
|
14
|
Fang M, Su Z, Abolhassani H, Zhang W, Jiang C, Cheng B, Luo L, Wu J, Wang S, Lin L, Wang X, Wang L, Aghamohammadi A, Li T, Zhang X, Hammarström L, Liu X. T Cell Repertoire Abnormality in Immunodeficiency Patients with DNA Repair and Methylation Defects. J Clin Immunol 2022; 42:375-393. [PMID: 34825286 PMCID: PMC8821531 DOI: 10.1007/s10875-021-01178-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Both DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.
Collapse
Affiliation(s)
- Mingyan Fang
- BGI-Shenzhen, Shenzhen, 518083, China
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Hassan Abolhassani
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | | | | | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Liya Lin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xie Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tao Li
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Lennart Hammarström
- BGI-Shenzhen, Shenzhen, 518083, China.
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Tian G, Li M, Lv G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Alloresponse. Front Immunol 2022; 12:778559. [PMID: 35095851 PMCID: PMC8790170 DOI: 10.3389/fimmu.2021.778559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.
Collapse
Affiliation(s)
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Fu J, Khosravi-Maharlooei M, Sykes M. High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Front Immunol 2021; 12:777756. [PMID: 34804070 PMCID: PMC8604183 DOI: 10.3389/fimmu.2021.777756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high throughput sequencing (HTS) of T cell receptors (TCRs) and in transcriptomic analysis, particularly at the single cell level, have opened the door to a new level of understanding of human immunology and immune-related diseases. In this article, we discuss the use of HTS of TCRs to discern the factors controlling human T cell repertoire development and how this approach can be used in combination with human immune system (HIS) mouse models to understand human repertoire selection in an unprecedented manner. An exceptionally high proportion of human T cells has alloreactive potential, which can best be understood as a consequence of the processes governing thymic selection. High throughput TCR sequencing has allowed assessment of the development, magnitude and nature of the human alloresponse at a new level and has provided a tool for tracking the fate of pre-transplant-defined donor- and host-reactive TCRs following transplantation. New insights into human allograft rejection and tolerance obtained with this method in combination with single cell transcriptional analyses are reviewed here.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
- Department of Microbiology & Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
17
|
Heikkilä N, Sormunen S, Mattila J, Härkönen T, Knip M, Ihantola EL, Kinnunen T, Mattila IP, Saramäki J, Arstila TP. Generation of self-reactive, shared T-cell receptor α chains in the human thymus. J Autoimmun 2021; 119:102616. [PMID: 33652347 DOI: 10.1016/j.jaut.2021.102616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
The T-cell receptor (TCR) repertoire is generated in a semistochastic process of gene recombination and pairing of TCRα to TCRβ chains with the estimated total TCR diversity of >108. Despite this high diversity, similar or identical TCR chains are found to recur in immune responses. Here, we analyzed the thymic generation of TCR sequences previously associated with recognition of self- and nonself-antigens, represented by sequences associated with autoimmune diabetes and HIV, respectively. Unexpectedly, in the CD4+ compartment TCRα chains associated with the recognition of self-antigens were generated in significantly higher numbers than TCRα chains associated with the recognition of nonself-antigens. The analysis of the circulating repertoire further showed that these chains are not lost in negative selection nor predominantly converted to the regulatory T-cell lineage. The high abundance of self-reactive TCRα chains in multiple individuals suggests that the human thymus has a predilection to generate self-reactive TCRα chains independently of the HLA-type and that the individual risk of autoimmunity may be modulated by the TCRβ repertoire associated with these chains.
Collapse
Affiliation(s)
- Nelli Heikkilä
- Research Programs Unit, Translational Immunology, and Medicum, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland.
| | - Silja Sormunen
- Department of Computer Science, Aalto University, Konemiehenkatu 2, 02150, Espoo, Finland
| | - Joonatan Mattila
- Research Programs Unit, Translational Immunology, and Medicum, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, 00290, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, 00290, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland; Folkhälsan Research Center, Topeliuksenkatu 25, 00250, Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, Elämänaukio 2, 33520, Tampere, Finland
| | - Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Puijonlaaksontie 2, 70210, Kuopio, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Puijonlaaksontie 2, 70210, Kuopio, Finland; Eastern Finland Laboratory Centre (ISLAB), Puijonlaaksontie 2, 70210, Kuopio, Finland
| | - Ilkka P Mattila
- Department of Pediatric Cardiac and Transplantation Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital, Stenbäckinkatu 9, 00290, Helsinki, Finland
| | - Jari Saramäki
- Department of Computer Science, Aalto University, Konemiehenkatu 2, 02150, Espoo, Finland
| | - T Petteri Arstila
- Research Programs Unit, Translational Immunology, and Medicum, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| |
Collapse
|
18
|
Fischer S, Stanke F, Tümmler B. VJ Segment Usage of TCR-Beta Repertoire in Monozygotic Cystic Fibrosis Twins. Front Immunol 2021; 12:599133. [PMID: 33708199 PMCID: PMC7940196 DOI: 10.3389/fimmu.2021.599133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/28/2021] [Indexed: 11/26/2022] Open
Abstract
Sixteen monozygotic cystic fibrosis (CF) twin pairs of whom 14 pairs were homozygous for the most common p.Phe508del CFTR mutation were selected from the European Cystic Fibrosis Twin and Sibling Study Cohort. The monozygotic twins were examined in their T cell receptor (TCR) repertoire in peripheral blood by amplicon sequencing of the CDR3 variable region of the ß-chain. The recruitment of TCR J and V genes for recombination and selection in the thymus showed a strong genetic influence in the CF twin cohort as indicated by the shortest Jensen-Shannon distance to the twin individual. Exceptions were the clinically most discordant and/or most severely affected twin pairs where clonal expansion probably caused by recurrent pulmonary infections overshadowed the impact of the identical genomic blueprint. In general the Simpson clonality was low indicating that the population of TCRß clonotypes of the CF twins was dominated by the naïve T-cell repertoire. Intrapair sharing of clonotypes was significantly more frequent among monozygotic CF twins than among pairs of unrelated CF patients. Complete nucleotide sequence identity was observed in about 0.11% of CDR3 sequences which partially should represent persisting fetal clones derived from the same progenitor T cells. Complete amino acid sequence identity was noted in 0.59% of clonotypes. Of the nearly 40,000 frequent amino acid clonotypes shared by at least two twin siblings 99.8% were already known within the immuneACCESS database and only 73 had yet not been detected indicating that the CDR3ß repertoire of CF children and adolescents does not carry a disease-specific signature but rather shares public clones with that of the non-CF community. Clonotypes shared within twin pairs and between unrelated CF siblings were highly abundant among healthy non-CF people, less represented in individuals with infectious disease and uncommon in patients with cancer. This subset of shared CF clonotypes defines CDR3 amino acid sequences that are more common in health than in disease.
Collapse
Affiliation(s)
- Sebastian Fischer
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Frauke Stanke
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Izraelson M, Metsger M, Davydov AN, Shagina IA, Dronina MA, Obraztsova AS, Miskevich DA, Mamedov IZ, Volchkova LN, Nakonechnaya TO, Shugay M, Bolotin DA, Staroverov DB, Sharonov GV, Kondratyuk EY, Zagaynova EV, Lukyanov S, Shams I, Britanova OV, Chudakov DM. Distinct organization of adaptive immunity in the long-lived rodent Spalax galili. NATURE AGING 2021; 1:179-189. [PMID: 37118630 DOI: 10.1038/s43587-021-00029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 04/30/2023]
Abstract
A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long-lived blind mole-rat (Spalax spp.) adaptive immune system, relative to humans and mice. The T-cell repertoire remains diverse throughout the Spalax lifespan, suggesting a paucity of large long-lived clones of effector-memory T cells. Expression of master transcription factors of T-cell differentiation, as well as checkpoint and cytotoxicity genes, remains low as Spalax ages. The thymus shrinks as in mice and humans, while interleukin-7 and interleukin-7 receptor expression remains high, potentially reflecting the sustained homeostasis of naive T cells. With aging, immunoglobulin hypermutation level does not increase and the immunoglobulin-M repertoire remains diverse, suggesting shorter B-cell memory and sustained homeostasis of innate-like B cells. The Spalax adaptive immune system thus appears biased towards sustained functional and receptor diversity over specialized, long-lived effector-memory clones-a unique organizational strategy that potentially underlies this animal's extraordinary longevity and healthy aging.
Collapse
Affiliation(s)
- M Izraelson
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Metsger
- Central European Institute of Technology, Brno, Czech Republic
| | - A N Davydov
- Central European Institute of Technology, Brno, Czech Republic
| | - I A Shagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Dronina
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - A S Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - D A Miskevich
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - I Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Brno, Czech Republic
| | - L N Volchkova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - T O Nakonechnaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Shugay
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D A Bolotin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D B Staroverov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - G V Sharonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E Y Kondratyuk
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - E V Zagaynova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - S Lukyanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I Shams
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - O V Britanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | - D M Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- Central European Institute of Technology, Brno, Czech Republic.
| |
Collapse
|
20
|
Tickotsky-Moskovitz N, Louzoun Y, Dvorkin S, Rotkopf A, Kuperman AA, Efroni S. CDR3 and V genes show distinct reconstitution patterns in T cell repertoire post-allogeneic bone marrow transplantation. Immunogenetics 2021; 73:163-173. [PMID: 33475766 DOI: 10.1007/s00251-020-01200-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Restoration of T cell repertoire diversity after allogeneic bone marrow transplantation (allo-BMT) is crucial for immune recovery. T cell diversity is produced by rearrangements of germline gene segments (V (D) and J) of the T cell receptor (TCR) α and β chains, and selection induced by binding of TCRs to MHC-peptide complexes. Multiple measures were proposed for this diversity. We here focus on the V-gene usage and the CDR3 sequences of the beta chain. We compared multiple T cell repertoires to follow T cell repertoire changes post-allo-BMT in HLA-matched related donor and recipient pairs. Our analyses of the differences between donor and recipient complementarity determining region 3 (CDR3) beta composition and V-gene profile show that the CDR3 sequence composition does not change during restoration, implying its dependence on the HLA typing. In contrast, V-gene usage followed a time-dependent pattern, initially following the donor profile and then shifting back to the recipients' profile. The final long-term repertoire was more similar to that of the recipient's original one than the donor's; some recipients converged within months, while others took multiple years. Based on the results of our analyses, we propose that donor-recipient V-gene distribution differences may serve as clinical biomarkers for monitoring immune recovery.
Collapse
Affiliation(s)
| | - Yoram Louzoun
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel.
| | - Shirit Dvorkin
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| | - Adi Rotkopf
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Amir Asher Kuperman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Sol Efroni
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
21
|
Heikkilä N, Kleino I, Vanhanen R, Yohannes DA, Mattila IP, Saramäki J, Arstila TP. Characterization of human T cell receptor repertoire data in eight thymus samples and four related blood samples. Data Brief 2021; 35:106751. [PMID: 33553521 PMCID: PMC7859292 DOI: 10.1016/j.dib.2021.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/02/2022] Open
Abstract
T cell receptor (TCR) is a heterodimer consisting of TCRα and TCRβ chains that are generated by somatic recombination of multiple gene segments. Nascent TCR repertoire undergoes thymic selections where non-functional and potentially autoreactive receptors are removed. During the last years, the development of high-throughput sequencing technology has allowed a large scale assessment of TCR repertoire and multiple analysis tools are now also available. In our recent manuscript, Human thymic T cell repertoire is imprinted with strong convergence to shared sequences[1], we show highly overlapping thymic TCR repertoires in unrelated individuals. In the current Data in Brief article, we provide a more detailed characterization of the basic features of these thymic and related peripheral blood TCR repertoires. The thymus samples were collected from eight infants undergoing corrective cardiac surgery, two of whom were monozygous twins [2]. In parallel with the surgery, a small aliquot of peripheral blood was drawn from four of the donors. Genomic DNA was extracted from mechanically released thymocytes and circulating leukocytes. The sequencing of TCRα and TCRβ repertoires was performed at ImmunoSEQ platform (Adaptive Biotechnologies). The obtained repertoire data were analysed applying relevant features from immunoSEQ® 3.0 Analyzer (Adaptive Biotechnologies) and a freely available VDJTools software package for programming language R [3]. The current data analysis displays the basic features of the sequenced repertoires including observed TCR diversity, various descriptive TCR diversity measures, and V and J gene usage. In addition, multiple methods to calculate repertoire overlap between two individuals are applied. The raw sequence data provide a large database of reference TCRs in healthy individuals at an early developmental stage. The data can be exploited to improve existing computational models on TCR repertoire behaviour as well as in the generation of new models.
Collapse
Affiliation(s)
- Nelli Heikkilä
- Research Programs Unit, Translational Immunology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland.,Medicum, Department of Bacteriology and Immunology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Iivari Kleino
- Research Programs Unit, Translational Immunology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Reetta Vanhanen
- Research Programs Unit, Translational Immunology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland.,Medicum, Department of Bacteriology and Immunology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Dawit A Yohannes
- Research Programs Unit, Translational Immunology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Ilkka P Mattila
- Department of Pediatric Cardiac and Transplantation Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital, Stenbäckinkatu 9, 00290 Helsinki, Finland
| | - Jari Saramäki
- Department of Computer Science, Aalto University, Konemiehentie 2, 02150 Espoo, Finland
| | - T Petteri Arstila
- Research Programs Unit, Translational Immunology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland.,Medicum, Department of Bacteriology and Immunology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| |
Collapse
|
22
|
Bettens F, Calderin Sollet Z, Buhler S, Villard J. CD8+ T-Cell Repertoire in Human Leukocyte Antigen Class I-Mismatched Alloreactive Immune Response. Front Immunol 2021; 11:588741. [PMID: 33552048 PMCID: PMC7856301 DOI: 10.3389/fimmu.2020.588741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
In transplantation, direct allorecognition is a complex interplay between T-cell receptors (TCR) and HLA molecules and their bound peptides expressed on antigen-presenting cells. In analogy to HLA mismatched hematopoietic stem cell transplantation (HSCT), the TCR CDR3β repertoires of alloreactive cytotoxic CD8+ responder T cells, defined by the cell surface expression of CD137 and triggered in vitro by HLA mismatched stimulating cells, were analyzed in different HLA class I mismatched combinations. The same HLA mismatched stimulatory cells induced very different repertoires in distinct but HLA identical responders. Likewise, stimulator cells derived from HLA identical donors activated CD8+ cells expressing very different repertoires in the same mismatched responder. To mimic in vivo inflammation, expression of HLA class l antigens was upregulated in vitro on stimulating cells by the inflammatory cytokines TNFα and IFNβ. The repertoires differed whether the same responder cells were stimulated with cells treated or not with both cytokines. In conclusion, the selection and expansion of alloreactive cytotoxic T-cell clonotypes expressing a very diverse repertoire is observed repeatedly despite controlling for HLA disparities and is significantly influenced by the inflammatory status. This makes prediction of alloreactive T-cell repertoires a major challenge in HLA mismatched HSCT.
Collapse
Affiliation(s)
- Florence Bettens
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Geneva University Hospitals, Geneva, Switzerland
| | - Zuleika Calderin Sollet
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Geneva University Hospitals, Geneva, Switzerland
| | - Stéphane Buhler
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Geneva University Hospitals, Geneva, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
23
|
Dupic T, Bensouda Koraichi M, Minervina AA, Pogorelyy MV, Mora T, Walczak AM. Immune fingerprinting through repertoire similarity. PLoS Genet 2021; 17:e1009301. [PMID: 33395405 PMCID: PMC7808657 DOI: 10.1371/journal.pgen.1009301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/14/2021] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Immune repertoires provide a unique fingerprint reflecting the immune history of individuals, with potential applications in precision medicine. However, the question of how personal that information is and how it can be used to identify individuals has not been explored. Here, we show that individuals can be uniquely identified from repertoires of just a few thousands lymphocytes. We present "Immprint," a classifier using an information-theoretic measure of repertoire similarity to distinguish pairs of repertoire samples coming from the same versus different individuals. Using published T-cell receptor repertoires and statistical modeling, we tested its ability to identify individuals with great accuracy, including identical twins, by computing false positive and false negative rates < 10-6 from samples composed of 10,000 T-cells. We verified through longitudinal datasets that the method is robust to acute infections and that the immune fingerprint is stable for at least three years. These results emphasize the private and personal nature of repertoire data.
Collapse
Affiliation(s)
- Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Laboratoire de physique de l’École Normale Supérieure, CNRS, Sorbonne Université, Université de Paris, and École normale supérieure (PSL), Paris, France
| | - Meriem Bensouda Koraichi
- Laboratoire de physique de l’École Normale Supérieure, CNRS, Sorbonne Université, Université de Paris, and École normale supérieure (PSL), Paris, France
| | | | - Mikhail V. Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, Sorbonne Université, Université de Paris, and École normale supérieure (PSL), Paris, France
- * E-mail: (TM); (AMW)
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, Sorbonne Université, Université de Paris, and École normale supérieure (PSL), Paris, France
- * E-mail: (TM); (AMW)
| |
Collapse
|
24
|
Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Front Immunol 2020; 11:565096. [PMID: 33193332 PMCID: PMC7642207 DOI: 10.3389/fimmu.2020.565096] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Hou X, Chen W, Zhang X, Wang G, Chen J, Zeng P, Fu X, Zhang Q, Liu X, Diao H. Preselection TCR repertoire predicts CD4 + and CD8 + T-cell differentiation state. Immunology 2020; 161:354-363. [PMID: 32875554 DOI: 10.1111/imm.13256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
T cells must display diversity regarding both the cell state and T-cell receptor (TCR) repertoire to provide effective immunity against pathogens; however, the generation and evolution of cellular T-cell heterogeneity in the adaptive immune system remains unclear. In the present study, a combination of multiplex PCR and immune repertoire sequencing (IR-seq) was used for a standardized analysis of the TCR β-chain repertoire of CD4+ naive, CD4+ memory, CD8+ naive and CD8+ memory T cells. We showed that the T-cell subsets could be distinguished from each another with regard to the TCR β-chain (TCR-β) diversity, CDR3 length distribution and TRBV usage, which could be observed both in the preselection and in the post-selection repertoire. Moreover, the Dβ-Jβ and Vβ-Dβ combination patterns at the initial recombination step, template-independent insertion of nucleotides and inter-subset overlap were consistent between the pre- and post-selection repertoires, with a remarkably positive correlation. Taken together, these results support differentiation of the CD4+ and CD8+ T-cell subsets prior to thymic selection, and these differences survived both positive and negative selection. In conclusion, these findings provide deeper insight into the generation and evolution of TCR repertoire generation.
Collapse
Affiliation(s)
- Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangyu Wang
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyan Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Liu
- College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Heikkilä N, Vanhanen R, Yohannes DA, Kleino I, Mattila IP, Saramäki J, Arstila TP. Human thymic T cell repertoire is imprinted with strong convergence to shared sequences. Mol Immunol 2020; 127:112-123. [PMID: 32961421 DOI: 10.1016/j.molimm.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022]
Abstract
A highly diverse repertoire of T cell antigen receptors (TCR) is created in the thymus by recombination of gene segments and the insertion or deletion of nucleotides at the junctions. Using next-generation TCR sequencing we define here the features of recombination and selection in the human TCRα and TCRβ locus, and show that a strikingly high proportion of the repertoire is shared by unrelated individuals. The thymic TCRα nucleotide repertoire was more diverse than TCRβ, with 4.1 × 106 vs. 0.81 × 106 unique clonotypes, and contained nonproductive clonotypes at a higher frequency (69.2% vs. 21.2%). The convergence of distinct nucleotide clonotypes to the same amino acid sequences was higher in TCRα than in TCRβ repertoire (1.45 vs. 1.06 nucleotide sequences per amino acid sequence in thymus). The gene segment usage was biased, and generally all individuals favored the same genes in both TCRα and TCRβ loci. Despite the high diversity, a large fraction of the repertoire was found in more than one donor. The shared fraction was bigger in TCRα than TCRβ repertoire, and more common in in-frame sequences than in nonproductive sequences. Thus, both biases in rearrangement and thymic selection are likely to contribute to the generation of shared repertoire in humans.
Collapse
Affiliation(s)
- Nelli Heikkilä
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Reetta Vanhanen
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Dawit A Yohannes
- Research Programs Unit, Translational Immunology and Medicum, Department of Medical and Clinical Genetics, University of Helsinki. Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Iivari Kleino
- Research Programs Unit, Translational Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Ilkka P Mattila
- Department of Pediatric Cardiac and Transplantation Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital. Stenbäckinkatu 9, 00290 Helsinki, Finland.
| | - Jari Saramäki
- Department of Computer Science, Aalto University. Konemiehentie 2, 02150 Espoo, Finland.
| | - T Petteri Arstila
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| |
Collapse
|
27
|
Watkins TS, Miles JJ. The human T-cell receptor repertoire in health and disease and potential for omics integration. Immunol Cell Biol 2020; 99:135-145. [PMID: 32677130 DOI: 10.1111/imcb.12377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022]
Abstract
The adaptive immune system arose 600 million years ago in a cold-blooded fish. Over countless generations, our antecedents tuned the function of the T-cell receptor (TCR). The TCR system is arguably the most complex known to science. The TCR evolved hypervariability to fight the hypervariability of pathogens and cancers that look to consume our resources. This review describes the genetics and architecture of the human TCR and highlights surprising new discoveries over the past years that have disproved very old dogmas. The standardization of TCR sequencing data is discussed in preparation for big data bioinformatics and predictive analysis. We next catalogue new signatures and phenomenon discovered by TCR next generation sequencing (NGS) in health and disease and work that remain to be done in this space. Finally, we discuss how TCR NGS can add to immunodiagnostics and integrate with other omics platforms for both a deeper understanding of TCR biology and its use in the clinical setting.
Collapse
Affiliation(s)
- Thomas S Watkins
- The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - John J Miles
- The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
28
|
Vujovic M, Degn KF, Marin FI, Schaap-Johansen AL, Chain B, Andresen TL, Kaplinsky J, Marcatili P. T cell receptor sequence clustering and antigen specificity. Comput Struct Biotechnol J 2020; 18:2166-2173. [PMID: 32952933 PMCID: PMC7473833 DOI: 10.1016/j.csbj.2020.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022] Open
Abstract
There has been increasing interest in the role of T cells and their involvement in cancer, autoimmune and infectious diseases. However, the nature of T cell receptor (TCR) epitope recognition at a repertoire level is not yet fully understood. Due to technological advances a plethora of TCR sequences from a variety of disease and treatment settings has become readily available. Current efforts in TCR specificity analysis focus on identifying characteristics in immune repertoires which can explain or predict disease outcome or progression, or can be used to monitor the efficacy of disease therapy. In this context, clustering of TCRs by sequence to reflect biological similarity, and especially to reflect antigen specificity have become of paramount importance. We review the main TCR sequence clustering methods and the different similarity measures they use, and discuss their performance and possible improvement. We aim to provide guidance for non-specialists who wish to use TCR repertoire sequencing for disease tracking, patient stratification or therapy prediction, and to provide a starting point for those aiming to develop novel techniques for TCR annotation through clustering.
Collapse
Affiliation(s)
- Milena Vujovic
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Kristine Fredlund Degn
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Frederikke Isa Marin
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Anna-Lisa Schaap-Johansen
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Benny Chain
- UCL Division of Infection and Immunity, University College London, Wing 3.2, Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Thomas Lars Andresen
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Joseph Kaplinsky
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Medicine, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Paolo Marcatili
- DTU HealthTech, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
29
|
Rosati E, Pogorelyy MV, Dowds CM, Moller FT, Sorensen SB, Lebedev YB, Frey N, Schreiber S, Spehlmann ME, Andersen V, Mamedov IZ, Franke A. Identification of Disease-associated Traits and Clonotypes in the T Cell Receptor Repertoire of Monozygotic Twins Affected by Inflammatory Bowel Diseases. J Crohns Colitis 2020; 14:778-790. [PMID: 31711184 PMCID: PMC7346890 DOI: 10.1093/ecco-jcc/jjz179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Intestinal inflammation in inflammatory bowel diseases [IBD] is thought to be T cell mediated and therefore dependent on the interaction between the T cell receptor [TCR] and human leukocyte antigen [HLA] proteins expressed on antigen presenting cells. The collection of all TCRs in one individual, known as the TCR repertoire, is characterised by enormous diversity and inter-individual variability. It was shown that healthy monozygotic [MZ] twins are more similar in their TCR repertoire than unrelated individuals. Therefore MZ twins, concordant or discordant for IBD, may be useful to identify disease-related and non-genetic factors in the TCR repertoire which could potentially be used as disease biomarkers. METHODS Employing unique molecular barcoding that can distinguish between polymerase chain reaction [PCR] artefacts and true sequence variation, we performed deep TCRα and TCRβ repertoire profiling of the peripheral blood of 28 MZ twin pairs from Denmark and Germany, 24 of whom were discordant and four concordant for IBD. RESULTS We observed disease- and smoking-associated traits such as sharing, diversity and abundance of specific clonotypes in the TCR repertoire of IBD patients, and particularly in patients with active disease, compared with their healthy twins. CONCLUSIONS Our findings identified TCR repertoire features specific for smokers and IBD patients, particularly when signs of disease activity were present. These findings are a first step towards the application of TCR repertoire analyses as a valuable tool to characterise inflammatory bowel diseases and to identify potential biomarkers and true disease causes.
Collapse
MESH Headings
- Adult
- C-Reactive Protein/analysis
- Colitis, Ulcerative/diagnosis
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/physiopathology
- Crohn Disease/diagnosis
- Crohn Disease/immunology
- Crohn Disease/physiopathology
- Denmark
- Feces
- Female
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Germany
- Humans
- Leukocyte L1 Antigen Complex/analysis
- Male
- Patient Acuity
- Receptors, Antigen, T-Cell, alpha-beta/blood
- Sequence Analysis, DNA
- Smoking/immunology
- Twins, Monozygotic
Collapse
Affiliation(s)
- Elisa Rosati
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Mikhail V Pogorelyy
- Laboratory of comparative and functional genomic, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Department of Translational Medicine, Pirogov Russian National Research Medical University [RNRMU], Moscow, Russian Federation
| | - C Marie Dowds
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Frederik T Moller
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Signe B Sorensen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yuri B Lebedev
- Laboratory of comparative and functional genomic, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Norbert Frey
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martina E Spehlmann
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- IRS-Center Sønderjylland, University of Southern Denmark, Odense, Denmark
| | - Ilgar Z Mamedov
- Laboratory of comparative and functional genomic, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Department of Translational Medicine, Pirogov Russian National Research Medical University [RNRMU], Moscow, Russian Federation
- Laboratory of molecular biology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Corresponding author: Andre Franke, Dr. rer. nat.., Institute of Clinical Molecular Biology,Christian-Albrechts-University of Kiel,Rosalind-Franklin-Str. 12,D- 24105 Kiel,Germany. Tel,: 49 179 485 1891;
| |
Collapse
|
30
|
Schamschula E, Hagmann W, Assenov Y, Hedtfeld S, Farag AK, Roesner LM, Wiehlmann L, Stanke F, Fischer S, Risch A, Tümmler B. Immunotyping of clinically divergent p.Phe508del homozygous monozygous cystic fibrosis twins. J Cyst Fibros 2020; 20:149-153. [PMID: 32540173 DOI: 10.1016/j.jcf.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/08/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Blood of the three clinically most concordant and most discordant p.Phe508del homozygous monozygous twin pairs of the European Cystic Fibrosis Twin and Sibling Study was examined in two postzygotic attributes that generate diversity between monozygous twins, i.e. the repertoire of the CDR3 region of the T-cell receptor ß chains and the DNA methylation at 450,000 genomic CpG sites. Methylation patterns in peripheral blood of twins changed at selected cell-type-independent positions and the immune cells of the twins showed individual profiles of the T cell receptor repertoire reflecting the plasticity of the immune system of genetically identical humans with cystic fibrosis to cope with the environment.
Collapse
Affiliation(s)
- Esther Schamschula
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Wolfgang Hagmann
- Division of Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
| | - Yassen Assenov
- Division of Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
| | - Silke Hedtfeld
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ahmed K Farag
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Frauke Stanke
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Sebastian Fischer
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Angela Risch
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria; Division of Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
31
|
Zhu K, He C, Liu SQ, Qu M, Xie T, Yang X, Lei L, Zhou X, Shi L, Zhang D, Cheng Y, Sun Y, Zheng H, Shen X, Li Q, Jiang N, Zhang B. Lineage Tracking the Generation of T Regulatory Cells From Microbial Activated T Effector Cells in Naïve Mice. Front Immunol 2020; 10:3109. [PMID: 32010147 PMCID: PMC6978744 DOI: 10.3389/fimmu.2019.03109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for the maintenance of gut homeostasis by suppressing conventional CD4+ helper T cells (Tconvs) that are activated by microbial antigens. Although thymus is the major source of the peripheral Tregs, peripheral conversion from Tconvs to Tregs have also been shown to occur under various experimental conditions. It remains less clear about the frequency of lineage conversion from Tconvs to Tregs in naïve animals. Here we used a newly established reporter system to track a group of post expansion Tregs (eTregs), which exhibited a stronger suppressive ability than the non-lineage marked Tregs. Notably, microbial antigens are the primary driver for the formation of eTregs. TCR repertoire analysis of Peyer's patch T cells revealed that eTregs are clonally related to Tconvs, but not to the non-lineage tracked Tregs. Adoptive transfer of Tconvs into lymphopenic hosts demonstrated a conversion from Tconvs to eTregs. Thus, our lineage tracking method was able to capture the lineage conversion from microbial activated effector T cells to Tregs in naïve animals. This study suggests that a fraction of clonally activated T cells from the natural T cell repertoire exhibits lineage conversion to Tregs in response to commensal microbes under homeostatic conditions.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Chenfeng He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Si-Qi Liu
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Mingjuan Qu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.,College of Life Sciences, Ludong University, Yantai, China
| | - Tao Xie
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yanbin Cheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yae Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaonan Shen
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qijing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Heikkilä N, Vanhanen R, Yohannes DA, Saavalainen P, Meri S, Jokiranta TS, Jarva H, Mattila IP, Hamm D, Sormunen S, Saramäki J, Arstila TP. Identifying the inheritable component of human thymic T cell repertoire generation in monozygous twins. Eur J Immunol 2020; 50:748-751. [DOI: 10.1002/eji.201948404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/04/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Nelli Heikkilä
- Research Programs UnitTranslational ImmunologyUniversity of Helsinki Helsinki Finland
- MedicumDepartment of Bacteriology and ImmunologyUniversity of Helsinki Helsinki Finland
| | - Reetta Vanhanen
- Research Programs UnitTranslational ImmunologyUniversity of Helsinki Helsinki Finland
- MedicumDepartment of Bacteriology and ImmunologyUniversity of Helsinki Helsinki Finland
| | - Dawit A. Yohannes
- Research Programs UnitTranslational ImmunologyUniversity of Helsinki Helsinki Finland
- MedicumDepartment of Medical and Clinical GeneticsUniversity of Helsinki Helsinki Finland
| | - Päivi Saavalainen
- Research Programs UnitTranslational ImmunologyUniversity of Helsinki Helsinki Finland
- MedicumDepartment of Medical and Clinical GeneticsUniversity of Helsinki Helsinki Finland
| | - Seppo Meri
- Research Programs UnitTranslational ImmunologyUniversity of Helsinki Helsinki Finland
- MedicumDepartment of Bacteriology and ImmunologyUniversity of Helsinki Helsinki Finland
| | - T. Sakari Jokiranta
- MedicumDepartment of Bacteriology and ImmunologyUniversity of Helsinki Helsinki Finland
| | - Hanna Jarva
- MedicumDepartment of Bacteriology and ImmunologyUniversity of Helsinki Helsinki Finland
| | - Ilkka P. Mattila
- Department of Pediatric Cardiac and Transplantation SurgeryHospital for Children and AdolescentsHelsinki University Central Hospital Helsinki Finland
| | - David Hamm
- Adaptive Biotechnologies Seattle Washington
| | | | - Jari Saramäki
- Department of Computer ScienceAalto University Finland
| | - T. Petteri Arstila
- Research Programs UnitTranslational ImmunologyUniversity of Helsinki Helsinki Finland
- MedicumDepartment of Bacteriology and ImmunologyUniversity of Helsinki Helsinki Finland
| |
Collapse
|
33
|
Tanno H, Gould TM, McDaniel JR, Cao W, Tanno Y, Durrett RE, Park D, Cate SJ, Hildebrand WH, Dekker CL, Tian L, Weyand CM, Georgiou G, Goronzy JJ. Determinants governing T cell receptor α/β-chain pairing in repertoire formation of identical twins. Proc Natl Acad Sci U S A 2020; 117:532-540. [PMID: 31879353 PMCID: PMC6955297 DOI: 10.1073/pnas.1915008117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The T cell repertoire in each individual includes T cell receptors (TCRs) of enormous sequence diversity through the pairing of diverse TCR α- and β-chains, each generated by somatic recombination of paralogous gene segments. Whether the TCR repertoire contributes to susceptibility to infectious or autoimmune diseases in concert with disease-associated major histocompatibility complex (MHC) polymorphisms is unknown. Due to a lack in high-throughput technologies to sequence TCR α-β pairs, current studies on whether the TCR repertoire is shaped by host genetics have so far relied only on single-chain analysis. Using a high-throughput single T cell sequencing technology, we obtained the largest paired TCRαβ dataset so far, comprising 965,523 clonotypes from 15 healthy individuals including 6 monozygotic twin pairs. Public TCR α- and, to a lesser extent, TCR β-chain sequences were common in all individuals. In contrast, sharing of entirely identical TCRαβ amino acid sequences was very infrequent in unrelated individuals, but highly increased in twins, in particular in CD4 memory T cells. Based on nucleotide sequence identity, a subset of these shared clonotypes appeared to be the progeny of T cells that had been generated during fetal development and had persisted for more than 50 y. Additional shared TCRαβ in twins were encoded by different nucleotide sequences, implying that genetic determinants impose structural constraints on thymic selection that favor the selection of TCR α-β pairs with entire sequence identities.
Collapse
Affiliation(s)
- Hidetaka Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Timothy M Gould
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| | - Yuri Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Russell E Durrett
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Daechan Park
- Department of Life Sciences, Ajou University, Suwon 16499, South Korea
| | - Steven J Cate
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Cornelia L Dekker
- Department of Pediatrics (Infectious Diseases), Stanford University School of Medicine, Stanford, CA 94305
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712;
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| |
Collapse
|
34
|
Zvyagin IV, Tsvetkov VO, Chudakov DM, Shugay M. An overview of immunoinformatics approaches and databases linking T cell receptor repertoires to their antigen specificity. Immunogenetics 2019; 72:77-84. [PMID: 31741011 DOI: 10.1007/s00251-019-01139-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
Recent advances in molecular and bioinformatic methods have greatly improved our ability to study the formation of an adaptive immune response towards foreign pathogens, self-antigens, and cancer neoantigens. T cell receptors (TCR) are the key players in this process that recognize peptides presented by major histocompatibility complex (MHC). Owing to the huge diversity of both TCR sequence variants and peptides they recognize, accumulation and complex analysis of large amounts of TCR-antigen specificity data is required for understanding the structure and features of adaptive immune responses towards pathogens, vaccines, cancer, as well as autoimmune responses. In the present review, we summarize recent efforts on gathering and interpreting TCR-antigen specificity data and outline the critical role of tighter integration with other immunoinformatics data sources that include epitope MHC restriction, TCR repertoire structure models, and TCR/peptide/MHC structural data. We suggest that such integration can lead to the ability to accurately annotate individual TCR repertoires, efficiently estimate epitope and neoantigen immunogenicity, and ultimately, in silico identify TCRs specific to yet unstudied antigens and predict self-peptides related to autoimmunity.
Collapse
Affiliation(s)
- Ivan V Zvyagin
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vasily O Tsvetkov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M Chudakov
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail Shugay
- Pirogov Russian Medical State University, Moscow, Russia.
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
35
|
No difference in TCRβ repertoire of CD4+ naive T cell between patients with primary biliary cholangitis and healthy control subjects. Mol Immunol 2019; 116:167-173. [PMID: 31698163 DOI: 10.1016/j.molimm.2019.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 08/14/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023]
Abstract
Primary biliary cholangitis (PBC) is considered as a model of organ-specific autoimmune disease based on the serological findings of anti-mitochondrial antibodies (AMA), infiltrates of T cells, and selective destruction of epithelial cells in the liver. T-cell-mediated autoimmune mechanisms are considered to be involved in the pathogenesis of primary biliary cholangitis (PBC). In this context, we used a combination of multiplex-PCR, Illumina sequencing and IMGT/HighV-QUEST for a standardized analysis of the T cell receptor β-chain (TCRβ) repertoire of CD4+naive T cells in PBC patients compared with healthy volunteers. Nonfunctional TCRs were used to study the pre-selection TCR repertoire, as they are not subject to functional selection (positive and negative selection). Functional TCRs were used to study the post-selection TCR repertoire. The results showed that there was not significant difference between PBC patients and healthy volunteers in TCRβ diversity, CDR3 length distributions, degree of sequence sharing, and usage frequency of TRBV and TRBJ segments, no matter in Pre-selection or Post-selection repertoires. In conclusion, early events in thymic T cell development and repertoire generation are not abnormality in PBC patients. The breakdown of self-tolerance to autoantigen may be derived from other immunological dysregulation or environmental agents.
Collapse
|
36
|
Thakkar N, Bailey-Kellogg C. Balancing sensitivity and specificity in distinguishing TCR groups by CDR sequence similarity. BMC Bioinformatics 2019; 20:241. [PMID: 31092185 PMCID: PMC6521430 DOI: 10.1186/s12859-019-2864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Repertoire sequencing is enabling deep explorations into the cellular immune response, including the characterization of commonalities and differences among T cell receptor (TCR) repertoires from different individuals, pathologies, and antigen specificities. In seeking to understand the generality of patterns observed in different groups of TCRs, it is necessary to balance how well each pattern represents the diversity among TCRs from one group (sensitivity) vs. how many TCRs from other groups it also represents (specificity). The variable complementarity determining regions (CDRs), particularly the third CDRs (CDR3s) interact with major histocompatibility complex (MHC)-presented epitopes from putative antigens, and thus encode the determinants of recognition. Results We here systematically characterize the predictive power that can be obtained from CDR3 sequences, using representative, readily interpretable methods for evaluating CDR sequence similarity and then clustering and classifying sequences based on similarity. An initial analysis of CDR3s of known structure, clustered by structural similarity, helps calibrate the limits of sequence diversity among CDRs that might have a common mode of interaction with presented epitopes. Subsequent analyses demonstrate that this same range of sequence similarity strikes a favorable specificity/sensitivity balance in distinguishing twins from non-twins based on overall CDR3 repertoires, classifying CDR3 repertoires by antigen specificity, and distinguishing general pathologies. Conclusion We conclude that within a fairly broad range of sequence similarity, matching CDR3 sequences are likely to share specificities. Electronic supplementary material The online version of this article (10.1186/s12859-019-2864-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neerja Thakkar
- Department of Computer Science, Dartmouth, Hanover, NH, USA
| | | |
Collapse
|
37
|
La Cava A. Human T cell repertoire: what happens in thymus does not stay in thymus. J Clin Invest 2019; 129:2195-2197. [PMID: 31081801 DOI: 10.1172/jci128371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The T cell receptor (TCR) repertoire is diverse, thus allowing recognition of a wide range of pathogens by T cells. In humans, the study of the formation of TCR repertoires is problematic because of the difficulty in performing investigations in vivo. In this issue of the JCI, Khosravi-Maharlooei and colleagues describe a new humanized mouse model that allows direct investigations on this topic. Using high-throughput and single-cell TCR-complementarity-determining region 3 β (TCR-CDR3β) sequencing, the authors were able to demonstrate that human thymic selection is a major driver of TCR sequence sharing, also implicating a preferential selection of shared cross-reactive CDR3βs during repertoire formation.
Collapse
|
38
|
Xu J, Jo J. Broad cross-reactivity of the T-cell repertoire achieves specific and sufficiently rapid target searching. J Theor Biol 2019; 466:119-127. [PMID: 30699327 DOI: 10.1016/j.jtbi.2019.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/20/2018] [Accepted: 01/24/2019] [Indexed: 11/29/2022]
Abstract
The molecular recognition of T-cell receptors is the hallmark of the adaptive immunity. Given the finiteness of the T-cell repertoire, individual T-cell receptors are necessary to be cross-reactive to multiple antigenic peptides. In this study, we quantify the variability of the cross-reactivity by using a string model that estimates the binding affinity between two sequences of amino acids. We examine sequences of 10,000 human T-cell receptors and 10,000 antigenic peptides, and obtain a full spectrum of cross-reactivity of the receptor-peptide binding. Then, we find that the cross-reactivity spectrum is broad. Some T-cells are reactive to 1000 peptides, but some T-cells are reactive to only one or two peptides. Since the degree of cross-reactivity has a correlation with the (un)binding affinity of receptors, we further investigate how the broad cross-reactivity affects the target searching of T-cells. High cross-reactive T-cells may not require many trials for searching correct targets, but they may spend long time to unbind from incorrect targets. In contrast, low cross-reactive T-cells may not spend long time to ignore incorrect targets, but they require many trials for screening correct targets. We evaluate this hypothesis, and show that the broad cross-reactivity of the natural T-cell repertoire can balance the trade-off between the rapid screening and unbinding penalty.
Collapse
Affiliation(s)
- Jin Xu
- Asia Pacific Center for Theoretical Physics (APCTP), 67 Cheongam-ro, Pohang, 37673, South Korea; Department of Physics, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, South Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics (APCTP), 67 Cheongam-ro, Pohang, 37673, South Korea; Department of Physics, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, South Korea; School of Computational Sciences, Korea Institute for Advanced Study (KIAS), 85 Hoegiro, Seoul, 02455, South Korea; Department of Statistics, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, South Korea.
| |
Collapse
|
39
|
Khosravi-Maharlooei M, Obradovic A, Misra A, Motwani K, Holzl M, Seay HR, DeWolf S, Nauman G, Danzl N, Li H, Ho SH, Winchester R, Shen Y, Brusko TM, Sykes M. Crossreactive public TCR sequences undergo positive selection in the human thymic repertoire. J Clin Invest 2019; 129:2446-2462. [PMID: 30920391 DOI: 10.1172/jci124358] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated human T-cell repertoire formation using high throughput TCRβ CDR3 sequencing in immunodeficient mice receiving human hematopoietic stem cells (HSCs) and human thymus grafts. Replicate humanized mice generated diverse and highly divergent repertoires. Repertoire narrowing and increased CDR3β sharing was observed during thymocyte selection. While hydrophobicity analysis implicated self-peptides in positive selection of the overall repertoire, positive selection favored shorter shared sequences that had reduced hydrophobicity at positions 6 and 7 of CDR3βs, suggesting weaker interactions with self-peptides than unshared sequences, possibly allowing escape from negative selection. Sharing was similar between autologous and allogeneic thymi and occurred between different cell subsets. Shared sequences were enriched for allo-crossreactive CDR3βs and for Type 1 diabetes-associated autoreactive CDR3βs. Single-cell TCR-sequencing showed increased sharing of CDR3αs compared to CDR3βs between mice. Our data collectively implicate preferential positive selection for shared human CDR3βs that are highly cross-reactive. While previous studies suggested a role for recombination bias in producing "public" sequences in mice, our study is the first to demonstrate a role for thymic selection. Our results implicate positive selection for promiscuous TCRβ sequences that likely evade negative selection, due to their low affinity for self-ligands, in the abundance of "public" human TCRβ sequences.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Aditya Misra
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Markus Holzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Susan DeWolf
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Haowei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA
| | | | - Yufeng Shen
- Center for Computational Biology and Bioinformatics, and
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, New York, USA.,Department of Surgery, Columbia University Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
40
|
Penter L, Dietze K, Ritter J, Lammoglia Cobo MF, Garmshausen J, Aigner F, Bullinger L, Hackstein H, Wienzek-Lischka S, Blankenstein T, Hummel M, Dornmair K, Hansmann L. Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer. Oncoimmunology 2019; 8:e1586409. [PMID: 31069154 PMCID: PMC6492980 DOI: 10.1080/2162402x.2019.1586409] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
The degree and type of T cell infiltration influence rectal cancer prognosis regardless of classical tumor staging. We asked whether clonal expansion and tumor infiltration are restricted to selected-phenotype T cells; which clones are accessible in peripheral blood; and what the spatial distribution of their target antigens is. From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and T cells from unaffected rectum mucosa (TUM) using 13-parameter FACS single cell index sorting. TCRαβ sequences, cytokine, and transcription factor expression were determined with single cell sequencing. TILs and TUM occupied distinct phenotype compartments and clonal expansion predominantly occurred within CD8+ T cells. Expanded TIL clones identified by paired TCRαβ sequencing and exclusively detectable in the tumor showed characteristic PD-1 and TIM-3 expression. TCRβ repertoire sequencing identified 49 out of 149 expanded TIL clones circulating in peripheral blood and 41 (84%) of these were PD-1- TIM-3-. To determine whether clonal expansion of predominantly tumor-infiltrating T cell clones was driven by antigens uniquely presented in tumor tissue, selected TCRs were reconstructed and incubated with cells isolated from corresponding tumor or unaffected mucosa. The majority of clones exclusively detected in the tumor recognized antigen at both sites. In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones that either i) predominantly infiltrate the tumor, ii) predominantly infiltrate the unaffected mucosa, or iii) overlap between tumor, unaffected mucosa, and peripheral blood. However, the target antigens of predominantly tumor-infiltrating TIL clones do not appear to be restricted to tumor tissue.
Collapse
Affiliation(s)
- Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Kerstin Dietze
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Julia Ritter
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Fernanda Lammoglia Cobo
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Josefin Garmshausen
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| | - Felix Aigner
- Department of Surgery, Charité - Universitätsmedizin Berlin (CCM and CVK), Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| | - Holger Hackstein
- Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Sandra Wienzek-Lischka
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Blankenstein
- Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany.,Institute for Immunology Charité - Universitätsmedizin Berlin, Berlin, Germany.,Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Berlin, Germany
| | - Michael Hummel
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital of the LMU, Munich, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| |
Collapse
|
41
|
Hou X, Zeng P, Zhang X, Chen J, Liang Y, Yang J, Yang Y, Liu X, Diao H. Shorter TCR β-Chains Are Highly Enriched During Thymic Selection and Antigen-Driven Selection. Front Immunol 2019; 10:299. [PMID: 30863407 PMCID: PMC6399399 DOI: 10.3389/fimmu.2019.00299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/05/2019] [Indexed: 02/05/2023] Open
Abstract
The adaptive immune system uses several strategies to generate a repertoire of T cell receptors (TCR) with sufficient diversity to recognize the universe of potential pathogens. However, it remains unclear how differences in the T cell receptor (TCR) contribute to heterogeneity in T cell state. In this study, we used polychromatic flow cytometry to isolate highly pure CD4+/CD8+ naive and memory T cells, and applied deep sequencing to characterize corresponding TCR β-chain (TCRβ) complementary-determining region 3 (CDR3) repertoires. We find that shorter TCRβ CDR3s with fewer insertions were highly enriched during thymic selection. Antigen-experienced T cells (memory T cells) harbor shorter CDR3s vs. naive T cells. Moreover, the public TCRβ CDR3 clonotypes within cell subsets or interindividual tend to have shorter CDR3 length and a significantly larger size compared with "private" clonotypes. Taken together, shorter CDR3s highly enriched during thymic selection and antigen-driven selection, and further enriched in public T-cell responses. These results indicated that it may be evolutionary pressures drive short CDR3s to recognize most of antigen in nature.
Collapse
Affiliation(s)
- Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Liu
- College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Bradley P, Thomas PG. Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol 2019; 37:547-570. [PMID: 30699000 DOI: 10.1146/annurev-immunol-042718-041757] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.
Collapse
Affiliation(s)
- Philip Bradley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; .,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
| |
Collapse
|
43
|
Pogorelyy MV, Minervina AA, Touzel MP, Sycheva AL, Komech EA, Kovalenko EI, Karganova GG, Egorov ES, Komkov AY, Chudakov DM, Mamedov IZ, Mora T, Walczak AM, Lebedev YB. Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins. Proc Natl Acad Sci U S A 2018; 115:12704-12709. [PMID: 30459272 PMCID: PMC6294963 DOI: 10.1073/pnas.1809642115] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
T cell receptor (TCR) repertoire data contain information about infections that could be used in disease diagnostics and vaccine development, but extracting that information remains a major challenge. Here we developed a statistical framework to detect TCR clone proliferation and contraction from longitudinal repertoire data. We applied this framework to data from three pairs of identical twins immunized with the yellow fever vaccine. We identified 600 to 1,700 responding TCRs in each donor and validated them using three independent assays. While the responding TCRs were mostly private, albeit with higher overlap between twins, they could be well-predicted using a classifier based on sequence similarity. Our method can also be applied to samples obtained postinfection, making it suitable for systematic discovery of new infection-specific TCRs in the clinic.
Collapse
Affiliation(s)
- Mikhail V Pogorelyy
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasia A Minervina
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Maximilian Puelma Touzel
- Laboratoire de Physique Théorique, CNRS, Sorbonne Université, École Normale Supérieure (PSL), 75005 Paris, France
| | - Anastasiia L Sycheva
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Ekaterina A Komech
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena I Kovalenko
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Galina G Karganova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides, 142782 Moscow, Russia
- Department of Virology, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Evgeniy S Egorov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander Yu Komkov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Dmitriy M Chudakov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Center for Data-Intensive Biomedicine and Biotechnology, Skoltech, 121205 Moscow, Russia
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Ilgar Z Mamedov
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Thierry Mora
- Laboratoire de Physique Statistique, CNRS, Sorbonne Université, Université Paris-Diderot, École Normale Supérieure (PSL), 75005 Paris, France;
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, CNRS, Sorbonne Université, École Normale Supérieure (PSL), 75005 Paris, France;
| | - Yuri B Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia;
- Biological Faculty, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
44
|
Jin YB, Luo W, Zhang GY, Lin KR, Cui JH, Chen XP, Pan YM, Mao XF, Tang J, Wang YJ. TCR repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma. Cancer Immunol Immunother 2018; 67:1719-1730. [PMID: 30155576 PMCID: PMC11028245 DOI: 10.1007/s00262-018-2237-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022]
Abstract
The T-cell immune responses in nasopharyngeal carcinoma patients have been extensively investigated recently for designing adoptive immunotherapy or immune checkpoint blockade therapy. However, the distribution characteristics of T cells associated with NPC pathogenesis are largely unknown. We performed deep sequencing for TCR repertoire profiling on matched tumor/adjacent normal tissue from 15 NPC patients and peripheral blood from 39 NPC patients, 39 patients with other nasopharyngeal diseases, and 33 healthy controls. We found that a lower diversity of TCR repertoire in tumors than paired tissues or a low similarity between the paired tissues was associated with a poor prognosis in NPC. A more diverse TCR repertoire was identified in the peripheral blood of NPC patients relative to the controls; this was related to a significant decrease in the proportion of high-frequency TCR clones in NPC. Higher diversity in peripheral blood of NPC patients was associated with a worse prognosis. Due to the peculiarity of the Vβ gene usage patterns in the peripheral blood of NPC patients, 15 Vβ genes were selected to distinguish NPC patients from controls by the least absolute shrinkage and selection operator analysis. We identified 11 clonotypes shared by tumors and peripheral blood samples from different NPC patients, defined as "NPC-associated" that might have value in adoptive immunotherapy. In conclusion, we here report the systematic and overall characteristics of the TCR repertoire in tumors, adjacent normal tissues, and peripheral blood of NPC patients. The data obtained may be relevant to future clinical studies in the setting of immunotherapy for NPC patients.
Collapse
Affiliation(s)
- Ya-Bin Jin
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Wei Luo
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China.
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China.
| | - Guo-Yi Zhang
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Cancer Center, Foshan Hospital, Sun Yat-sen University, Foshan, 528000, Guangdong, China
| | - Kai-Rong Lin
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Jin-Huan Cui
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Xiang-Ping Chen
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Ying-Ming Pan
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Xiao-Fan Mao
- Foshan Hospital, Clinical Research Institute, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
| | - Jun Tang
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China
- Otolaryngology Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, 528000, Guangdong, China
| | - Yue-Jian Wang
- Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, #81, North of Lingnan Ave, Foshan, 528000, Guangdong, China.
- Otolaryngology Head and Neck Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, 528000, Guangdong, China.
| |
Collapse
|
45
|
The landscape and diagnostic potential of T and B cell repertoire in Immunoglobulin A Nephropathy. J Autoimmun 2018; 97:100-107. [PMID: 30385082 DOI: 10.1016/j.jaut.2018.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 01/19/2023]
Abstract
Immunoglobulin A Nephropathy (IgAN) is the most common glomerulonephritis worldwide. The pathologic hallmark of IgAN is immune complex deposited in glomerular mesangium, which induces inflammation and affects the kidney's normal functions. The exact pathogenesis of IgAN, however, remains obscure. Further, in current clinical practice, the diagnosis relies on needle biopsy of renal tissue. Therefore, a non-invasive method for diagnosis and prognosis surveillance of the disease is highly desirable. To this end, we investigated the T cell receptor beta chain (TCRB) and immunoglobulin heavy chain (IGH) repertoire in circulating lymphocytes and compared them with kidney infiltrating lymphocytes using immune repertoire high throughput sequencing. We found that some features of TCRB and IGH in renal tissues were remarkably different from that in the blood, including decreased repertoire diversity, increased IgA and IgG frequency, and more antigen-experienced B cells. The complementarity-determining region 3 (CDR3) length of circulating TCRB and IGH in IgAN patients was significantly shorter than that in healthy controls, which is the result of both VDJ rearrangement and clonal selection. The IgA1 frequency in the blood of IgAN patients is significantly higher than that in other Nephropathy (NIgAN) patients and healthy control. Importantly we identified a set of TCRB and IGH clones, which can be used to distinguish IgAN from NIgAN and healthy controls with high accuracy. These results indicated that the TCRB and IGH repertoire can potentially serve as non-invasive biomarkers for the diagnosis of IgAN. The characteristics of the kidney infiltrating and circulating lymphocytes repertoires shed light on IgAN detection, treatment and surveillance.
Collapse
|
46
|
de Jong A, Jabbari A, Dai Z, Xing L, Lee D, Li MM, Duvic M, Hordinsky M, Norris DA, Price V, Mackay-Wiggan J, Clynes R, Christiano AM. High-throughput T cell receptor sequencing identifies clonally expanded CD8+ T cell populations in alopecia areata. JCI Insight 2018; 3:121949. [PMID: 30282836 DOI: 10.1172/jci.insight.121949] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/29/2018] [Indexed: 01/04/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune disease in which cytotoxic T cells specifically target growing hair follicles. We used high-throughput TCR sequencing in the C3H/HeJ mouse model of AA and in human AA patients to gain insight into pathogenic T cell populations and their dynamics, which revealed clonal CD8+ T cell expansions in lesional skin. In the C3H/HeJ model, we observed interindividual sharing of TCRβ chain protein sequences, which strongly supports a model of antigenic drive in AA. The overlap between the lesional TCR repertoire and a population of CD8+NKG2D+ T cells in skin-draining lymph nodes identified this subset as pathogenic effectors. In AA patients, treatment with the oral JAK inhibitor tofacitinib resulted in a decrease in clonally expanded CD8+ T cells in the scalp but also revealed that many expanded lesional T cell clones do not completely disappear from either skin or blood during treatment with tofacitinib, which may explain in part the relapse of disease after stopping treatment.
Collapse
Affiliation(s)
| | | | | | - Luzhou Xing
- Department of Pathology, Columbia University, New York, New York, USA
| | | | | | - Madeleine Duvic
- Department of Dermatology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria Hordinsky
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - David A Norris
- Department of Dermatology, University of Colorado, Denver, Colorado, USA
| | - Vera Price
- Department of Dermatology, UCSF, San Francisco, California, USA
| | | | | | - Angela M Christiano
- Department of Dermatology and.,Department of Genetics and Development, Columbia University, New York, New York, USA
| |
Collapse
|
47
|
Venturi V, Thomas PG. The expanding role of systems immunology in decoding the T cell receptor repertoire. ACTA ACUST UNITED AC 2018; 12:37-45. [PMID: 31106281 DOI: 10.1016/j.coisb.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cells play a crucial role in the immune system's defense against many infectious diseases, including persistent infections for which no effective vaccines currently exist. The T cell component of the adaptive immune system is highly complex involving a constantly evolving landscape of various inter-related T cell populations. These T cell populations are characterized by their phenotypic and functional properties as well as the collection, or repertoire, of T cell receptors (TCR) that mediate T cell recognition of antigenic peptides derived from pathogens. Understanding the various processes and factors that impact the development and evolution of the broader T cell repertoire available to recognize and respond to pathogens and the characteristics of antigen-experienced T cell repertoires associated with effective immune control of pathogens is critical to the rational design of T cell-based vaccines and therapies. In this article we discuss, using examples of recent research, the promise that systems immunology approaches, involving quantitative analysis and mathematical and computational modeling of immunological data, hold for decoding the complex TCR repertoire system in the current era of advancing technologies.
Collapse
Affiliation(s)
- Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
48
|
Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, Madjovski A, Ruhrmann S, Faigle W, Frauenknecht K, Pinilla C, Santos R, Hammer C, Ortiz Y, Opitz L, Grönlund H, Rogler G, Boyman O, Reynolds R, Lutterotti A, Khademi M, Olsson T, Piehl F, Sospedra M, Martin R. Memory B Cells Activate Brain-Homing, Autoreactive CD4 + T Cells in Multiple Sclerosis. Cell 2018; 175:85-100.e23. [PMID: 30173916 PMCID: PMC6191934 DOI: 10.1016/j.cell.2018.08.011] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis is an autoimmune disease that is caused by the interplay of genetic, particularly the HLA-DR15 haplotype, and environmental risk factors. How these etiologic factors contribute to generating an autoreactive CD4+ T cell repertoire is not clear. Here, we demonstrate that self-reactivity, defined as “autoproliferation” of peripheral Th1 cells, is elevated in patients carrying the HLA-DR15 haplotype. Autoproliferation is mediated by memory B cells in a HLA-DR-dependent manner. Depletion of B cells in vitro and therapeutically in vivo by anti-CD20 effectively reduces T cell autoproliferation. T cell receptor deep sequencing showed that in vitro autoproliferating T cells are enriched for brain-homing T cells. Using an unbiased epitope discovery approach, we identified RASGRP2 as target autoantigen that is expressed in the brain and B cells. These findings will be instrumental to address important questions regarding pathogenic B-T cell interactions in multiple sclerosis and possibly also to develop novel therapies. Autoproliferation of CD4+ T cells and B cells is involved in multiple sclerosis The main genetic factor of MS, HLA-DR15, plays a central role in autoproliferation Memory B cells drive autoproliferation of Th1 brain-homing CD4+ T cells Autoproliferating T cells recognize antigens expressed in B cells and brain lesions
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Faiez Al Nimer
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Jian Wang
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Verena Lentsch
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Raquel Planas
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Aleksandar Madjovski
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Sabrina Ruhrmann
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Katrin Frauenknecht
- Institute of Neuropathology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies (TPIMS), San Diego, CA, USA
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies (TPIMS), Port St. Lucie, FL, USA
| | - Christian Hammer
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Yaneth Ortiz
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Hans Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Richard Reynolds
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Andreas Lutterotti
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
49
|
Elhanati Y, Sethna Z, Callan CG, Mora T, Walczak AM. Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination. Immunol Rev 2018; 284:167-179. [PMID: 29944757 PMCID: PMC6033145 DOI: 10.1111/imr.12665] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the extreme diversity of T-cell repertoires, many identical T-cell receptor (TCR) sequences are found in a large number of individual mice and humans. These widely shared sequences, often referred to as "public," have been suggested to be over-represented due to their potential immune functionality or their ease of generation by V(D)J recombination. Here, we show that even for large cohorts, the observed degree of sharing of TCR sequences between individuals is well predicted by a model accounting for the known quantitative statistical biases in the generation process, together with a simple model of thymic selection. Whether a sequence is shared by many individuals is predicted to depend on the number of queried individuals and the sampling depth, as well as on the sequence itself, in agreement with the data. We introduce the degree of publicness conditional on the queried cohort size and the size of the sampled repertoires. Based on these observations, we propose a public/private sequence classifier, "PUBLIC" (Public Universal Binary Likelihood Inference Classifier), based on the generation probability, which performs very well even for small cohort sizes.
Collapse
Affiliation(s)
- Yuval Elhanati
- Joseph Henry LaboratoriesPrinceton UniversityPrincetonNJUSA
| | - Zachary Sethna
- Joseph Henry LaboratoriesPrinceton UniversityPrincetonNJUSA
| | | | - Thierry Mora
- Laboratoire de physique statistiqueCNRSSorbonne UniversitéUniversité Paris‐Diderot, and École Normale Supérieure (PSL University)ParisFrance
| | - Aleksandra M. Walczak
- Laboratoire de physique théoriqueCNRSSorbonne Université, and École Normale Supérieure (PSL University)ParisFrance
| |
Collapse
|
50
|
|