1
|
Lu J, Yan S, Xue Z. Biosynthesis and functions of triterpenoids in cereals. J Adv Res 2025; 71:155-171. [PMID: 38788922 DOI: 10.1016/j.jare.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Triterpenoids are versatile secondary metabolites with a diverse array of physiological activities, possessing valuable pharmacological effects and influencing the growth and development of plants. As more triterpenoids in cereals are unearthed and characterized, their biological roles in plant growth and development are gaining recognition. AIM OF THE REVIEW This review provides an overview of the structures, biosynthetic pathways, and diverse biological functions of triterpenoids identified in cereals. Our goal is to establish a basis for further exploration of triterpenoids with novel structures and functional activities in cereals, and to facilitate the potential application of triterpenoids in grain breeding, thus accelerating the development of superior grain varieties. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This review consolidates information on various triterpenoid skeletons and derivatives found in cereals, and summarizes the pivotal enzyme genes involved, including oxidosqualene cyclase (OSC) and other triterpenoid modifying enzymes like cytochrome P450, glycosyltransferase, and acyltransferase. Triterpenoid-modifying enzymes exhibit specificity towards catalytic sites within triterpenoid skeletons, generating a diverse array of functional triterpenoid derivatives. Furthermore, triterpenoids have been shown to significantly impact the nutritional value, yield, disease resistance, and stress response of cereals.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Shan Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China; State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
2
|
Shirke HA, Darshetkar AM, Naikawadi VB, Kavi Kishor PB, Nikam TD, Barvkar VT. Genomics of sterols biosynthesis in plants: Current status and future prospects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112426. [PMID: 39956365 DOI: 10.1016/j.plantsci.2025.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Sterols produced by bacteria and all eukaryotic organisms are essential for membrane functionality and stability. They play a vital role in growth, development and in abiotic stress tolerance. They are involved in diverse responses to biotic and abiotic stresses that lead to providing resistance against multiple diseases. Additionally, sterols serve as defensive compounds against herbivorous insects and animals. Phytosterols derived from plants, improve human nutrition and health and cure different ailments. The biosynthetic pathways for sterols and triterpenes exhibit similarities until the synthesis of 2,3-oxidosqualene. The complexity of sterol pathways increases during the advanced stages of polycyclic structure synthesis, and remain poorly comprehended in plants. This review explores the various omics techniques used to unveil the functions of genes associated with the phytosterol pathways. The study investigates the biosynthetic gene clusters to clarify the structural arrangements of genes linked to metabolic pathways. Both the upstream and downstream genes associated with these pathways, as well as their evolutionary connections and interrelations within the pathways were brought to the forefront. Moreover, developing strategies to unravel the biosynthesis completely and their multi-layered regulation are crucial to comprehend the global roles that sterols play in plant growth, development, stress tolerance and in imparting defence against pathogens.
Collapse
Affiliation(s)
- Harshad A Shirke
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| | | | - Vikas B Naikawadi
- Department of Botany, Chandmal Tarachand Bora College, Shirur, Pune 412210, India.
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - Tukaram D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
3
|
Yang C, Halitschke R, O'Connor SE, Baldwin IT. Roles of three cytochrome P450 monooxygenases in triterpene biosynthesis and their potential impact on growth and development. PLANT PHYSIOLOGY 2024; 196:1407-1425. [PMID: 39052981 PMCID: PMC11444297 DOI: 10.1093/plphys/kiae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Pentacyclic triterpenoids, recognized for their natural bioactivity, display complex spatiotemporal accumulation patterns within the ecological model plant Nicotiana attenuata. Despite their ecological importance, the underlying biosynthetic enzymes and functional attributes of triterpenoid synthesis in N. attenuata remain unexplored. Here, we show that 3 cytochrome P450 monooxygenases (NaCYP716A419, NaCYP716C87, and NaCYP716E107) from N. attenuata oxidize the pentacyclic triterpene skeleton, as evidenced by heterologous expression in Nicotiana benthamiana. NaCYP716A419 catalyzed a consecutive 3-step oxidation reaction at the C28 position of β-amyrin/lupeol/lupanediol, yielding the corresponding alcohol, aldehyde, and carboxylic acid. NaCYP716C87 hydroxylated the C2α position of β-amyrin/lupeol/lupanediol/erythrodiol/oleanolic acid/betulinic acid, while NaCYP716E107 hydroxylated the C6β position of β-amyrin/oleanolic acid. The genes encoding these 3 CYP716 enzymes are highly expressed in flowers and respond to induction by ABA, MeJA, SA, GA3, and abiotic stress treatments. Using VIGS technology, we revealed that silencing of NaCYP716A419 affects the growth and reproduction of N. attenuata, suggesting the ecological significance of these specialized metabolite biosynthetic steps.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Rayko Halitschke
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| |
Collapse
|
4
|
Yang C, Halitschke R, O'Connor SE. OXIDOSQUALENE CYCLASE 1 and 2 influence triterpene biosynthesis and defense in Nicotiana attenuata. PLANT PHYSIOLOGY 2024; 194:2580-2599. [PMID: 38101922 PMCID: PMC10980520 DOI: 10.1093/plphys/kiad643] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Triterpenes are a class of bioactive compounds with diverse biological functions, playing pivotal roles in plant defense against biotic stressors. Oxidosqualene cyclases (OSCs) serve as gatekeepers in the biosynthesis of triterpenes. In this study, we utilized a Nicotiana benthamiana heterologous expression system to characterize NaOSC1 from Nicotiana attenuata as a multifunctional enzyme capable of synthesizing lupeol, dammarenediol II, 3-alpha,20-lupanediol, and 7 other triterpene scaffolds. We also demonstrated that NaOSC2 is, in contrast, a selective enzyme, producing only the β-amyrin scaffold. Through virus-induced gene silencing and in vitro toxicity assays, we elucidated the roles of NaOSC1 and NaOSC2 in the defense of N. attenuata against Manduca sexta larvae. Metabolomic and feature-based molecular network analyses of leaves with silenced NaOSC1 and NaOSC2 unveiled 3 potential triterpene glycoside metabolite clusters. Interestingly, features identified as triterpenes within these clusters displayed a significant negative correlation with larval mass. Our study highlights the pivotal roles of NaOSC1 and NaOSC2 from N. attenuata in the initial steps of triterpene biosynthesis, subsequently influencing defense against M. sexta through the modulation of downstream triterpene glycoside compounds.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Rayko Halitschke
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| |
Collapse
|
5
|
Yuan J, Ma L, Wang Y, Xu X, Zhang R, Wang C, Meng W, Tian Z, Zhou Y, Wang G. A recently evolved BAHD acetyltransferase, responsible for bitter soyasaponin A production, is indispensable for soybean seed germination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2490-2504. [PMID: 37548097 DOI: 10.1111/jipb.13553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Soyasaponins are major small molecules that accumulate in soybean (Glycine max) seeds. Among them, type-A soyasaponins, fully acetylated at the terminal sugar of their C22 sugar chain, are responsible for the bitter taste of soybean-derived foods. However, the molecular basis for the acetylation of type-A soyasaponins remains unclear. Here, we identify and characterize GmSSAcT1, encoding a BADH-type soyasaponin acetyltransferase that catalyzes three or four consecutive acetylations on type-A soyasaponins in vitro and in planta. Phylogenetic analysis and biochemical assays suggest that GmSSAcT1 likely evolved from acyltransferases present in leguminous plants involved in isoflavonoid acylation. Loss-of-function mutants of GmSSAcT1 exhibited impaired seed germination, which attribute to the excessive accumulation of null-acetylated type-A soyasaponins. We conclude that GmSSAcT1 not only functions as a detoxification gene for high accumulation of type-A soyasaponins in soybean seeds but is also a promising target for breeding new soybean varieties with lower bitter soyasaponin content.
Collapse
Affiliation(s)
- Jia Yuan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Liya Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Xindan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, the Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengyuan Wang
- The Center for Microbes, Development and Health, Institute of Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, the Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixi Tian
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
6
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
7
|
Nguyen TH, Thiers L, Van Moerkercke A, Bai Y, Fernández-Calvo P, Minne M, Depuydt T, Colinas M, Verstaen K, Van Isterdael G, Nützmann HW, Osbourn A, Saeys Y, De Rybel B, Vandepoele K, Ritter A, Goossens A. A redundant transcription factor network steers spatiotemporal Arabidopsis triterpene synthesis. NATURE PLANTS 2023; 9:926-937. [PMID: 37188853 DOI: 10.1038/s41477-023-01419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Plant specialized metabolites modulate developmental and ecological functions and comprise many therapeutic and other high-value compounds. However, the mechanisms determining their cell-specific expression remain unknown. Here we describe the transcriptional regulatory network that underlies cell-specific biosynthesis of triterpenes in Arabidopsis thaliana root tips. Expression of thalianol and marneral biosynthesis pathway genes depends on the phytohormone jasmonate and is limited to outer tissues. We show that this is promoted by the activity of redundant bHLH-type transcription factors from two distinct clades and coactivated by homeodomain factors. Conversely, the DOF-type transcription factor DAG1 and other regulators prevent expression of the triterpene pathway genes in inner tissues. We thus show how precise expression of triterpene biosynthesis genes is determined by a robust network of transactivators, coactivators and counteracting repressors.
Collapse
Affiliation(s)
- Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Louis Thiers
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Alex Van Moerkercke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Misión Biolóxica de Galicia, CSIC, Pontevedra, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain
| | - Max Minne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Maite Colinas
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kevin Verstaen
- VIB Single Cell Core, Ghent-Leuven, Belgium
- VIB Center for Inflammation Research, Data Mining and Modelling for Biomedicine, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hans-Wilhelm Nützmann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
| | - Yvan Saeys
- VIB Center for Inflammation Research, Data Mining and Modelling for Biomedicine, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
8
|
Kaushal N, Verma D, Alok A, Pandey A, Singh K. Heterologous expression of Chlorophytum borivilianum Squalene epoxidase in tobacco modulates stigmasterol production and alters vegetative and reproductive growth. PLANT CELL REPORTS 2023; 42:909-919. [PMID: 36894686 DOI: 10.1007/s00299-023-03000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/27/2023] [Indexed: 05/06/2023]
Abstract
KEYMESSAGE CbSE overexpression increased stigmasterol levels and altered plant morphology. The genes upstream and downstream of CbSE were found to be upregulated, which confirms its regulatory role in the saponin biosynthetic pathway. Chlorophytum borivilianum is a high-value medicinal plant with many promising preclinical applications that include saponins as a major active ingredient. Squalene epoxidase (SE) is one of the major rate-limiting enzymes of the saponin biosynthetic pathway. Here, we functionally characterized C. borivilianum SE (CbSE) by over-expressing heterologously in Nicotiana tabacum. The heterologous expression of CbSE resulted in stunted pant growth with altered leaf and flower morphology. Next, RT-qPCR analysis of transgenic plants overexpressing CbSE revealed increased expression levels of Cycloartenol synthase (CAS), Beta amyrin synthase (βAS), and cytochrome P450 monooxygenase 51 (CYP51) (Cytochrome P450), which encode key enzymes for triterpenoid and phytosterol biosynthesis in C. borivilianum. Further, Methyl Jasmonate (MeJa) treatment upregulated Squalene synthase (SQS), SE, and Oxidosqualene cyclases (OSCs) to a significant level. GC-MS analysis of the leaf and hairy roots of the transformants showed an increased stigmasterol content (0.5-1.0 fold) compared to wild type (WT) plants. These results indicate that CbSE is a rate-limiting gene, which encodes an efficient enzyme responsible for phytosterol and triterpenoid production in C. borivilianum.
Collapse
Affiliation(s)
- Nishant Kaushal
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Anshu Alok
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
- UMN · College of Food, Agricultural and Natural Resource Sciences, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Yang C, Bai Y, Halitschke R, Gase K, Baldwin G, Baldwin IT. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression. THE NEW PHYTOLOGIST 2023; 238:349-366. [PMID: 36636784 DOI: 10.1111/nph.18732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
10
|
Wen C, Zhang Z, Shi Q, Duan X, Du J, Wu C, Li X. Methyl Jasmonate- and Salicylic Acid-Induced Transcription Factor ZjWRKY18 Regulates Triterpenoid Accumulation and Salt Stress Tolerance in Jujube. Int J Mol Sci 2023; 24:ijms24043899. [PMID: 36835319 PMCID: PMC9965381 DOI: 10.3390/ijms24043899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Triterpenoids are important, pharmacologically active substances in jujube (Ziziphus jujuba Mill.), and play an important role in the plant's resistance to abiotic stress. However, regulation of their biosynthesis, and the underlying mechanism of their balance with stress resistance, remain poorly understood. In this study, we screened and functionally characterized the ZjWRKY18 transcription factor, which is associated with triterpenoid accumulation. The transcription factor is induced by methyl jasmonate and salicylic acid, and its activity was observed by gene overexpression and silencing experiments, combined with analyses of transcripts and metabolites. ZjWRKY18 gene silencing decreased the transcription of triterpenoid synthesis pathway genes and the corresponding triterpenoid content. Overexpression of the gene promoted the biosynthesis of jujube triterpenoids, as well as triterpenoids in tobacco and Arabidopsis thaliana. In addition, ZjWRKY18 binds to W-box sequences to activate promoters of 3-hydroxy-3-methyl glutaryl coenzyme A reductase and farnesyl pyrophosphate synthase, suggesting that ZjWRKY18 positively regulates the triterpenoid synthesis pathway. Overexpression of ZjWRKY18 also increased tolerance to salt stress in tobacco and Arabidopsis thaliana. These results highlight the potential use of ZjWRKY18 to improve triterpenoid biosynthesis and salt stress tolerance in plants, and provide a strong basis for metabolic engineering to improve the content of triterpenoids and breeding of jujube varieties that are resistant to stress.
Collapse
Affiliation(s)
- Cuiping Wen
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for Jujube Engineering and Technology of National Forestry and Grassland Administration, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Zhong Zhang
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for Jujube Engineering and Technology of National Forestry and Grassland Administration, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Xiaoshan Duan
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for Jujube Engineering and Technology of National Forestry and Grassland Administration, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Jiangtao Du
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Cuiyun Wu
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for Jujube Engineering and Technology of National Forestry and Grassland Administration, Northwest Agriculture and Forestry University, Xianyang 712100, China
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
- Correspondence:
| |
Collapse
|
11
|
Li L, Lv B, Zang K, Jiang Y, Wang C, Wang Y, Wang K, Zhao M, Chen P, Lei J, Wang Y, Zhang M. Genome-wide identification and systematic analysis of the HD-Zip gene family and its roles in response to pH in Panax ginseng Meyer. BMC PLANT BIOLOGY 2023; 23:30. [PMID: 36639779 PMCID: PMC9838044 DOI: 10.1186/s12870-023-04038-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng, Panax ginseng Meyer, is a traditional herb that is immensely valuable both for human health and medicine and for medicinal plant research. The homeodomain leucine zipper (HD-Zip) gene family is a plant-specific transcription factor gene family indispensable in the regulation of plant growth and development and plant response to environmental stresses. RESULTS We identified 117 HD-Zip transcripts from the transcriptome of ginseng cv. Damaya that is widely grown in Jilin, China where approximately 60% of the world's ginseng is produced. These transcripts were positioned to 64 loci in the ginseng genome and the ginseng HD-Zip genes were designated as PgHDZ genes. Identification of 82 and 83 PgHDZ genes from the ginseng acc. IR826 and cv. ChP genomes, respectively, indicated that the PgHDZ gene family consists of approximately 80 PgHDZ genes. Phylogenetic analysis showed that the gene family originated after Angiosperm split from Gymnosperm and before Dicots split from Monocots. The gene family was classified into four subfamilies and has dramatically diverged not only in gene structure and functionality but also in expression characteristics. Nevertheless, co-expression network analysis showed that the activities of the genes in the family remain significantly correlated, suggesting their functional correlation. Five hub PgHDZ genes were identified that might have central functions in ginseng biological processes and four of them were shown to be actively involved in plant response to environmental pH stress in ginseng. CONCLUSIONS The PgHDZ gene family was identified from ginseng and analyzed systematically. Five potential hub genes were identified and four of them were shown to be involved in ginseng response to environmental pH stress. The results provide new insights into the characteristics, diversity, evolution, and functionality of the PgHDZ gene family in ginseng and lay a foundation for comprehensive research of the gene family in plants.
Collapse
Affiliation(s)
- Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Boxin Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kaiyou Zang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Chaofan Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yanfang Wang
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
12
|
Conneely LJ, Berkowitz O, Lewsey MG. Emerging trends in genomic and epigenomic regulation of plant specialised metabolism. PHYTOCHEMISTRY 2022; 203:113427. [PMID: 36087823 DOI: 10.1016/j.phytochem.2022.113427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Regulation of specialised metabolism genes is multilayered and complex, influenced by an array of genomic, epigenetic and epigenomic mechanisms. Here, we review the most recent knowledge in this field, drawing from discoveries in several plant species. Our aim is to improve understanding of how plant genome structure and function influence specialised metabolism. We also highlight key areas for future exploration. Gene regulatory mechanisms influencing specialised metabolism include gene duplication and neo-functionalization, conservation of operon-like clusters of specialised metabolism genes, local chromatin modifications, and the organisation of higher order chromatin structures within the nucleus. Genomic and epigenomic research to-date in the discipline have focused on a relatively small number of plant species, primarily at whole organ or tissue level. This is largely due to the technical demands of the experimental methods needed. However, a high degree of cell-type specificity of function exists in specialised metabolism, driven by similarly specific gene regulation. In this review we focus on the genomic characteristics of genes that are found in different types of clusters within the genome. We propose that acquisition of cell-resolution epigenomic datasets in emerging models, such as the glandular trichomes of Cannabis sativa, will yield important advances. Data such as chromatin accessibility and histone modification profiles can pinpoint which regulatory sequences are active in individual cell types and at specific times in development. These could provide fundamental biological insight as well as novel targets for genetic engineering and crop improvement.
Collapse
Affiliation(s)
- Lee J Conneely
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Oliver Berkowitz
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Mathew G Lewsey
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
13
|
Jiao Z, Yin L, Zhang Q, Xu W, Jia Y, Xia K, Zhang M. The putative obtusifoliol 14α-demethylase OsCYP51H3 affects multiple aspects of rice growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13764. [PMID: 35975452 DOI: 10.1111/ppl.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Some members of the CYP51G subfamily has been shown to be obtusifoliol 14α-demethylase, key enzyme of the sterol and brassinosteroid (BR) biosynthesis, which mediate plant development and response to stresses. However, little is known about the functions of CYP51H subfamily in rice. Here, OsCYP51H3, an ortholog of rice OsCYP51G1 was identified. Compared with wild type, the mutants oscyp51H3 and OsCYP51H3-RNAi showed dwarf phenotype, late flowering, erected leaves, lower seed-setting rate, and smaller and shorter seeds. In contrast, the phenotypic changes of OsCYP51H3-OE plants are not obvious. Metabolomic analysis of oscyp51H3 mutant indicated that OsCYP51H3 may also encode an obtusifoliol 14α-demethylase involved in phytosterol and BR biosynthesis, but possibly not that of triterpenes. The RNA-seq results showed that OsCYP51H3 may affect the expression of a lot of genes related to rice development. These findings showed that OsCYP51H3 codes for a putative obtusifoliol 14α-demethylase involved in phytosterol and BR biosynthesis, and mediates rice development.
Collapse
Affiliation(s)
- Zhengli Jiao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Yin
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiming Zhang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijuan Xu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kuaifei Xia
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Mingyong Zhang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Sestari I, Campos ML. Into a dilemma of plants: the antagonism between chemical defenses and growth. PLANT MOLECULAR BIOLOGY 2022; 109:469-482. [PMID: 34843032 DOI: 10.1007/s11103-021-01213-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/28/2021] [Indexed: 05/21/2023]
Abstract
Chemical defenses are imperative for plant survival, but their production is often associated with growth restrictions. Here we review the most recent theories to explain this complex dilemma of plants. Plants are a nutritional source for a myriad of pests and pathogens that depend on green tissues to complete their life cycle. Rather than remaining passive victims, plants utilize an arsenal of chemical defenses to fend off biotic attack. While the deployment of such barriers is imperative for survival, the production of these chemical defenses is typically associated with negative impacts on plant growth. Here we discuss the most recent theories which explain this highly dynamic growth versus defense dilemma. Firstly, we discuss the hypothesis that the antagonism between the accumulation of chemical defenses and growth is rooted in the evolutionary history of plants and may be a consequence of terrestrialization. Then, we revise the different paradigms available to explain the growth versus chemical defense antagonism, including recent findings that update these into more comprehensive and plausible theories. Finally, we highlight state-of-the-art strategies that are now allowing the activation of growth and the concomitant production of chemical barriers in plants. Growth versus chemical defense antagonism imposes large ecological and economic costs, including increased crop susceptibility to pests and pathogens. In a world where these plant enemies are the main problem to increase food production, we believe that this review will summarize valuable information for future studies aiming to breed highly defensive plants without the typical accompanying penalties to growth.
Collapse
Affiliation(s)
- Ivan Sestari
- Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina, Curitibanos, SC, Brazil
| | - Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
15
|
Wightman R. An Overview of Cryo-Scanning Electron Microscopy Techniques for Plant Imaging. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091113. [PMID: 35567113 PMCID: PMC9106016 DOI: 10.3390/plants11091113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 05/02/2023]
Abstract
Many research questions require the study of plant morphology, in particular cells and tissues, as close to their native context as possible and without physical deformations from some preparatory chemical reagents or sample drying. Cryo-scanning electron microscopy (cryoSEM) involves rapid freezing and maintenance of the sample at an ultra-low temperature for detailed surface imaging by a scanning electron beam. The data are useful for exploring tissue/cell morphogenesis, plus an additional cryofracture/cryoplaning/milling step gives information on air and water spaces as well as subcellular ultrastructure. This review gives an overview from sample preparation through to imaging and a detailed account of how this has been applied across diverse areas of plant research. Future directions and improvements to the technique are discussed.
Collapse
Affiliation(s)
- Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
16
|
Brzozowski LJ, Hu H, Campbell MT, Broeckling CD, Caffe M, Gutiérrez L, Smith KP, Sorrells ME, Gore MA, Jannink JL. Selection for seed size has uneven effects on specialized metabolite abundance in oat (Avena sativa L.). G3 (BETHESDA, MD.) 2022; 12:6459173. [PMID: 34893823 PMCID: PMC9210299 DOI: 10.1093/g3journal/jkab419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022]
Abstract
Plant breeding strategies to optimize metabolite profiles are necessary to develop health-promoting food crops. In oats (Avena sativa L.), seed metabolites are of interest for their antioxidant properties, yet have not been a direct target of selection in breeding. In a diverse oat germplasm panel spanning a century of breeding, we investigated the degree of variation of these specialized metabolites and how it has been molded by selection for other traits, like yield components. We also ask if these patterns of variation persist in modern breeding pools. Integrating genomic, transcriptomic, metabolomic, and phenotypic analyses for three types of seed specialized metabolites—avenanthramides, avenacins, and avenacosides—we found reduced heritable genetic variation in modern germplasm compared with diverse germplasm, in part due to increased seed size associated with more intensive breeding. Specifically, we found that abundance of avenanthramides increases with seed size, but additional variation is attributable to expression of biosynthetic enzymes. In contrast, avenacoside abundance decreases with seed size and plant breeding intensity. In addition, these different specialized metabolites do not share large-effect loci. Overall, we show that increased seed size associated with intensive plant breeding has uneven effects on the oat seed metabolome, but variation also exists independently of seed size to use in plant breeding. This work broadly contributes to our understanding of how plant breeding has influenced plant traits and tradeoffs between traits (like growth and defense) and the genetic bases of these shifts.
Collapse
Affiliation(s)
- Lauren J Brzozowski
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Haixiao Hu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Malachy T Campbell
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Corey D Broeckling
- Bioanalysis and Omics Center of the Analytical Resources Core, Colorado State University, Fort Collins, CO 80523 USA
| | - Melanie Caffe
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD 57006, USA
| | - Lucía Gutiérrez
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jean-Luc Jannink
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853 USA
| |
Collapse
|
17
|
Luo F, Yu Z, Zhou Q, Huang A. Multi-Omics-Based Discovery of Plant Signaling Molecules. Metabolites 2022; 12:metabo12010076. [PMID: 35050197 PMCID: PMC8777911 DOI: 10.3390/metabo12010076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Plants produce numerous structurally and functionally diverse signaling metabolites, yet only relatively small fractions of which have been discovered. Multi-omics has greatly expedited the discovery as evidenced by increasing recent works reporting new plant signaling molecules and relevant functions via integrated multi-omics techniques. The effective application of multi-omics tools is the key to uncovering unknown plant signaling molecules. This review covers the features of multi-omics in the context of plant signaling metabolite discovery, highlighting how multi-omics addresses relevant aspects of the challenges as follows: (a) unknown functions of known metabolites; (b) unknown metabolites with known functions; (c) unknown metabolites and unknown functions. Based on the problem-oriented overview of the theoretical and application aspects of multi-omics, current limitations and future development of multi-omics in discovering plant signaling metabolites are also discussed.
Collapse
Affiliation(s)
| | | | - Qian Zhou
- Correspondence: (Q.Z.); (A.H.); Tel.: +86-755-8801-8496 (Q.Z. & A.H.)
| | - Ancheng Huang
- Correspondence: (Q.Z.); (A.H.); Tel.: +86-755-8801-8496 (Q.Z. & A.H.)
| |
Collapse
|
18
|
Durán-Medina Y, Ruiz-Cortés BE, Guerrero-Largo H, Marsch-Martínez N. Specialized metabolism and development: An unexpected friendship. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102142. [PMID: 34856480 DOI: 10.1016/j.pbi.2021.102142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plants produce a myriad of metabolites. Some of them have been regarded for a long time as secondary or specialized metabolites and are considered to have functions mostly in defense and the adaptation of plants to their environment. However, in the last years, new research has shown that these metabolites can also have roles in the regulation of plant growth and development, some acting as signals, through the interaction with hormonal pathways, and some independently of them. These reports provide a glimpse of the functional possibilities that specialized metabolites present in the modulation of plant development and encourage more research in this direction.
Collapse
Affiliation(s)
- Yolanda Durán-Medina
- Biotecnology and Biochemistry Department, Centre for Research and Advanced Studies (CINVESTAV-IPN) Irapuato Unit, Mexico
| | - Beatriz Esperanza Ruiz-Cortés
- Biotecnology and Biochemistry Department, Centre for Research and Advanced Studies (CINVESTAV-IPN) Irapuato Unit, Mexico
| | - Herenia Guerrero-Largo
- Biotecnology and Biochemistry Department, Centre for Research and Advanced Studies (CINVESTAV-IPN) Irapuato Unit, Mexico
| | - Nayelli Marsch-Martínez
- Biotecnology and Biochemistry Department, Centre for Research and Advanced Studies (CINVESTAV-IPN) Irapuato Unit, Mexico.
| |
Collapse
|
19
|
Vernoud V, Lebeigle L, Munier J, Marais J, Sanchez M, Pertuit D, Rossin N, Darchy B, Aubert G, Le Signor C, Berdeaux O, Lacaille-Dubois MA, Thompson R. β-Amyrin Synthase1 Controls the Accumulation of the Major Saponins Present in Pea (Pisum sativum). PLANT & CELL PHYSIOLOGY 2021; 62:784-797. [PMID: 33826728 DOI: 10.1093/pcp/pcab049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes that can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this article, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions IN Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (β-amyrin synthase1), which is highly expressed in maturing pea seeds and which encodes a protein previously shown to correspond to an active β-amyrin synthase. The first allele is a nonsense mutation, while the second mutation is located in a splice site and gives rise to a mis-spliced transcript encoding a truncated, nonfunctional protein. The homozygous mutant seeds accumulated virtually no saponin without affecting the seed nutritional or physiological quality. Interestingly, BAS1 appears to control saponin accumulation in all other tissues of the plant examined. These lines represent a first step in the development of pea varieties lacking bitterness off-flavors in their seeds. Our work also shows that TILLING populations in different genetic backgrounds represent valuable genetic resources for both crop improvement and functional genomics.
Collapse
Affiliation(s)
- Vanessa Vernoud
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
| | - Ludivine Lebeigle
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
- University of Lausanne, Center for Integrative GenomicsLausanne 1015,Switzerland
| | - Jocelyn Munier
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
| | - Julie Marais
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
| | - Myriam Sanchez
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
| | - David Pertuit
- Université de Bourgogne Franche-Comté, Laboratoire de Pharmacognosie EA 4267, Dijon 21079, France
| | - Nadia Rossin
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
| | - Brigitte Darchy
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
| | - Christine Le Signor
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | | | - Richard Thompson
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
20
|
Kan L, Liao Q, Chen Z, Wang S, Ma Y, Su Z, Zhang L. Dynamic Transcriptomic and Metabolomic Analyses of Madhuca pasquieri (Dubard) H. J. Lam During the Post-germination Stages. FRONTIERS IN PLANT SCIENCE 2021; 12:731203. [PMID: 34659296 PMCID: PMC8516028 DOI: 10.3389/fpls.2021.731203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/24/2021] [Indexed: 06/02/2023]
Abstract
The wild population of Madhuca pasquieri (Dubard) H. J. Lam is currently dwindling; its understory seedlings are rare, and there is a lack of molecular studies, which impedes the conservation of this species. This study exploited second-generation sequencing and widely targeted metabolomics analysis to uncover the dynamic changes in differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in five post-germination stages of M. pasquieri whole organism. Notably, the weighted gene co-expression network analysis (WGCNA), transcriptome, and metabolome association analyses all indicated significant enrichment of the flavonoid biosynthesis pathway in stage 4 (two-leaf), and an upregulation of the genes encoding flavonol biosynthesis in this stage. In stage 5 (nine-leaf), the flavonols were significantly accumulated, indicating that the changes in metabolites were driven at the transcript level. According to the significant changes in gene expression encoding auxin transport carriers and their correlation with flavonols during stage 5, the flavonols were speculated to have a direct inhibitory effect on the expression of PIN4 encoding gene, which may inhibit the process of polar auxin transport. The results provided important insights into the molecular network relationships between the transcription and metabolism of this rare and endangered species during the post-germination stages and explained the reasons for the slow growth of its seedlings at the molecular level.
Collapse
|
21
|
Polturak G, Osbourn A. The emerging role of biosynthetic gene clusters in plant defense and plant interactions. PLoS Pathog 2021; 17:e1009698. [PMID: 34214143 PMCID: PMC8253395 DOI: 10.1371/journal.ppat.1009698] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Guy Polturak
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
22
|
Mahatma MK, Thawait LK, Jadon KS, Thirumalaisamy PP, Bishi SK, Rathod KJ, Verma A, Kumar N, Golakiya BA. Metabolic profiling for dissection of late leaf spot disease resistance mechanism in groundnut. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1027-1041. [PMID: 34108825 PMCID: PMC8140181 DOI: 10.1007/s12298-021-00985-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 06/08/2023]
Abstract
UNLABELLED Late leaf spot (LLS) caused by fungi Passalora personata is generally more destructive and difficult to control than early leaf spot. The aim of this study was to decipher biochemical defense mechanism in groundnut genotypes against P. personata by identifying resistance specific biomarkers and metabolic pathways induced during host-pathogen interaction. Metabolomics of non-infected and infected leaves of moderately resistant (GPBD4 and ICGV86590), resistant (KDG128 and RHRG06083) and susceptible (GG20, JL24 and TMV2) genotypes was carried out at 5 days after infection (65 days after sowing). Non-targeted metabolite analysis using GC-MS revealed total 77 metabolites including carbohydrates, sugar alcohols, amino acids, fatty acids, polyamines, phenolics, terpenes and sterols. Variable importance in projection (VIP) measure of partial least squares-discriminant analysis (PLS-DA) showed that resistant and moderately resistant genotypes possessed higher intensities of ribonic acid, cinnamic acid, malic acid, squalene, xylulose, galactose, fructose, glucose, β-amyrin and hydroquinone while susceptible genotypes had higher amount of gluconic acid 2-methoxime, ribo-hexose-3-ulose and gluconic acid. Heat map analysis showed that resistant genotypes had higher intensities of β-amyrin, hydroquinone in non-infected and malic acid, squalene, putrescine and 2,3,4-trihydroxybutyric acid in infected leaves. Dendrogram analysis further separated resistant genotypes in the same cluster along with infected moderately resistant genotypes. The most significant pathways identified are: linoleic acid metabolism, flavone and flavonol biosynthesis, cutin, suberin and wax biosynthesis, pentose and glucuronate interconversions, starch and sucrose metabolism, stilbenoid biosynthesis and ascorbate and aldarate metabolism. Targeted metabolite analysis further confirmed that resistant genotypes possessed higher content of primary metabolites sucrose, glucose, fructose, malic acid and citric acid. Moreover, resistant genotypes possessed higher content of salicylic, coumaric, ferulic, cinnamic, gallic acid (phenolic acids) and kaempferol, quercetin and catechin (flavonols). Thus metabolites having higher accumulation in resistant genotypes can be used as biomarkers for screening of LSS resistant germplasm. These results unravel that higher amount of primary metabolites leads to stimulate the accumulation of more amounts of secondary metabolites such as phenolic acid, flavanols, stilbenes and terpenoids (squalene and β-amyrin) biosynthesis which are ultimately involved in defense mechanism against LLS pathogen. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00985-5.
Collapse
Affiliation(s)
- M. K. Mahatma
- ICAR-Directorate of Groundnut Research, Post Box No.5, Junagadh, 362001 Gujarat India
| | - Lokesh Kumar Thawait
- ICAR-Directorate of Groundnut Research, Post Box No.5, Junagadh, 362001 Gujarat India
| | - K. S. Jadon
- ICAR-Directorate of Groundnut Research, Post Box No.5, Junagadh, 362001 Gujarat India
- ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | - P. P. Thirumalaisamy
- ICAR-Directorate of Groundnut Research, Post Box No.5, Junagadh, 362001 Gujarat India
| | - S. K. Bishi
- ICAR-Directorate of Groundnut Research, Post Box No.5, Junagadh, 362001 Gujarat India
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Khyati J. Rathod
- Food Testing Laboratory, Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362 001 India
| | - Aman Verma
- ICAR-Directorate of Groundnut Research, Post Box No.5, Junagadh, 362001 Gujarat India
| | - Narendra Kumar
- ICAR-Directorate of Groundnut Research, Post Box No.5, Junagadh, 362001 Gujarat India
| | - B. A. Golakiya
- Food Testing Laboratory, Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362 001 India
| |
Collapse
|
23
|
Bai Y, Fernández-Calvo P, Ritter A, Huang AC, Morales-Herrera S, Bicalho KU, Karady M, Pauwels L, Buyst D, Njo M, Ljung K, Martins JC, Vanneste S, Beeckman T, Osbourn A, Goossens A, Pollier J. Modulation of Arabidopsis root growth by specialized triterpenes. THE NEW PHYTOLOGIST 2021; 230:228-243. [PMID: 33616937 DOI: 10.1111/nph.17144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 05/21/2023]
Abstract
Plant roots are specialized belowground organs that spatiotemporally shape their development in function of varying soil conditions. This root plasticity relies on intricate molecular networks driven by phytohormones, such as auxin and jasmonate (JA). Loss-of-function of the NOVEL INTERACTOR OF JAZ (NINJA), a core component of the JA signaling pathway, leads to enhanced triterpene biosynthesis, in particular of the thalianol gene cluster, in Arabidopsis thaliana roots. We have investigated the biological role of thalianol and its derivatives by focusing on Thalianol Synthase (THAS) and Thalianol Acyltransferase 2 (THAA2), two thalianol cluster genes that are upregulated in the roots of ninja mutant plants. THAS and THAA2 activity was investigated in yeast, and metabolite and phenotype profiling of thas and thaa2 loss-of-function plants was carried out. THAA2 was shown to be responsible for the acetylation of thalianol and its derivatives, both in yeast and in planta. In addition, THAS and THAA2 activity was shown to modulate root development. Our results indicate that the thalianol pathway is not only controlled by phytohormonal cues, but also may modulate phytohormonal action itself, thereby affecting root development and interaction with the environment.
Collapse
Affiliation(s)
- Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Ancheng C Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich,, NR4 7UH, UK
| | - Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven, 3000, Belgium
- VIB Center for Microbiology, Kasteelpark Arenberg 31, Leuven, 3000, Belgium
| | - Keylla U Bicalho
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-060, Brazil
| | - Michal Karady
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Dieter Buyst
- Department of Organic Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Karen Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - José C Martins
- Department of Organic Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985, Korea
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich,, NR4 7UH, UK
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| |
Collapse
|
24
|
Liu J, Chen T, Zhang J, Li C, Xu Y, Zheng H, Zhou J, Zha L, Jiang C, Jin Y, Nan T, Yi J, Sun P, Yuan Y, Huang L. Ginsenosides regulate adventitious root formation in Panax ginseng via a CLE45-WOX11 regulatory module. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6396-6407. [PMID: 32794554 DOI: 10.1093/jxb/eraa375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Adventitious root branching is vital to plant growth and regeneration, but the regulation of this process remains unclear. We therefore investigated how ginsenosides regulate adventitious root branching in Panax ginseng. Cell proliferation and adventitious root branching were decreased in the presence of ginsenoside Rb1 and a high concentration of ginsenoside Re, but increased when treating with a low concentration of Re. Moreover, the exogenous application of a synthetic dodeca-amino acid peptide that has a CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) motif corresponding to PgCLE45 retarded root growth in both ginseng and Arabidopsis. The root Re levels and the expression of the DDS, CYP716A47, and CYP716A53 genes that encode enzymes involved in ginsenoside synthesis were decreased in the presence of PgCLE45. The expression profiles of PgWOX and PgCLE genes were determined to further investigate the CLE-WOX signaling pathway. The levels of PgWOX11 transcripts showed an inverse pattern to PgCLE45 transcripts. Using yeast one-hybrid assay, EMSA, and ChIP assay, we showed that PgWOX11 bound to the PgCLE45 promoter, which contained the HD motif. Transient expression assay showed that PgWOX11 induced the expression of PgCLE45 in adventitious roots, while PgCLE45 suppressed the expression of PgWOX11. These results suggest that there is a negative feedback regulation between PgCLE45 and PgWOX11. Taken together, these data show that ginsenosides regulate adventitious root branching via a novel PgCLE45-PgWOX11 regulatory loop, providing a potential mechanism for the regulation of adventitious root branching.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jie Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, PR China
| | - Yanhong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Han Zheng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Junhui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Liangping Zha
- Anhui University of Chinese Medicine, Hefei, PR China
| | - Chao Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yan Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Tiegui Nan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jinhao Yi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Peiwen Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| |
Collapse
|
25
|
Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. PLANT PHYSIOLOGY 2020; 184:39-52. [PMID: 32636341 PMCID: PMC7479915 DOI: 10.1104/pp.20.00433] [Citation(s) in RCA: 553] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
The plant kingdom produces hundreds of thousands of low molecular weight organic compounds. Based on the assumed functions of these compounds, the research community has classified them into three overarching groups: primary metabolites, which are directly required for plant growth; secondary (or specialized) metabolites, which mediate plant-environment interactions; and hormones, which regulate organismal processes and metabolism. For decades, this functional trichotomy of plant metabolism has shaped theory and experimentation in plant biology. However, exact biochemical boundaries between these different metabolite classes were never fully established. A new wave of genetic and chemical studies now further blurs these boundaries by demonstrating that secondary metabolites are multifunctional; they can function as potent regulators of plant growth and defense as well as primary metabolites sensu lato. Several adaptive scenarios may have favored this functional diversity for secondary metabolites, including signaling robustness and cost-effective storage and recycling. Secondary metabolite multifunctionality can provide new explanations for ontogenetic patterns of defense production and can refine our understanding of plant-herbivore interactions, in particular by accounting for the discovery that adapted herbivores misuse plant secondary metabolites for multiple purposes, some of which mirror their functions in plants. In conclusion, recent work unveils the limits of our current functional classification system for plant metabolites. Viewing secondary metabolites as integrated components of metabolic networks that are dynamically shaped by environmental selection pressures and transcend multiple trophic levels can improve our understanding of plant metabolism and plant-environment interactions.
Collapse
Affiliation(s)
- Matthias Erb
- Department of Plant Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
26
|
Peters RJ. Doing the gene shuffle to close synteny: dynamic assembly of biosynthetic gene clusters. THE NEW PHYTOLOGIST 2020; 227:992-994. [PMID: 32433781 PMCID: PMC7856633 DOI: 10.1111/nph.16631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
27
|
Agtuca BJ, Stopka SA, Evans S, Samarah L, Liu Y, Xu D, Stacey MG, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G. Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1937-1958. [PMID: 32410239 DOI: 10.1111/tpj.14815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 05/18/2023]
Abstract
The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+ ) and ineffective (nifH mutant, fix- ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.
Collapse
Affiliation(s)
- Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Sterling Evans
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Laith Samarah
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Yang Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
28
|
Effect of Transgenesis on mRNA and miRNA Profiles in Cucumber Fruits Expressing Thaumatin II. Genes (Basel) 2020; 11:genes11030334. [PMID: 32245082 PMCID: PMC7140888 DOI: 10.3390/genes11030334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/03/2023] Open
Abstract
Transgenic plants are commonly used in breeding programs because of the various features that can be introduced. However, unintended effects caused by genetic transformation are still a topic of concern. This makes research on the nutritional safety of transgenic crop plants extremely interesting. Cucumber (Cucumis sativus L.) is a crop that is grown worldwide. The aim of this study was to identify and characterize differentially expressed genes and regulatory miRNAs in transgenic cucumber fruits that contain the thaumatin II gene, which encodes the sweet-tasting protein thaumatin II, by NGS sequencing. We compared the fruit transcriptomes and miRNomes of three transgenic cucumber lines with wild-type cucumber. In total, we found 47 differentially expressed genes between control and all three transgenic lines. We performed the bioinformatic functional analysis and gene ontology classification. We also identified 12 differentially regulated miRNAs, from which three can influence the two targets (assigned as DEGs) in one of the studied transgenic lines (line 224). We found that the transformation of cucumber with thaumatin II and expression of the transgene had minimal impact on gene expression and epigenetic regulation by miRNA, in the cucumber fruits.
Collapse
|
29
|
López-Palacios C, Peña-Valdivia CB. Screening of secondary metabolites in cladodes to further decode the domestication process in the genus Opuntia (Cactaceae). PLANTA 2020; 251:74. [PMID: 32144512 DOI: 10.1007/s00425-020-03371-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
During their domestication process, the species of the genus Opuntia lose their ability to survive in the wild. Presence and concentration of secondary metabolites which play a role in the interaction with their surroundings are modified but without an identifiable pattern. A domestication gradient based on morphological characteristics has been previously described for the species in the Opuntia genus. Secondary metabolites are a diverse group of bioactive compounds that relate to a species evolution, both in their natural and artificial (domestication process) selection environments. In addition, these compounds are associated with plant resistance to stress when growing in the wild. A comprehensive characterization of secondary metabolite profiles in the Opuntia genus that accounts for the genotypic differences related to the degree of domestication has not previously been conducted. This study evaluated the phytochemical composition of young cladodes from fifteen variants, of O. ficus-indica, O. albicarpa Sheinvar, and O. megacantha Salm-Dyck, identified as species with a highly advanced, advanced and intermediate degree of domestication, respectively, and O. hyptiacantha A. Web, and O. streptacantha Lem. identified as wild-intermediate and wild species. Analyses were carried out using a HPLC-diode array detection technique. Out of the 13 identified and quantified phenolic molecules and terpenoids, only the caffeic, ferulic and syringic acids, and the terpenoid β-amyrin were present in all variants. The flavonoid luteolin was absent in all five species. Gallic, vallinic, p-hydroxybenzoic, chlorogenic and p-coumaric acids were only present in 53-87% of variants; flavonoids quercetin, isorhamnetin, rutin and apigenin in 47-87% of the variants. Both, oleanolic acid and peniocerol, were present only in 60% of variants. Isorhamnetin was absent in O. hyptiacantha and quercetin in O. streptacntha. Differences and similarities in the secondary metabolites content showed no recognizable trend relating to the degree of domestication across the species in this genus.
Collapse
Affiliation(s)
- Cristian López-Palacios
- Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, Rioverde, SLP, México
| | - Cecilia B Peña-Valdivia
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México Texcoco, km 35.5, 56230, Montecillo, Estado de México, Mexico.
| |
Collapse
|
30
|
Cárdenas PD, Almeida A, Bak S. Evolution of Structural Diversity of Triterpenoids. FRONTIERS IN PLANT SCIENCE 2019; 10:1523. [PMID: 31921225 PMCID: PMC6929605 DOI: 10.3389/fpls.2019.01523] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/01/2019] [Indexed: 05/19/2023]
Abstract
Plants have evolved to produce a blend of specialized metabolites that serve functional roles in plant adaptation. Among them, triterpenoids are one of the largest subclasses of such specialized metabolites, with more than 14,000 known structures. They play a role in plant defense and development and have potential applications within food and pharma. Triterpenoids are cyclized from oxidized squalene precursors by oxidosqualene cyclases, creating more than 100 different cyclical triterpene scaffolds. This limited number of scaffolds is the first step towards creating the vast structural diversity of triterpenoids followed by extensive diversification, in particular, by oxygenation and glycosylation. Gene duplication, divergence, and selection are major forces that drive triterpenoid structural diversification. The triterpenoid biosynthetic genes can be organized in non-homologous gene clusters, such as in Avena spp., Cucurbitaceae and Solanum spp., or scattered along plant chromosomes as in Barbarea vulgaris. Paralogous genes organized as tandem repeats reflect the extended gene duplication activities in the evolutionary history of the triterpenoid saponin pathways, as seen in B. vulgaris. We review and discuss examples of convergent and divergent evolution in triterpenoid biosynthesis, and the apparent mechanisms occurring in plants that drive their increasing structural diversity within and across species. Using B. vulgaris' saponins as examples, we discuss the impact a single structural modification can have on the structure of a triterpenoid and how this affect its biological properties. These examples provide insight into how plants continuously evolve their specialized metabolome, opening the way to study uncharacterized triterpenoid biosynthetic pathways.
Collapse
Affiliation(s)
| | | | - Søren Bak
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
31
|
Huang AC, Osbourn A. Plant terpenes that mediate below-ground interactions: prospects for bioengineering terpenoids for plant protection. PEST MANAGEMENT SCIENCE 2019; 75:2368-2377. [PMID: 30884099 PMCID: PMC6690754 DOI: 10.1002/ps.5410] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 05/03/2023]
Abstract
Plants are sessile organisms that have evolved various mechanisms to adapt to complex and changing environments. One important feature of plant adaption is the production of specialised metabolites. Terpenes are the largest class of specialised metabolites, with over 80 000 structures reported so far, and they have important ecological functions in plant adaptation. Here, we review the current knowledge on plant terpenes that mediate below-ground interactions between plants and other organisms, including microbes, herbivores and other plants. The discovery, functions and biosynthesis of these terpenes are discussed, and prospects for bioengineering terpenoids for plant protection are considered. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ancheng C Huang
- Department of Metabolic Biology, John Innes CentreNorwich Research ParkNorwichUK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes CentreNorwich Research ParkNorwichUK
| |
Collapse
|
32
|
Forestier E, Romero-Segura C, Pateraki I, Centeno E, Compagnon V, Preiss M, Berna A, Boronat A, Bach TJ, Darnet S, Schaller H. Distinct triterpene synthases in the laticifers of Euphorbia lathyris. Sci Rep 2019; 9:4840. [PMID: 30886213 PMCID: PMC6423090 DOI: 10.1038/s41598-019-40905-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
Euphorbia lathyris was proposed about fifty years ago as a potential agroenergetic crop. The tremendous amounts of triterpenes present in its latex has driven investigations for transforming this particular biological fluid into an industrial hydrocarbon source. The huge accumulation of terpenes in the latex of many plant species represent a challenging question regarding cellular homeostasis. In fact, the enzymes, the mechanisms and the controllers that tune the amount of products accumulated in specialized compartments (to fulfill ecological roles) or deposited at important sites (as essential factors) are not known. Here, we have isolated oxidosqualene cyclases highly expressed in the latex of Euphorbia lathyris. This triterpene biosynthetic machinery is made of distinct paralogous enzymes responsible for the massive accumulation of steroidal and non-steroidal tetracyclic triterpenes. More than eighty years after the isolation of butyrospermol from shea butter (Heilbronn IM, Moffet GL, and Spring FS J. Chem. Soc. 1934, 1583), a butyrospermol synthase is characterized in this work using yeast and in folia heterologous expression assays.
Collapse
Affiliation(s)
- Edith Forestier
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Carmen Romero-Segura
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Irini Pateraki
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Emilio Centeno
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Vincent Compagnon
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Myriam Preiss
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Anne Berna
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Albert Boronat
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Thomas J Bach
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Pará, Brazil
| | - Hubert Schaller
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France.
| |
Collapse
|
33
|
Tian X, Fang X, Huang JQ, Wang LJ, Mao YB, Chen XY. A gossypol biosynthetic intermediate disturbs plant defence response. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180319. [PMID: 30967019 PMCID: PMC6367145 DOI: 10.1098/rstb.2018.0319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/12/2022] Open
Abstract
Plant secondary metabolites and their biosynthesis have attracted great interest, but investigations of the activities of hidden intermediates remain rare. Gossypol and related sesquiterpenes are the major phytoalexins in cotton. Among the six biosynthetic intermediates recently identified, 8-hydroxy-7-keto-δ-cadinene (C234) crippled the plant disease resistance when accumulated upon gene silencing. C234 harbours an α,β-unsaturated carbonyl thus is a reactive electrophile species. Here, we show that C234 application also dampened the Arabidopsis resistance against the bacterial pathogen Pseudomonas syringae pv. maculicola ( Psm). We treated Arabidopsis with C234, Psm and ( Psm+C234), and analysed the leaf transcriptomes. While C234 alone exerted a mild effect, it greatly stimulated an over-response to the pathogen. Of the 7335 genes affected in the ( Psm+C234)-treated leaves, 3476 were unresponsive without the chemical, in which such functional categories as 'nucleotides transport', 'vesicle transport', 'MAP kinases', 'G-proteins', 'protein assembly and cofactor ligation' and 'light reaction' were enriched, suggesting that C234 disturbed certain physiological processes and the protein complex assembly, leading to distorted defence response and decreased disease resistance. As C234 is efficiently metabolized by CYP71BE79, plants of cotton lineage have evolved a highly active enzyme to prevent the phytotoxic intermediate accumulation during gossypol pathway evolution. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Xiu Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
34
|
Leveau A, Reed J, Qiao X, Stephenson MJ, Mugford ST, Melton RE, Rant JC, Vickerstaff R, Langdon T, Osbourn A. Towards take-all control: a C-21β oxidase required for acylation of triterpene defence compounds in oat. THE NEW PHYTOLOGIST 2019; 221:1544-1555. [PMID: 30294977 PMCID: PMC6446040 DOI: 10.1111/nph.15456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 05/13/2023]
Abstract
Oats produce avenacins, antifungal triterpenes that are synthesized in the roots and provide protection against take-all and other soilborne diseases. Avenacins are acylated at the carbon-21 position of the triterpene scaffold, a modification critical for antifungal activity. We have previously characterized several steps in the avenacin pathway, including those required for acylation. However, transfer of the acyl group to the scaffold requires the C-21β position to be oxidized first, by an as yet uncharacterized enzyme. We mined oat transcriptome data to identify candidate cytochrome P450 enzymes that may catalyse C-21β oxidation. Candidates were screened for activity by transient expression in Nicotiana benthamiana. We identified a cytochrome P450 enzyme AsCYP72A475 as a triterpene C-21β hydroxylase, and showed that expression of this enzyme together with early pathway steps yields C-21β oxidized avenacin intermediates. We further demonstrate that AsCYP72A475 is synonymous with Sad6, a previously uncharacterized locus required for avenacin biosynthesis. sad6 mutants are compromised in avenacin acylation and have enhanced disease susceptibility. The discovery of AsCYP72A475 represents an important advance in the understanding of triterpene biosynthesis and paves the way for engineering the avenacin pathway into wheat and other cereals for control of take-all and other diseases.
Collapse
Affiliation(s)
- Aymeric Leveau
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - James Reed
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xue Qiao
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Michael J. Stephenson
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sam T. Mugford
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel E. Melton
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jenni C. Rant
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Robert Vickerstaff
- Department of Genetics and Crop Improvement, East Malling Research, New Rd, East Malling, ME19 6BJ, UK
| | - Tim Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FL, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
35
|
Louveau T, Orme A, Pfalzgraf H, Stephenson MJ, Melton R, Saalbach G, Hemmings AM, Leveau A, Rejzek M, Vickerstaff RJ, Langdon T, Field RA, Osbourn A. Analysis of Two New Arabinosyltransferases Belonging to the Carbohydrate-Active Enzyme (CAZY) Glycosyl Transferase Family1 Provides Insights into Disease Resistance and Sugar Donor Specificity. THE PLANT CELL 2018; 30:3038-3057. [PMID: 30429223 PMCID: PMC6354260 DOI: 10.1105/tpc.18.00641] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/13/2018] [Indexed: 05/20/2023]
Abstract
Glycosylation of small molecules is critical for numerous biological processes in plants, including hormone homeostasis, neutralization of xenobiotics, and synthesis and storage of specialized metabolites. Glycosylation of plant natural products is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits such as disease resistance and flavor and have numerous pharmaceutical applications. Most characterized plant natural product UGTs are glucosyltransferases, and little is known about enzymes that add other sugars. Here we report the discovery and characterization of AsAAT1 (UGT99D1), which is required for biosynthesis of the antifungal saponin avenacin A-1 in oat (Avena strigosa). This enzyme adds l-Ara to the triterpene scaffold at the C-3 position, a modification critical for disease resistance. The only previously reported plant natural product arabinosyltransferase is a flavonoid arabinosyltransferase from Arabidopsis (Arabidopsis thaliana). We show that AsAAT1 has high specificity for UDP-β-l-arabinopyranose, identify two amino acids required for sugar donor specificity, and through targeted mutagenesis convert AsAAT1 into a glucosyltransferase. We further identify a second arabinosyltransferase potentially implicated in the biosynthesis of saponins that determine bitterness in soybean (Glycine max). Our investigations suggest independent evolution of UDP-Ara sugar donor specificity in arabinosyltransferases in monocots and eudicots.
Collapse
Affiliation(s)
- Thomas Louveau
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anastasia Orme
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Hans Pfalzgraf
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Rachel Melton
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Gerhard Saalbach
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Andrew M Hemmings
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Aymeric Leveau
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Robert J Vickerstaff
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3FL, UK
| | - Tim Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3FL, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
36
|
Liao PC, Lai MH, Hsu KP, Kuo YH, Chen J, Tsai MC, Li CX, Yin XJ, Jeyashoke N, Chao LKP. Identification of β-Sitosterol as in Vitro Anti-Inflammatory Constituent in Moringa oleifera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10748-10759. [PMID: 30280897 DOI: 10.1021/acs.jafc.8b04555] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
β-Sitosterol is a well known phytosterol in plants, but owing to its poor solubility in typical media, determining its cellular mechanisms has been proven to be difficult. In this study, we investigated the anti-inflammatory activity of β-sitosterol (BSS) isolated from Moringa oleifera in two cell lines. Over a dose range of 7.5 to 30 μM, BSS dispersed well in the medium as nanoparticles with diameters of 50 ± 5 nm and suppressed the secretion of inflammatory factors from keratinocytes and macrophages induced by PGN, TNF-α, or LPS, such as TNF-α, IL-1β, IL-6, IL-8, and ROS, separately. In addition, BSS significantly reduced the expression of NLRP3, a key component of NLRP3 inflammasomes, and inhibited the activation of caspase-1. There was partial inhibition of NF-κB in macrophages. This is the first study to report an increase in the solubility of nearly water-insoluble phytosterols via the formation of nanoparticles and to delineate the formulation's capacity to inhibit the signal transduction pathways of inflammation in macrophages.
Collapse
Affiliation(s)
- Pei-Chun Liao
- Department of Cosmeceutics , China Medical University , Taichung 404 , Taiwan
| | - Ming-Hoang Lai
- Department of Nursing , Cardinal Tien Junior College of Healthcare and Management , Sindian District, New Taipei City 23143 , Taiwan
| | - Kuang-Ping Hsu
- Division of Wood Cellulose , Taiwan Forestry Research Institute , Taipei 100 , Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources , China Medical University , Taichung 404 , Taiwan
| | - Jie Chen
- Department of Cosmeceutics , China Medical University , Taichung 404 , Taiwan
| | - Ming-Chih Tsai
- Advanced Packaging Technology Department , Winbond Electronics , Taichung 42881 , Taiwan
| | - Chun-Xiang Li
- Advanced Materials Technology Centre , Singapore Polytechnic , 500 Dover Road , 139651 , Singapore
| | - Xi-Jiang Yin
- Advanced Materials Technology Centre , Singapore Polytechnic , 500 Dover Road , 139651 , Singapore
| | - Narumon Jeyashoke
- School of Bioresources and Technology , King Mongkut'sUniversity of Technology Thonburi , Bangkok 10150 , Thailand
| | - Louis Kuo-Ping Chao
- Department of Cosmeceutics , China Medical University , Taichung 404 , Taiwan
| |
Collapse
|
37
|
Abstract
In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom; .,Current affiliation: Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London SW7 2AZ, United Kingdom; .,Institute for Integrative Biology of the Cell, 91190 Gif-sur-Yvette, France
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
38
|
Dong L, Pollier J, Bassard JE, Ntallas G, Almeida A, Lazaridi E, Khakimov B, Arendt P, de Oliveira LS, Lota F, Goossens A, Michoux F, Bak S. Co-expression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast. Metab Eng 2018; 49:1-12. [PMID: 30016654 DOI: 10.1016/j.ymben.2018.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/11/2023]
Abstract
Triterpene cyclases catalyze the first committed step in triterpene biosynthesis, by forming mono- to pentacyclic backbone structures from oxygenated C30 isoprenoid precursors. Squalene epoxidase precedes this cyclization by providing the oxygenated and activated substrate for triterpene biosynthesis. Three squalene epoxidases from Cucurbita pepo (CpSEs) were isolated and shown to have evolved under purifying selection with signs of sites under positive selection in their N- and C-termini. They all localize to the Endoplasmic Reticulum (ER) and produce 2,3-oxidosqualene and 2,3:22,23-dioxidosqualene when expressed in a yeast erg1 (squalene epoxidase) erg7 (lanosterol synthase) double mutant. Co-expression of the CpSEs with four different triterpene cyclases, either transiently in Nicotiana benthamiana or constitutively in yeast, showed that CpSEs boost triterpene production. CpSE2 was the best performing in this regard, which could reflect either increased substrate production or superior channeling of the substrate to the triterpene cyclases. Fluorescence Lifetime Imaging Microscopy (FLIM) analysis with C. pepo cucurbitadienol synthase (CpCPQ) revealed a specific interaction with CpSE2 but not with the other CpSEs. When CpSE2 was transformed into C. pepo hairy root lines, cucurbitacin E production was increased two folds compared to empty vector control lines. This study provides new insight into the importance of SEs in triterpene biosynthesis, suggesting that they may facilitate substrate channeling, and demonstrates that SE overexpression is a new tool for increasing triterpene production in plants and yeast.
Collapse
Affiliation(s)
- Lemeng Dong
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jacob Pollier
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Jean-Etienne Bassard
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Georgios Ntallas
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91000 Evry, France
| | - Aldo Almeida
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Eleni Lazaridi
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 16, DK-1958 Frederiksberg C, Denmark
| | - Philipp Arendt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Louisi Souza de Oliveira
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Frédéric Lota
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91000 Evry, France
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91000 Evry, France
| | - Søren Bak
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
39
|
Wang Y, Lysøe E, Armarego-Marriott T, Erban A, Paruch L, van Eerde A, Bock R, Liu-Clarke J. Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3759-3771. [PMID: 29757407 DOI: 10.1093/jxb/ery176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/09/2018] [Indexed: 05/23/2023]
Abstract
Roots and root-released organic anions play important roles in uptake of phosphorus (P), an essential macronutrient for food production. Oat, ranking sixth in the world's cereal production, contains valuable nutritional compounds and can withstand poor soil conditions. Our aim was to investigate root transcriptional and metabolic responses of oat grown under P-deficient and P-sufficient conditions. We conducted a hydroponic experiment and measured root morphology and organic anion exudation, and analysed changes in the transcriptome and metabolome. Oat roots showed enhanced citrate and malate exudation after 4 weeks of P deficiency. After 10 d of P deficiency, we identified 9371 differentially expressed transcripts with a 2-fold or greater change (P<0.05): 48 sequences predicted to be involved in organic anion biosynthesis and efflux were consistently up-regulated; 24 up-regulated transcripts in oat were also found to be up-regulated upon P starvation in rice and wheat under similar conditions. Phosphorylated metabolites (i.e. glucose-6-phosphate, myo-inositol phosphate) were reduced dramatically, while citrate and malate, some sugars and amino acids increased slightly in P-deficient oat roots. Our data are consistent with a strategy of increased organic anion efflux and a shift in primary metabolism in response to P deficiency in oat.
Collapse
Affiliation(s)
- Yanliang Wang
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Erik Lysøe
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Lisa Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - André van Eerde
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Ralph Bock
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | | |
Collapse
|
40
|
Singh G, Dhar YV, Asif MH, Misra P. Exploring the functional significance of sterol glycosyltransferase enzymes. Prog Lipid Res 2018; 69:1-10. [DOI: 10.1016/j.plipres.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
|
41
|
Lu Y, Zhou J, Hu T, Zhang Y, Su P, Wang J, Gao W, Huang L. A multifunctional oxidosqualene cyclase from Tripterygium regelii that produces both α- and β-amyrin. RSC Adv 2018; 8:23516-23521. [PMID: 35540266 PMCID: PMC9081704 DOI: 10.1039/c8ra03468k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/16/2018] [Indexed: 11/21/2022] Open
Abstract
Tripterygium regelii is a rich source of triterpenoids, containing many types of triterpenes with high chemical diversity and interesting pharmacological properties. The cDNA of the multifunctional oxidosqualene cyclase (TrOSC, GenBank accession number: MH161182), consisting of a 2289 bp open reading frame and coding for 762 amino acids, was cloned from the stems and roots of Tripterygium regelii. Phylogenetic analysis using OSC genes from other plants suggested that TrOSC might be a mixed-amyrin synthase. The coding sequence was cloned into the expression vector pYES2 and transformed into the yeast Saccharomyces cerevisiae. The resulting products were analysed by GC-MS. Surprisingly, although it showed 76% sequence identity to lupeol synthase from Ricinus communis, TrOSC was found to be a multifunctional triterpene synthase producing both α- and β-amyrin, the precursors of ursane and oleanane type triterpenes, respectively. qRT-PCR analysis revealed that the transcript of TrOSC accumulated mainly in roots and stems. Taken together, our findings contribute to the knowledge of key genes in the pentacyclic triterpene biosynthesis pathway. A multifunctional oxidosqualene cyclase was cloned from Tripterygium regelii and identified as a mixed-amyrin synthase, which can produce both α- and β-amyrin.![]()
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- State Key Laboratory of Dao-di Herbs
| | - Ping Su
- State Key Laboratory of Dao-di Herbs
- National Resource Center for Chinese MateriaMedica
- China Academy of ChineseMedical Sciences
- Beijing
- China
| | - Jiadian Wang
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- State Key Laboratory of Dao-di Herbs
| | - Wei Gao
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Lab of TCM Collateral Disease Theory Research
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs
- National Resource Center for Chinese MateriaMedica
- China Academy of ChineseMedical Sciences
- Beijing
- China
| |
Collapse
|
42
|
Loeschcke A, Dienst D, Wewer V, Hage-Hülsmann J, Dietsch M, Kranz-Finger S, Hüren V, Metzger S, Urlacher VB, Gigolashvili T, Kopriva S, Axmann IM, Drepper T, Jaeger KE. The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS One 2017; 12:e0189816. [PMID: 29281679 PMCID: PMC5744966 DOI: 10.1371/journal.pone.0189816] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022] Open
Abstract
Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of cyclic triterpenes, which inherently includes the two-step catalytic formation of the universal linear precursor 2,3-oxidosqualene, is still a major challenge. We thus explored the suitability of the metabolically versatile photosynthetic α-proteobacterium Rhodobacter capsulatus SB1003 and cyanobacterium Synechocystis sp. PCC 6803 as alternative hosts for biosynthesis of cyclic plant triterpenes. Therefore, 2,3-oxidosqualene production was implemented and subsequently combined with different cyclization reactions catalyzed by the representative oxidosqualene cyclases CAS1 (cycloartenol synthase), LUP1 (lupeol synthase), THAS1 (thalianol synthase) and MRN1 (marneral synthase) derived from model plant Arabidopsis thaliana. While successful accumulation of 2,3-oxidosqualene could be detected by LC-MS analysis in both hosts, cyclase expression resulted in differential production profiles. CAS1 catalyzed conversion to only cycloartenol, but expression of LUP1 yielded lupeol and a triterpenoid matching an oxidation product of lupeol, in both hosts. In contrast, THAS1 expression did not lead to cyclic product formation in either host, whereas MRN1-dependent production of marnerol and hydroxymarnerol was observed in Synechocystis but not in R. capsulatus. Our findings thus indicate that 2,3-oxidosqualene cyclization in heterologous phototrophic bacteria is basically feasible but efficient conversion depends on both the respective cyclase enzyme and individual host properties. Therefore, photosynthetic α-proteo- and cyanobacteria are promising alternative candidates for providing new bacterial access to the broad class of triterpenes for biotechnological applications.
Collapse
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Dennis Dienst
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vera Wewer
- Cluster of Excellence on Plant Sciences (CEPLAS)
- MS Platform, Department of Biology, University of Cologne, Cologne, Germany
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Maximilian Dietsch
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Kranz-Finger
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Biochemistry II, Department of Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vanessa Hüren
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sabine Metzger
- Cluster of Excellence on Plant Sciences (CEPLAS)
- MS Platform, Department of Biology, University of Cologne, Cologne, Germany
| | - Vlada B. Urlacher
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Biochemistry II, Department of Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tamara Gigolashvili
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Botanical Institute, University of Cologne, Cologne, Germany
| | - Stanislav Kopriva
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Botanical Institute, University of Cologne, Cologne, Germany
| | - Ilka M. Axmann
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail: (IMA); (TD)
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
- * E-mail: (IMA); (TD)
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
43
|
Singh AK, Kumar SR, Dwivedi V, Rai A, Pal S, Shasany AK, Nagegowda DA. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. THE NEW PHYTOLOGIST 2017. [PMID: 28649699 DOI: 10.1111/nph.14663] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Withania somnifera produces pharmacologically important triterpenoid withanolides that are derived via phytosterol pathway; however, their biosynthesis and regulation remain to be elucidated. A jasmonate- and salicin-inducible WRKY transcription factor from W. somnifera (WsWRKY1) exhibiting correlation with withaferin A accumulation was functionally characterized employing virus-induced gene silencing and overexpression studies combined with transcript and metabolite analyses, and chromatin immunoprecipitation assay. WsWRKY1 silencing resulted in stunted plant growth, reduced transcripts of phytosterol pathway genes with corresponding reduction in phytosterols and withanolides in W. somnifera. Its overexpression elevated the biosynthesis of triterpenoids in W. somnifera (phytosterols and withanolides), as well as tobacco and tomato (phytosterols). Moreover, WsWRKY1 binds to W-box sequences in promoters of W. somnifera genes encoding squalene synthase and squalene epoxidase, indicating its direct regulation of triterpenoid pathway. Furthermore, while WsWRKY1 silencing in W. somnifera compromised the tolerance to bacterial growth, fungal infection, and insect feeding, its overexpression in tobacco led to improved biotic stress tolerance. Together these findings demonstrate that WsWRKY1 has a positive regulatory role on phytosterol and withanolides biosynthesis, and defense against biotic stress, highlighting its importance as a metabolic engineering tool for simultaneous improvement of triterpenoid biosynthesis and plant defense.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - Sarma Rajeev Kumar
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - Varun Dwivedi
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - Avanish Rai
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| |
Collapse
|
44
|
Stopka SA, Agtuca BJ, Koppenaal DW, Paša-Tolić L, Stacey G, Vertes A, Anderton CR. Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:340-354. [PMID: 28394446 DOI: 10.1111/tpj.13569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 05/18/2023]
Abstract
Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen-fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule) where the exchange of nutrients between host and endosymbiont occurs. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 differentially abundant spectral features in the nodule samples. The data presented demonstrate the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis.
Collapse
Affiliation(s)
- Sylwia A Stopka
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Akos Vertes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
45
|
Reed J, Stephenson MJ, Miettinen K, Brouwer B, Leveau A, Brett P, Goss RJM, Goossens A, O'Connell MA, Osbourn A. A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab Eng 2017; 42:185-193. [PMID: 28687337 PMCID: PMC5555447 DOI: 10.1016/j.ymben.2017.06.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023]
Abstract
Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines.
Collapse
Affiliation(s)
- James Reed
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Michael J Stephenson
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Karel Miettinen
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Bastiaan Brouwer
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Aymeric Leveau
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Rebecca J M Goss
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; School of Chemistry, University of St Andrews, KY16 9ST, UK
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Maria A O'Connell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
46
|
Massalha H, Korenblum E, Tholl D, Aharoni A. Small molecules below-ground: the role of specialized metabolites in the rhizosphere. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:788-807. [PMID: 28333395 DOI: 10.1111/tpj.13543] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 05/18/2023]
Abstract
Soil communities are diverse taxonomically and functionally. This ecosystem experiences highly complex networks of interactions, but may also present functionally independent entities. Plant roots, a metabolically active hotspot in the soil, take an essential part in below-ground interactions. While plants are known to release an extremely high portion of the fixated carbon to the soil, less information is known about the composition and role of C-containing compounds in the rhizosphere, in particular those involved in chemical communication. Specialized metabolites (or secondary metabolites) produced by plants and their associated microbes have a critical role in various biological activities that modulate the behavior of neighboring organisms. Thus, elucidating the chemical composition and function of specialized metabolites in the rhizosphere is a key element in understanding interactions in this below-ground environment. Here, we review key classes of specialized metabolites that occur as mostly non-volatile compounds in root exudates or are emitted as volatile organic compounds (VOCs). The role of these metabolites in below-ground interactions and response to nutrient deficiency, as well as their tissue and cell type-specific biosynthesis and release are discussed in detail.
Collapse
Affiliation(s)
- Hassan Massalha
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Elisa Korenblum
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
47
|
Yasumoto S, Seki H, Shimizu Y, Fukushima EO, Muranaka T. Functional Characterization of CYP716 Family P450 Enzymes in Triterpenoid Biosynthesis in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:21. [PMID: 28194155 PMCID: PMC5278499 DOI: 10.3389/fpls.2017.00021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/04/2017] [Indexed: 05/08/2023]
Abstract
Triterpenoids are a group of structurally diverse specialized metabolites that frequently show useful bioactivities. These chemicals are biosynthesized from the common precursor 2,3-oxidosqualene in plants. The carbon skeletons produced by oxidosqualene cyclase (OSC) are usually modified by cytochrome P450 monooxygenases (P450s) and UDP-dependent glycosyltransferases. These biosynthetic enzymes contribute to the structural diversification of plant triterpenoids. Until now, many P450 enzymes have been characterized as triterpenoid oxidases. Among them, the CYP716 family P450 enzymes, which have been isolated from a wide range of plant families, seem to contribute to the triterpenoid structural diversification. Many CYP716 family P450 enzymes have been characterized as the multifunctional triterpene C-28 oxidases, which oxidize α-amyrin and β-amyrin to the widely distributed triterpenoids ursolic and oleanolic acids, respectively. Tomato (Solanum lycopersicum) is one of the most important solanaceous crops in the world. However, little information is known regarding its triterpenoid biosynthesis. To understand the mechanism of triterpenoid biosynthesis in tomato, we focused on the function of CYP716 family enzymes as triterpenoid oxidases. We isolated all six CYP716 family genes from the Micro-Tom cultivar of tomato, and functionally characterized them in the heterologous yeast expression system. The in vivo enzymatic assays showed that CYP716A44 and CYP716A46 exhibited the ordinary C-28 oxidation activity against α-amyrin and β-amyrin to produce ursolic and oleanolic acids, respectively. Interestingly, one CYP716E subfamily enzyme, CYP716E26, exhibited the previously unreported C-6β hydroxylation activity against β-amyrin to produce a rare bioactive triterpenoid, daturadiol (olean-12-ene-3β,6β-diol). To determine the roles of the CYP716 family genes in tomato triterpenoid biosynthesis, we analyzed the gene expression and triterpenoid accumulation patterns in different plant tissues by performing the quantitative real-time polymerase chain reaction (qPCR) and gas chromatography-mass spectrometry (GC-MS) analyses, respectively. High levels of the CYP716A44 gene expression and the accumulation of C-28-oxidized triterpenoids, ursolic acid, and oleanolic acid were observed in the roots, indicating a significant contribution of the CYP716A44 gene in the triterpenoid biosynthesis in tomato. Thus, our study partially elucidated the mechanism of triterpenoid biosynthesis in tomato, and identified CYP716E26 as a novel C-6β hydroxylase for its subsequent use in the combinatorial biosynthesis of bioactive triterpenoids.
Collapse
Affiliation(s)
- Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
| | - Yuko Shimizu
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
| | - Ery O. Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
- Center for Open Innovation Research and Education, Graduate School of Engineering, Osaka UniversitySuita, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversitySuita, Japan
- *Correspondence: Toshiya Muranaka
| |
Collapse
|
48
|
Ghosh S. Triterpene Structural Diversification by Plant Cytochrome P450 Enzymes. FRONTIERS IN PLANT SCIENCE 2017; 8:1886. [PMID: 29170672 PMCID: PMC5684119 DOI: 10.3389/fpls.2017.01886] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/18/2017] [Indexed: 05/06/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) represent the largest enzyme family of the plant metabolism. Plants typically devote about 1% of the protein-coding genes for the P450s to execute primary metabolism and also to perform species-specific specialized functions including metabolism of the triterpenes, isoprene-derived 30-carbon compounds. Triterpenes constitute a large and structurally diverse class of natural products with various industrial and pharmaceutical applications. P450-catalyzed structural modification is crucial for the diversification and functionalization of the triterpene scaffolds. In recent times, a remarkable progress has been made in understanding the function of the P450s in plant triterpene metabolism. So far, ∼80 P450s are assigned biochemical functions related to the plant triterpene metabolism. The members of the subfamilies CYP51G, CYP85A, CYP90B-D, CYP710A, CYP724B, and CYP734A are generally conserved across the plant kingdom to take part in plant primary metabolism related to the biosynthesis of essential sterols and steroid hormones. However, the members of the subfamilies CYP51H, CYP71A,D, CYP72A, CYP81Q, CYP87D, CYP88D,L, CYP93E, CYP705A, CYP708A, and CYP716A,C,E,S,U,Y are required for the metabolism of the specialized triterpenes that might perform species-specific functions including chemical defense toward specialized pathogens. Moreover, a recent advancement in high-throughput sequencing of the transcriptomes and genomes has resulted in identification of a large number of candidate P450s from diverse plant species. Assigning biochemical functions to these P450s will be of interest to extend our knowledge on triterpene metabolism in diverse plant species and also for the sustainable production of valuable phytochemicals.
Collapse
|
49
|
Andre CM, Legay S, Deleruelle A, Nieuwenhuizen N, Punter M, Brendolise C, Cooney JM, Lateur M, Hausman J, Larondelle Y, Laing WA. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids. THE NEW PHYTOLOGIST 2016; 211:1279-94. [PMID: 27214242 PMCID: PMC5089662 DOI: 10.1111/nph.13996] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/29/2016] [Indexed: 05/20/2023]
Abstract
Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis.
Collapse
Affiliation(s)
- Christelle M. Andre
- Department of Environmental Research and InnovationLuxembourg Institute of Science and TechnologyAvenue des Hauts‐FourneauxL‐4362Esch/AlzetteLuxembourg
| | - Sylvain Legay
- Department of Environmental Research and InnovationLuxembourg Institute of Science and TechnologyAvenue des Hauts‐FourneauxL‐4362Esch/AlzetteLuxembourg
| | - Amélie Deleruelle
- Department of Environmental Research and InnovationLuxembourg Institute of Science and TechnologyAvenue des Hauts‐FourneauxL‐4362Esch/AlzetteLuxembourg
- Institut des Sciences de la VieUCLouvainB‐1348Louvain‐la‐NeuveBelgium
| | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant & Food Research LimitedMt Albert Research CentrePrivate Bag 92 169Auckland1142New Zealand
| | - Matthew Punter
- The New Zealand Institute for Plant & Food Research LimitedMt Albert Research CentrePrivate Bag 92 169Auckland1142New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant & Food Research LimitedMt Albert Research CentrePrivate Bag 92 169Auckland1142New Zealand
| | - Janine M. Cooney
- The New Zealand Institute for Plant & Food Research LimitedRuakuraHamilton3240New Zealand
| | - Marc Lateur
- Walloon Agricultural Research CentreRue de LirouxB‐5030GemblouxBelgium
| | - Jean‐François Hausman
- Department of Environmental Research and InnovationLuxembourg Institute of Science and TechnologyAvenue des Hauts‐FourneauxL‐4362Esch/AlzetteLuxembourg
| | - Yvan Larondelle
- Institut des Sciences de la VieUCLouvainB‐1348Louvain‐la‐NeuveBelgium
| | - William A. Laing
- The New Zealand Institute for Plant & Food Research LimitedMt Albert Research CentrePrivate Bag 92 169Auckland1142New Zealand
| |
Collapse
|
50
|
Nützmann HW, Huang A, Osbourn A. Plant metabolic clusters - from genetics to genomics. THE NEW PHYTOLOGIST 2016; 211:771-89. [PMID: 27112429 PMCID: PMC5449196 DOI: 10.1111/nph.13981] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ancheng Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|