1
|
Xin H, Wang Y, Zhang W, Bao Y, Neumann P, Ning Y, Zhang T, Wu Y, Jiang N, Jiang J, Xi M. Celine, a long interspersed nuclear element retrotransposon, colonizes in the centromeres of poplar chromosomes. PLANT PHYSIOLOGY 2024; 195:2787-2798. [PMID: 38652695 PMCID: PMC11288735 DOI: 10.1093/plphys/kiae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat centromeric retrotransposon of maize (CRM), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here, we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. In contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared with the CRM elements. Using a phylogenetically guided approach, we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.
Collapse
Affiliation(s)
- Haoyang Xin
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yiduo Wang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenli Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice 37005, Czech Republic
| | - Yihang Ning
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yufeng Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Mengli Xi
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Pei D, Yu X, Fu W, Ma X, Fang J. The evolution and formation of centromeric repeats analysis in Vitis vinifera. PLANTA 2024; 259:99. [PMID: 38522063 DOI: 10.1007/s00425-024-04374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION Six grape centromere-specific markers for cytogenetics were mined by combining genetic and immunological assays, and the possible evolution mechanism of centromeric repeats was analyzed. Centromeric histone proteins are functionally conserved; however, centromeric repetitive DNA sequences may represent considerable diversity in related species. Therefore, studying the characteristics and structure of grape centromere repeat sequences contributes to a deeper understanding of the evolutionary process of grape plants, including their origin and mechanisms of polyploidization. Plant centromeric regions are mainly composed of repetitive sequences, including SatDNA and transposable elements (TE). In this research, the characterization of centromere sequences in the whole genome of grapevine (Vitis vinifera L.) has been conducted. Five centromeric tandem repeat sequences (Vv1, Vv2, Vv5, Vv6, and Vv8) and one long terminal repeat (LTR) sequence Vv24 were isolated. These sequences had different centromeric distributions, which indicates that grape centromeric sequences may undergo rapid evolution. The existence of extrachromosomal circular DNA (eccDNA) and gene expression in CenH3 subdomain region may provide various potential mechanisms for the generation of new centromeric regions.
Collapse
Affiliation(s)
- Dan Pei
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xue Yu
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weihong Fu
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuhui Ma
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| |
Collapse
|
3
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
4
|
Packiaraj J, Thakur J. DNA satellite and chromatin organization at mouse centromeres and pericentromeres. Genome Biol 2024; 25:52. [PMID: 38378611 PMCID: PMC10880262 DOI: 10.1186/s13059-024-03184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Centromeres are essential for faithful chromosome segregation during mitosis and meiosis. However, the organization of satellite DNA and chromatin at mouse centromeres and pericentromeres is poorly understood due to the challenges of assembling repetitive genomic regions. RESULTS Using recently available PacBio long-read sequencing data from the C57BL/6 strain, we find that contrary to the previous reports of their homogeneous nature, both centromeric minor satellites and pericentromeric major satellites exhibit a high degree of variation in sequence and organization within and between arrays. While most arrays are continuous, a significant fraction is interspersed with non-satellite sequences, including transposable elements. Using chromatin immunoprecipitation sequencing (ChIP-seq), we find that the occupancy of CENP-A and H3K9me3 chromatin at centromeric and pericentric regions, respectively, is associated with increased sequence enrichment and homogeneity at these regions. The transposable elements at centromeric regions are not part of functional centromeres as they lack significant CENP-A enrichment. Furthermore, both CENP-A and H3K9me3 nucleosomes occupy minor and major satellites spanning centromeric-pericentric junctions and a low yet significant amount of CENP-A spreads locally at centromere junctions on both pericentric and telocentric sides. Finally, while H3K9me3 nucleosomes display a well-phased organization on major satellite arrays, CENP-A nucleosomes on minor satellite arrays are poorly phased. Interestingly, the homogeneous class of major satellites also phase CENP-A and H3K27me3 nucleosomes, indicating that the nucleosome phasing is an inherent property of homogeneous major satellites. CONCLUSIONS Our findings reveal that mouse centromeres and pericentromeres display a high diversity in satellite sequence, organization, and chromatin structure.
Collapse
Affiliation(s)
- Jenika Packiaraj
- Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Liu J, Lin X, Wang X, Feng L, Zhu S, Tian R, Fang J, Tao A, Fang P, Qi J, Zhang L, Huang Y, Xu J. Genomic and cytogenetic analyses reveal satellite repeat signature in allotetraploid okra (Abelmoschus esculentus). BMC PLANT BIOLOGY 2024; 24:71. [PMID: 38267860 PMCID: PMC10809672 DOI: 10.1186/s12870-024-04739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Satellite repeats are one of the most rapidly evolving components in eukaryotic genomes and play vital roles in genome regulation, genome evolution, and speciation. As a consequence, the composition, abundance and chromosome distribution of satellite repeats often exhibit variability across various species, genome, and even individual chromosomes. However, we know little about the satellite repeat evolution in allopolyploid genomes. RESULTS In this study, we investigated the satellite repeat signature in five okra (Abelmoschus esculentus) accessions using genomic and cytogenetic methods. In each of the five accessions, we identified eight satellite repeats, which exhibited a significant level of intraspecific conservation. Through fluorescence in situ hybridization (FISH) experiments, we observed that the satellite repeats generated multiple signals and exhibited variations in copy number across chromosomes. Intriguingly, we found that five satellite repeats were interspersed with centromeric retrotransposons, signifying their involvement in centromeric satellite repeat identity. We confirmed subgenome-biased amplification patterns of these satellite repeats through existing genome assemblies or dual-color FISH, indicating their distinct dynamic evolution in the allotetraploid okra subgenome. Moreover, we observed the presence of multiple chromosomes harboring the 35 S rDNA loci, alongside another chromosomal pair carrying the 5 S rDNA loci in okra using FISH assay. Remarkably, the intensity of 35 S rDNA hybridization signals varied among chromosomes, with the signals predominantly localized within regions of relatively weak DAPI staining, associated with GC-rich heterochromatin regions. Finally, we observed a similar localization pattern between 35 S rDNA and three satellite repeats with high GC content and confirmed their origin in the intergenic spacer region of the 35 S rDNA. CONCLUSIONS Our findings uncover a unique satellite repeat signature in the allotetraploid okra, contributing to our understanding of the composition, abundance, and chromosomal distribution of satellite repeats in allopolyploid genomes, further enriching our understanding of their evolutionary dynamics in complex allopolyploid genomes.
Collapse
Affiliation(s)
- Jiarui Liu
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyi Lin
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaojie Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liqing Feng
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shixin Zhu
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Runmeng Tian
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Aifen Tao
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingping Fang
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianmin Qi
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwu Zhang
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongji Huang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Jiantang Xu
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Arora UP, Sullivan BA, Dumont BL. Variation in the CENP-A sequence association landscape across diverse inbred mouse strains. Cell Rep 2023; 42:113178. [PMID: 37742188 PMCID: PMC10873113 DOI: 10.1016/j.celrep.2023.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Box 3054, Durham, NC 27710, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Room 46, Orono, ME 04469, USA.
| |
Collapse
|
7
|
Ma H, Ding W, Chen Y, Zhou J, Chen W, Lan C, Mao H, Li Q, Yan W, Su H. Centromere Plasticity With Evolutionary Conservation and Divergence Uncovered by Wheat 10+ Genomes. Mol Biol Evol 2023; 40:msad176. [PMID: 37541261 PMCID: PMC10422864 DOI: 10.1093/molbev/msad176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Centromeres (CEN) are the chromosomal regions that play a crucial role in maintaining genomic stability. The underlying highly repetitive DNA sequences can evolve quickly in most eukaryotes, and promote karyotype evolution. Despite their variability, it is not fully understood how these widely variable sequences ensure the homeostasis of centromere function. In this study, we investigated the genetics and epigenetics of CEN in a population of wheat lines from global breeding programs. We captured a high degree of sequences, positioning, and epigenetic variations in the large and complex wheat CEN. We found that most CENH3-associated repeats are Cereba element of retrotransposons and exhibit phylogenetic homogenization across different wheat lines, but the less-associated repeat sequences diverge on their own way in each wheat line, implying specific mechanisms for selecting certain repeat types as functional core CEN. Furthermore, we observed that CENH3 nucleosome structures display looser wrapping of DNA termini on complex centromeric repeats, including the repositioned CEN. We also found that strict CENH3 nucleosome positioning and intrinsic DNA features play a role in determining centromere identity among different lines. Specific non-B form DNAs were substantially associated with CENH3 nucleosomes for the repositioned centromeres. These findings suggest that multiple mechanisms were involved in the adaptation of CENH3 nucleosomes that can stabilize CEN. Ultimately, we proposed a remarkable epigenetic plasticity of centromere chromatin within the diverse genomic context, and the high robustness is crucial for maintaining centromere function and genome stability in wheat 10+ lines as a result of past breeding selections.
Collapse
Affiliation(s)
- Huan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wentao Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Yiqian Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
8
|
Ding W, Zhu Y, Han J, Zhang H, Xu Z, Khurshid H, Liu F, Hasterok R, Shen X, Wang K. Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. Chromosome Res 2023; 31:12. [PMID: 36971835 DOI: 10.1007/s10577-023-09721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, 44500, Pakistan
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
9
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Zhou J, Liu Y, Guo X, Birchler JA, Han F, Su H. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2051-2063. [PMID: 35722725 PMCID: PMC9616519 DOI: 10.1111/pbi.13875] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Centromeres are the genomic regions that organize and regulate chromosome behaviours during cell cycle, and their variations are associated with genome instability, karyotype evolution and speciation in eukaryotes. The highly repetitive and epigenetic nature of centromeres were documented during the past half century. With the aid of rapid expansion in genomic biotechnology tools, the complete sequence and structural organization of several plant and human centromeres were revealed recently. Here, we systematically summarize the current knowledge of centromere biology with regard to the DNA compositions and the histone H3 variant (CENH3)-dependent centromere establishment and identity. We discuss the roles of centromere to ensure cell division and to maintain the three-dimensional (3D) genomic architecture in different species. We further highlight the potential applications of manipulating centromeres to generate haploids or to induce polyploids offspring in plant for breeding programs, and of targeting centromeres with CRISPR/Cas for chromosome engineering and speciation. Finally, we also assess the challenges and strategies for de novo design and synthesis of centromeres in plant artificial chromosomes. The biotechnology applications of plant centromeres will be of great potential for the genetic improvement of crops and precise synthetic breeding in the future.
Collapse
Affiliation(s)
- Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xianrui Guo
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life SciencesLinyi UniversityLinyiChina
| | - James A. Birchler
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
11
|
Planta J, Liang YY, Xin H, Chansler MT, Prather LA, Jiang N, Jiang J, Childs KL. Chromosome-scale genome assemblies and annotations for Poales species Carex cristatella, Carex scoparia, Juncus effusus, and Juncus inflexus. G3 GENES|GENOMES|GENETICS 2022; 12:6670624. [PMID: 35976112 PMCID: PMC9526063 DOI: 10.1093/g3journal/jkac211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022]
Abstract
The majority of sequenced genomes in the monocots are from species belonging to Poaceae, which include many commercially important crops. Here, we expand the number of sequenced genomes from the monocots to include the genomes of 4 related cyperids: Carex cristatella and Carex scoparia from Cyperaceae and Juncus effusus and Juncus inflexus from Juncaceae. The high-quality, chromosome-scale genome sequences from these 4 cyperids were assembled by combining whole-genome shotgun sequencing of Nanopore long reads, Illumina short reads, and Hi-C sequencing data. Some members of the Cyperaceae and Juncaceae are known to possess holocentric chromosomes. We examined the repeat landscapes in our sequenced genomes to search for potential repeats associated with centromeres. Several large satellite repeat families, comprising 3.2–9.5% of our sequenced genomes, showed dispersed distribution of large satellite repeat clusters across all Carex chromosomes, with few instances of these repeats clustering in the same chromosomal regions. In contrast, most large Juncus satellite repeats were clustered in a single location on each chromosome, with sporadic instances of large satellite repeats throughout the Juncus genomes. Recognizable transposable elements account for about 20% of each of the 4 genome assemblies, with the Carex genomes containing more DNA transposons than retrotransposons while the converse is true for the Juncus genomes. These genome sequences and annotations will facilitate better comparative analysis within monocots.
Collapse
Affiliation(s)
- Jose Planta
- Department of Plant Biology, Michigan State University , East Lansing, MI 48824, USA
- National Institute of Molecular Biology and Biotechnology, University of the Philippines , Diliman, Quezon City 1101, Philippines
| | - Yu-Ya Liang
- Department of Plant Biology, Michigan State University , East Lansing, MI 48824, USA
| | - Haoyang Xin
- Department of Plant Biology, Michigan State University , East Lansing, MI 48824, USA
| | - Matthew T Chansler
- Department of Plant Biology, Michigan State University , East Lansing, MI 48824, USA
| | - L Alan Prather
- Department of Plant Biology, Michigan State University , East Lansing, MI 48824, USA
| | - Ning Jiang
- Department of Horticulture, MSU AgBioResearch, Michigan State University , East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University , East Lansing, MI 48824, USA
- Department of Horticulture, MSU AgBioResearch, Michigan State University , East Lansing, MI 48824, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University , East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Xue C, Liu G, Sun S, Liu X, Guo R, Cheng Z, Yu H, Gu M, Liu K, Zhou Y, Zhang T, Gong Z. De novo centromere formation in pericentromeric region of rice chromosome 8. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:859-871. [PMID: 35678753 DOI: 10.1111/tpj.15862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Neocentromeres develop when kinetochores assemble de novo at DNA loci that are not previously associated with CenH3 nucleosomes, and can rescue rearranged chromosomes that have lost a functional centromere. The molecular mechanisms associated with neocentromere formation in plants have been elusive. Here, we developed a Xian (indica) rice line with poor growth performance in the field due to approximately 272 kb deletion that spans centromeric DNA sequences, including the centromeric satellite repeat CentO, in the centromere of chromosome 8 (Cen8). The CENH3-binding domains were expanded downstream of the original CentO position in Cen8, which revealed a de novo centromere formation in rice. The neocentromere formation avoids chromosomal regions containing functional genes. Meanwhile, canonical histone H3 was replaced by CENH3 in the regions with low CENH3 levels, and the CenH3 nucleosomes in these regions became more periodic. In addition, we identified active genes in the deleted centromeric region, which are essential for chloroplast growth and development. In summary, our results provide valuable insights into neocentromere formation and show that functional genes exist in the centromeric regions of plant chromosomes.
Collapse
Affiliation(s)
- Chao Xue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Shang Sun
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Rui Guo
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengxiu Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Minghong Gu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Kai Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yong Zhou
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
13
|
Abstract
Centromeres, the chromosomal loci where spindle fibers attach during cell division to segregate chromosomes, are typically found within satellite arrays in plants and animals. Satellite arrays have been difficult to analyze because they comprise megabases of tandem head-to-tail highly repeated DNA sequences. Much evidence suggests that centromeres are epigenetically defined by the location of nucleosomes containing the centromere-specific histone H3 variant cenH3, independently of the DNA sequences where they are located; however, the reason that cenH3 nucleosomes are generally found on rapidly evolving satellite arrays has remained unclear. Recently, long-read sequencing technology has clarified the structures of satellite arrays and sparked rethinking of how they evolve, and new experiments and analyses have helped bring both understanding and further speculation about the role these highly repeated sequences play in centromere identification.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
14
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
15
|
Heitkam T, Schulte L, Weber B, Liedtke S, Breitenbach S, Kögler A, Morgenstern K, Brückner M, Tröber U, Wolf H, Krabel D, Schmidt T. Comparative Repeat Profiling of Two Closely Related Conifers ( Larix decidua and Larix kaempferi) Reveals High Genome Similarity With Only Few Fast-Evolving Satellite DNAs. Front Genet 2021; 12:683668. [PMID: 34322154 PMCID: PMC8312256 DOI: 10.3389/fgene.2021.683668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
In eukaryotic genomes, cycles of repeat expansion and removal lead to large-scale genomic changes and propel organisms forward in evolution. However, in conifers, active repeat removal is thought to be limited, leading to expansions of their genomes, mostly exceeding 10 giga base pairs. As a result, conifer genomes are largely littered with fragmented and decayed repeats. Here, we aim to investigate how the repeat landscapes of two related conifers have diverged, given the conifers' accumulative genome evolution mode. For this, we applied low-coverage sequencing and read clustering to the genomes of European and Japanese larch, Larix decidua (Lamb.) Carrière and Larix kaempferi (Mill.), that arose from a common ancestor, but are now geographically isolated. We found that both Larix species harbored largely similar repeat landscapes, especially regarding the transposable element content. To pin down possible genomic changes, we focused on the repeat class with the fastest sequence turnover: satellite DNAs (satDNAs). Using comparative bioinformatics, Southern, and fluorescent in situ hybridization, we reveal the satDNAs' organizational patterns, their abundances, and chromosomal locations. Four out of the five identified satDNAs are widespread in the Larix genus, with two even present in the more distantly related Pseudotsuga and Abies genera. Unexpectedly, the EulaSat3 family was restricted to L. decidua and absent from L. kaempferi, indicating its evolutionarily young age. Taken together, our results exemplify how the accumulative genome evolution of conifers may limit the overall divergence of repeats after speciation, producing only few repeat-induced genomic novelties.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Luise Schulte
- Institute of Botany, Technische Universität Dresden, Dresden, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Sarah Breitenbach
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Anja Kögler
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kristin Morgenstern
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | | | - Ute Tröber
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Heino Wolf
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Doris Krabel
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Morrison O, Thakur J. Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. Int J Mol Sci 2021; 22:6922. [PMID: 34203193 PMCID: PMC8268097 DOI: 10.3390/ijms22136922] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023] Open
Abstract
Chromatin consists of a complex of DNA and histone proteins as its core components and plays an important role in both packaging DNA and regulating DNA metabolic pathways such as DNA replication, transcription, recombination, and chromosome segregation. Proper functioning of chromatin further involves a network of interactions among molecular complexes that modify chromatin structure and organization to affect the accessibility of DNA to transcription factors leading to the activation or repression of the transcription of target DNA loci. Based on its structure and compaction state, chromatin is categorized into euchromatin, heterochromatin, and centromeric chromatin. In this review, we discuss distinct chromatin factors and molecular complexes that constitute euchromatin-open chromatin structure associated with active transcription; heterochromatin-less accessible chromatin associated with silencing; centromeric chromatin-the site of spindle binding in chromosome segregation.
Collapse
Affiliation(s)
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA 30322, USA;
| |
Collapse
|
17
|
Zhang W, Ma Y, Zhu Z, Huang L, Ali A, Luo X, Zhou Y, Li Y, Xu P, Yang J, Li Z, Shi H, Wang J, Gong W, Zou Q, Tao L, Kang Z, Tang R, Zhao Z, Li Z, Guo S, Fu S. Maternal karyogene and cytoplasmic genotype affect the induction efficiency of doubled haploid inducer in Brassica napus. BMC PLANT BIOLOGY 2021; 21:207. [PMID: 33941091 PMCID: PMC8091669 DOI: 10.1186/s12870-021-02981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Artificial synthesis of octoploid rapeseed double haploid (DH) induction lines Y3380 and Y3560 was made possible by interspecific hybridization and genome doubling techniques. Production of pure lines by DH induction provides a new way to achieve homozygosity earlier in B.napus. Previously, the mechanism of induction, and whether the induction has obvious maternal genotypic differences or not, are not known so far. RESULTS In this study, different karyogene and cytoplasmic genotype of B.napus were pollinated with the previously reported DH inducers e.g. Y3380 and Y3560. Our study presents a fine comparison of different cytoplasmic genotypes hybridization to unravel the mechanism of DH induction. Ploidy identification, fertility and SSR marker analysis of induced F1 generation, revealed that ploidy and phenotype of the induced F1 plants were consistent with that type of maternal, rather than paternal parent. The SNP chip analysis revealed that induction efficiency of DH inducers were affected by the karyogene when the maternal cytoplasmic genotypes were the same. However, DH induction efficiency was also affected by cytoplasmic genotype when the karyogenes were same, and the offspring of the ogura cytoplasm showed high frequency inducer gene hybridization or low-frequency infiltration. CONCLUSION The induction effect is influenced by the interaction between maternal karyogene and cytoplasmic genotype, and the results from the partial hybridization of progeny chromosomes indicate that the induction process may be attributed to the selective elimination of paternal chromosome. This study provides a basis for exploring the mechanism of DH inducer in B.napus, and provides new insights for utilization of inducers in molecular breeding.
Collapse
Affiliation(s)
- Wei Zhang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongting Ma
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhendong Zhu
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liangjun Huang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130, China
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Luo
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Zhou
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun Li
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
| | - Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Yang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
| | - Zhuang Li
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoran Shi
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
| | - Jisheng Wang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
| | - Wanzhuo Gong
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
| | - Qiong Zou
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
| | - Lanrong Tao
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
| | - Zeming Kang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
| | - Rong Tang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China
| | - Zhangjie Zhao
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi Li
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shixing Guo
- Agricultural College, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shaohong Fu
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China.
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, 611130, China.
| |
Collapse
|
18
|
Huang Y, Ding W, Zhang M, Han J, Jing Y, Yao W, Hasterok R, Wang Z, Wang K. The formation and evolution of centromeric satellite repeats in Saccharum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:616-629. [PMID: 33547688 DOI: 10.1111/tpj.15186] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 05/04/2023]
Abstract
Centromeres in eukaryotes are composed of tandem DNAs and retrotransposons. However, centromeric repeats exhibit considerable diversity, even among closely related species, and their origin and evolution are largely unknown. We conducted a genome-wide characterization of the centromeric sequences in sugarcane (Saccharum officinarum). Four centromeric tandem repeat sequences, So1, So103, So137 and So119, were isolated. So1 has a monomeric length of 137 bp, typical of a centromeric satellite, and has evolved four variants. However, these So1 variants had distinct centromere distributions and some were unique to an individual centromere. The distributions of the So1 variants were unexpectedly consistent among the Saccharum species that had different basic chromosome numbers or ploidy levels, thus suggesting evolutionary stability for approximately 7 million years in sugarcane. So103, So137 and So119 had unusually longer monomeric lengths that ranged from 327 to 1371 bp and lacked translational phasing on the CENH3 nucleosomes. Moreover, So103, So137 and So119 seemed to be highly similar to retrotransposons, which suggests that they originated from these mobile elements. Notably, all three repeats were flanked by direct repeats, and formed extrachromosomal circular DNAs (eccDNAs). The presence of circular molecules for these retrotransposon-derived centromeric satellites suggests an eccDNA-mediated centromeric satellite formation pathway in sugarcane.
Collapse
Affiliation(s)
- Yongji Huang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenjie Ding
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Jinlei Han
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanfen Jing
- Ruili Breeding Station, Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Ruili, 678600, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Zonghua Wang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Kai Wang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
19
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
20
|
Yan W, Deng XW, Yang C, Tang X. The Genome-Wide EMS Mutagenesis Bias Correlates With Sequence Context and Chromatin Structure in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:579675. [PMID: 33841451 PMCID: PMC8025102 DOI: 10.3389/fpls.2021.579675] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Ethyl methanesulfonate (EMS) is a chemical mutagen believed to mainly induce G/C to A/T transitions randomly in plant genomes. However, mutant screening for phenotypes often gets multiple alleles for one gene but no mutant for other genes. We investigated the potential EMS mutagenesis bias and the possible correlations with sequence context and chromatin structure using the whole genome resequencing data collected from 52 rice EMS mutants. We defined the EMS-induced single nucleotide polymorphic sites (SNPs) and explored the genomic factors associated with EMS mutagenesis bias. Compared with natural SNPs presented in the Rice3K project, EMS showed a preference on G/C sites with flanking sequences also higher in GC contents. The composition of local dinucleotides and trinucleotides was also associated with the efficiency of EMS mutagenesis. The biased distribution of EMS-induced SNPs was positively correlated with CpG numbers, transposable element contents, and repressive epigenetic markers but negatively with gene expression, the euchromatin marker DNase I hypersensitive sites, and active epigenetic markers, suggesting that sequence context and chromatin structure might correlate with the efficiency of EMS mutagenesis. Exploring the genome-wide features of EMS mutagenesis and correlations with epigenetic modifications will help in the understanding of DNA repair mechanism.
Collapse
Affiliation(s)
- Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| |
Collapse
|
21
|
Krátká M, Šmerda J, Lojdová K, Bureš P, Zedek F. Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae. FRONTIERS IN PLANT SCIENCE 2021; 12:642661. [PMID: 33679859 PMCID: PMC7933567 DOI: 10.3389/fpls.2021.642661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/29/2021] [Indexed: 05/05/2023]
Abstract
Centromere drive model describes an evolutionary process initiated by centromeric repeats expansion, which leads to the recruitment of excess kinetochore proteins and consequent preferential segregation of an expanded centromere to the egg during female asymmetric meiosis. In response to these selfish centromeres, the histone protein CenH3, which recruits kinetochore components, adaptively evolves to restore chromosomal parity and counter the detrimental effects of centromere drive. Holocentric chromosomes, whose kinetochores are assembled along entire chromosomes, have been hypothesized to prevent expanded centromeres from acquiring a selective advantage and initiating centromere drive. In such a case, CenH3 would be subjected to less frequent or no adaptive evolution. Using codon substitution models, we analyzed 36 CenH3 sequences from 35 species of the holocentric family Cyperaceae. We found 10 positively selected codons in the CenH3 gene [six codons in the N-terminus and four in the histone fold domain (HFD)] and six branches of its phylogeny along which the positive selection occurred. One of the positively selected codons was found in the centromere targeting domain (CATD) that directly interacts with DNA and its mutations may be important in centromere drive suppression. The frequency of these positive selection events was comparable to the frequency of positive selection in monocentric clades with asymmetric female meiosis. Taken together, these results suggest that preventing centromere drive is not the primary adaptive role of holocentric chromosomes, and their ability to suppress it likely depends on their kinetochore structure in meiosis.
Collapse
Affiliation(s)
| | | | | | | | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
22
|
Ávila Robledillo L, Neumann P, Koblížková A, Novák P, Vrbová I, Macas J. Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae. Mol Biol Evol 2020; 37:2341-2356. [PMID: 32259249 PMCID: PMC7403623 DOI: 10.1093/molbev/msaa090] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Satellite repeats are major sequence constituents of centromeres in many plant and animal species. Within a species, a single family of satellite sequences typically occupies centromeres of all chromosomes and is absent from other parts of the genome. Due to their common origin, sequence similarities exist among the centromere-specific satellites in related species. Here, we report a remarkably different pattern of centromere evolution in the plant tribe Fabeae, which includes genera Pisum, Lathyrus, Vicia, and Lens. By immunoprecipitation of centromeric chromatin with CENH3 antibodies, we identified and characterized a large and diverse set of 64 families of centromeric satellites in 14 species. These families differed in their nucleotide sequence, monomer length (33-2,979 bp), and abundance in individual species. Most families were species-specific, and most species possessed multiple (2-12) satellites in their centromeres. Some of the repeats that were shared by several species exhibited promiscuous patterns of centromere association, being located within CENH3 chromatin in some species, but apart from the centromeres in others. Moreover, FISH experiments revealed that the same family could assume centromeric and noncentromeric positions even within a single species. Taken together, these findings suggest that Fabeae centromeres are not shaped by the coevolution of a single centromeric satellite with its interacting CENH3 proteins, as proposed by the centromere drive model. This conclusion is also supported by the absence of pervasive adaptive evolution of CENH3 sequences retrieved from Fabeae species.
Collapse
Affiliation(s)
- Laura Ávila Robledillo
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Iva Vrbová
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
23
|
Heitkam T, Weber B, Walter I, Liedtke S, Ost C, Schmidt T. Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:32-52. [PMID: 31981259 DOI: 10.1111/tpj.14705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
If two related plant species hybridize, their genomes may be combined and duplicated within a single nucleus, thereby forming an allotetraploid. How the emerging plant balances two co-evolved genomes is still a matter of ongoing research. Here, we focus on satellite DNA (satDNA), the fastest turn-over sequence class in eukaryotes, aiming to trace its emergence, amplification, and loss during plant speciation and allopolyploidization. As a model, we used Chenopodium quinoa Willd. (quinoa), an allopolyploid crop with 2n = 4x = 36 chromosomes. Quinoa originated by hybridization of an unknown female American Chenopodium diploid (AA genome) with an unknown male Old World diploid species (BB genome), dating back 3.3-6.3 million years. Applying short read clustering to quinoa (AABB), C. pallidicaule (AA), and C. suecicum (BB) whole genome shotgun sequences, we classified their repetitive fractions, and identified and characterized seven satDNA families, together with the 5S rDNA model repeat. We show unequal satDNA amplification (two families) and exclusive occurrence (four families) in the AA and BB diploids by read mapping as well as Southern, genomic, and fluorescent in situ hybridization. Whereas the satDNA distributions support C. suecicum as possible parental species, we were able to exclude C. pallidicaule as progenitor due to unique repeat profiles. Using quinoa long reads and scaffolds, we detected only limited evidence of intergenomic homogenization of satDNA after allopolyploidization, but were able to exclude dispersal of 5S rRNA genes between subgenomes. Our results exemplify the complex route of tandem repeat evolution through Chenopodium speciation and allopolyploidization, and may provide sequence targets for the identification of quinoa's progenitors.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ines Walter
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Charlotte Ost
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
- Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
24
|
Lu Y, Tan F, Zhao Y, Zhou S, Chen X, Hu Y, Zhou DX. A Chromodomain-Helicase-DNA-Binding Factor Functions in Chromatin Modification and Gene Regulation. PLANT PHYSIOLOGY 2020; 183:1035-1046. [PMID: 32439720 PMCID: PMC7333708 DOI: 10.1104/pp.20.00453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/14/2020] [Indexed: 05/07/2023]
Abstract
Proteins in the Chromodomain-Helicase/ATPase-DNA-binding domain (CHD) family are divided into three groups. The function of group I CHD proteins in nucleosome positioning is well established, while that of group II members (represented by CHD3/Mi2) remains unclear. Using high-throughput approaches, we investigated the function of the group II rice (Oryza sativa) CHD protein CHR729 in nucleosome positioning, gene expression, histone methylation, and binding. Our data revealed that the chr729 mutation led to increased nucleosome occupancy in the rice genome and altered the expression and histone H3K4me3 modification of many, mainly underexpressed, genes. Further analysis showed that the mutation affected both the deposition and depletion of H3K4me3 in distinct chromatin regions, with concomitant changes in H3K27me3 modification. Genetic and genomic analyses revealed that CHR729 and JMJ703, an H3K4 demethylase, had agonistic, antagonistic, and independent functions in modulating H3K4me3 and the expression of subsets of genes. In addition, CHR729 binding was enriched in H3K4me3-marked genic and H3K27me3-marked intergenic regions. The results indicate that CHR729 has distinct functions in regulating H3K4me3 and H3K27me3 modifications and gene expression at different chromatin domains and provide insight into chromatin regulation of bivalent genes marked by both H3K4me3 and H3K27me3.
Collapse
Affiliation(s)
- Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Feng Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiangsong Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yongfeng Hu
- College of Bioengineering, Jingchu University of Technology, 448000 Jingmen, Hubei, China
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, Three Gorges University, 443002 Yichang, Hubei, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
- University Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement, Institute of Plant Science of Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
25
|
da Silva MJ, Fogarin Destro R, Gazoni T, Narimatsu H, Pereira Dos Santos PS, Haddad CFB, Parise-Maltempi PP. Great Abundance of Satellite DNA in Proceratophrys (Anura, Odontophrynidae) Revealed by Genome Sequencing. Cytogenet Genome Res 2020; 160:141-147. [PMID: 32146462 DOI: 10.1159/000506531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 01/04/2023] Open
Abstract
Most eukaryotic genomes contain substantial portions of repetitive DNA sequences. These are located primarily in highly compacted heterochromatin and, in many cases, are one of the most abundant components of the sex chromosomes. In this sense, the anuran Proceratophrys boiei represents an interesting model for analyses on repetitive sequences by means of cytogenetic techniques, since it has a karyotype with large blocks of heterochromatin and a ZZ/ZW sex chromosome system. The present study describes, for the first time, families of satellite DNA (satDNA) in the frog P. boiei. Its genome size was estimated at 1.6 Gb, of which 41% correspond to repetitive sequences, including satDNAs, rDNAs, transposable elements, and other elements characterized as non-repetitive. The satDNAs were mapped by FISH in the centromeric and pericentromeric regions of all chromosomes, suggesting a possible involvement of these sequences in centromere function. SatDNAs are also present in the W sex chromosome, occupying the entire heterochromatic area, indicating a probable contribution of this class of repetitive DNA to the differentiation of the sex chromosomes in this species. This study is a valuable contribution to the existing knowledge on repetitive sequences in amphibians. We show the presence of repetitive DNAs, especially satDNAs, in the genome of P. boiei that might be of relevance in genome organization and regulation, setting the stage for a deeper functional genome analysis of Proceratophrys.
Collapse
|
26
|
Talbert PB, Henikoff S. What makes a centromere? Exp Cell Res 2020; 389:111895. [PMID: 32035948 DOI: 10.1016/j.yexcr.2020.111895] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022]
Abstract
Centromeres are the eukaryotic chromosomal sites at which the kinetochore forms and attaches to spindle microtubules to orchestrate chromosomal segregation in mitosis and meiosis. Although centromeres are essential for cell division, their sequences are not conserved and evolve rapidly. Centromeres vary dramatically in size and organization. Here we categorize their diversity and explore the evolutionary forces shaping them. Nearly all centromeres favor AT-rich DNA that is gene-free and transcribed at a very low level. Repair of frequent centromere-proximal breaks probably contributes to their rapid sequence evolution. Point centromeres are only ~125 bp and are specified by common protein-binding motifs, whereas short regional centromeres are 1-5 kb, typically have unique sequences, and may have pericentromeric repeats adapted to facilitate centromere clustering. Transposon-rich centromeres are often ~100-300 kb and are favored by RNAi machinery that silences transposons, by suppression of meiotic crossovers at centromeres, and by the ability of some transposons to target centromeres. Megabase-length satellite centromeres arise in plants and animals with asymmetric female meiosis that creates centromere competition, and favors satellite monomers one or two nucleosomes in length that position and stabilize centromeric nucleosomes. Holocentromeres encompass the length of a chromosome and may differ dramatically between mitosis and meiosis. We propose a model in which low level transcription of centromeres facilitates the formation of non-B DNA that specifies centromeres and promotes loading of centromeric nucleosomes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
27
|
Kirov I, Odintsov S, Omarov M, Gvaramiya S, Merkulov P, Dudnikov M, Ermolaev A, Van Laere K, Soloviev A, Khrustaleva L. Functional Allium fistulosum Centromeres Comprise Arrays of a Long Satellite Repeat, Insertions of Retrotransposons and Chloroplast DNA. FRONTIERS IN PLANT SCIENCE 2020; 11:562001. [PMID: 33193489 PMCID: PMC7644871 DOI: 10.3389/fpls.2020.562001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/07/2020] [Indexed: 05/08/2023]
Abstract
The centromere is a unique part of the chromosome combining a conserved function with an extreme variability in its DNA sequence. Most of our knowledge about the functional centromere organization is obtained from species with small and medium genome/chromosome sizes while the progress in plants with big genomes and large chromosomes is lagging behind. Here, we studied the genomic organization of the functional centromere in Allium fistulosum and A. cepa, both species with a large genome (13 Gb and 16 Gb/1C, 2n = 2x = 16) and large-sized chromosomes. Using low-depth DNA sequencing for these two species and previously obtained CENH3 immunoprecipitation data we identified two long (1.2 Kb) and high-copy repeats, AfCen1K and AcCen1K. FISH experiments showed that AfCen1K is located in all centromeres of A. fistulosum chromosomes while no AcCen1K FISH signals were identified on A. cepa chromosomes. Our molecular cytogenetic and bioinformatics survey demonstrated that these repeats are partially similar but differ in chromosomal location, sequence structure and genomic organization. In addition, we could conclude that the repeats are transcribed and their RNAs are not polyadenylated. We also observed that these repeats are associated with insertions of retrotransposons and plastidic DNA and the landscape of A. cepa and A. fistulosum centromeric regions possess insertions of plastidic DNA. Finally, we carried out detailed comparative satellitome analysis of A. cepa and A. fistulosum genomes and identified a new chromosome- and A. cepa-specific tandem repeat, TR2CL137, located in the centromeric region. Our results shed light on the Allium centromere organization and provide unique data for future application in Allium genome annotation.
Collapse
Affiliation(s)
- Ilya Kirov
- Laboratory of Marker-assisted and genomic selection of plants, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- *Correspondence: Ilya Kirov,
| | - Sergey Odintsov
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Murad Omarov
- Laboratory of Marker-assisted and genomic selection of plants, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- National Research University Higher School of Economics, Moscow, Russia
| | - Sofya Gvaramiya
- Laboratory of Marker-assisted and genomic selection of plants, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Pavel Merkulov
- Laboratory of Marker-assisted and genomic selection of plants, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Maxim Dudnikov
- Laboratory of Marker-assisted and genomic selection of plants, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Alexey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Katrijn Van Laere
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Alexander Soloviev
- Laboratory of Marker-assisted and genomic selection of plants, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Ludmila Khrustaleva
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Plant Cell Engineering Laboratory, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
28
|
Su H, Liu Y, Liu C, Shi Q, Huang Y, Han F. Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes. THE PLANT CELL 2019; 31:2035-2051. [PMID: 31311836 PMCID: PMC6751130 DOI: 10.1105/tpc.19.00133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 05/21/2023]
Abstract
Centromeres mediate the pairing of homologous chromosomes during meiosis; this pairing is particularly challenging for polyploid plants such as hexaploid bread wheat (Triticum aestivum), as their meiotic machinery must differentiate homologs from similar homoeologs. However, the sequence compositions (especially functional centromeric satellites) and evolutionary history of wheat centromeres are largely unknown. Here, we mapped T. aestivum centromeres by chromatin immunoprecipitation sequencing using antibodies to the centromeric-specific histone H3 variant (CENH3); this identified two types of functional centromeric satellites that are abundant in two of the three subgenomes. These centromeric satellites had unit sizes greater than 500 bp and contained specific sites with highly phased binding to CENH3 nucleosomes. Phylogenetic analysis revealed that the satellites have diverged in the three T. aestivum subgenomes, and the more homogeneous satellite arrays are associated with CENH3. Satellite signals decreased and the degree of satellites variation increased from diploid to hexaploid wheat. Moreover, several T. aestivum centromeres lack satellite repeats. Rearrangements, including local expansion and satellite variations, inversions, and changes in gene expression, occurred during the evolution from diploid to tetraploid and hexaploid wheat. These results reveal the asymmetry in centromere organization among the wheat subgenomes, which may play a role in proper homolog pairing during meiosis.
Collapse
Affiliation(s)
- Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Escudeiro A, Adega F, Robinson TJ, Heslop-Harrison JS, Chaves R. Conservation, Divergence, and Functions of Centromeric Satellite DNA Families in the Bovidae. Genome Biol Evol 2019; 11:1152-1165. [PMID: 30888421 PMCID: PMC6475130 DOI: 10.1093/gbe/evz061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Repetitive satellite DNA (satDNA) sequences are abundant in eukaryote genomes, with a structural and functional role in centromeric function. We analyzed the nucleotide sequence and chromosomal location of the five known cattle (Bos taurus) satDNA families in seven species from the tribe Tragelaphini (Bovinae subfamily). One of the families (SAT1.723) was present at the chromosomes’ centromeres of the Tragelaphini species, as well in two more distantly related bovid species, Ovis aries and Capra hircus. Analysis of the interaction of SAT1.723 with centromeric proteins revealed that this satDNA sequence is involved in the centromeric activity in all the species analyzed and that it is preserved for at least 15–20 Myr across Bovidae species. The satDNA sequence similarity among the analyzed species reflected different stages of homogeneity/heterogeneity, revealing the evolutionary history of each satDNA family. The SAT1.723 monomer-flanking regions showed the presence of transposable elements, explaining the extensive shuffling of this satDNA between different genomic regions.
Collapse
Affiliation(s)
- Ana Escudeiro
- Department of Genetics and Biotechnology, CAG - Laboratory of Cytogenomics and Animal Genomics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Filomena Adega
- Department of Genetics and Biotechnology, CAG - Laboratory of Cytogenomics and Animal Genomics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | | | | | - Raquel Chaves
- Department of Genetics and Biotechnology, CAG - Laboratory of Cytogenomics and Animal Genomics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| |
Collapse
|
30
|
Fernandes JB, Wlodzimierz P, Henderson IR. Meiotic recombination within plant centromeres. CURRENT OPINION IN PLANT BIOLOGY 2019; 48:26-35. [PMID: 30954771 DOI: 10.1016/j.pbi.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/21/2019] [Accepted: 02/28/2019] [Indexed: 05/18/2023]
Abstract
Meiosis is a conserved eukaryotic cell division that increases genetic diversity in sexual populations. During meiosis homologous chromosomes pair and undergo recombination that can result in reciprocal genetic exchange, termed crossover. The frequency of crossover is highly variable along chromosomes, with hot spots and cold spots. For example, the centromeres that contain the kinetochore, which attach chromosomes to the microtubular spindle, are crossover cold spots. Plant centromeres typically consist of large tandemly repeated arrays of satellite sequences and retrotransposons, a subset of which assemble CENH3-variant nucleosomes, which bind to kinetochore proteins. Although crossovers are suppressed in centromeres, there is abundant evidence for gene conversion and homologous recombination between repeats, which plays a role in satellite array change. We review the evidence for recombination within plant centromeres and the implications for satellite sequence evolution. We speculate on the genetic and epigenetic features of centromeres that may influence meiotic recombination in these regions. We also highlight unresolved questions relating to centromere function and sequence change and how the advent of new technologies promises to provide insights.
Collapse
Affiliation(s)
- Joiselle B Fernandes
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
31
|
Smurova K, De Wulf P. Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Front Genet 2018; 9:674. [PMID: 30627137 PMCID: PMC6309819 DOI: 10.3389/fgene.2018.00674] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
Collapse
Affiliation(s)
- Ksenia Smurova
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Peter De Wulf
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
32
|
Oliveira LC, Torres GA. Plant centromeres: genetics, epigenetics and evolution. Mol Biol Rep 2018; 45:1491-1497. [DOI: 10.1007/s11033-018-4284-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
|
33
|
Abstract
The precise positioning of nucleosomes along the underlying DNA is critical for a variety of biological processes, especially in regulating transcription. The interplay between nucleosomes and transcription factors for accessing the underlying DNA sequences is one of the key determinants that affect transcriptional regulation. Moreover, nucleosomes with various packing statuses confer distinct functions in regulating gene expressions in response to various internal or external signals. Therefore, global mapping of nucleosome positions is one informative way to elucidate the relationship between patterns of nucleosome positioning/occupancy and transcriptional regulations. MNase digestion coupled with high-throughput sequencing (MNase-seq) has been utilized widely for global mapping of nucleosome positioning in eukaryotes that have a sequenced genome. We have developed a robust MNase-seq procedure in plants. It mainly includes plant nuclei isolation, treatment of purified nuclei with MNase, gel recovery of MNase-trimmed mononucleosomal DNA with an approximate size of 150 bp, MNase-seq library preparation followed by Illumina sequencing, and data analysis. MNase-seq has already been successfully applied to identify genome-wide nucleosome positioning in model plants, rice, and Arabidopsis thaliana.
Collapse
|
34
|
Liu Q, Chang S, Hartman GL, Domier LL. Assembly and annotation of a draft genome sequence for Glycine latifolia, a perennial wild relative of soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:71-85. [PMID: 29671916 DOI: 10.1111/tpj.13931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 05/14/2023]
Abstract
Glycine latifolia (Benth.) Newell & Hymowitz (2n = 40), one of the 27 wild perennial relatives of soybean, possesses genetic diversity and agronomically favorable traits that are lacking in soybean. Here, we report the 939-Mb draft genome assembly of G. latifolia (PI 559298) using exclusively linked-reads sequenced from a single Chromium library. We organized scaffolds into 20 chromosome-scale pseudomolecules utilizing two genetic maps and the Glycine max (L.) Merr. genome sequence. High copy numbers of putative 91-bp centromere-specific tandem repeats were observed in consecutive blocks within predicted pericentromeric regions on several pseudomolecules. No 92-bp putative centromeric repeats, which are abundant in G. max, were detected in G. latifolia or Glycine tomentella. Annotation of the assembled genome and subsequent filtering yielded a high confidence gene set of 54 475 protein-coding loci. In comparative analysis with five legume species, genes related to defense responses were significantly overrepresented in Glycine-specific orthologous gene families. A total of 304 putative nucleotide-binding site (NBS)-leucine-rich-repeat (LRR) genes were identified in this genome assembly. Different from other legume species, we observed a scarcity of TIR-NBS-LRR genes in G. latifolia. The G. latifolia genome was also predicted to contain genes encoding 367 LRR-receptor-like kinases, a family of proteins involved in basal defense responses and responses to abiotic stress. The genome sequence and annotation of G. latifolia provides a valuable source of alternative alleles and novel genes to facilitate soybean improvement. This study also highlights the efficacy and cost-effectiveness of the application of Chromium linked-reads in diploid plant genome de novo assembly.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Sungyul Chang
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
- USDA ARS, Urbana, IL, 61801, USA
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
- USDA ARS, Urbana, IL, 61801, USA
| |
Collapse
|
35
|
Verma G, Surolia N. Centromere and its associated proteins-what we know about them in Plasmodium falciparum. IUBMB Life 2018; 70:732-742. [PMID: 29935010 DOI: 10.1002/iub.1878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/28/2018] [Indexed: 12/24/2022]
Abstract
The complex life cycle of intracellular parasitic protozoans entails multiple rounds of DNA replication and mitosis followed by cytokinesis to release daughter parasites. To gain insights into mitotic events it is imperative to identify the biomarkers that constitute the chromosome segregation machinery in the parasite. Chromosomal loci called centromeres and their associated proteins play an essential role in accurate chromosome segregation. Although new information on the centromere-kinetochore proteins has been added to the existing pool of knowledge, a paucity of biomarkers for nuclear division prevents a global view of chromosome segregation mechanism in the malaria parasite. In Plasmodium falciparum, except CENH3 and CENP-C homologues, other centromere associated proteins responsible for centromere functions and kinetochore assembly are not known. The focus of this review is to summarize the current understanding on the centromere organization and its associated proteins in eukaryotes with the emerging information in P. falciparum. © 2018 IUBMB Life, 70(8):732-742, 2018.
Collapse
Affiliation(s)
- Garima Verma
- Molecular Parasitology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Namita Surolia
- Molecular Parasitology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| |
Collapse
|
36
|
Yang X, Zhao H, Zhang T, Zeng Z, Zhang P, Zhu B, Han Y, Braz GT, Casler MD, Schmutz J, Jiang J. Amplification and adaptation of centromeric repeats in polyploid switchgrass species. THE NEW PHYTOLOGIST 2018; 218:1645-1657. [PMID: 29577299 DOI: 10.1111/nph.15098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/09/2018] [Indexed: 05/24/2023]
Abstract
Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum). Seven repeats showed characteristics associated with classical centromeric repeats with monomeric lengths ranging from 166 to 187 bp. Interestingly, these repeats share an 80-bp DNA motif. We demonstrate that this 80-bp motif may dictate translational and rotational phasing of the centromeric repeats with the cenH3 nucleosomes. The sequence of the last centromeric repeat, Pv156, is identical to the 5S ribosomal RNA genes. We demonstrate that a 5S ribosomal RNA gene array was recruited to be the functional centromere for one of the switchgrass chromosomes. Our findings reveal that certain types of satellite repeats, which are associated with unique sequence features and are composed of monomers in mono-nucleosomal length, are favorable for centromeres. Centromeric repeats may undergo dynamic amplification and adaptation before the centromeres in the same species become dominated by the best adapted satellite repeat.
Collapse
Affiliation(s)
- Xueming Yang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hainan Zhao
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Tao Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Pingdong Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- College of Bioscience and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Bo Zhu
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yonghua Han
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guilherme T Braz
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Departmento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200, Brazil
| | - Michael D Casler
- Dairy Forage Research Center, Agricultural Research Service, USDA, Madison, WI, 53706, USA
| | - Jeremy Schmutz
- Joint Genome Institute, Walnut Creek, CA, 94598, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
37
|
Li Y, Zuo S, Zhang Z, Li Z, Han J, Chu Z, Hasterok R, Wang K. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1088-1101. [PMID: 29381236 DOI: 10.1111/tpj.13832] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 05/21/2023]
Abstract
Brachypodium distachyon is a well-established model monocot plant, and its small and compact genome has been used as an accurate reference for the much larger and often polyploid genomes of cereals such as Avena sativa (oats), Hordeum vulgare (barley) and Triticum aestivum (wheat). Centromeres are indispensable functional units of chromosomes and they play a core role in genome polyploidization events during evolution. As the Brachypodium genus contains about 20 species that differ significantly in terms of their basic chromosome numbers, genome size, ploidy levels and life strategies, studying their centromeres may provide important insight into the structure and evolution of the genome in this interesting and important genus. In this study, we isolated the centromeric DNA of the B. distachyon reference line Bd21 and characterized its composition via the chromatin immunoprecipitation of the nucleosomes that contain the centromere-specific histone CENH3. We revealed that the centromeres of Bd21 have the features of typical multicellular eukaryotic centromeres. Strikingly, these centromeres contain relatively few centromeric satellite DNAs; in particular, the centromere of chromosome 5 (Bd5) consists of only ~40 kb. Moreover, the centromeric retrotransposons in B. distachyon (CRBds) are evolutionarily young. These transposable elements are located both within and adjacent to the CENH3 binding domains, and have similar compositions. Moreover, based on the presence of CRBds in the centromeres, the species in this study can be grouped into two distinct lineages. This may provide new evidence regarding the phylogenetic relationships within the Brachypodium genus.
Collapse
Affiliation(s)
- Yinjia Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Sheng Zuo
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhiliang Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhanjie Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jinlei Han
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhaoqing Chu
- Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai Chenshan Botanical Garden, 3888 Chenhua Road, Songjiang, Shanghai, 201602, China
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032, Katowice, Poland
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
38
|
Simple and Complex Centromeric Satellites in Drosophila Sibling Species. Genetics 2018; 208:977-990. [PMID: 29305387 PMCID: PMC5844345 DOI: 10.1534/genetics.117.300620] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022] Open
Abstract
Centromeres are the chromosomal sites of assembly for kinetochores, the protein complexes that attach to spindle fibers and mediate separation of chromosomes to daughter cells in mitosis and meiosis. In most multicellular organisms, centromeres comprise a single specific family of tandem repeats-often 100-400 bp in length-found on every chromosome, typically in one location within heterochromatin. Drosophila melanogaster is unusual in that the heterochromatin contains many families of mostly short (5-12 bp) tandem repeats, none of which appear to be present at all centromeres, and none of which are found only at centromeres. Although centromere sequences from a minichromosome have been identified and candidate centromere sequences have been proposed, the DNA sequences at native Drosophila centromeres remain unknown. Here we use native chromatin immunoprecipitation to identify the centromeric sequences bound by the foundational kinetochore protein cenH3, known in vertebrates as CENP-A. In D. melanogaster, these sequences include a few families of 5- and 10-bp repeats; but in closely related D. simulans, the centromeres comprise more complex repeats. The results suggest that a recent expansion of short repeats has replaced more complex centromeric repeats in D. melanogaster.
Collapse
|
39
|
Henikoff S, Thakur J, Kasinathan S, Talbert PB. Remarkable Evolutionary Plasticity of Centromeric Chromatin. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:71-82. [PMID: 29196559 DOI: 10.1101/sqb.2017.82.033605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centromeres were familiar to cell biologists in the late 19th century, but for most eukaryotes the basis for centromere specification has remained enigmatic. Much attention has been focused on the cenH3 (CENP-A) histone variant, which forms the foundation of the centromere. To investigate the DNA sequence requirements for centromere specification, we applied a variety of epigenomic approaches, which have revealed surprising diversity in centromeric chromatin properties. Whereas each point centromere of budding yeast is occupied by a single precisely positioned tetrameric nucleosome with one cenH3 molecule, the "regional" centromeres of fission yeast contain unphased presumably octameric nucleosomes with two cenH3s. In Caenorhabditis elegans, kinetochores assemble all along the chromosome at sites of cenH3 nucleosomes that resemble budding yeast point centromeres, whereas holocentric insects lack cenH3 entirely. The "satellite" centromeres of most animals and plants consist of cenH3-containing particles that are precisely positioned over homogeneous tandem repeats, but in humans, different α-satellite subfamilies are occupied by CENP-A nucleosomes with very different conformations. We suggest that this extraordinary evolutionary diversity of centromeric chromatin architectures can be understood in terms of the simplicity of the task of equal chromosome segregation that is continually subverted by selfish DNA sequences.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jitendra Thakur
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Sivakanthan Kasinathan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington 98195
| | - Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
40
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
41
|
Expanded Satellite Repeats Amplify a Discrete CENP-A Nucleosome Assembly Site on Chromosomes that Drive in Female Meiosis. Curr Biol 2017; 27:2365-2373.e8. [PMID: 28756949 DOI: 10.1016/j.cub.2017.06.069] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/23/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022]
Abstract
Female meiosis provides an opportunity for selfish genetic elements to violate Mendel's law of segregation by increasing the chance of segregating to the egg [1]. Centromeres and other repetitive sequences can drive in meiosis by cheating the segregation process [2], but the underlying mechanisms are unknown. Here, we show that centromeres with more satellite repeats house more nucleosomes that confer centromere identity, containing the histone H3 variant CENP-A, and bias their segregation to the egg relative to centromeres with fewer repeats. CENP-A nucleosomes predominantly occupy a single site within the repeating unit that becomes limiting for centromere assembly on smaller centromeres. We propose that amplified repetitive sequences act as selfish elements by promoting expansion of CENP-A chromatin and increased transmission through the female germline.
Collapse
|
42
|
Gent JI, Wang N, Dawe RK. Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives. Genome Biol 2017. [PMID: 28637491 PMCID: PMC5480163 DOI: 10.1186/s13059-017-1249-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Paradoxically, centromeres are known both for their characteristic repeat sequences (satellite DNA) and for being epigenetically defined. Maize (Zea mays mays) is an attractive model for studying centromere positioning because many of its large (~2 Mb) centromeres are not dominated by satellite DNA. These centromeres, which we call complex centromeres, allow for both assembly into reference genomes and for mapping short reads from ChIP-seq with antibodies to centromeric histone H3 (cenH3). Results We found frequent complex centromeres in maize and its wild relatives Z. mays parviglumis, Z. mays mexicana, and particularly Z. mays huehuetenangensis. Analysis of individual plants reveals minor variation in the positions of complex centromeres among siblings. However, such positional shifts are stochastic and not heritable, consistent with prior findings that centromere positioning is stable at the population level. Centromeres are also stable in multiple F1 hybrid contexts. Analysis of repeats in Z. mays and other species (Zea diploperennis, Zea luxurians, and Tripsacum dactyloides) reveals tenfold differences in abundance of the major satellite CentC, but similar high levels of sequence polymorphism in individual CentC copies. Deviation from the CentC consensus has little or no effect on binding of cenH3. Conclusions These data indicate that complex centromeres are neither a peculiarity of cultivation nor inbreeding in Z. mays. While extensive arrays of CentC may be the norm for other Zea and Tripsacum species, these data also reveal that a wide diversity of DNA sequences and multiple types of genetic elements in and near centromeres support centromere function and constrain centromere positions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1249-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, USA
| | - Na Wang
- Department of Plant Biology, University of Georgia, Athens, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, USA. .,Department of Genetics, University of Georgia, Athens, USA.
| |
Collapse
|
43
|
Nagaki K, Yamaji N, Murata M. ePro-ClearSee: a simple immunohistochemical method that does not require sectioning of plant samples. Sci Rep 2017; 7:42203. [PMID: 28176832 PMCID: PMC5297246 DOI: 10.1038/srep42203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
Investigations into the epigenetic status of individual cells within tissues can produce both epigenetic data for different cell types and positional information of the cells. Thus, these investigations are important for understanding the intra- and inter-cellular control systems of developmental and environmental responses in plants. However, a simple method to detect epigenetic modifications of individual cells in plant tissues is not yet available because detection of the modifications requires immunohistochemistry using specific antibodies. In this study, we developed a simple immunohistochemical method that does not require sectioning to investigate epigenetic modifications. This method uses a clearing system to detect methylated histones, acetylated histones, methylated DNA and/or centromeric histone H3 variants. Analyses of four dicots and five monocots indicated that this method provides a universal technique to investigate epigenetic modifications in diverse plant species.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Minoru Murata
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
44
|
Zedek F, Bureš P. Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive. ANNALS OF BOTANY 2016; 118:1347-1352. [PMID: 27616209 PMCID: PMC5155603 DOI: 10.1093/aob/mcw186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/02/2016] [Accepted: 07/10/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The centromere drive theory explains diversity of eukaryotic centromeres as a consequence of the recurrent conflict between centromeric repeats and centromeric histone H3 (CenH3), in which selfish centromeres exploit meiotic asymmetry and CenH3 evolves adaptively to counterbalance deleterious consequences of driving centromeres. Accordingly, adaptively evolving CenH3 has so far been observed only in eukaryotes with asymmetric meiosis. However, if such evolution is a consequence of centromere drive, it should depend not only on meiotic asymmetry but also on monocentric or holokinetic chromosomal structure. Selective pressures acting on CenH3 have never been investigated in organisms with holokinetic meiosis despite the fact that holokinetic chromosomes have been hypothesized to suppress centromere drive. Therefore, the present study evaluates selective pressures acting on the CenH3 gene in holokinetic organisms for the first time, specifically in the representatives of the plant genus Luzula (Juncaceae), in which the kinetochore formation is not co-localized with any type of centromeric repeat. METHODS PCR, cloning and sequencing, and database searches were used to obtain coding CenH3 sequences from Luzula species. Codon substitution models were employed to infer selective regimes acting on CenH3 in Luzula KEY RESULTS: In addition to the two previously published CenH3 sequences from L. nivea, 16 new CenH3 sequences have been isolated from 12 Luzula species. Two CenH3 isoforms in Luzula that originated by a duplication event prior to the divergence of analysed species were found. No signs of positive selection acting on CenH3 in Luzula were detected. Instead, evidence was found that selection on CenH3 of Luzula might have been relaxed. CONCLUSIONS The results indicate that holokinetism itself may suppress centromere drive and, therefore, holokinetic chromosomes might have evolved as a defence against centromere drive.
Collapse
Affiliation(s)
- František Zedek
- Department of Botany and Zoology, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
45
|
Xiong W, Dooner HK, Du C. Rolling-circle amplification of centromeric Helitrons in plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:1038-1045. [PMID: 27553634 DOI: 10.1111/tpj.13314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling-circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present-day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5' ends, but a single 3' end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres.
Collapse
Affiliation(s)
- Wenwei Xiong
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Hugo K Dooner
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08801, USA
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| |
Collapse
|
46
|
Samoluk SS, Robledo G, Bertioli D, Seijo JG. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species. Mol Genet Genomics 2016; 292:283-296. [DOI: 10.1007/s00438-016-1271-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/04/2016] [Indexed: 11/24/2022]
|
47
|
Lu L, Chen X, Sanders D, Qian S, Zhong X. High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in Arabidopsis and rice. Epigenetics 2016; 10:1044-53. [PMID: 26646900 DOI: 10.1080/15592294.2015.1104446] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone acetylation and deacetylation are key epigenetic gene regulatory mechanisms that play critical roles in eukaryotes. Acetylation of histone 4 lysine 16 (H4K16ac) is implicated in many cellular processes. However, its biological function and relationship with transcription are largely unexplored in plants. We generated first genome-wide high-resolution maps of H4K16ac in Arabidopsis thaliana and Oryza sativa. We showed that H4K16ac is preferentially enriched around the transcription start sites and positively correlates with gene expression levels. Co-existence of H4K16ac and H3K23ac is correlated with high gene expression levels, suggesting a potentially combinatorial effect of H4K16ac and H3K23ac histone 3 lysine 23 acetylation on gene expression. Our data further revealed that while genes enriched with both H4K16ac and H3K23ac are ubiquitously expressed, genes enriched with only H4K16ac or H3K23ac showed significantly distinct expression patterns in association with particular developmental stages. Unexpectedly, and unlike in Arabidopsis, there are significant levels of both H4K16ac and H3K23ac in the lowly expressed genes in rice. Furthermore, we found that H4K16ac-enriched genes are associated with different biological processes in Arabidopsis and rice, suggesting a potentially species-specific role of H4K16ac in plants. Together, our genome-wide profiling reveals the conserved and unique distribution patterns of H4K16ac and H3K23ac in Arabidopsis and rice and provides a foundation for further understanding their function in plants.
Collapse
Affiliation(s)
- Li Lu
- a Wisconsin Institute for Discovery
| | | | - Dean Sanders
- b Laboratory of Genetics; University of Wisconsin-Madison ; Madison , WI , USA
| | | | - Xuehua Zhong
- a Wisconsin Institute for Discovery.,b Laboratory of Genetics; University of Wisconsin-Madison ; Madison , WI , USA
| |
Collapse
|
48
|
Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehoever P, Weisshaar B, Schmidt T. Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC PLANT BIOLOGY 2016; 16:120. [PMID: 27230558 PMCID: PMC4881148 DOI: 10.1186/s12870-016-0805-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world's annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). RESULTS ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. CONCLUSIONS The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat-rich heterochromatic regions characterized by the presence of H3K9me2.
Collapse
Affiliation(s)
- Teresa Kowar
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, D-01062, Germany
| | - Falk Zakrzewski
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, D-01062, Germany
| | - Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, Česke Budějovice, CZ-37005, Czech Republic
| | - Andrea Kobližková
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, Česke Budějovice, CZ-37005, Czech Republic
| | - Prisca Viehoever
- CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, D-33615, Germany
| | - Bernd Weisshaar
- CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, D-33615, Germany.
| | - Thomas Schmidt
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, D-01062, Germany
| |
Collapse
|
49
|
Sigman MJ, Slotkin RK. The First Rule of Plant Transposable Element Silencing: Location, Location, Location. THE PLANT CELL 2016; 28:304-13. [PMID: 26869697 PMCID: PMC4790875 DOI: 10.1105/tpc.15.00869] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/18/2015] [Accepted: 02/10/2016] [Indexed: 05/18/2023]
Abstract
Transposable elements (TEs) are mobile units of DNA that comprise large portions of plant genomes. Besides creating mutations via transposition and contributing to genome size, TEs play key roles in chromosome architecture and gene regulation. TE activity is repressed by overlapping mechanisms of chromatin condensation, epigenetic transcriptional silencing, and targeting by small interfering RNAs. The specific regulation of different TEs, as well as their different roles in chromosome architecture and gene regulation, is specified by where on the chromosome the TE is located: near a gene, within a gene, in a pericentromere/TE island, or at the centromere core. In this Review, we investigate the silencing mechanisms responsible for inhibiting TE activity for each of these chromosomal contexts, emphasizing that chromosomal location is the first rule dictating the specific regulation of each TE.
Collapse
Affiliation(s)
- Meredith J Sigman
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - R Keith Slotkin
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
50
|
Pavlek M, Gelfand Y, Plohl M, Meštrović N. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Res 2015; 22:387-401. [PMID: 26428853 PMCID: PMC4675708 DOI: 10.1093/dnares/dsv021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022] Open
Abstract
Although satellite DNAs are well-explored components of heterochromatin and centromeres, little is known about emergence, dispersal and possible impact of comparably structured tandem repeats (TRs) on the genome-wide scale. Our bioinformatics analysis of assembled Tribolium castaneum genome disclosed significant contribution of TRs in euchromatic chromosomal arms and clear predominance of satellite DNA-typical 170 bp monomers in arrays of ≥5 repeats. By applying different experimental approaches, we revealed that the nine most prominent TR families Cast1-Cast9 extracted from the assembly comprise ∼4.3% of the entire genome and reside almost exclusively in euchromatic regions. Among them, seven families that build ∼3.9% of the genome are based on ∼170 and ∼340 bp long monomers. Results of phylogenetic analyses of 2500 monomers originating from these families show high-sequence dynamics, evident by extensive exchanges between arrays on non-homologous chromosomes. In addition, our analysis shows that concerted evolution acts more efficiently on longer than on shorter arrays. Efficient genome-wide distribution of nine TR families implies the role of transposition only in expansion of the most dispersed family, and involvement of other mechanisms is anticipated. Despite similarities in sequence features, FISH experiments indicate high-level compartmentalization of centromeric and euchromatic tandem repeats.
Collapse
Affiliation(s)
- Martina Pavlek
- Ruđer Bošković Institute, Bijenička 54, Zagreb HR-10002, Croatia
| | - Yevgeniy Gelfand
- Laboratory for Biocomputing and Informatics, Boston University, Boston, MA 02215, USA
| | - Miroslav Plohl
- Ruđer Bošković Institute, Bijenička 54, Zagreb HR-10002, Croatia
| | | |
Collapse
|