1
|
Yang X, Ai Y, Chen L, Wang C, Liu J, Zhang J, Li J, Wu H, Xiao J, Chang M, Feng H. PRKX down-regulates TAK1/IRF7 signaling in the antiviral innate immunity of black carp Mylopharyngodon piceus. Front Immunol 2023; 13:999219. [PMID: 36713382 PMCID: PMC9875139 DOI: 10.3389/fimmu.2022.999219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
TGF-β-activated kinase-1 (TAK1), tightly related to innate immunity, is phosphorylated and activated by X-linked protein kinase (PRKX) in humans and mammals, which belongs to the c-AMP-dependent protein kinase family. However, the relationship between PRKX and TAK1 remains unknown in teleost. It has been reported in vertebrates for the first time that TAK1 of black carp (bcTAK1) interacts with bcIRF7 and is capable to up-regulate bcIRF7-mediated IFN signaling in our previous study. In this study, the role of PRKX homologue of black carp (Mylopharyngodon piceus) (bcPRKX) in bcTAK1/IFN signaling has been explored. Overexpression of bcPRKX suppressed the transcription of interferon promoters but enhanced the transcription of NF-κB promoter. Mylopharyngodon piceus kidney (MPK) cells transfected with shRNA targeting bcPRKX gene presented enhanced antiviral activity against spring viremia of carp virus (SVCV), in which the mRNA levels of the antiviral proteins were increased, including MX1, Viperin and PKR. Overexpressed bcPRKX dampened bcTAK1/bcIRF7/IFN signaling in the luciferase reporter assay and plaque assay. The interaction between bcTAK1 and bcPRKX has been identified by the immunofluorescence (IF) staining and co-immunoprecipitation (co-IP) assay. In addition, we found that bcPRKX can trigger the degradation of bcTAK1. However, the lysosome inhibitor chloroquine, but not the proteasome inhibitor MG-132, prevented the bcTAK1 degradation mediated by bcPRKX. Thus, we conclude that bcPRKX inhibits bcTAK1/bcIRF7/IFN signaling during the innate immune activation by targeting bcTAK1 and triggers lysosome-dependent degradation of bcTAK1.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yue Ai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liang Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Chanyuan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Li
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China,*Correspondence: Hao Feng,
| |
Collapse
|
2
|
Phung TN, Olney KC, Pinto BJ, Silasi M, Perley L, O’Bryan J, Kliman HJ, Wilson MA. X chromosome inactivation in the human placenta is patchy and distinct from adult tissues. HGG ADVANCES 2022; 3:100121. [PMID: 35712697 PMCID: PMC9194956 DOI: 10.1016/j.xhgg.2022.100121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
In humans, one of the X chromosomes in genetic females is inactivated by a process called X chromosome inactivation (XCI). Variation in XCI across the placenta may contribute to observed sex differences and variability in pregnancy outcomes. However, XCI has predominantly been studied in human adult tissues. Here, we sequenced and analyzed DNA and RNA from two locations from 30 full-term pregnancies. Implementing an allele-specific approach to examine XCI, we report evidence that XCI in the human placenta is patchy, with large patches of either maternal or paternal X chromosomes inactivated. Further, using similar measurements, we show that this is in contrast to adult tissues, which generally exhibit mosaic X inactivation, where bulk samples exhibit both maternal and paternal X chromosome expression. Further, by comparing skewed samples in placenta and adult tissues, we identify genes that are uniquely inactivated or expressed in the placenta compared with adult tissues, highlighting the need for tissue-specific maps of XCI.
Collapse
Affiliation(s)
- Tanya N. Phung
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
| | - Kimberly C. Olney
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
| | - Brendan J. Pinto
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Michelle Silasi
- Department of Maternal-Fetal Medicine, Mercy Hospital St. Louis, St. Louis, MO 63141, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jane O’Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Harvey J. Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Melissa A. Wilson
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- The Biodesign Center for Mechanisms of Evolution, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
| |
Collapse
|
3
|
Taylor SS, Søberg K, Kobori E, Wu J, Pautz S, Herberg FW, Skålhegg BS. The Tails of Protein Kinase A. Mol Pharmacol 2022; 101:219-225. [PMID: 34330820 PMCID: PMC9092481 DOI: 10.1124/molpharm.121.000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Protein kinase A (PKA) is a holoenzyme consisting of a regulatory (R)-subunit dimer and two catalytic (C)-subunits. There are two major families of C-subunits, Cα and Cβ, and four functionally nonredundant R-subunits (RIα, RIβ, RIIα, RIIβ). In addition to binding to and being regulated by the R-subunits, the C-subunits are regulated by two tail regions that each wrap around the N- and C-lobes of the kinase core. Although the C-terminal (Ct-) tail is classified as an intrinsically disordered region (IDR), the N-terminal (Nt-) tail is dominated by a strong helix that is flanked by short IDRs. In contrast to the Ct-tail, which is a conserved and highly regulated feature of all PKA, PKG, and protein kinase C protein kinase group (AGC) kinases, the Nt-tail has evolved more recently and is highly variable in vertebrates. Surprisingly and in contrast to the kinase core and the Ct-tail, the entire Nt-tail is not conserved in nonmammalian PKAs. In particular, in humans, Cβ actually represents a large family of C-subunits that are highly variable in their Nt-tail and also expressed in a highly tissue-specific manner. Although we know so much about the Cα1-subunit, we know almost nothing about these Cβ isoforms wherein Cβ2 is highly expressed in lymphocytes, and Cβ3 and Cβ4 isoforms account for ∼50% of PKA signaling in brain. Based on recent disease mutations, the Cβ proteins appear to be functionally important and nonredundant with the Cα isoforms. Imaging in retina also supports nonredundant roles for Cβ as well as isoform-specific localization to mitochondria. This represents a new frontier in PKA signaling. SIGNIFICANCE STATEMENT: How tails and adjacent domains regulate each protein kinase is a fundamental challenge for the biological community. Here we highlight how the N- and C-terminal tails of PKA (Nt-tails/Ct-tails) affect the structure and regulate the function of the kinase core and show the combinatorial variations that are introduced into the Nt-tail of the Cα- and Cβ-subunits in contrast to the Ct-tail, which is conserved across the entire AGC subfamily of protein kinases.
Collapse
Affiliation(s)
- Susan S Taylor
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Kristoffer Søberg
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Evan Kobori
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Jian Wu
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Sabine Pautz
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Friedrich W Herberg
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| | - Bjørn Steen Skålhegg
- Departments of Pharmacology (S.S.T.) and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California (S.S.T., E.K., J.W.); Department of Medical Genetics, Oslo University Hospital, Oslo, Norway (K.S.); Department of Biochemistry, University of Kassel, Kassel, Germany (S.P., F.W.H.); and Division for Molecular Nutrition, University of Oslo, Norway (B.S.S.)
| |
Collapse
|
4
|
Reusch B, Bartram MP, Dafinger C, Palacio-Escat N, Wenzel A, Fenton RA, Saez-Rodriguez J, Schermer B, Benzing T, Altmüller J, Beck BB, Rinschen MM. MAGED2 controls vasopressin-induced aquaporin-2 expression in collecting duct cells. J Proteomics 2021; 252:104424. [PMID: 34775100 DOI: 10.1016/j.jprot.2021.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
Mutations in the Melanoma-Associated Antigen D2 (MAGED2) cause antenatal Bartter syndrome type 5 (BARTS5). This rare disease is characterized by perinatal loss of urinary concentration capability and large urine volumes. The underlying molecular mechanisms of this disease are largely unclear. Here, we study the effect of MAGED2 knockdown on kidney cell cultures using proteomic and phosphoproteomic analyses. In HEK293T cells, MAGED2 knockdown induces prominent changes in protein phosphorylation rather than changes in protein abundance. MAGED2 is expressed in mouse embryonic kidneys and its expression declines during development. MAGED2 interacts with G-protein alpha subunit (GNAS), suggesting a role in G-protein coupled receptors (GPCR) signalling. In kidney collecting duct cell lines, Maged2 knockdown subtly modulated vasopressin type 2 receptor (V2R)-induced cAMP-generation kinetics, rewired phosphorylation-dependent signalling, and phosphorylation of CREB. Maged2 knockdown resulted in a large increase in aquaporin-2 abundance during long-term V2R activation. The increase in aquaporin-2 protein was mediated transcriptionally. Taken together, we link MAGED2 function to cellular signalling as a desensitizer of V2R-induced aquaporin-2 expression. SIGNIFICANCE: In most forms of Bartter Syndrome, the underlying cause of the disease is well understood. In contrast, the role of MAGED2 mutations in a newly discovered form of Bartter Syndrome (BARTS5) is unknown. In our manuscript we could show that MAGED2 modulates vasopressin-induced protein and phosphorylation patterns in kidney cells, providing a broad basis for further studies of MAGED2 function in development and disease.
Collapse
Affiliation(s)
- Björn Reusch
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Malte P Bartram
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claudia Dafinger
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nicolàs Palacio-Escat
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Institute of Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Wenzel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Institute of Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, United Kingdom
| | - Bernhard Schermer
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Bodo B Beck
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Markus M Rinschen
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
5
|
Pontecorvi P, Megiorni F, Camero S, Ceccarelli S, Bernardini L, Capalbo A, Anastasiadou E, Gerini G, Messina E, Perniola G, Benedetti Panici P, Grammatico P, Pizzuti A, Marchese C. Altered Expression of Candidate Genes in Mayer-Rokitansky-Küster-Hauser Syndrome May Influence Vaginal Keratinocytes Biology: A Focus on Protein Kinase X. BIOLOGY 2021; 10:biology10060450. [PMID: 34063745 PMCID: PMC8223793 DOI: 10.3390/biology10060450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare and complex disease defined by congenital aplasia of the vagina and uterus in 46,XX women, often associated with kidney and urinary tract anomalies. The aetiopathogenesis of MRKH syndrome is still largely unknown. Herein, we investigated the role of selected candidate genes in the aetiopathogenesis of MRKH syndrome, with a focus on PRKX, which encodes for protein kinase X. Through RT-qPCR analyses performed on vaginal dimple samples from patients, and principal component analysis (PCA), we highlighted a phenotype-related expression pattern of PRKX, MUC1, HOXC8 and GREB1L in MRKH patients. By using an in vitro approach, we proved that PRKX ectopic overexpression in a cell model of vaginal keratinocytes promotes cell motility through epithelial-to-mesenchymal transition (EMT) activation, a fundamental process in urogenital tract morphogenesis. Moreover, our findings showed that PRKX upregulation in vaginal keratinocytes is able to affect transcriptional levels of HOX genes, implicated in urinary and genital tract development. Our study identified the dysregulation of PRKX expression as a possible molecular cause for MRKH syndrome. Moreover, we propose the specific role of PRKX in vaginal keratinocyte biology as one of the possible mechanisms underlying this complex disease.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Simona Camero
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Laura Bernardini
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Anna Capalbo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Paola Grammatico
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University of Rome-San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152 Rome, Italy;
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Correspondence: ; Tel.: +39-06-4997-2872
| |
Collapse
|
6
|
Qi Y, Wang X, Li W, Chen D, Meng H, An S. Pseudogenes in Cardiovascular Disease. Front Mol Biosci 2021; 7:622540. [PMID: 33644114 PMCID: PMC7902774 DOI: 10.3389/fmolb.2020.622540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular disease is the main disease that affects human life span. In recent years, the disease has been increasingly addressed at the molecular levels, for example, pseudogenes are now known to be involved in the pathogenesis and development of cardiovascular diseases. Pseudogenes are non-coding homologs of protein-coding genes and were once called “junk gene.” Since they are highly homologous to their functional parental genes, it is somewhat difficult to distinguish them. With the development of sequencing technology and bioinformatics, pseudogenes have become readily identifiable. Recent studies indicate that pseudogenes are closely related to cardiovascular diseases. This review provides an overview of pseudogenes and their roles in the pathogenesis of cardiovascular diseases. This new knowledge adds to our understanding of cardiovascular disease at the molecular level and will help develop new biomarkers and therapeutic approaches designed to prevent and treat the disease.
Collapse
Affiliation(s)
- Yanyan Qi
- Department of Cardiology, Anesthesiology and Emergency Medicine, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Li
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongchang Chen
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Meng
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Songtao An
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Pontecorvi P, Bernardini L, Capalbo A, Ceccarelli S, Megiorni F, Vescarelli E, Bottillo I, Preziosi N, Fabbretti M, Perniola G, Benedetti Panici P, Pizzuti A, Grammatico P, Marchese C. Protein-protein interaction network analysis applied to DNA copy number profiling suggests new perspectives on the aetiology of Mayer-Rokitansky-Küster-Hauser syndrome. Sci Rep 2021; 11:448. [PMID: 33432050 PMCID: PMC7801512 DOI: 10.1038/s41598-020-79827-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare disease, characterised by the aplasia of vagina and uterus in women with a 46,XX karyotype. Most cases are sporadic, but familial recurrence has also been described. Herein, we investigated an Italian cohort of 36 unrelated MRKH patients to explore the presence of pathogenic copy number variations (CNVs) by array-CGH and MLPA assays. On the whole, aberrations were found in 9/36 (25%) patients. Interestingly, one patient showed a novel heterozygous microduplication at Xp22.33, not yet described in MRKH patients, containing the PRKX gene. Moreover, a novel duplication of a specific SHOX enhancer was highlighted by MLPA. To predict the potential significance of CNVs in MRKH pathogenesis, we provided a network analysis for protein-coding genes found in the altered genomic regions. Although not all of these genes taken individually showed a clear clinical significance, their combination in a computational network highlighted that the most relevant biological connections are related to the anatomical structure development. In conclusion, the results described in the present study identified novel genetic alterations and interactions that may be likely involved in MRKH phenotype determination, so adding new insights into the complex puzzle of MRKH disease.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Laura Bernardini
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Anna Capalbo
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Nicoletta Preziosi
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Maria Fabbretti
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Giorgia Perniola
- Department of Maternal, Infantile and Urological Sciences, Sapienza Università di Roma, Rome, Italy
| | | | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy.,Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Paola Grammatico
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy.
| |
Collapse
|
8
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
9
|
Kole K, Scheenen W, Tiesinga P, Celikel T. Cellular diversity of the somatosensory cortical map plasticity. Neurosci Biobehav Rev 2017; 84:100-115. [PMID: 29183683 DOI: 10.1016/j.neubiorev.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Sensory maps are representations of the sensory epithelia in the brain. Despite the intuitive explanatory power behind sensory maps as being neuronal precursors to sensory perception, and sensory cortical plasticity as a neural correlate of perceptual learning, molecular mechanisms that regulate map plasticity are not well understood. Here we perform a meta-analysis of transcriptional and translational changes during altered whisker use to nominate the major molecular correlates of experience-dependent map plasticity in the barrel cortex. We argue that brain plasticity is a systems level response, involving all cell classes, from neuron and glia to non-neuronal cells including endothelia. Using molecular pathway analysis, we further propose a gene regulatory network that could couple activity dependent changes in neurons to adaptive changes in neurovasculature, and finally we show that transcriptional regulations observed in major brain disorders target genes that are modulated by altered sensory experience. Thus, understanding the molecular mechanisms of experience-dependent plasticity of sensory maps might help to unravel the cellular events that shape brain plasticity in health and disease.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Wim Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Meyfour A, Pooyan P, Pahlavan S, Rezaei-Tavirani M, Gourabi H, Baharvand H, Salekdeh GH. Chromosome-Centric Human Proteome Project Allies with Developmental Biology: A Case Study of the Role of Y Chromosome Genes in Organ Development. J Proteome Res 2017; 16:4259-4272. [PMID: 28914051 DOI: 10.1021/acs.jproteome.7b00446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the main goals of Chromosome-Centric Human Proteome Project is to identify protein evidence for missing proteins (MPs). Here, we present a case study of the role of Y chromosome genes in organ development and how to overcome the challenges facing MPs identification by employing human pluripotent stem cell differentiation into cells of different organs yielding unprecedented biological insight into adult silenced proteins. Y chromosome is a male-specific sex chromosome which escapes meiotic recombination. From an evolutionary perspective, Y chromosome has preserved 3% of ancestral genes compared to 98% preservation of the X chromosome based on Ohno's law. Male specific region of Y chromosome (MSY) contains genes that contribute to central dogma and govern the expression of various targets throughout the genome. One of the most well-known functions of MSY genes is to decide the male-specific characteristics including sex, testis formation, and spermatogenesis, which are majorly formed by ampliconic gene families. Beyond its role in sex-specific gonad development, MSY genes in coexpression with their X counterparts, as single copy and broadly expressed genes, inhibit haplolethality and play a key role in embryogenesis. The role of X-Y related gene mutations in the development of hereditary syndromes suggests an essential contribution of sex chromosome genes to development. MSY genes, solely and independent of their X counterparts and/or in association with sex hormones, have a considerable impact on organ development. In this Review, we present major recent findings on the contribution of MSY genes to gonad formation, spermatogenesis, and the brain, heart, and kidney development and discuss how Y chromosome proteome project may exploit developmental biology to find missing proteins.
Collapse
Affiliation(s)
- Anna Meyfour
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran.,Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , 19839-63113 Tehran, Iran
| | - Paria Pooyan
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , 19839-63113 Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute , 19395-4644 Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture , 19395-4644 Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran.,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran , 31535-1897 Karaj, Iran
| |
Collapse
|
11
|
Chan AI, McGregor LM, Jain T, Liu DR. Discovery of a Covalent Kinase Inhibitor from a DNA-Encoded Small-Molecule Library × Protein Library Selection. J Am Chem Soc 2017; 139:10192-10195. [PMID: 28689404 DOI: 10.1021/jacs.7b04880] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously reported interaction determination using unpurified proteins (IDUP), a method to selectively amplify DNA sequences encoding ligand:target pairs from a mixture of DNA-linked small molecules and unpurified protein targets in cell lysates. In this study, we applied IDUP to libraries of DNA-encoded bioactive compounds and DNA-tagged human kinases to identify ligand:protein binding partners out of 32 096 possible combinations in a single solution-phase library × library experiment. The results recapitulated known small molecule:protein interactions and also revealed that ethacrynic acid is a novel ligand and inhibitor of MAP2K6 kinase. Ethacrynic acid inhibits MAP2K6 in part through alkylation of a nonconserved cysteine residue. This work validates the ability of IDUP to discover ligands for proteins of biomedical relevance.
Collapse
Affiliation(s)
- Alix I Chan
- The Broad Institute of Harvard and MIT, Howard Hughes Medical Institute, and the Department of Chemistry and Chemical Biology, Harvard University , 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Lynn M McGregor
- The Broad Institute of Harvard and MIT, Howard Hughes Medical Institute, and the Department of Chemistry and Chemical Biology, Harvard University , 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Tara Jain
- The Broad Institute of Harvard and MIT, Howard Hughes Medical Institute, and the Department of Chemistry and Chemical Biology, Harvard University , 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - David R Liu
- The Broad Institute of Harvard and MIT, Howard Hughes Medical Institute, and the Department of Chemistry and Chemical Biology, Harvard University , 75 Ames Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
12
|
Feng J, Ge S, Zhang L, Che H, Liang C. Aortic dissection is associated with reduced polycystin-1 expression, an abnormality that leads to increased ERK phosphorylation in vascular smooth muscle cells. Eur J Histochem 2016; 60:2711. [PMID: 28076932 PMCID: PMC5381529 DOI: 10.4081/ejh.2016.2711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022] Open
Abstract
The vascular smooth muscle cell (VSMC) phenotypic switch is a key pathophysiological change in various cardiovascular diseases, such as aortic dissection (AD), with a high morbidity. Polycystin-1 (PC1) is significantly downregulated in the VSMCs of AD patients. PC1 is an integral membrane glycoprotein and kinase that regulates different biological processes, including cell proliferation, apoptosis, and cell polarity. However, the role of PC1 in intracellular signaling pathways remains poorly understood. In this study, PC1 downregulation in VSMCs promoted the expression of SM22α, ACTA2 and calponin 1 (CNN1) proteins. Furthermore, PC1 downregulation in VSMCs upregulated phospho-MEK, phospho-ERK and myc, but did not change phospho-JNK and phospho-p38. These findings suggest that the MEK/ERK/myc signaling pathway is involved in PC1-mediated human VSMC phenotypic switch. Opposite results were observed when an ERK inhibitor was used in VSMCs downregulated by PC1. When the C-terminal domain of PC1 (PC1 C-tail) was overexpressed in VSMCs, the expression levels of phosphor-ERK, myc, SM22α, ACTA2 and CNN1 proteins were downregulated. The group with the overexpressed mutant protein (S4166A) in the PC1 C-tail showed similar results to the group with the downregulated PC1 in VSMCs. These results suggest that the Ser at the 4166 site in PC1 is crucial in the PC1 mediated MEK/ERK/myc signaling pathway, which might be the key pathophysiological cause of AD.
Collapse
Affiliation(s)
- J Feng
- The First Affiliated Hospital of Anhui Medical University, Department of Cardiovascular Surgery.
| | | | | | | | | |
Collapse
|
13
|
Huang S, Li Q, Alberts I, Li X. PRKX, a Novel cAMP-Dependent Protein Kinase Member, Plays an Important Role in Development. J Cell Biochem 2016; 117:566-73. [PMID: 26252946 DOI: 10.1002/jcb.25304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/11/2022]
Abstract
The human protein kinase X gene (PRKX) and cAMP-dependent protein kinase (PKA) are both c-AMP-dependent serine/threonine protein kinases within the protein kinase AGC subgroup. Of all the protein kinases in this group, PRKX is the least studied. PRKX has been isolated from patients with chondrodysplasia punctate and is involved in numerous processes, including sexual differentiation and fertilization, normal kidney development and autosomal dominant polycystic kidney disease (ADPKD), blood maturation, neural development, and angiogenesis in vitro. Although the role of PRKX in development and disease has been reported recently, the underlying mechanism of PRKX activity is largely unknown. In addition, based on the expression pattern of PRKX and the extensive role of PKA in disease and development, PRKX might have additional crucial functions that have not been addressed in the literature. In this review, we summarize the characteristics and developmental functions of PRKX that have been reported by recent studies. In particular, we elucidate the structural and functional differences between PRKX and PKA, as well as the possible roles of PRKX in development and related diseases. Finally, we propose future studies that could lead to important discoveries of more PRKX functions and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Sizhou Huang
- Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China, 610500
| | - Qian Li
- Department of Neurochemisty, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314
| | - Ian Alberts
- Department of Natural Sciences, LaGuardia CC, CUNY, Long Island City, New York, 11101
| | - Xiaohong Li
- Department of Neurochemisty, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314
| |
Collapse
|
14
|
A kinome wide screen identifies novel kinases involved in regulation of monoamine transporter function. Neurochem Int 2016; 98:103-14. [DOI: 10.1016/j.neuint.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 11/21/2022]
|
15
|
Li J, Xu J, Lu Y, Qiu L, Xu W, Lu B, Hu Z, Chu Z, Chai Y, Zhang J. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats. Molecules 2016; 21:molecules21050649. [PMID: 27196884 PMCID: PMC6273364 DOI: 10.3390/molecules21050649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023] Open
Abstract
Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Jianzhong Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jing Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
- Department of Pharmacy, East Hospital, Dongji University, Shanghai 200085, China.
| | - Yiming Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lei Qiu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Weiheng Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Bin Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhenlin Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhiyong Chu
- The Naval Medical Research Institute, Shanghai 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Junping Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
16
|
Li J, Xu J, Xu W, Qi Y, Lu Y, Qiu L, Hu Z, Chu Z, Chai Y, Zhang J. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats. Int J Mol Sci 2015; 16:18938-55. [PMID: 26274957 PMCID: PMC4581280 DOI: 10.3390/ijms160818938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/15/2023] Open
Abstract
Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage.
Collapse
Affiliation(s)
- Jianzhong Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jing Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
- Department of Pharmacy, East Hospital, Dongji University, Shanghai 200085, China.
| | - Weiheng Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yang Qi
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yiming Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lei Qiu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhenlin Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhiyong Chu
- Department of Preventive Medicine, Naval Medical Research Institute, Shanghai 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Junping Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
17
|
Peng M, Aye TT, Snel B, van Breukelen B, Scholten A, Heck AJR. Spatial Organization in Protein Kinase A Signaling Emerged at the Base of Animal Evolution. J Proteome Res 2015; 14:2976-87. [DOI: 10.1021/acs.jproteome.5b00370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mao Peng
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
- Department
of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Thin Thin Aye
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Berend Snel
- Theoretical
Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bas van Breukelen
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
18
|
Darlow JM, Dobson MG, Darlay R, Molony CM, Hunziker M, Green AJ, Cordell HJ, Puri P, Barton DE. A new genome scan for primary nonsyndromic vesicoureteric reflux emphasizes high genetic heterogeneity and shows linkage and association with various genes already implicated in urinary tract development. Mol Genet Genomic Med 2013; 2:7-29. [PMID: 24498626 PMCID: PMC3907909 DOI: 10.1002/mgg3.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/21/2013] [Indexed: 12/18/2022] Open
Abstract
Primary vesicoureteric reflux (VUR), the retrograde flow of urine from the bladder toward the kidneys, results from a developmental anomaly of the vesicoureteric valve mechanism, and is often associated with other urinary tract anomalies. It is the most common urological problem in children, with an estimated prevalence of 1–2%, and is a major cause of hypertension in childhood and of renal failure in childhood or adult life. We present the results of a genetic linkage and association scan using 900,000 markers. Our linkage results show a large number of suggestive linkage peaks, with different results in two groups of families, suggesting that VUR is even more genetically heterogeneous than previously imagined. The only marker achieving P < 0.02 for linkage in both groups of families is 270 kb from EMX2. In three sibships, we found recessive linkage to KHDRBS3, previously reported in a Somali family. In another family we discovered sex-reversal associated with VUR, implicating PRKX, for which there was weak support for dominant linkage in the overall data set. Several other candidate genes are suggested by our linkage or association results, and four of our linkage peaks are within copy-number variants recently found to be associated with renal hypodysplasia. Undoubtedly there are many genes related to VUR. Our study gives support to some loci suggested by earlier studies as well as suggesting new ones, and provides numerous indications for further investigations.
Collapse
Affiliation(s)
- J M Darlow
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - M G Dobson
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - R Darlay
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, United Kingdom
| | - C M Molony
- Merck & Co. Inc 1 Merck Drive, Whitehouse Station, New Jersey, 08889
| | - M Hunziker
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Hospital Tallaght, Dublin, 24, Ireland
| | - A J Green
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; University College Dublin UCD School of Medicine and Medical Sciences, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - H J Cordell
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, United Kingdom
| | - P Puri
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Hospital Tallaght, Dublin, 24, Ireland
| | - D E Barton
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; University College Dublin UCD School of Medicine and Medical Sciences, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| |
Collapse
|
19
|
Bloomer LDS, Nelson CP, Eales J, Denniff M, Christofidou P, Debiec R, Moore J, Zukowska-Szczechowska E, Goodall AH, Thompson J, Samani NJ, Charchar FJ, Tomaszewski M. Male-specific region of the Y chromosome and cardiovascular risk: phylogenetic analysis and gene expression studies. Arterioscler Thromb Vasc Biol 2013; 33:1722-7. [PMID: 23640493 DOI: 10.1161/atvbaha.113.301608] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Haplogroup I of male-specific region of the human Y chromosome is associated with 50% increased risk of coronary artery disease. It is not clear to what extent conventional cardiovascular risk factors and genes of the male-specific region may explain this association. APPROACH AND RESULTS A total of 1988 biologically unrelated men from 4 white European populations were genotyped using 11 Y chromosome single nucleotide polymorphisms and classified into 13 most common European haplogroups. Approximately 75% to 93% of the haplotypic variation of the Y chromosome in all cohorts was attributable to I, R1a, and R1b1b2 lineages. None of traditional cardiovascular risk factors, including body mass index, blood pressures, lipids, glucose, C-reactive protein, creatinine, and insulin resistance, was associated with haplogroup I of the Y chromosome in the joint inverse variance meta-analysis. Fourteen of 15 ubiquitous single-copy genes of the male-specific region were expressed in human macrophages. When compared with men with other haplogroups, carriers of haplogroup I had ≈ 0.61- and 0.64-fold lower expression of ubiquitously transcribed tetratricopeptide repeat, Y-linked gene (UTY) and protein kinase, Y-linked, pseudogene (PRKY) in macrophages (P=0.0001 and P=0.002, respectively). CONCLUSIONS Coronary artery disease predisposing haplogroup I of the Y chromosome is associated with downregulation of UTY and PRKY genes in macrophages but not with conventional cardiovascular risk factors.
Collapse
Affiliation(s)
- Lisa D S Bloomer
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
LI W, LIN Y. Identification of Human Methyl-CpG Binding Domain Protein (MBD) 4 as a Substrate of Protein Kinase X*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Stouffs K, Lissens W. X chromosomal mutations and spermatogenic failure. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1864-72. [DOI: 10.1016/j.bbadis.2012.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/24/2012] [Accepted: 05/14/2012] [Indexed: 01/11/2023]
|
22
|
Lin Y, Li W. MBD 4--a potential substrate for protein kinase X. Acta Biochim Biophys Sin (Shanghai) 2011; 43:916-7. [PMID: 21971312 DOI: 10.1093/abbs/gmr086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | | |
Collapse
|
23
|
Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1239-48. [DOI: 10.1016/j.bbadis.2011.05.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 12/29/2022]
|
24
|
PRKX critically regulates endothelial cell proliferation, migration, and vascular-like structure formation. Dev Biol 2011; 356:475-85. [PMID: 21684272 DOI: 10.1016/j.ydbio.2011.05.673] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 11/21/2022]
Abstract
Angiogenesis is a fundamental step in several important physiological events and pathological conditions including embryonic development, wound repair, tumor growth and metastasis. PRKX was identified as a novel type-I cAMP-dependent protein kinase gene expressed in multiple developing tissues. PRKX has also been shown to be phylogenetically and functionally distinct from PKA. This study presents the first evidence that PRKX stimulates endothelial cell proliferation, migration, and vascular-like structure formation, which are the three essential processes for angiogenesis. In contrast, classic PKA demonstrated an inhibitory effect on endothelia vascular-like structure formation. Our findings suggest that PRKX is an important protein kinase engaged in the regulation of angiogenesis and could play critical roles in various physiological and pathological conditions involving angiogenesis. PRKX binds to Pin-1, Magi-1 and Bag-3, which regulate cell proliferation, apoptosis, differentiation and tumorigenesis. The interaction of PRKX with Pin-1, Magi-1 and Bag-3 could contribute to the stimulating role of PRKX in angiogenesis.
Collapse
|
25
|
Li X. Phosphorylation, protein kinases and ADPKD. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1219-24. [PMID: 21392577 DOI: 10.1016/j.bbadis.2011.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by renal cyst formation and caused by mutations in the PKD1 and PKD2 genes, which encode polycystin-1(PC-1) and -2 (PC-2) proteins, respectively. PC-1 is a large plasma membrane receptor involved in the regulation of several biological functions and signaling pathways including the Wnt cascade, AP-1, PI3kinase/Akt, GSK3β, STAT6, Calcineurin/NFAT and the ERK and mTOR cascades. PC-2 is a calcium channel of the TRP family. The two proteins form a functional complex and prevent cyst formation, but the precise mechanism(s) involved remains unknown. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, New York, NY, USA.
| |
Collapse
|
26
|
Diskar M, Zenn HM, Kaupisch A, Kaufholz M, Brockmeyer S, Sohmen D, Berrera M, Zaccolo M, Boshart M, Herberg FW, Prinz A. Regulation of cAMP-dependent protein kinases: the human protein kinase X (PrKX) reveals the role of the catalytic subunit alphaH-alphaI loop. J Biol Chem 2010; 285:35910-8. [PMID: 20819953 PMCID: PMC2975214 DOI: 10.1074/jbc.m110.155150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/10/2010] [Indexed: 11/06/2022] Open
Abstract
cAMP-dependent protein kinases are reversibly complexed with any of the four isoforms of regulatory (R) subunits, which contain either a substrate or a pseudosubstrate autoinhibitory domain. The human protein kinase X (PrKX) is an exemption as it is inhibited only by pseudosubstrate inhibitors, i.e. RIα or RIβ but not by substrate inhibitors RIIα or RIIβ. Detailed examination of the capacity of five PrKX-like kinases ranging from human to protozoa (Trypanosoma brucei) to form holoenzymes with human R subunits in living cells shows that this preference for pseudosubstrate inhibitors is evolutionarily conserved. To elucidate the molecular basis of this inhibitory pattern, we applied bioluminescence resonance energy transfer and surface plasmon resonance in combination with site-directed mutagenesis. We observed that the conserved αH-αI loop residue Arg-283 in PrKX is crucial for its RI over RII preference, as a R283L mutant was able to form a holoenzyme complex with wild type RII subunits. Changing the corresponding αH-αI loop residue in PKA Cα (L277R), significantly destabilized holoenzyme complexes in vitro, as cAMP-mediated holoenzyme activation was facilitated by a factor of 2-4, and lead to a decreased affinity of the mutant C subunit for R subunits, significantly affecting RII containing holoenzymes.
Collapse
Affiliation(s)
- Mandy Diskar
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Hans-Michael Zenn
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Alexandra Kaupisch
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Melanie Kaufholz
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Stefanie Brockmeyer
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Daniel Sohmen
- the Biocenter, Section Genetics, University of Munich (LMU), Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany, and
| | - Marco Berrera
- the University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Manuela Zaccolo
- the University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Michael Boshart
- the Biocenter, Section Genetics, University of Munich (LMU), Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany, and
| | - Friedrich W. Herberg
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Anke Prinz
- From the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| |
Collapse
|
27
|
Abstract
Increased levels of 3'-5'-cyclic adenosine monophosphate (cAMP) stimulate cell proliferation and fluid secretion in polycystic kidney disease. Levels of this molecule are more sensitive to inhibition of phosphodiesterases (PDEs), whose activity far exceeds the rate of cAMP synthesis by adenylyl cyclase. Several PDEs exist, and here we measured the activity and expression of PDE families, their isoforms, and the expression of downstream effectors of cAMP signaling in the kidneys of rodents with polycystic kidney disease. We found a higher overall PDE activity in kidneys from mice as compared with rats, as well as a higher contribution of PDE1, relative to PDE4 and PDE3, to total PDE activity of kidney lysates and lower PDE1, PDE3, and PDE4 activities in the kidneys of cystic as compared with wild-type mice. There were reduced amounts of several PDE1, PDE3, and PDE4 proteins, possibly due to increased protein degradation despite an upregulation of their mRNA. Increased levels of cGMP were found in the kidneys of cystic animals, suggesting in vivo downregulation of PDE1 activity. We found an additive stimulatory effect of cAMP and cGMP on cystogenesis in vitro. Cyclic AMP-dependent protein kinase subunits Ialpha and IIbeta, PKare, the transcription factor CREB-1 mRNA, and CREM, ATF-1, and ICER proteins were upregulated in the kidneys of cystic as compared with wild-type animals. Our study suggests that alterations in cyclic nucleotide catabolism may render cystic epithelium particularly susceptible to factors acting on Gs-coupled receptors. This may account, in part, for increased cyclic nucleotide signaling in polycystic kidney disease and contribute substantially to disease progression.
Collapse
Affiliation(s)
- Xiaofang Wang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
28
|
Li X, Hyink DP, Radbill B, Sudol M, Zhang H, Zheleznova NN, Wilson PD. Protein kinase-X interacts with Pin-1 and Polycystin-1 during mouse kidney development. Kidney Int 2009; 76:54-62. [DOI: 10.1038/ki.2009.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Bertuccio CA, Chapin HC, Cai Y, Mistry K, Chauvet V, Somlo S, Caplan MJ. Polycystin-1 C-terminal cleavage is modulated by polycystin-2 expression. J Biol Chem 2009; 284:21011-26. [PMID: 19491093 DOI: 10.1074/jbc.m109.017756] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway.
Collapse
Affiliation(s)
- Claudia A Bertuccio
- Departments of Cellular and Molecular Physiology, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Gao X, Jin C, Ren J, Yao X, Xue Y. Proteome-wide prediction of PKA phosphorylation sites in eukaryotic kingdom. Genomics 2008; 92:457-63. [PMID: 18817865 DOI: 10.1016/j.ygeno.2008.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 08/25/2008] [Accepted: 08/27/2008] [Indexed: 01/27/2023]
Abstract
Protein phosphorylation is one of the most essential post-translational modifications (PTMs), and orchestrates a variety of cellular functions and processes. Besides experimental studies, numerous computational predictors implemented in various algorithms have been developed for phosphorylation sites prediction. However, large-scale predictions of kinase-specific phosphorylation sites have not been successfully pursued and remained to be a great challenge. In this work, we raised a "kiss farewell" model and conducted a high-throughput prediction of cAMP-dependent kinase (PKA) phosphorylation sites. Since a protein kinase (PK) should at least "kiss" its substrates and then run away, we proposed a PKA-binding protein to be a potential PKA substrate if at least one PKA site was predicted. To improve the prediction specificity, we reduced false positive rate (FPR) less than 1% when the cut-off value was set as 4. Successfully, we predicted 1387, 630, 568 and 912 potential PKA sites from 410, 217, 173 and 260 PKA-interacting proteins in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens, respectively. Most of these potential phosphorylation sites remained to be experimentally verified. In addition, we detected two sites in one of PKA regulatory subunits to be conserved in eukaryotes as potentially ancient regulatory signals. Our prediction results provide an excellent resource for delineating PKA-mediated signaling pathways and their system integration underlying cellular dynamics and plasticity.
Collapse
Affiliation(s)
- Xinjiao Gao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
31
|
Wilson PD, Goilav B. Cystic disease of the kidney. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:341-68. [PMID: 18039103 DOI: 10.1146/annurev.pathol.2.010506.091850] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on the mechanisms that underlie the development of human renal cystic diseases. A pathological, clinical, and pathophysiological overview is given. Initial analysis of the cell biology of inappropriate hyperproliferation accompanied by fluid secretion of cyst-lining epithelia has been followed by the elucidation of fundamental defects in epithelial polarity, cell-matrix and cell-cell interactions, and apoptosis, all of which are discussed. Identification of the genes and proteins responsible for several renal cystic diseases has led to a more complete understanding of defects in renal developmental programming, differentiation, and morphogenesis, all of which underlie cystic diseases of the kidney.
Collapse
Affiliation(s)
- Patricia D Wilson
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
32
|
Masoumi A, Reed-Gitomer B, Kelleher C, Schrier RW. Potential pharmacological interventions in polycystic kidney disease. Drugs 2008; 67:2495-510. [PMID: 18034588 DOI: 10.2165/00003495-200767170-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polycystic kidney diseases (autosomal dominant and autosomal recessive) are progressive renal tubular cystic diseases, which are characterised by cyst expansion and loss of normal kidney structure and function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common life- threatening, hereditary disease. ADPKD is more prevalent than Huntington's disease, haemophilia, sickle cell disease, cystic fibrosis, myotonic dystrophy and Down's syndrome combined. Early diagnosis and treatment of hypertension with inhibitors of the renin-angiotensin-aldosterone system (RAAS) and its potential protective effect on left ventricular hypertrophy has been one of the major therapeutic goals to decrease cardiac complications and contribute to improved prognosis of the disease. Advances in the understanding of the genetics, molecular biology and pathophysiology of the disease are likely to facilitate the improvement of treatments for these diseases. Developments in describing the role of intracellular calcium ([Ca(2+)](i)) and its correlation with cellular signalling systems, Ras/Raf/mitogen extracellular kinase (MEK)/extracellular signal-regulated protein kinase (ERK), and interaction of these pathways with cyclic adenosine monophosphate (cAMP) levels, provide new insights on treatment strategies. Blocking the vasopressin V(2) receptor, a major adenylyl cyclase agonist, demonstrated significant improvements in inhibiting cytogenesis in animal models. Because of activation of the mammalian target of rapamycin (mTOR) pathway, the use of sirolimus (rapamycin) an mTOR inhibitor, markedly reduced cyst formation and decreased polycystic kidney size in several animal models. Caspase inhibitors have been shown to decrease cytogenesis and renal failure in rats with cystic disease. Cystic fluid secretion results in cyst enlargement and somatostatin analogues have been shown to decrease renal cyst progression in patients with ADPKD. The safety and efficacy of these classes of drugs provide potential interventions for experimental and clinical trials.
Collapse
Affiliation(s)
- Amirali Masoumi
- Department of Medicine, Health Sciences Center, University of Colorado School of Medicine, Denver, Colorado, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Polycystic kidney disease (PKD) is a diverse group of human monogenic lethal conditions inherited as autosomal dominant (AD) or recessive (AR) traits. Recent development of genetically engineered mouse models of ADPKD, ARPKD, and nephronophthisis/medullary cystic disease (NPHP) are providing additional insights into the molecular mechanisms governing of these disease processes as well as the developmental differentiation of the normal kidney. Genotypic and phenotypic mouse models are discussed and provide evidence for the fundamental involvement of cell-matrix, cell-cell, and primary cilia-lumen interactions, as well as epithelial proliferation, apoptosis, and polarization. Structure/function relationships between the PKD1, PKD2, PKHD1, and NPHP genes and proteins support the notion of a regulatory multiprotein cystic complex with a mechanosensory function that integrates signals from the extracellular environment. The plethora of intracellular signaling cascades that can impact renal cystic development suggest an exquisitely sensitive requirement for integrated downstream transduction and provide potential targets for therapeutic intervention. Appropriate genocopy models that faithfully recapitulate the phenotypic characteristics of the disease will be invaluable tools to analyze the effects of modifier genes and small molecule inhibitor therapies.
Collapse
|
34
|
Protein kinase X (PRKX) can rescue the effects of polycystic kidney disease-1 gene (PKD1) deficiency. Biochim Biophys Acta Mol Basis Dis 2007; 1782:1-9. [PMID: 17980165 DOI: 10.1016/j.bbadis.2007.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 11/22/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common, genetically determined developmental disorder of the kidney that is characterized by cystic expansion of renal tubules and is caused by truncating mutations and haplo-insufficiency of the PKD1 gene. Several defects in cAMP-mediated proliferation and ion secretion have been detected in ADPKD cyst-lining epithelia. Unlike the ubiquitous PKA, the cAMP-dependent CREB-kinase, Protein Kinase X (PRKX) is developmentally regulated, tissue restricted and induces renal epithelial cell migration, and tubulogenesis in vitro as well as branching morphogenesis of ureteric bud in developing kidneys. The possibility of functional interactions between PKD1-encoded polycystin-1 and PRKX was suggested by the renal co-distribution of PRKX and polycystin-1 and the binding and phosphorylation of the C-terminal of polycystin-1 by PRKX at S4166 in vitro. Early consequences of PKD1 mutation include increased tubule epithelial cell-matrix adhesion, decreased migration, reduced ureteric bud branching and aberrant renal tubule dilation. To determine whether PRKX might counteract the adverse effects of PKD1 mutation, human ADPKD epithelial cell lines were transfected with constitutively active PRKX and shown to rescue characteristic adhesion and migration defects. In addition, the co-injection of constitutively active PRKX with inhibitory pMyr-EGFP-PKD1 into the ureteric buds of mouse embryonic kidneys in organ culture resulted in restoration of normal branching morphogenesis without cystic tubular dilations. These results suggest that PRKX can restore normal function to PKD1-deficient kidneys and have implications for the development of preventative therapy for ADPKD.
Collapse
|
35
|
Murphy KM, Cohen JS, Goodrich A, Long PP, Griffin CA. Constitutional duplication of a region of chromosome Yp encoding AMELY, PRKY, and TBL1Y: implications for sex chromosome analysis and bone marrow engraftment analysis. J Mol Diagn 2007; 9:408-13. [PMID: 17591941 PMCID: PMC1899418 DOI: 10.2353/jmoldx.2007.060198] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2007] [Indexed: 11/20/2022] Open
Abstract
Amelogenin has chromosome X (AMELX) and Y (AMELY) homologs that can be differentiated based on the length of polymerase chain reaction (PCR) amplification products. In addition to being useful for gender identification, analysis of amelogenin has utility for monitoring bone marrow engraftment in patients after a sex-mismatched bone marrow transplant, characterizing sex chromosome abnormalities, and for forensic purposes for analyzing mixtures of male and female DNA. Here, we describe two brothers in which PCR analysis demonstrated twofold greater AMELY products compared with AMELX products. Karyotype and X/Y fluorescence in situ hybridization analysis demonstrated a single copy of the X and Y chromosomes without any identifiable abnormalities. Oligonucleotide comparative genomic hybridization array analysis demonstrated a duplication of a portion of chromosome Yp that encompassed a region of at least 2.6 Mb but not greater than 4.0 Mb. The amplified region contains the genes AMELY, transducin (beta)-like 1 protein Y (TBL1Y), and protein kinase Y (PRKY). To our knowledge, duplication of this region has not previously been reported. The family history is unremarkable, and the brothers are without ap-parent dysmorphic features. Although this and other genetic variants involving AMELY are uncommon, one should use caution when using amelogenin for sex chromosome analysis and bone marrow engraftment analysis.
Collapse
Affiliation(s)
- Kathleen M Murphy
- Department of Pathology, John Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
36
|
Diskar M, Zenn HM, Kaupisch A, Prinz A, Herberg FW. Molecular basis for isoform-specific autoregulation of protein kinase A. Cell Signal 2007; 19:2024-34. [PMID: 17614255 DOI: 10.1016/j.cellsig.2007.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Protein kinase A (PKA) isozymes are distinguishable by the inhibitory pattern of their regulatory (R) subunits with RI subunits containing a pseudophosphorylation P(0)-site and RII subunits being a substrate. Under physiological conditions, RII does not inhibit PrKX, the human X chromosome encoded PKA catalytic (C) subunit. Using a live cell Bioluminescence Resonance Energy Transfer (BRET) assay, Surface Plasmon Resonance (SPR) and kinase activity assays, we identified the P(0)-position of the R subunits as the determinant of PrKX autoinhibition. Holoenzyme formation only takes place with an alanine at position P(0), whereas RI subunits containing serine, phosphoserine or aspartate do not bind PrKX. Surprisingly, PrKX reversibly associates with RII when changing P(0) from serine to alanine. In contrast, PKA-Calpha forms holoenzyme complexes with all wildtype and mutant R subunits; however, holoenzyme re-activation by cAMP is severely affected. Only PKA type II or mutant PKA type I holoenzymes (P(0): Ser or Asp) are able to dissociate fully upon maximally elevated intracellular cAMP. The data are of particular significance for understanding PKA isoform-specific activation patterns in living cells.
Collapse
Affiliation(s)
- Mandy Diskar
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany.
| | | | | | | | | |
Collapse
|
37
|
Jobling MA, Lo ICC, Turner DJ, Bowden GR, Lee AC, Xue Y, Carvalho-Silva D, Hurles ME, Adams SM, Chang YM, Kraaijenbrink T, Henke J, Guanti G, McKeown B, van Oorschot RAH, Mitchell RJ, de Knijff P, Tyler-Smith C, Parkin EJ. Structural variation on the short arm of the human Y chromosome: recurrent multigene deletions encompassing Amelogenin Y. Hum Mol Genet 2007; 16:307-16. [PMID: 17189292 PMCID: PMC2590852 DOI: 10.1093/hmg/ddl465] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Structural polymorphism is increasingly recognized as a major form of human genome variation, and is particularly prevalent on the Y chromosome. Assay of the Amelogenin Y gene (AMELY) on Yp is widely used in DNA-based sex testing, and sometimes reveals males who have interstitial deletions. In a collection of 45 deletion males from 12 populations, we used a combination of sequence-tagged site mapping, and binary-marker and Y-short tandem repeat haplotyping to understand the structural basis of this variation. Of the 45 deletion males, 41 carry indistinguishable deletions, 3.0-3.8 Mb in size. Breakpoint mapping strongly implicates a mechanism of non-allelic homologous recombination between the proximal major array of TSPY gene-containing repeats, and a single distal copy of TSPY; this is supported by the estimation of TSPY copy number in deleted and non-deleted males. The remaining four males carry three distinct non-recurrent deletions (2.5-4.0 Mb), which may be due to non-homologous mechanisms. Haplotyping shows that TSPY-mediated deletions have arisen seven times independently in the sample. One instance, represented by 30 chromosomes mostly of Indian origin within haplogroup J2e1*/M241, has a time-to-most-recent-common-ancestor of approximately 7700+/-1300 years. In addition to AMELY, deletion males all lack the genes PRKY and TBL1Y, and the rarer deletion classes also lack PCDH11Y. The persistence and expansion of deletion lineages, together with direct phenotypic evidence, suggests that absence of these genes has no major deleterious effects.
Collapse
Affiliation(s)
- Mark A Jobling
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The cAMP-dependent kinase (PKA) plays a crucial part in long-term memory formation in the honeybee (Apis mellifera). One of the putative substrates of the PKA activity is the cAMP response element binding protein (CREB), a transcription factor in the bZIP protein family. We searched the honeybee genome to characterize genes from the CREB/CREM and the PKA families. We identified two genes that encode regulatory subunits and three genes encode catalytic subunits of PKA. Eight genes code for bZIP proteins, but only one gene was found that encodes a member of the CREB/CREM family. The phylogenetic relationship of these genes was analysed with their Drosophila and human counterparts.
Collapse
Affiliation(s)
- D Eisenhardt
- Neurobiology, FB Biology/Chemistry/Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | | | | |
Collapse
|
39
|
Frangié C, Zhang W, Perez J, Dubois YCX, Haymann JP, Baud L. Extracellular calpains increase tubular epithelial cell mobility. Implications for kidney repair after ischemia. J Biol Chem 2006; 281:26624-32. [PMID: 16822870 DOI: 10.1074/jbc.m603007200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are intracellular Ca2+-dependent cysteine proteases that are released in the extracellular milieu by tubular epithelial cells following renal ischemia. Here we show that externalized calpains increase epithelial cell mobility and thus are critical for tubule repair. In vitro, exposure of human tubular epithelial cells (HK-2 cells) to mu-calpain limited their adhesion to extracellular matrix and increased their mobility. Calpains acted primarily by promoting the cleavage of fibronectin, thus preventing fibronectin binding to the integrin alphavbeta3. Analyzing downstream integrin effects, we found that the cyclic AMP-dependent protein kinase A pathway was activated in response to alphavbeta3 disengagement and was essential for calpain-mediated increase in HK-2 cell mobility. In a murine model of ischemic acute renal failure, injection of a fragment of calpastatin, which specifically blocked calpain activity in extracellular milieu, markedly delayed tubule repair, increasing functional and histological lesions after 24 and 48 h of reperfusion. These findings suggest that externalized calpains are critical for tubule repair process in acute renal failure.
Collapse
Affiliation(s)
- Carlos Frangié
- INSERM U702; Université Pierre et Marie Curie, 75020 Paris, France
| | | | | | | | | | | |
Collapse
|
40
|
Glesne D, Huberman E. Smad6 is a protein kinase X phosphorylation substrate and is required for HL-60 cell differentiation. Oncogene 2006; 25:4086-98. [PMID: 16491121 DOI: 10.1038/sj.onc.1209436] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To gain insight into the function of human protein kinase X (PrKX), a signal-transduction protein required for macrophage differentiation, we identified regulatory subunit I alpha of protein kinase A, T54 and Smad6 as partners for this protein using a yeast two-hybrid interaction screen. Interactions between PrKX and these proteins were substantiated by co-immunoprecipitation. Interaction between Smad6 and PrKX was also confirmed in human myeloid HL-60 cells following their phorbol 12-myristate 13-acetate (PMA)-induced differentiation into macrophages. In vitro phosphorylation assays demonstrated that PrKX phosphorylates Smad6 at a serine residue. Mutagenesis of this site resulted in abrogation of PrKX phosphorylation. Both PrKX and Smad6 were shown to be co-localized to the nuclear compartment of HL-60 cells during their macrophage differentiation where PrKX levels are induced and Smad6 protein levels remain relatively constant while levels of serine phosphorylation of Smad6 increase. By using in vitro electrophoretic mobility shift assays and in vivo chromatin immunoprecipitation, we also demonstrate that during macrophage differentiation Smad6 displays an increased binding to the human osteopontin, Id2, and Hex gene promoters, which correlates to an observed increased expression of these genes. Finally, vector-based RNA interference experiments established that both Smad6 and PrKX proteins are required for PMA-induced cell attachment and spreading.
Collapse
Affiliation(s)
- D Glesne
- Argonne National Laboratory, Biosciences Division, Argonne, IL 60439-4803, USA
| | | |
Collapse
|
41
|
Li X, Hyink DP, Polgar K, Gusella GL, Wilson PD, Burrow CR. Protein Kinase X Activates Ureteric Bud Branching Morphogenesis in Developing Mouse Metanephric Kidney. J Am Soc Nephrol 2005; 16:3543-52. [PMID: 16236808 DOI: 10.1681/asn.2005030240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The human protein kinase X (PRKX) gene was identified previously as a cAMP-dependent serine/threonine kinase that is aberrantly expressed in autosomal dominant polycystic disease kidneys and normally expressed in fetal kidneys. The PRKX kinase belongs to a serine/threonine kinase family that is phylogenetically and functionally distinct from classical protein kinase A kinases. Expression of PRKX activates cAMP-dependent renal epithelial cell migration and tubular morphogenesis in cell culture, suggesting that it might regulate branching growth of the collecting duct system in the fetal kidney. With the use of a mouse embryonic kidney organ culture system that recapitulates early kidney development in vitro, it is demonstrated that lentiviral vector-driven expression of a constitutively active, cAMP-independent PRKX in the ureteric bud epithelium stimulates branching morphogenesis and results in a 2.5-fold increase in glomerular number. These results suggest that PRKX stimulates epithelial branching morphogenesis by activating cell migration and support a role for this kinase in the regulation of nephrogenesis and of collecting system development in the fetal kidney.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Medicine, Division of Nephrology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
42
|
Li W, Yu ZX, Kotin RM. Profiles of PrKX expression in developmental mouse embryo and human tissues. J Histochem Cytochem 2005; 53:1003-9. [PMID: 15879576 DOI: 10.1369/jhc.4a6568.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinase X (PrKX), karyotypically located on the human X chromosome, is a type I cAMP-dependent protein kinase. Although a specific role for PrKX has not yet been defined, PrKX gene expression in mouse and human tissues has been profiled only by in situ hybridization and Northern blot analyses and not by protein expression. To determine more precisely the PrKX protein levels, we developed specific anti-PrKX antibodies and examined gestationally staged mouse embryo sections by immunohistochemistry. These results showed that PrKX is ubiquitously distributed and highly expressed in murine central nervous system and heart tissues in early developmental stages and in most organs at later stages but was not detected in either connective tissues or bone. Using Western blots to detect PrKX, total protein extracts from eight different adult or fetal human tissues including brain, heart, kidney, liver, lung, pancreas, spleen, and thymus were analyzed. Although PrKX protein was present in each of the tissues tested, the protein levels varied depending on tissue type and developmental stage. Very low protein levels were found in heart tissues from a 5-month-old fetus and from an adult, whereas PrKX proteins were more abundant in fetal brain, kidney, and liver tissues compared with adult samples of the same tissue type.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Cai Y, Anyatonwu G, Okuhara D, Lee KB, Yu Z, Onoe T, Mei CL, Qian Q, Geng L, Wiztgall R, Ehrlich BE, Somlo S. Calcium Dependence of Polycystin-2 Channel Activity Is Modulated by Phosphorylation at Ser812. J Biol Chem 2004; 279:19987-95. [PMID: 14742446 DOI: 10.1074/jbc.m312031200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Polycystin-2 (PC-2) is a non-selective cation channel that, when mutated, results in autosomal dominant polycystic kidney disease. In an effort to understand the regulation of this channel, we investigated the role of protein phosphorylation in PC-2 function. We demonstrated the direct incorporation of phosphate into PC-2 in cells and tissues and found that this constitutive phosphorylation occurs at Ser(812), a putative casein kinase II (CK2) substrate domain. Ser(812) can be phosphorylated by CK2 in vitro and substitution S812A results in failure to incorporate phosphate in cultured epithelial cells. Non-phosphorylated forms of PC-2 traffic normally in the endoplasmic reticulum and cilial compartments and retain homo- and hetero-multimerization interactions with PC-2 and polycystin-1, respectively. Single-channel studies of PC-2, S812A, and a substitution mutant, T721A, not related to phosphorylation show that PC-2 and S812A function as divalent cation channels with similar current amplitudes across a range of holding potentials; the T721A channel is not functional. Channel open probabilities for PC-2 and S812A show a bell-shaped dependence on cytoplasmic Ca(2+) but there is a shift in this Ca(2+) dependence such that S812A is 10-fold less sensitive to Ca(2+) activation/inactivation than the wild type PC-2 channel. In vivo analysis of PC-2-dependent enhanced intracellular Ca(2+) transients found that S812A resulted in enhanced transient duration and relative amplitude intermediate between control cells and those overexpressing wild type PC-2. Phosphorylation at Ser(812) modulates PC-2 channel activity and factors regulating this phosphorylation are likely to play a role in the pathogenesis of polycystic kidney disease.
Collapse
Affiliation(s)
- Yiqiang Cai
- Department of Internal Medicine, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Patricia D Wilson
- Department of Medicine, Division of Nephrology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|