1
|
Huang J, Chen J, Luo Y. Cell-Sheet Shape Transformation by Internally-Driven, Oriented Forces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416624. [PMID: 40165759 DOI: 10.1002/adma.202416624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/04/2025] [Indexed: 04/02/2025]
Abstract
During morphogenesis, cells collectively execute directional forces that drive the programmed folding and growth of the layers, forming tissues and organs. The ability to recapitulate aspects of these processes in vitro will constitute a significant leap forward in the field of tissue engineering. Free-standing, self-organizing, cell-laden matrices are fabricated using a sequential deposition approach that uses liquid crystal-templated hydrogel fibers to direct cell arrangements. The orientation of hydrogel fibers is controlled using flow or boundary cues, while their microstructures are controlled by depletion interaction and probed by scattering and microscopy. These fibers effectively direct cells embedded in a collagen matrix, creating multilayer structures through contact guidance and by leveraging steric interactions amongst the cells. In uniformly aligned cell matrices, oriented cells exert traction forces that can induce preferential contraction of the matrix. Simultaneously, the matrix densifies and develops anisotropy through cell remodeling. Such an approach can be extended to create cell arrangements with arbitrary in-plane patterns, allowing for coordinated cell forces and pre-programmed, macroscopic shape changes. This work reveals a fundamentally new path for controlled force generation, emphasizing the role of a carefully designed initial orientational field for manipulating shape transformations of reconstituted matrices.
Collapse
Affiliation(s)
- Junrou Huang
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511, USA
| | - Juan Chen
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511, USA
| | - Yimin Luo
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511, USA
| |
Collapse
|
2
|
Li CX, Zhao ZX, Su DB, Yin DC, Ye YJ. In vitro regulation of collective cell migration: Understanding the role of physical and chemical microenvironments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:23-40. [PMID: 39612952 DOI: 10.1016/j.pbiomolbio.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Collective cell migration is the primary mode of cellular movement during embryonic morphogenesis, tissue repair and regeneration, and cancer invasion. Distinct from single-cell migration, collective cell migration involves complex intercellular signaling cascades and force transmission. Consequently, cell collectives exhibit intricate and diverse migration patterns under the influence of the microenvironment in vivo. Investigating the patterns and mechanisms of collective cell migration within complex environmental factors in vitro is essential for elucidating collective cell migration in vivo. This review elucidates the influence of physical and chemical factors in vitro microenvironment on the migration patterns and efficiency of cell collectives, thereby enhancing our comprehension of the phenomenon. Furthermore, we concisely present the effects of characteristic properties of common biomaterials on collective cell migration during tissue repair and regeneration, as well as the features and applications of tumor models of different dimensions (2D substrate or 3D substrate) in vitro. Finally, we highlight the challenges facing the research of collective cell migration behaviors in vitro microenvironment and propose that modulating collective cell migration may represent a potential strategy to promote tissue repair and regeneration and to control tumor invasion and metastasis.
Collapse
Affiliation(s)
- Chang-Xing Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
3
|
Bagchi A, Sarker B, Zhang J, Foston M, Pathak A. Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission. PLoS Comput Biol 2025; 21:e1012664. [PMID: 39787053 PMCID: PMC11717197 DOI: 10.1371/journal.pcbi.1012664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration. Epithelial (MCF10A) cell clusters adhered to soft substrates with aligned collagen fibers (AF) migrate faster with much lesser traction forces, compared to random fibers (RF). Fiber alignment causes higher motility waves and transmission of normal stresses deeper into cell monolayer while minimizing shear stresses and increased cell-division based fluidization. By contrast, fiber randomization induces cellular jamming due to breakage in motility waves, disrupted transmission of normal stresses, and heightened shear driven flow. Using a novel motor-clutch model, we explain that such 'force-effective' fast migration phenotype occurs due to rapid stabilization of contractile forces at the migrating front, enabled by higher frictional forces arising from simultaneous compressive loading of parallel fiber-substrate connections. We also model 'haptotaxis' to show that increasing ligand connectivity (but not continuity) increases migration efficiency. According to our model, increased rate of front stabilization via higher resistance to substrate deformation is sufficient to capture 'durotaxis'. Thus, our findings reveal a new paradigm wherein the rate of leading-edge stabilization determines the efficiency of supracellular collective cell migration.
Collapse
Affiliation(s)
- Amrit Bagchi
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Jialiang Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Marcus Foston
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
4
|
Peussa H, Fedele C, Tran H, Marttinen M, Fadjukov J, Mäntylä E, Priimägi A, Nymark S, Ihalainen TO. Light-Induced Nanoscale Deformation in Azobenzene Thin Film Triggers Rapid Intracellular Ca 2+ Increase via Mechanosensitive Cation Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206190. [PMID: 37946608 PMCID: PMC10724422 DOI: 10.1002/advs.202206190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 09/15/2023] [Indexed: 11/12/2023]
Abstract
Epithelial cells are in continuous dynamic biochemical and physical interaction with their extracellular environment. Ultimately, this interplay guides fundamental physiological processes. In these interactions, cells generate fast local and global transients of Ca2+ ions, which act as key intracellular messengers. However, the mechanical triggers initiating these responses have remained unclear. Light-responsive materials offer intriguing possibilities to dynamically modify the physical niche of the cells. Here, a light-sensitive azobenzene-based glassy material that can be micropatterned with visible light to undergo spatiotemporally controlled deformations is used. Real-time monitoring of consequential rapid intracellular Ca2+ signals reveals that the mechanosensitive cation channel Piezo1 has a major role in generating the Ca2+ transients after nanoscale mechanical deformation of the cell culture substrate. Furthermore, the studies indicate that Piezo1 preferably responds to shear deformation at the cell-material interphase rather than to absolute topographical change of the substrate. Finally, the experimentally verified computational model suggests that Na+ entering alongside Ca2+ through the mechanosensitive cation channels modulates the duration of Ca2+ transients, influencing differently the directly stimulated cells and their neighbors. This highlights the complexity of mechanical signaling in multicellular systems. These results give mechanistic understanding on how cells respond to rapid nanoscale material dynamics and deformations.
Collapse
Affiliation(s)
- Heidi Peussa
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Chiara Fedele
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 3Tampere33720Finland
| | - Huy Tran
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Mikael Marttinen
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Julia Fadjukov
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Elina Mäntylä
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Arri Priimägi
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 3Tampere33720Finland
| | - Soile Nymark
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Teemu O. Ihalainen
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
- Tampere Institute for Advanced StudyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| |
Collapse
|
5
|
Kaiyrbekov K, Endresen K, Sullivan K, Zheng Z, Chen Y, Serra F, Camley BA. Migration and division in cell monolayers on substrates with topological defects. Proc Natl Acad Sci U S A 2023; 120:e2301197120. [PMID: 37463218 PMCID: PMC10372565 DOI: 10.1073/pnas.2301197120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/27/2023] [Indexed: 07/20/2023] Open
Abstract
Collective movement and organization of cell monolayers are important for wound healing and tissue development. Recent experiments highlighted the importance of liquid crystal order within these layers, suggesting that +1 topological defects have a role in organizing tissue morphogenesis. We study fibroblast organization, motion, and proliferation on a substrate with micron-sized ridges that induce +1 and -1 topological defects using simulation and experiment. We model cells as self-propelled deformable ellipses that interact via a Gay-Berne potential. Unlike earlier work on other cell types, we see that density variation near defects is not explained by collective migration. We propose instead that fibroblasts have different division rates depending on their area and aspect ratio. This model captures key features of our previous experiments: the alignment quality worsens at high cell density and, at the center of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic morphologies. Experiments performed with different ridge heights confirm a prediction of this model: Suppressing migration across ridges promotes higher cell density at the +1 defect. Our work enables a mechanism for tissue patterning using topological defects without relying on cell migration.
Collapse
Affiliation(s)
- Kurmanbek Kaiyrbekov
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Kirsten Endresen
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Kyle Sullivan
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Zhaofei Zheng
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Francesca Serra
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense5230, Denmark
| | - Brian A. Camley
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
6
|
Comelles J, Fernández-Majada V, Acevedo V, Rebollo-Calderon B, Martínez E. Soft topographical patterns trigger a stiffness-dependent cellular response to contact guidance. Mater Today Bio 2023; 19:100593. [PMID: 36923364 PMCID: PMC10009736 DOI: 10.1016/j.mtbio.2023.100593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Topographical patterns are a powerful tool to study directional migration. Grooved substrates have been extensively used as in vitro models of aligned extracellular matrix fibers because they induce cell elongation, alignment, and migration through a phenomenon known as contact guidance. This process, which involves the orientation of focal adhesions, F-actin, and microtubule cytoskeleton along the direction of the grooves, has been primarily studied on hard materials of non-physiological stiffness. But how it unfolds when the stiffness of the grooves varies within the physiological range is less known. Here we show that substrate stiffness modulates the cellular response to topographical contact guidance. We find that for fibroblasts, while focal adhesions and actin respond to topography independently of the stiffness, microtubules show a stiffness-dependent response that regulates contact guidance. On the other hand, both clusters and single breast carcinoma epithelial cells display stiffness-dependent contact guidance, leading to more directional and efficient migration when increasing substrate stiffness. These results suggest that both matrix stiffening and alignment of extracellular matrix fibers cooperate during directional cell migration, and that the outcome differs between cell types depending on how they organize their cytoskeletons.
Collapse
Affiliation(s)
- Jordi Comelles
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Martí I Franquès 1, 08028, Barcelona, Spain
| | - Vanesa Fernández-Majada
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), Feixa Llarga, 08907, L'Hospitalet de Llobregat, Spain
| | - Verónica Acevedo
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Beatriz Rebollo-Calderon
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Martí I Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
7
|
Zhang H, Xu H, Sun W, Fang X, Qin P, Huang J, Fang J, Lin F, Xiong C. Purse-string contraction guides mechanical gradient-dictated heterogeneous migration of epithelial monolayer. Acta Biomater 2023; 159:38-48. [PMID: 36708850 DOI: 10.1016/j.actbio.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Mechanical heterogeneity has been recognized as an important role in mediating collective cell migration, yet the related mechanism has not been elucidated. Herein, we fabricate heterogeneous stiffness gradients by leveraging microelastically-patterned hydrogels with varying periodic distance. We observe that a decrease in the periodic distance of the mechanical heterogeneity is accompanied by an overall increase in the velocity and directionality of the migrating monolayer. Moreover, inhibition of ROCK- and myosin ⅡA- but not Rac1-mediated contraction reduces monolayer migration on the mechanically heterogeneous substrates. Furthermore, we find that F-actin and myosin ⅡA form purse-string at the leading edge on the mechanically heterogeneous substrates. Together, these findings not only show that the orientational cell-cell contraction promotes collective cell migration under the mechanical heterogeneity, but also demonstrate that the mechanosensation arising from large-scale cell-cell interactions through purse-string formation mediated cell-cell orientational contraction can feed back to regulate the reorganization of epithelial tissues. STATEMENT OF SIGNIFICANCE: By detecting the links between heterogenous rigidity and collective cell migration behavior at the molecular level, we reveal that collective cell migration in the mechanical heterogeneity is driven by ROCK- and myosin-ⅡA-dependent cytoskeletal tension. We confirm that cytoskeletal tension across the epithelial tissue is holistically linked through F-actin and myosin-ⅡA, which cooperate to form purse-string structures for modulating collective tissue behavior on the exogenous matrix with mechanical heterogeneity. Mechanical heterogeneity initiates tissue growth, remodelling, and morphogenesis by orientating cell contractility. Therefore, tensional homeostasis across large-scale cell interactions appears to be necessary and sufficient to trigger collective tissue behavior. Overall, these findings shed light on the role of mechanical heterogeneity in tissue microenvironment for reorganization and morphogenesis.
Collapse
Affiliation(s)
- Haihui Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518005, China
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Weihao Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xu Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peiwu Qin
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518005, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Jing Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Chunyang Xiong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Cavanaugh M, Asheghali D, Motta CM, Silantyeva E, Nikam SP, Becker ML, Willits RK. Influence of Touch-Spun Nanofiber Diameter on Contact Guidance during Peripheral Nerve Repair. Biomacromolecules 2022; 23:2635-2646. [DOI: 10.1021/acs.biomac.2c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- McKay Cavanaugh
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Cecilia M. Motta
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Elena Silantyeva
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shantanu P. Nikam
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rebecca K. Willits
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Fang C, Yao J, Zhang Y, Lin Y. Active chemo-mechanical feedbacks dictate the collective migration of cells on patterned surfaces. Biophys J 2022; 121:1266-1275. [PMID: 35183521 PMCID: PMC9034249 DOI: 10.1016/j.bpj.2022.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Recent evidence has demonstrated that, when cultured on micro-patterned surfaces, living cells can move in a coordinated manner and form distinct migration patterns, including flowing chain, suspended propagating bridge, rotating vortex, etc. However, the fundamental question of exactly how and why cells migrate in these fashions remains elusive. Here, we present a theoretical investigation to show that the tight interplay between internal cellular activities, such as chemo-mechanical feedbacks and polarization, and external geometrical constraints are behind these intriguing experimental observations. In particular, on narrow strip patterns, strongly force-dependent cellular contractility and intercellular adhesion were found to be critical for reinforcing the leading edge of the migrating cell monolayer and eventually result in the formation of suspended cell bridges flying over nonadhesive regions. On the other hand, a weak force-contractility feedback led to the movement of cells like a flowing chain along the adhesive strip. Finally, we also showed that the random polarity forces generated in migrating cells are responsible for driving them into rotating vortices on strips with width above a threshold value (~10 times the size of the cell).
Collapse
|
10
|
Ray A, Provenzano PP. Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr Opin Cell Biol 2021; 72:63-71. [PMID: 34186415 PMCID: PMC8530881 DOI: 10.1016/j.ceb.2021.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Organized extracellular matrix (ECM), in the form of aligned architectures, is a critical mediator of directed cancer cell migration by contact guidance, leading to metastasis in solid tumors. Current models suggest anisotropic force generation through the engagement of key adhesion and cytoskeletal complexes drives contact-guided migration. Likewise, disrupting the balance between cell-cell and cell-ECM forces, driven by ECM engagement for cells at the tumor-stromal interface, initiates and drives local invasion. Furthermore, processes such as traction forces exerted by cancer and stromal cells, spontaneous reorientation of matrix-producing fibroblasts, and direct binding of ECM modifying proteins lead to the emergence of collagen alignment in tumors. Thus, as we obtain a deeper understanding of the origins of ECM alignment and the mechanisms by which it is maintained to direct invasion, we are poised to use the new paradigm of stroma-targeted therapies to disrupt this vital axis of disease progression in solid tumors.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, USA.
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, USA; University of Minnesota Physical Sciences in Oncology Center, USA; Masonic Cancer Center, University of Minnesota, USA; Institute for Engineering in Medicine, University of Minnesota, USA; Stem Cell Institute, University of Minnesota, USA.
| |
Collapse
|
11
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
12
|
Buttenschön A, Edelstein-Keshet L. Bridging from single to collective cell migration: A review of models and links to experiments. PLoS Comput Biol 2020; 16:e1008411. [PMID: 33301528 PMCID: PMC7728230 DOI: 10.1371/journal.pcbi.1008411] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mathematical and computational models can assist in gaining an understanding of cell behavior at many levels of organization. Here, we review models in the literature that focus on eukaryotic cell motility at 3 size scales: intracellular signaling that regulates cell shape and movement, single cell motility, and collective cell behavior from a few cells to tissues. We survey recent literature to summarize distinct computational methods (phase-field, polygonal, Cellular Potts, and spherical cells). We discuss models that bridge between levels of organization, and describe levels of detail, both biochemical and geometric, included in the models. We also highlight links between models and experiments. We find that models that span the 3 levels are still in the minority.
Collapse
Affiliation(s)
- Andreas Buttenschön
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
13
|
Hansen AH, Hippenmeyer S. Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Front Cell Dev Biol 2020; 8:574382. [PMID: 33102480 PMCID: PMC7545535 DOI: 10.3389/fcell.2020.574382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023] Open
Abstract
Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final target lamina, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating the specific sequential steps of radial neuronal migration in vivo are however still unclear, let alone the effects and interactions with the extracellular environment. In any in vivo context, cells will always be exposed to a complex extracellular environment consisting of (1) secreted factors acting as potential signaling cues, (2) the extracellular matrix, and (3) other cells providing cell–cell interaction through receptors and/or direct physical stimuli. Most studies so far have described and focused mainly on intrinsic cell-autonomous gene functions in neuronal migration but there is accumulating evidence that non-cell-autonomous-, local-, systemic-, and/or whole tissue-wide effects substantially contribute to the regulation of radial neuronal migration. These non-cell-autonomous effects may differentially affect cortical neuron migration in distinct cellular environments. However, the cellular and molecular natures of such non-cell-autonomous mechanisms are mostly unknown. Furthermore, physical forces due to collective migration and/or community effects (i.e., interactions with surrounding cells) may play important roles in neocortical projection neuron migration. In this concise review, we first outline distinct models of non-cell-autonomous interactions of cortical projection neurons along their radial migration trajectory during development. We then summarize experimental assays and platforms that can be utilized to visualize and potentially probe non-cell-autonomous mechanisms. Lastly, we define key questions to address in the future.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
14
|
Fedele C, Mäntylä E, Belardi B, Hamkins-Indik T, Cavalli S, Netti PA, Fletcher DA, Nymark S, Priimagi A, Ihalainen TO. Azobenzene-based sinusoidal surface topography drives focal adhesion confinement and guides collective migration of epithelial cells. Sci Rep 2020; 10:15329. [PMID: 32948792 PMCID: PMC7501301 DOI: 10.1038/s41598-020-71567-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/14/2020] [Indexed: 01/09/2023] Open
Abstract
Surface topography is a key parameter in regulating the morphology and behavior of single cells. At multicellular level, coordinated cell displacements drive many biological events such as embryonic morphogenesis. However, the effect of surface topography on collective migration of epithelium has not been studied in detail. Mastering the connection between surface features and collective cellular behaviour is highly important for novel approaches in tissue engineering and repair. Herein, we used photopatterned microtopographies on azobenzene-containing materials and showed that smooth topographical cues with proper period and orientation can efficiently orchestrate cell alignment in growing epithelium. Furthermore, the experimental system allowed us to investigate how the orientation of the topographical features can alter the speed of wound closure in vitro. Our findings indicate that the extracellular microenvironment topography coordinates their focal adhesion distribution and alignment. These topographic cues are able to guide the collective migration of multicellular systems, even when cell-cell junctions are disrupted.
Collapse
Affiliation(s)
- Chiara Fedele
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Elina Mäntylä
- BioMediTech and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, 94720, USA
| | - Tiama Hamkins-Indik
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, 94720, USA
| | - Silvia Cavalli
- Istituto Italiano Di Tecnologia, Center for Advanced Biomaterials for Healthcare @CRIB, Naples, Italy
| | - Paolo A Netti
- Istituto Italiano Di Tecnologia, Center for Advanced Biomaterials for Healthcare @CRIB, Naples, Italy
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Soile Nymark
- BioMediTech and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Teemu O Ihalainen
- BioMediTech and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
15
|
Deutsch A, Friedl P, Preziosi L, Theraulaz G. Multi-scale analysis and modelling of collective migration in biological systems. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190377. [PMID: 32713301 PMCID: PMC7423374 DOI: 10.1098/rstb.2019.0377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Collective migration has become a paradigm for emergent behaviour in systems of moving and interacting individual units resulting in coherent motion. In biology, these units are cells or organisms. Collective cell migration is important in embryonic development, where it underlies tissue and organ formation, as well as pathological processes, such as cancer invasion and metastasis. In animal groups, collective movements may enhance individuals' decisions and facilitate navigation through complex environments and access to food resources. Mathematical models can extract unifying principles behind the diverse manifestations of collective migration. In biology, with a few exceptions, collective migration typically occurs at a 'mesoscopic scale' where the number of units ranges from only a few dozen to a few thousands, in contrast to the large systems treated by statistical mechanics. Recent developments in multi-scale analysis have allowed linkage of mesoscopic to micro- and macroscopic scales, and for different biological systems. The articles in this theme issue on 'Multi-scale analysis and modelling of collective migration' compile a range of mathematical modelling ideas and multi-scale methods for the analysis of collective migration. These approaches (i) uncover new unifying organization principles of collective behaviour, (ii) shed light on the transition from single to collective migration, and (iii) allow us to define similarities and differences of collective behaviour in groups of cells and organisms. As a common theme, self-organized collective migration is the result of ecological and evolutionary constraints both at the cell and organismic levels. Thereby, the rules governing physiological collective behaviours also underlie pathological processes, albeit with different upstream inputs and consequences for the group. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Andreas Deutsch
- Department of Innovative Methods of Computing, Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Cancer Genomics Center, Utrecht, The Netherlands
- Department of Genitourinary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Guy Theraulaz
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Institute for Advanced Study in Toulouse, Toulouse, France
| |
Collapse
|
16
|
Topographical curvature is sufficient to control epithelium elongation. Sci Rep 2020; 10:14784. [PMID: 32901063 PMCID: PMC7479112 DOI: 10.1038/s41598-020-70907-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
How biophysical cues can control tissue morphogenesis is a central question in biology and for the development of efficient tissue engineering strategies. Recent data suggest that specific topographies such as grooves and ridges can trigger anisotropic tissue growth. However, the specific contribution of biologically relevant topographical features such as cell-scale curvature is still unclear. Here we engineer a series of grooves and ridges model topographies exhibiting specific curvature at the ridge/groove junctions and monitored the growth of epithelial colonies on these surfaces. We observe a striking proportionality between the maximum convex curvature of the ridges and the elongation of the epithelium. This is accompanied by the anisotropic distribution of F-actin and nuclei with partial exclusion of both in convex regions as well as the curvature-dependent reorientation of pluricellular protrusions and mitotic spindles. This demonstrates that curvature itself is sufficient to trigger and modulate the oriented growth of epithelia through the formation of convex “topographical barriers” and establishes curvature as a powerful tuning parameter for tissue engineering and biomimetic biomaterial design.
Collapse
|
17
|
Preparation and Characterization of Electrospun Collagen Based Composites for Biomedical Applications. MATERIALS 2020; 13:ma13183961. [PMID: 32906790 PMCID: PMC7559754 DOI: 10.3390/ma13183961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 01/22/2023]
Abstract
Electrospinning is a widely used technology for obtaining nanofibers from synthetic and natural polymers. In this study, electrospun mats from collagen (C), polyethylene terephthalate (PET) and a blend of the two (C-PET) were prepared and stabilized through a cross-linking process. The aim of this research was to prepare and characterize the nanofiber structure by Fourier-transform infrared with attenuated total reflectance spectroscopy (FTIR-ATR) in close correlation with dynamic vapor sorption (DVS). The studies indicated that C-PET nanofibrous mats shows improved mechanical properties compared to collagen samples. A correlation between morphological, structural and cytotoxic proprieties of the studied samples were emphasized and the results suggest that the prepared nanofiber mats could be a promising candidate for tissue-engineering applications, especially dermal applications.
Collapse
|
18
|
Xiao Q, Guo T, Li J, Li L, Chen K, Zhou L, Wu W, So KF, Ramakrishna S, Liu B, Rong L, Chen G, Xing X, He L. Macrophage polarization induced by sustained release of 7,8-DHF from aligned PLLA fibers potentially for neural stem cell neurogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111415. [PMID: 33255017 DOI: 10.1016/j.msec.2020.111415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
Neural stem cells (NSCs)-based regenerative medicine provides unprecedented therapeutic potential in neural insults. However, NSC-based neurogenesis is strongly influenced by the inflammatory environment after injury, which is mainly modulated by macrophages' secretion effects. In this study, we adopted poly L-lactic acid (PLLA) aligned fibers to guide macrophages elongating along the fiber directions and polarizing phenotypically toward anti-inflammatory M2 type. 7,8-DHF was loaded within the fibers with a sustained and controlled release pattern to promote the polarization of the macrophages and secretion of various anti-inflammatory factors. NSCs showed enhanced neuronal differentiation in the presence of the conditioned medium (CM) from M2 macrophages cultured on the 7,8-DHF-loaded PLLA aligned fibers. Moreover, M2-CM promoted neurogenesis by enhancing neurite outgrowth of NSC-derived neurons. In summary, we provided a novel therapeutic strategy for NSC neurogenesis by manipulating macrophage classification into anti-inflammatory M2 phenotypes with the 7,8-DHF-loaded PLLA aligned fibers, existing potential applications in treating neural injuries.
Collapse
Affiliation(s)
- Qiao Xiao
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Ting Guo
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Jun Li
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Liming Li
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Kaixin Chen
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Libing Zhou
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Wutian Wu
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Kwok-Fai So
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Seeram Ramakrishna
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Bin Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Limin Rong
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Guoqiang Chen
- The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Xiwen Xing
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou 510630, China.
| | - Liumin He
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
19
|
Lin SZ, Li Y, Ji J, Li B, Feng XQ. Collective dynamics of coherent motile cells on curved surfaces. SOFT MATTER 2020; 16:2941-2952. [PMID: 32108851 DOI: 10.1039/c9sm02375e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cellular dynamic behaviors in organ morphogenesis and embryogenesis are affected by geometrical constraints. In this paper, we investigate how the surface topology and curvature of the underlying substrate tailor collective cell migration. An active vertex model is developed to explore the collective dynamics of coherent cells crawling on curved surfaces. We show that cells can self-organize into rich dynamic patterns including local swirling, global rotation, spiral crawling, serpentine crawling, and directed migration, depending on the interplay between cell-cell interactions and geometric constraints. Increasing substrate curvature results in higher cell-cell bending energy and thus tends to suppress local swirling and enhance density fluctuations. Substrate topology is revealed to regulate both the collective migration modes and density fluctuations of cell populations. In addition, upon increasing noise intensity, a Kosterlitz-Thouless-like ordering transition can emerge on both undevelopable and developable surfaces. This study paves the way to investigate various in vivo morphomechanics that involve surface curvature and topology.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | | | | | | | | |
Collapse
|
20
|
Peyret G, Mueller R, d'Alessandro J, Begnaud S, Marcq P, Mège RM, Yeomans JM, Doostmohammadi A, Ladoux B. Sustained Oscillations of Epithelial Cell Sheets. Biophys J 2019; 117:464-478. [PMID: 31307676 DOI: 10.1016/j.bpj.2019.06.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Morphological changes during development, tissue repair, and disease largely rely on coordinated cell movements and are controlled by the tissue environment. Epithelial cell sheets are often subjected to large-scale deformation during tissue formation. The active mechanical environment in which epithelial cells operate have the ability to promote collective oscillations, but how these cellular movements are generated and relate to collective migration remains unclear. Here, combining in vitro experiments and computational modeling, we describe a form of collective oscillations in confined epithelial tissues in which the oscillatory motion is the dominant contribution to the cellular movements. We show that epithelial cells exhibit large-scale coherent oscillations when constrained within micropatterns of varying shapes and sizes and that their period and amplitude are set by the smallest confinement dimension. Using molecular perturbations, we then demonstrate that force transmission at cell-cell junctions and its coupling to cell polarity are pivotal for the generation of these collective movements. We find that the resulting tissue deformations are sufficient to trigger osillatory mechanotransduction of YAP within cells, potentially affecting a wide range of cellular processes.
Collapse
Affiliation(s)
- Grégoire Peyret
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| | - Joseph d'Alessandro
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Simon Begnaud
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, CNRS UMR 7636, Sorbonne Université, ESPCI, Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom.
| | - Benoît Ladoux
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France.
| |
Collapse
|
21
|
Switch-like enhancement of epithelial-mesenchymal transition by YAP through feedback regulation of WT1 and Rho-family GTPases. Nat Commun 2019; 10:2797. [PMID: 31243273 PMCID: PMC6594963 DOI: 10.1038/s41467-019-10729-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Collective cell migration occurs in many patho-physiological states, including wound healing and invasive cancer growth. The integrity of the expanding epithelial sheets depends on extracellular cues, including cell-cell and cell-matrix interactions. We show that the nano-scale topography of the extracellular matrix underlying epithelial cell layers can strongly affect the speed and morphology of the fronts of the expanding sheet, triggering partial and complete epithelial-mesenchymal transitions (EMTs). We further demonstrate that this behavior depends on the mechano-sensitivity of the transcription regulator YAP and two new YAP-mediated cross-regulating feedback mechanisms: Wilms Tumor-1-YAP-mediated downregulation of E-cadherin, loosening cell-cell contacts, and YAP-TRIO-Merlin mediated regulation of Rho GTPase family proteins, enhancing cell migration. These YAP-dependent feedback loops result in a switch-like change in the signaling and the expression of EMT-related markers, leading to a robust enhancement in invasive cell spread, which may lead to a worsened clinical outcome in renal and other cancers. Reorganisation of the extracellular matrix (ECM) controls processes involving epithelial-mesenchymal transition (EMT). Here, the authors show that EMT occurring in epithelial cells on a fabricated nano-engineered cell adhesion surface is triggered by mechanical cues from the ECM.
Collapse
|
22
|
Slater B, Ng E, McGuigan AP. Local cell coordination does not alter individual cell migration during collective migration but does impact cellular exchange events. Integr Biol (Camb) 2019; 11:163-172. [DOI: 10.1093/intbio/zyz015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/11/2019] [Accepted: 05/12/2019] [Indexed: 01/23/2023]
Abstract
Abstract
Coordinated cell re-organization is critical to ensure correct tissue morphogenesis for a number of important embryonic and tissue repair events, however the mechanisms that govern cells coordination during collective movements, particularly in situations where cells are spatially restricted by their neighbours, are not well understood. Here we assessed cell re-organization in monolayers of retinal epithelial cells (ARPE-19) to determine if cells that coordinate with their neighbours exhibit differential migration properties to non-coordinating cells and participate differently in local cell re-organization of the tissue sheet. From global tracking analysis, we determined that the movement profiles of cells were indistinguishable regardless of whether or not they were a part of multicellular streams. Using high magnification live imaging of cell membranes, we also characterized the localized geometry and organization of a monolayer (cell area, number of nearest neighbours, aspect ratio, internal cell angles) during cell re-organization in both streaming and non-streaming regions. Consistent with our global migration analysis, we observed no differences in cell sheet geometry and organization in streaming versus non-streaming regions. We did however observe that cells executed T1-like transitions to exchange position within the space-limited monolayer and that exchange events consistently involved at least one non-streaming cell. Our data suggests a model in which cell movement within the sheet is limited by neighbour exchange events and likely cells transition between streaming and non-streaming regimes to facilitate these neighbour exchange events while maintaining the integrity of the sheet.
Collapse
Affiliation(s)
- Benjamin Slater
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, Canada
| | - Edwin Ng
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, Canada
| | - Alison P McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada
| |
Collapse
|
23
|
Du W, Hong S, Scapin G, Goulard M, Shah DI. Directed Collective Cell Migration Using Three-Dimensional Bioprinted Micropatterns on Thermoresponsive Surfaces for Myotube Formation. ACS Biomater Sci Eng 2019; 5:3935-3943. [PMID: 31723595 DOI: 10.1021/acsbiomaterials.8b01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Directed collective cell migration governs cell orientation during tissue morphogenesis, wound healing, and tumor metastasis. Unfortunately, current methods for initiating collective cell migration, such as scratching, laser ablation, and stencils, either introduce uncontrolled cell-injury, involve multiple fabrication processes, or have utility limited to cells with strong cell-cell junctions. Using three-dimensional (3D) bioprinted gelatin methacryloyl (GelMA) micropatterns on temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) coated interfaces, we demonstrate that directed injury-free collective cell migration could occur in parallel and perpendicular directions. After seeding cells, we created cell-free spaces between two 3D bioprinted GelMA micropatterns by lowering the temperature of PNIPAm interfaces to promote the cell detachment. Unlike conventional collective cell migration methods initiated by stencils, we observed well-organized cell migration in parallel and perpendicular to 3D bioprinted micropatterns as a function of the distance between 3D bioprinted micropatterns. We further established the utility of controlled collective cell migration for directed functional myotube formation using 3D bioprinted fingerprintlike micropatterns as well as iris musclelike concentric circular patterns. Our platform is unique for myoblast alignment and myotube formation because it does not require anisotropic guidance cues. Together, our findings establish how to achieve controlled collective cell migration, even at the macroscale, for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Wenqiang Du
- Center for Childhood Cancers and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio 43205, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sungmin Hong
- Center for Childhood Cancers and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio 43205, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Giorgia Scapin
- Center for Childhood Cancers and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio 43205, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marie Goulard
- Center for Childhood Cancers and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio 43205, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dhvanit I Shah
- Center for Childhood Cancers and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio 43205, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
24
|
Lee RM, Losert W. Dynamics phenotyping across length and time scales in collective cell migration. Semin Cell Dev Biol 2018; 93:69-76. [PMID: 31429407 DOI: 10.1016/j.semcdb.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022]
Abstract
Processes in collective migration span many length and time scales. In this review, we focus on length scales ranging from tens of microns (single cells) to a few millimeters (cell clusters) and the motion of these cells and cell groups on time scales of minutes to hours. We focus on epithelial cell sheets and metrics of motion developed to measure migration phenotypes in this system. Comparisons between cell motion and fluid flows, facilitated by the popular image analysis technique particle image velocimetry, yield metrics that can be used to study migration across a range of length and time scales. Measuring collective cell migration across these scales provides a complex, quantitative phenotype useful for migration models, in particular those that compare and contrast collective cell migration to movement of particles near a transition to jamming. Contrasting the motion of epithelial cells and the jamming transition illustrates aspects of collective motion that can be attributed to the jammed character of cell clusters, and highlights aspects of collective behavior that likely involve active motility and cell-cell guidance. The application of multiple migration metrics, which span multiple scales of the system, thus allows us to link cell-scale signals and mechanics to collective behavior.
Collapse
Affiliation(s)
- Rachel M Lee
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA; Department of Physics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
25
|
Abstract
At the edge of a confluent cell layer, cell-free empty space is a cue that can drive directed collective cellular migration. Similarly, contact guidance is also a robust mechanical cue that can drive cell migration. However, it is unclear which of the two effects is stronger, and how each mechanism affects collective migration. To address this question, here we explore the trajectories of cells migrating collectively on a substrate containing micropatterned grooves (10-20 μm in periodicity, 2 μm in height) compared with unpatterned control substrates. Compared with unpatterned controls, the micropatterned substrates attenuated path variance by close to 70% and augmented migration coordination by more than 30%. Together, these results show that contact guidance can play an appreciable role in collective cellular migration. Also, our result can provide insights into tissue repair and regeneration with the remodeling of the connective tissue matrix.
Collapse
|
26
|
Duclos G, Blanch-Mercader C, Yashunsky V, Salbreux G, Joanny JF, Prost J, Silberzan P. Spontaneous shear flow in confined cellular nematics. NATURE PHYSICS 2018; 14:728-732. [PMID: 30079095 PMCID: PMC6071846 DOI: 10.1038/s41567-018-0099-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
In embryonic development or tumor evolution, cells often migrate collectively within confining tracks defined by their microenvironment 1,2. In some of these situations, the displacements within a cell strand are antiparallel 3, giving rise to shear flows. However, the mechanisms underlying these spontaneous flows remain poorly understood. Here, we show that an ensemble of spindle-shaped cells plated in a well-defined stripe spontaneously develop a shear flow whose characteristics depend on the width of the stripe. On wide stripes, the cells self-organize in a nematic phase with a director at a well-defined angle with the stripe's direction, and develop a shear flow close to the stripe's edges. However, on stripes narrower than a critical width, the cells perfectly align with the stripe's direction and the net flow vanishes. A hydrodynamic active gel theory provides an understanding of these observations and identifies the transition between the non-flowing phase oriented along the stripe and the tilted phase exhibiting shear flow as a Fréedericksz transition driven by the activity of the cells. This physical theory is grounded in the active nature of the cells and based on symmetries and conservation laws, providing a generic mechanism to interpret in vivo antiparallel cell displacements.
Collapse
Affiliation(s)
- G. Duclos
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
| | - C. Blanch-Mercader
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
| | - V. Yashunsky
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
| | | | - J.-F. Joanny
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
- ESPCI Paris, Paris, France
| | - J. Prost
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
- Mechanobiology Institute, National University of Singapore,
Singapore
| | - P. Silberzan
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC – CNRS. Equipe
labellisée Ligue Contre le Cancer ; 75005, Paris, France
| |
Collapse
|
27
|
Matsushita K. Emergence of collective propulsion through cell-cell adhesion. Phys Rev E 2018; 97:042413. [PMID: 29758663 DOI: 10.1103/physreve.97.042413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/07/2022]
Abstract
The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.
Collapse
|
28
|
Javaherian S, D'Arcangelo E, Slater B, Londono C, Xu B, McGuigan AP. Modulation of cellular polarization and migration by ephrin/Eph signal-mediated boundary formation. Integr Biol (Camb) 2017; 9:934-946. [PMID: 29120470 DOI: 10.1039/c7ib00176b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compartment boundaries are essential for ensuring proper cell organization during embryo development and in adult tissues, yet the mechanisms underlying boundary establishment are not completely understood. A number of mechanisms, including (i) differential adhesion, (ii) differential tension, and (iii) cell signaling-mediated cell repulsion, are known to contribute and likely a context-dependent balance of each of these dictates boundary implementation. The ephrin/Eph signaling pathway is known to impact boundary formation in higher animals. In different contexts, ephrin/Eph signaling is known to modulate adhesive properties and migratory behavior of cells. Furthermore it has been proposed that ephrin/Eph signaling may modulate cellular tensile properties, leading to boundary implementation. It remains unclear however, whether, in different contexts, ephrin/Eph act through distinct dominant action modes (e.g. differential adhesion vs. cell repulsion), or whether ephrin/Eph signaling elicits multiple cellular changes simultaneously. Here, using micropatterning of cells over-expressing either EphB3 or ephrinB1, we assess the contribution of each these factors in one model. We show that in this system ephrinB1/EphB3-mediated boundaries are accompanied by modulation of tissue-level architecture and polarization of cell migration. These changes are associated with changes in cell shape and cytoskeletal organization also suggestive of altered cellular tension.
Collapse
Affiliation(s)
- Sahar Javaherian
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Vig DK, Hamby AE, Wolgemuth CW. Cellular Contraction Can Drive Rapid Epithelial Flows. Biophys J 2017; 113:1613-1622. [PMID: 28978451 DOI: 10.1016/j.bpj.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023] Open
Abstract
Single, isolated epithelial cells move randomly; however, during wound healing, organism development, cancer metastasis, and many other multicellular phenomena, motile cells group into a collective and migrate persistently in a directed manner. Recent work has examined the physics and biochemistry that coordinates the motions of these groups of cells. Of late, two mechanisms have been touted as being crucial to the physics of these systems: leader cells and jamming. However, the actual importance of these to collective migration remains circumstantial. Fundamentally, collective behavior must arise from the actions of individual cells. Here, we show how biophysical activity of an isolated cell impacts collective dynamics in epithelial layers. Although many reports suggest that wound closure rates depend on isolated cell speed and/or leader cells, we find that these correlations are not universally true, nor do collective dynamics follow the trends suggested by models for jamming. Instead, our experimental data, when coupled with a mathematical model for collective migration, shows that intracellular contractile stress, isolated cell speed, and adhesion all play a substantial role in influencing epithelial dynamics, and that alterations in contraction and/or substrate adhesion can cause confluent epithelial monolayers to exhibit an increase in motility, a feature reminiscent of cancer metastasis. These results directly question the validity of wound-healing assays as a general means for measuring cell migration, and provide further insight into the salient physics of collective migration.
Collapse
Affiliation(s)
- Dhruv K Vig
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Alex E Hamby
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Charles W Wolgemuth
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
30
|
Hallou A, Jennings J, Kabla AJ. Tumour heterogeneity promotes collective invasion and cancer metastatic dissemination. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161007. [PMID: 28878958 PMCID: PMC5579073 DOI: 10.1098/rsos.161007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/12/2017] [Indexed: 05/31/2023]
Abstract
Heterogeneity within tumour cell populations is commonly observed in most cancers. However, its impact on metastatic dissemination, one of the primary determinants of the disease prognosis, remains poorly understood. Working with a simplified numerical model of tumour spheroids, we investigated the impact of mechanical heterogeneity on the onset of tumour invasion into surrounding tissues. Our work establishes a positive link between tumour heterogeneity and metastatic dissemination, and recapitulates a number of invasion patterns identified in vivo, such as multicellular finger-like protrusions. Two complementary mechanisms are at play in heterogeneous tumours. A small proportion of stronger cells are able to initiate and lead the escape of cells, while collective effects in the bulk of the tumour provide the coordination required to sustain the invasive process through multicellular streaming. This suggests that the multicellular dynamics observed during metastasis is a generic feature of mechanically heterogeneous cell populations and might rely on a limited and generic set of attributes.
Collapse
|
31
|
Hakim V, Silberzan P. Collective cell migration: a physics perspective. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:076601. [PMID: 28282028 DOI: 10.1088/1361-6633/aa65ef] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cells have traditionally been viewed either as independently moving entities or as somewhat static parts of tissues. However, it is now clear that in many cases, multiple cells coordinate their motions and move as collective entities. Well-studied examples comprise development events, as well as physiological and pathological situations. Different ex vivo model systems have also been investigated. Several recent advances have taken place at the interface between biology and physics, and have benefitted from progress in imaging and microscopy, from the use of microfabrication techniques, as well as from the introduction of quantitative tools and models. We review these interesting developments in quantitative cell biology that also provide rich examples of collective out-of-equilibrium motion.
Collapse
Affiliation(s)
- Vincent Hakim
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, PSL Research University, UPMC, Paris, France
| | | |
Collapse
|
32
|
Bonfrate V, Manno D, Serra A, Salvatore L, Sannino A, Buccolieri A, Serra T, Giancane G. Enhanced electrical conductivity of collagen films through long-range aligned iron oxide nanoparticles. J Colloid Interface Sci 2017; 501:185-191. [PMID: 28456102 DOI: 10.1016/j.jcis.2017.04.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022]
Abstract
The development of biocompatible collagen substrates able to conduct electric current along specific pathways represent an appealing issue in tissue engineering, since it is well known that electrical stimuli significantly affects important cell behaviour, such as proliferation, differentiation, directional migration, and, therefore, tissue regeneration. In this work, a cheap and easy approach was proposed to produce collagen-based films exhibiting enhanced electrical conductivity, through the simple manipulation of a weak external magnetic trigger. Paramagnetic iron oxide nanoparticles (NPs) capped by a biocompatible polyethylene-glycol coating were synthetized by a co-precipitation and solvothermic method and sprayed onto a collagen suspension. The system was then subjected to a static external magnetic field in order to conveniently tune NPs organization. Under the action of the external stimulus, NPs were induced to orient along the magnetic field lines, forming long-range aligned micropatterns within the collagen matrix. Drying of the substrate following water evaporation permanently blocked the magnetic architecture produced, thereby preserving NPs organization even after magnetic field removal. Electrical conductivity measurements clearly showed that the presence of such a magnetic framework endowed collagen with marked conductive properties in specific directions. The biocompatibility of the paramagnetic collagen films was also demonstrated by MTT cell cytotoxicity test.
Collapse
Affiliation(s)
- Valentina Bonfrate
- Department of Engineering for Innovation, University of Salento, Via Per Arnesano, Lecce, Italy
| | - Daniela Manno
- Department of Mathematics & Physics "Ennio De Giorgi", University of Salento, Via Per Arnesano, Lecce, Italy
| | - Antonio Serra
- Department of Mathematics & Physics "Ennio De Giorgi", University of Salento, Via Per Arnesano, Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Per Arnesano, Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Per Arnesano, Lecce, Italy
| | - Alessandro Buccolieri
- Biological and Environmental Sciences and Technologies, University of Salento, Via Per Arnesano, Lecce, Italy
| | - Tiziano Serra
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Gabriele Giancane
- Department of Cultural Heritage, University of Salento, Via D. Birago, 64, Lecce, Italy.
| |
Collapse
|
33
|
Matsushita K. Cell-alignment patterns in the collective migration of cells with polarized adhesion. Phys Rev E 2017; 95:032415. [PMID: 28415314 DOI: 10.1103/physreve.95.032415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 06/07/2023]
Abstract
Dictyostelium discoideum (Dd) utilizes inhomogeneities in the distribution of cell-cell adhesion molecules on cell membranes for collective cell migration. A simple example of an inhomogeneity is a front-side (leading-edge) polarization in the distribution at the early streaming stage. Experiments have shown that the polarized cell-cell adhesion induces side-by-side contact between cells [Beug et al., Nature (London) 274, 445 (1978)NATUAS0028-083610.1038/274445a0]. This result is counterintuitive, as one would expect cells to align front to front in contact with each other on the basis of front-side polarization. In this work, we theoretically examine whether front-side polarization induces side-by-side contact in collective cell migration. We construct a model for expressing cells with this polarization based on the two-dimensional cellular Potts model. By a numerical simulation with this model, we find cell-cell alignment wherein cells form lateral arrays with side-by-side contacts as observed in the experiments.
Collapse
|
34
|
Ramirez-San Juan GR, Oakes PW, Gardel ML. Contact guidance requires spatial control of leading-edge protrusion. Mol Biol Cell 2017; 28:1043-1053. [PMID: 28228548 PMCID: PMC5391181 DOI: 10.1091/mbc.e16-11-0769] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
Subcellular mechanisms underlying contact guidance are incompletely understood. Use of micoropatterned substrates and quantitative analysis of protrusion dynamics shows that contact guidance is mediated predominately though spatial regulation of protrusions and mediated through myosin II– and Rac1-mediated feedbacks. In vivo, geometric cues from the extracellular matrix (ECM) are critical for the regulation of cell shape, adhesion, and migration. During contact guidance, the fibrillar architecture of the ECM promotes an elongated cell shape and migration along the fibrils. The subcellular mechanisms by which cells sense ECM geometry and translate it into changes in shape and migration direction are not understood. Here we pattern linear fibronectin features to mimic fibrillar ECM and elucidate the mechanisms of contact guidance. By systematically varying patterned line spacing, we show that a 2-μm spacing is sufficient to promote cell shape elongation and migration parallel to the ECM, or contact guidance. As line spacing is increased, contact guidance increases without affecting migration speed. To elucidate the subcellular mechanisms of contact guidance, we analyze quantitatively protrusion dynamics and find that the structured ECM orients cellular protrusions parallel to the ECM. This spatial organization of protrusion relies on myosin II contractility, and feedback between adhesion and Rac-mediated protrusive activity, such that we find Arp2/3 inhibition can promote contact guidance. Together our data support a model for contact guidance in which the ECM enforces spatial constraints on the lamellipodia that result in cell shape elongation and enforce migration direction.
Collapse
Affiliation(s)
- G R Ramirez-San Juan
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,James Franck Institute, University of Chicago, Chicago, IL 60637.,Department of Physics, University of Chicago, Chicago, IL 60637
| | - P W Oakes
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,James Franck Institute, University of Chicago, Chicago, IL 60637.,Department of Physics, University of Chicago, Chicago, IL 60637.,Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627.,Department of Biology, University of Rochester, Rochester, NY 14627
| | - M L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637 .,James Franck Institute, University of Chicago, Chicago, IL 60637.,Department of Physics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
35
|
Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction. Proc Natl Acad Sci U S A 2016; 113:14698-14703. [PMID: 27930308 DOI: 10.1073/pnas.1612208113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.
Collapse
|
36
|
Diabetic wound regeneration using peptide-modified hydrogels to target re-epithelialization. Proc Natl Acad Sci U S A 2016; 113:E5792-E5801. [PMID: 27647919 DOI: 10.1073/pnas.1612277113] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is a clinical need for new, more effective treatments for chronic wounds in diabetic patients. Lack of epithelial cell migration is a hallmark of nonhealing wounds, and diabetes often involves endothelial dysfunction. Therefore, targeting re-epithelialization, which mainly involves keratinocytes, may improve therapeutic outcomes of current treatments. In this study, we present an integrin-binding prosurvival peptide derived from angiopoietin-1, QHREDGS (glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine), as a therapeutic candidate for diabetic wound treatments by demonstrating its efficacy in promoting the attachment, survival, and collective migration of human primary keratinocytes and the activation of protein kinase B Akt and MAPKp42/44 The QHREDGS peptide, both as a soluble supplement and when immobilized in a substrate, protected keratinocytes against hydrogen peroxide stress in a dose-dependent manner. Collective migration of both normal and diabetic human keratinocytes was promoted on chitosan-collagen films with the immobilized QHREDGS peptide. The clinical relevance was demonstrated further by assessing the chitosan-collagen hydrogel with immobilized QHREDGS in full-thickness excisional wounds in a db/db diabetic mouse model; QHREDGS showed significantly accelerated and enhanced wound closure compared with a clinically approved collagen wound dressing, peptide-free hydrogel, or blank wound controls. The accelerated wound closure resulted primarily from faster re-epithelialization and increased formation of granulation tissue. There were no observable differences in blood vessel density or size within the wound; however, the total number of blood vessels was greater in the peptide-hydrogel-treated wounds. Together, these findings indicate that QHREDGS is a promising candidate for wound-healing interventions that enhance re-epithelialization and the formation of granulation tissue.
Collapse
|
37
|
Caballero D, Comelles J, Piel M, Voituriez R, Riveline D. Ratchetaxis: Long-Range Directed Cell Migration by Local Cues. Trends Cell Biol 2016; 25:815-827. [PMID: 26615123 DOI: 10.1016/j.tcb.2015.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Directed cell migration is usually thought to depend on the presence of long-range gradients of either chemoattractants or physical properties such as stiffness or adhesion. However, in vivo, chemical or mechanical gradients have not systematically been observed. Here we review recent in vitro experiments, which show that other types of spatial guidance cues can bias cell motility. Introducing local geometrical or mechanical anisotropy in the cell environment, such as adhesive/topographical microratchets or tilted micropillars, show that local and periodic external cues can direct cell motion. Together with modeling, these experiments suggest that cell motility can be viewed as a stochastic phenomenon, which can be biased by various types of local cues, leading to directional migration.
Collapse
Affiliation(s)
- David Caballero
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Jordi Comelles
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, Bio6, F-75005, Paris, France.
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris, France; Laboratoire Jean Perrin, CNRS UMR 8237, Université Pierre et Marie Curie, Paris, France.
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France.
| |
Collapse
|
38
|
Abstract
Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell-substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
| | - Wei-Chien Hung
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218;
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218;
| |
Collapse
|
39
|
Szabó A, Melchionda M, Nastasi G, Woods ML, Campo S, Perris R, Mayor R. In vivo confinement promotes collective migration of neural crest cells. J Cell Biol 2016; 213:543-55. [PMID: 27241911 PMCID: PMC4896058 DOI: 10.1083/jcb.201602083] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022] Open
Abstract
Collective cell migration is fundamental throughout development and in many diseases. Spatial confinement using micropatterns has been shown to promote collective cell migration in vitro, but its effect in vivo remains unclear. Combining computational and experimental approaches, we show that the in vivo collective migration of neural crest cells (NCCs) depends on such confinement. We demonstrate that confinement may be imposed by the spatiotemporal distribution of a nonpermissive substrate provided by versican, an extracellular matrix molecule previously proposed to have contrasting roles: barrier or promoter of NCC migration. We resolve the controversy by demonstrating that versican works as an inhibitor of NCC migration and also acts as a guiding cue by forming exclusionary boundaries. Our model predicts an optimal number of cells in a given confinement width to allow for directional migration. This optimum coincides with the width of neural crest migratory streams analyzed across different species, proposing an explanation for the highly conserved nature of NCC streams during development.
Collapse
Affiliation(s)
- András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Manuela Melchionda
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Giancarlo Nastasi
- Department of Biochemical and Dental Sciences and Morphofunctional Images, School of Medicine, University of Messina, 98122 Messina, Italy
| | - Mae L Woods
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Salvatore Campo
- Department of Biochemical and Dental Sciences and Morphofunctional Images, School of Medicine, University of Messina, 98122 Messina, Italy
| | - Roberto Perris
- Center for Molecular and Translational Oncology, University of Parma, 43121 Parma, Italy
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
40
|
Lee RM, Stuelten CH, Parent CA, Losert W. Collective cell migration over long time scales reveals distinct phenotypes. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016; 2. [PMID: 29657838 DOI: 10.1088/2057-1739/2/2/025001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Introduction Migratory phenotypes of metastasizing tumor cells include single and collective cell migration. While migration of tumor cells is generally less cooperative than that of normal epithelial cells, our understanding of precisely how they differ in long time behavior is incomplete. Objectives We measure in a model system how cancer progression affects collective migration on long time scales, and determine how perturbation of cell-cell adhesions, specifically reduced E-cadherin expression, affects the collective migration phenotype. Methods Time lapse imaging of cellular sheets and particle image velocimetry (PIV) are used to quantitatively study the dynamics of cell motion over ten hours. Long time dynamics are measured via finite time Lyapunov exponents (FTLE) and changes in FTLE with time. Results We find that non-malignant MCF10A cells are distinguished from malignant MCF10CA1a cells by both their short time (minutes) and long time (hours) dynamics. In addition, short time dynamics distinguish non-malignant E-cadherin knockdown cells from the control, but long time dynamics and increasing spatial correlations remain unchanged. Discussion Epithelial sheet collective behavior includes long time dynamics that cannot be captured by metrics that assess cooperativity based on short time dynamics, such as instantaneous speed or directionality. The use of metrics incorporating migration data over hours instead of minutes allows us to more precisely describe how E-cadherin, a clinically relevant adhesion molecule, affects collective migration. We predict that the long time scale metrics described here will be more robust and predictive of malignant behavior than analysis of instantaneous velocity fields alone.
Collapse
Affiliation(s)
- R M Lee
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - C H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - C A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - W Losert
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
41
|
Carmichael ST. Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann Neurol 2016; 79:895-906. [PMID: 27043816 PMCID: PMC4884133 DOI: 10.1002/ana.24653] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Abstract
Stroke is the leading cause of adult disability. The past decade has seen advances in basic science research of neural repair in stroke. The brain forms new connections after stroke, which have a causal role in recovery of function. Brain progenitors, including neuronal and glial progenitors, respond to stroke and initiate a partial formation of new neurons and glial cells. The molecular systems that underlie axonal sprouting, neurogenesis, and gliogenesis after stroke have recently been identified. Importantly, tractable drug targets exist within these molecular systems that might stimulate tissue repair. These basic science advances have taken the field to its first scientific milestone; the elemental principles of neural repair in stroke have been identified. The next stages in this field involve understanding how these elemental principles of recovery interact in the dynamic cellular systems of the repairing brain. Emergent principles arise out of the interaction of the fundamental or elemental principles in a system. In neural repair, the elemental principles of brain reorganization after stroke interact to generate higher order and distinct concepts of regenerative brain niches in cellular repair, neuronal networks in synaptic plasticity, and the distinction of molecular systems of neuroregeneration. Many of these emergent principles directly guide the development of new therapies, such as the necessity for spatial and temporal control in neural repair therapy delivery and the overlap of cancer and neural repair mechanisms. This review discusses the emergent principles of neural repair in stroke as they relate to scientific and therapeutic concepts in this field. Ann Neurol 2016;79:895–906
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA and UCLA Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
42
|
Monzo P, Chong YK, Guetta-Terrier C, Krishnasamy A, Sathe SR, Yim EKF, Ng WH, Ang BT, Tang C, Ladoux B, Gauthier NC, Sheetz MP. Mechanical confinement triggers glioma linear migration dependent on formin FHOD3. Mol Biol Cell 2016; 27:1246-61. [PMID: 26912794 PMCID: PMC4831879 DOI: 10.1091/mbc.e15-08-0565] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/18/2016] [Indexed: 12/12/2022] Open
Abstract
Glioblastomas are extremely aggressive brain tumors with highly invasive properties. Brain linear tracks such as blood vessel walls constitute their main invasive routes. Here we analyze rat C6 and patient-derived glioma cell motility in vitro using micropatterned linear tracks to mimic blood vessels. On laminin-coated tracks (3-10 μm), these cells used an efficient saltatory mode of migration similar to their in vivo migration. This saltatory migration was also observed on larger tracks (50-400 μm in width) at high cell densities. In these cases, the mechanical constraints imposed by neighboring cells triggered this efficient mode of migration, resulting in the formation of remarkable antiparallel streams of cells along the tracks. This motility involved microtubule-dependent polarization, contractile actin bundles and dynamic paxillin-containing adhesions in the leading process and in the tail. Glioma linear migration was dramatically reduced by inhibiting formins but, surprisingly, accelerated by inhibiting Arp2/3. Protein expression and phenotypic analysis indicated that the formin FHOD3 played a role in this motility but not mDia1 or mDia2. We propose that glioma migration under confinement on laminin relies on formins, including FHOD3, but not Arp2/3 and that the low level of adhesion allows rapid antiparallel migration.
Collapse
Affiliation(s)
- Pascale Monzo
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | | | - Anitha Krishnasamy
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Sharvari R Sathe
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Evelyn K F Yim
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Department of Biomedical Engineering, National University of Singapore, Singapore 117575 Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Wai Hoe Ng
- National Neuroscience Institute, Singapore 308433 Duke-NUS Graduate Medical School, Singapore 169857
| | - Beng Ti Ang
- National Neuroscience Institute, Singapore 308433 Duke-NUS Graduate Medical School, Singapore 169857 Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 Singapore Institute for Clinical Sciences, A*STAR, Singapore 117609
| | - Carol Tang
- National Neuroscience Institute, Singapore 308433 Duke-NUS Graduate Medical School, Singapore 169857 Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Institut Jacques Monod, Université Paris Diderot and CNRS UMR 7592, 75205 Paris, France
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, Singapore 117411 National Neuroscience Institute, Singapore 308433
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
43
|
Kweon S, Song KH, Park H, Choi JC, Doh J. Dynamic Micropatterning of Cells on Nanostructured Surfaces Using a Cell-friendly Photoresist. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4266-4274. [PMID: 26760679 DOI: 10.1021/acsami.6b00318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cellular dynamics under complex topographical microenvironments are important for many biological processes in development and diseases, but systematic investigation has been limited due to the lack of technology. Herein, we developed a new dynamic cell patterning method based on a cell-friendly photoresist polymer that allows in situ control of cell dynamics on nanostructured surfaces. Using this method, we quantitatively compared the spreading dynamics of cells on nanostructured surfaces to those on flat surfaces. Furthermore, we investigated how cells behaved when they simultaneously encountered two topographically distinct surfaces during spreading. This method will allow many exciting opportunities in the fundamental study of cellular dynamics.
Collapse
Affiliation(s)
- SoonHo Kweon
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Kwang Hoon Song
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - HyoungJun Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Jong-Cheol Choi
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Junsang Doh
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| |
Collapse
|
44
|
Li G, Yang G, Zhang P, Li Y, Meng J, Liu H, Wang S. Rapid Cell Patterning Induced by Differential Topography on Silica Nanofractal Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5642-5646. [PMID: 26376008 DOI: 10.1002/smll.201502085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 06/05/2023]
Abstract
Predesigned silica nanofractal substrates are utilized for rapid cell patterning, based on differential cell adhesion originating from surface topographic interactions. Cell patterns with various shapes are successfully formed, from simple geometrical shapes to a complex "CELL" symbol. This study assists understanding of cell-substrate interactions and facilitates biological applications.
Collapse
Affiliation(s)
- Guannan Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gao Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengchao Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingying Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingxin Meng
- Laboratory for Bio-Inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongliang Liu
- Laboratory for Bio-Inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Laboratory for Bio-Inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
45
|
Zhang Q, Dong H, Li Y, Zhu Y, Zeng L, Gao H, Yuan B, Chen X, Mao C. Microgrooved Polymer Substrates Promote Collective Cell Migration To Accelerate Fracture Healing in an in Vitro Model. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23336-45. [PMID: 26457873 PMCID: PMC4934131 DOI: 10.1021/acsami.5b07976] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Surface topography can affect cell adhesion, morphology, polarity, cytoskeleton organization, and osteogenesis. However, little is known about the effect of topography on the fracture healing in repairing nonunion and large bone defects. Microgrooved topography on the surface of bone implants may promote cell migration into the fracture gap to accelerate fracture healing. To prove this hypothesis, we used an in vitro fracture (wound) healing assay on the microgrooved polycaprolactone substrates to study the effect of microgroove widths and depths on the osteoblast-like cell (MG-63) migration and the subsequent healing. We found that the microgrooved substrates promoted MG-63 cells to migrate collectively into the wound gap, which serves as a fracture model, along the grooves and ridges as compared with the flat substrates. Moreover, the groove widths did not show obvious influence on the wound healing whereas the smaller groove depths tended to favor the collective cell migration and thus subsequent healing. The microgrooved substrates accelerated the wound healing by facilitating the collective cell migration into the wound gaps but not by promoting the cell proliferation. Furthermore, microgrooves were also found to promote the migration of human mesenchymal stem cells (hMSCs) to heal the fracture model. Though osteogenic differentiation of hMSCs was not improved on the microgrooved substrate, collagen I and minerals deposited by hMSCs were organized in a way similar to those in the extracellular matrix of natural bone. These findings suggest the necessity in using microgrooved implants in enhancing fracture healing in bone repair.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Hua Dong
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Yuli Li
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lei Zeng
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Huichang Gao
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Bo Yuan
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Xiaofeng Chen
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
46
|
Hofmeister LH, Costa L, Balikov DA, Crowder SW, Terekhov A, Sung HJ, Hofmeister WH. Patterned polymer matrix promotes stemness and cell-cell interaction of adult stem cells. J Biol Eng 2015; 9:18. [PMID: 26464581 PMCID: PMC4603908 DOI: 10.1186/s13036-015-0016-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/21/2015] [Indexed: 12/27/2022] Open
Abstract
Background The interaction of stem cells with their culture substrates is critical in controlling their fate and function. Declining stemness of adult-derived human mesenchymal stem cells (hMSCs) during in vitro expansion on tissue culture polystyrene (TCPS) severely limits their therapeutic efficacy prior to cell transplantation into damaged tissues. Thus, various formats of natural and synthetic materials have been manipulated in attempts to reproduce in vivo matrix environments in which hMSCs reside. Results We developed a series of patterned polymer matrices for cell culture by hot-pressing poly(ε-caprolactone) (PCL) films in femtosecond laser-ablated nanopore molds, forming nanofibers on flat PCL substrates. hMSCs cultured on these PCL fiber matrices significantly increased expression of critical self-renewal factors, Nanog and OCT4A, as well as markers of cell-cell interaction PECAM and ITGA2. The results suggest the patterned polymer fiber matrix is a promising model to maintain the stemness of adult hMSCs. Conclusion This approach meets the need for scalable, highly repeatable, and tuneable models that mimic extracellular matrix features that signal for maintenance of hMSC stemness.
Collapse
Affiliation(s)
- Lucas H Hofmeister
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Lino Costa
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN USA
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Spencer W Crowder
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Alexander Terekhov
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN USA
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - William H Hofmeister
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN USA
| |
Collapse
|
47
|
Kushiro K, Sakai T, Takai M. Slope-Dependent Cell Motility Enhancements at the Walls of PEG-Hydrogel Microgroove Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10215-10222. [PMID: 26287573 DOI: 10.1021/acs.langmuir.5b02511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, research utilizing micro- and nanoscale geometries and structures on biomaterials to manipulate cellular behaviors, such as differentiation, proliferation, survival, and motility, have gained much popularity; however, how the surface microtopography of 3D objects, such as implantable devices, can affect these various cell behaviors still remains largely unknown. In this study, we discuss how the walls of microgroove topography can influence the morphology and the motility of unrestrained cells, in a different fashion from 2D line micropatterns. Here adhesive substrates made of tetra(polyethylene glycol) (tetra-PEG) hydrogels with microgroove structures or 2D line micropatterns were fabricated, and cell motility on these substrates was evaluated. Interestingly, despite being unconstrained, the cells exhibited drastically different migration behaviors at the edges of the 2D micropatterns and the walls of microgroove structures. In addition to acquiring a unilamellar morphology, the cells increased their motility by roughly 3-fold on the microgroove structures, compared with the 2D counterpart or the nonpatterned surface. Immunostaining revealed that this behavior was dependent on the alignment and the aggregation of the actin filaments, and by varying the slope of the microgroove walls, it was found that relatively upright walls are necessary for this cell morphology alterations. Further progress in this research will not only deepen our understanding of topography-assisted biological phenomena like cancer metastasis but also enable precise, topography-guided manipulation of cell motility for applications such as cancer diagnosis and cell sorting.
Collapse
Affiliation(s)
- Keiichiro Kushiro
- Department of Bioengineering, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Bioengineering, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
48
|
Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015; 25:556-66. [DOI: 10.1016/j.tcb.2015.06.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
|
49
|
Cetera M, Horne-Badovinac S. Round and round gets you somewhere: collective cell migration and planar polarity in elongating Drosophila egg chambers. Curr Opin Genet Dev 2015; 32:10-5. [PMID: 25677931 DOI: 10.1016/j.gde.2015.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023]
Abstract
Planar polarity is a developmental mechanism wherein individual cell behaviors are coordinated across a two-dimensional plane. A great deal of attention has been paid to the roles that the Frizzled/Strabismus and Fat/Dachsous signaling pathways play in this process; however, it is becoming increasingly clear that planar polarity can also be generated through alternate mechanisms. This review focuses on an unconventional form of planar polarity found within the follicular epithelium of the Drosophila egg chamber that helps to create the elongated shape of the egg. We highlight recent studies showing that the planar polarity in this system arises through collective migration of the follicle cells and the resulting rotational motion of the egg chamber.
Collapse
Affiliation(s)
- Maureen Cetera
- Department of Molecular Genetics and Cell Biology, Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, United States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, United States.
| |
Collapse
|
50
|
Javaherian S, D'Arcangelo E, Slater B, Zulueta-Coarasa T, Fernandez-Gonzalez R, McGuigan AP. An in vitro model of tissue boundary formation for dissecting the contribution of different boundary forming mechanisms. Integr Biol (Camb) 2015; 7:298-312. [DOI: 10.1039/c4ib00272e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Separation of phenotypically distinct cell populations is necessary to ensure proper organization and function of tissues and organs therefore understanding fundamental mechanisms that drive this cell segregation is important. In this work, authors present an in vivo model system that accurately recapitulates important aspects of cell segregation in vivo and allows dissection of cell behaviours driving cell segregation.
Collapse
Affiliation(s)
- Sahar Javaherian
- University of Toronto
- Department of Chemical Engineering and Applied Chemistry
- Toronto
- Canada
| | - Elisa D'Arcangelo
- Institute of Biomaterials and Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Benjamin Slater
- University of Toronto
- Department of Chemical Engineering and Applied Chemistry
- Toronto
- Canada
| | | | | | - Alison P. McGuigan
- University of Toronto
- Department of Chemical Engineering and Applied Chemistry
- Toronto
- Canada
- Institute of Biomaterials and Biomedical Engineering
| |
Collapse
|