1
|
Dexter GN, Grigg JC, Zahn M, Wheatley EJ, Lian J, Mohn WW, Eltis LD. Characterization of a two-component kinase that initiates the bacterial catabolism of hydroxyphenylethanones. J Biol Chem 2025:110210. [PMID: 40345584 DOI: 10.1016/j.jbc.2025.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 05/01/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025] Open
Abstract
The prodigious ability of bacteria to catabolize aromatic compounds has sparked considerable efforts to engineer bacteria to valorize lignin, an under-utilized component of biomass. Despite decades of study, key catabolic pathways and enzymes remain poorly characterized. We recently identified the hydroxyphenylethanone (Hpe) pathway, which enables Rhodococcus rhodochrous GD02 and other bacteria to catabolize 4-hydroxyacetophenone (HAP) and acetovanillone (AV), which are generated in the catalytic fractionation of lignin. Catabolism is initiated by a two-component, ATP-dependent dikinase, HpeHI, homologs of which are involved in the catabolism of other aromatic compounds. In biochemical studies, the kinase activity of HpeHI was highest at low ionic strength and low concentrations of Mn2+. HpeHI had highest apparent specificity for HAP and AV (kcat/KM ≥ 250 mM-1 s-1) and had submicromolar KM values for these substrates, consistent with the enzyme acting as a scavenging system. The enzyme also transformed 4-hydroxybenzaldehyde, vanillin, acetosyringone, and phenol. A 1.8 Å crystal structure of HpeI revealed that it is homologous to the ATP-grasp domain of rifampin phosphotransferase (RPH) while an AlphaFold model of HpeH indicated that it is homologous to the swivel and rifampin-binding domains of RPH. Consistent with HpeHI using a similar mechanism where the swivel domain transits between the spatially distinct substrate-binding sites, substitution of the conserved His residue in HpeH abolished kinase activity. Moreover, the HpeH component alone catalyzed phosphotransfer from 4-phosphoacetophenone to AV. This study reveals a subfamily of small molecule dikinases that comprise two components, some of which are involved in aromatic compound catabolism.
Collapse
Affiliation(s)
- Gara N Dexter
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Michael Zahn
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, UK
| | - Eloisa J Wheatley
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, UK
| | - Jennifer Lian
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Wang B, Huang T, Zhu L, Hu J, Ma S, Sun Q, Chen K. Effect of cyanobacterial bloom proliferation on antibiotic resistance genes in the sediments of a eutrophic lake. ENVIRONMENTAL RESEARCH 2025; 278:121717. [PMID: 40300742 DOI: 10.1016/j.envres.2025.121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Antibiotic resistance genes (ARGs) represent an emerging pollutant of increasing concern. In this study, we analyzed the composition and spatiotemporal variation of ARGs in the sediments of eutrophic Chaohu Lake, China, using a metagenomic method. A total of 22 ARGs and 199 ARGs subtypes were detected, with the most prevalent subtypes being multidrug (57.720 %) and rifamycin (21.781 %). A higher abundance of ARGs in Chaohu Lake was observed (p < 0.05) during winter and spring owing to multiple factors, including variations in seasonal inputs and hydraulic conditions, occurrence of cyanobacterial blooms, and changes in ARGs host bacterial communities. Spatially, a higher abundance of multidrug was observed in sediments near the Nanfei River outlet, which flows through urban areas; whereas higher levels of bacitracin were observed in sediments near the Zhao River outlet, which flows through agricultural areas. Cyanobacterial blooms and declines change the sediment physicochemical properties, endogenous phosphorus contents, microbial communities, and seasonal ARGs distribution. Correlation and collinearity analyses indicated that ARGs were transferred horizontally via mobile genetic elements (MGEs). High-risk ARGs in Chaohu Lake were observed at a very low proportion, although certain ARGs presented health risks in the western lake during spring. In this study, we highlight the interactions between cyanobacterial blooms and variations in ARGs in Chaohu Lake and provide novel insights into ARGs dynamics in eutrophic freshwater ecosystems.
Collapse
Affiliation(s)
- Bo Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Tao Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China.
| | - Linlin Zhu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Jiawei Hu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Shaodong Ma
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Kaining Chen
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
3
|
Galgano M, Pellegrini F, Catalano E, Capozzi L, Del Sambro L, Sposato A, Lucente MS, Vasinioti VI, Catella C, Odigie AE, Tempesta M, Pratelli A, Capozza P. Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future. Antibiotics (Basel) 2025; 14:222. [PMID: 40149034 PMCID: PMC11939227 DOI: 10.3390/antibiotics14030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
The discovery, commercialization, and regular administration of antimicrobial agents have revolutionized the therapeutic paradigm, making it possible to treat previously untreatable and fatal infections. However, the excessive use of antibiotics has led to develop resistance soon after their use in clinical practice, to the point of becoming a global emergency. The mechanisms of bacterial resistance to antibiotics are manifold, including mechanisms of destruction or inactivation, target site modification, or active efflux, and represent the main examples of evolutionary adaptation for the survival of bacterial species. The acquirement of new resistance mechanisms is a consequence of the great genetic plasticity of bacteria, which triggers specific responses that result in mutational adaptation, acquisition of genetic material, or alteration of gene expression, virtually producing resistance to all currently available antibiotics. Understanding resistance processes is critical to the development of new antimicrobial agents to counteract drug-resistant microorganisms. In this review, both the mechanisms of action of antibiotic resistance (AMR) and the antibiotic resistance genes (ARGs) mainly found in clinical and environmental bacteria will be reviewed. Furthermore, the evolutionary background of multidrug-resistant bacteria will be examined, and some promising elements to control or reduce the emergence and spread of AMR will be proposed.
Collapse
Affiliation(s)
- Michela Galgano
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Elisabetta Catalano
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
| | - Alessio Sposato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (M.G.); (E.C.); (L.C.); (L.D.S.); (A.S.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Carlo Forlanini 2, 27100 Pavia, Italy
| | - Maria Stella Lucente
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Violetta Iris Vasinioti
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Cristiana Catella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Amienwanlen Eugene Odigie
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Maria Tempesta
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Annamaria Pratelli
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| | - Paolo Capozza
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy; (F.P.); (M.S.L.); (V.I.V.); (C.C.); (A.E.O.); (M.T.); (A.P.)
| |
Collapse
|
4
|
Sun H, Levenfors JJ, Brandt C, Schnürer A. Assessing phenotypic and genotypic antibiotic resistance in bacillus-related bacteria isolated from biogas digestates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117859. [PMID: 39947064 DOI: 10.1016/j.ecoenv.2025.117859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Antibiotic resistance poses a significant public health challenge, with biogas digestate, a byproduct of anaerobic digestion (AD), presenting potential risks when applied as a biofertilizer. Understanding the actual resistance levels in digestate is crucial for its safe application. While many studies have investigated antibiotic resistance in AD processes using culture-independent molecular methods, these approaches are limited by their reliance on reference databases and inability to account for gene expression, leading to potential inaccuracies in resistance assessment. This study addresses these limitations by combining culture-independent whole-genome sequencing (WGS) with culture-dependent phenotypic testing to provide a more accurate understanding of antibiotic resistance in digestate. We investigated the phenotypic and genotypic resistance profiles of 18 antibiotic-resistant bacteria (ARB) isolated from digestates produced from food waste and animal manure. Resistance was assessed using WGS and Estrip testing across 12 antibiotics from multiple classes. This is the first study to directly compare phenotypic and genotypic resistance in bacteria isolated from digestate, revealing significant discrepancies between the two methods. Approximately 30 % of resistance levels were misinterpreted when relying solely on culture-independent methods, with both over- and underestimation observed. These findings highlight the necessity of integrating both methods for reliable resistance assessments. Additionally, our WGS analysis indicated low potential for transferability of detected ARGs among the isolated ARB, suggesting a limited risk of environmental dissemination. This study provides new insights into antibiotic resistance in digestate and underscores the importance of integrating methodological approaches to achieve accurate evaluations of resistance risks.
Collapse
Affiliation(s)
- He Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jolanta J Levenfors
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Ultupharma AB, Uppsala, Sweden
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
5
|
Wright GD. The Janus Effect: The Biochemical Logic of Antibiotic Resistance. Biochemistry 2025; 64:301-311. [PMID: 39772429 DOI: 10.1021/acs.biochem.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Antibiotics are essential medicines threatened by the emergence of resistance in all relevant bacterial pathogens. The engagement of the molecular targets of antibiotics offers multiple opportunities for resistance to emerge. Successful target engagement often requires passage of the antibiotic from outside into the cell interior through one or two distinct membrane barriers. Resistance can occur by preventing the accumulation of antibiotics in sufficient quantities outside the cell, decreasing the rates of entry into the cell, and modifying the antibiotic or the target once inside the cell. These competing equilibria and rates are the lens through which the balance of antibiotic efficacy or failure can be viewed. The two faces of antibiotics, cell growth inhibition or resistance, are reminiscent of Janus, the Roman god of doorways and beginnings and endings, and offer a framework through which antibiotic discovery, use, and the emergence of resistance can be rationally viewed.
Collapse
Affiliation(s)
- Gerard D Wright
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
6
|
Zhang Z, Wei M, Jia B, Yuan Y. Recent Advances in Antimicrobial Resistance: Insights from Escherichia coli as a Model Organism. Microorganisms 2024; 13:51. [PMID: 39858819 PMCID: PMC11767524 DOI: 10.3390/microorganisms13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance (AMR) represents a critical global health threat, and a thorough understanding of resistance mechanisms in Escherichia coli is needed to guide effective treatment interventions. This review explores recent advances for investigating AMR in E. coli, including machine learning for resistance pattern analysis, laboratory evolution to generate resistant mutants, mutant library construction, and genome sequencing for in-depth characterization. Key resistance mechanisms are discussed, including drug inactivation, target modification, altered transport, and metabolic adaptation. Additionally, we highlight strategies to mitigate the spread of AMR, such as dynamic resistance monitoring, innovative therapies like phage therapy and CRISPR-Cas technology, and tighter regulation of antibiotic use in animal production systems. This review provides actionable insights into E. coli resistance mechanisms and identifies promising directions for future antibiotic development and AMR management.
Collapse
Affiliation(s)
| | | | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.); (M.W.); (Y.Y.)
| | | |
Collapse
|
7
|
Fang XM, Li J, Wang NF, Zhang T, Yu LY. Metagenomics uncovers microbiome and resistome in soil and reindeer faeces from Ny-Ålesund (Svalbard, High Arctic). ENVIRONMENTAL RESEARCH 2024; 262:119788. [PMID: 39159777 DOI: 10.1016/j.envres.2024.119788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Research on the microbiome and resistome in polar environments, such as the Arctic, is crucial for understanding the emergence and spread of antibiotic resistance genes (ARGs) in the environment. In this study, soil and reindeer faeces samples collected from Ny-Ålesund (Svalbard, High Arctic) were examined to analyze the microbiome, ARGs, and biocide/metal resistance genes (BMRGs). The dominant phyla in both soil and faeces were Pseudomonadota, Actinomycetota, and Bacteroidota. A total of 2618 predicted Open Reading Frames (ORFs) containing antibiotic resistance genes (ARGs) were detected. These ARGs belong to 162 different genes across 17 antibiotic classes, with rifamycin and multidrug resistance genes being the most prevalent. We focused on investigating antibiotic resistance mechanisms in the Ny-Ålesund environment by analyzing the resistance genes and their biological pathways. Procrustes analysis demonstrated a significant correlation between bacterial communities and ARG/BMRG profiles in soil and faeces samples. Correlation analysis revealed that Pseudomonadota contributed most to multidrug and triclosan resistance, while Actinomycetota were predominant contributors to rifamycin and aminoglycoside resistance. The geochemical factors, SiO42- and NH4+, were found to significantly influence the microbial composition and ARG distribution in the soil samples. Analysis of ARGs, BMRGs, virulence factors (VFs), and pathogens identified potential health risks associated with certain bacteria, such as Cryobacterium and Pseudomonas, due to the presence of different genetic elements. This study provided valuable insights into the molecular mechanisms and geochemical factors contributing to antibiotic resistance and enhanced our understanding of the evolution of antibiotic resistance genes in the environment.
Collapse
Affiliation(s)
- Xiao-Mei Fang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China
| | - Jun Li
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China
| | - Neng-Fei Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China.
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China.
| |
Collapse
|
8
|
Gao J, Ali MY, Kamaraj Y, Zhang Z, Weike L, Sethupathy S, Zhu D. A comprehensive review on biological funnel mechanism in lignin valorization: Pathways and enzyme dynamics. Microbiol Res 2024; 287:127835. [PMID: 39032264 DOI: 10.1016/j.micres.2024.127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Lignin, a significant byproduct of the paper and pulp industry, is attracting interest due to its potential utilization in biomaterial-based sectors and biofuel production. Investigating biological methods for converting lignin into valuable products is crucial for effective utilization and has recently gained growing attention. Several microorganisms effectively decomposed low molecular weight lignins, transforming them into intermediate compounds via upper and lower metabolic pathways. This review focuses on assessing bacterial metabolic pathways involved in the breakdown of lignin into aromatic compounds and their subsequent utilization by different bacteria through various metabolic pathways. Understanding these pathways is essential for developing efficient synthetic metabolic systems to valorize lignin and obtain valuable industrial aromatic chemicals. The concept of "biological funneling," which involves examining key enzymes, their interactions, and the complex metabolic pathways associated with lignin conversion, is crucial in lignin valorization. By manipulating lignin metabolic pathways and utilizing biological routes, many aromatic compounds can be synthesized within cellular factories. Although there is insufficient evidence regarding the complete metabolism of polyaromatic hydrocarbons by particular microorganisms, understanding lignin-degrading enzymes, regulatory mechanisms, and interactions among various enzyme systems is essential for optimizing lignin valorization. This review highlights recent advancements in lignin valorization, bio-funneling, multi-omics, and analytical characterization approaches for aromatic utilization. It provides up-to-date information and insights into the latest research findings and technological innovations. The review offers valuable insights into the future potential of biological routes for lignin valorization.
Collapse
Affiliation(s)
- Jiayue Gao
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mohamed Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Yoganathan Kamaraj
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenghao Zhang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Weike
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
9
|
Ma Y, Qiao Y, Zhang X, Ye L. Filamentous bacteria-induced sludge bulking can alter antibiotic resistance gene profiles and increase potential risks in wastewater treatment systems. ENVIRONMENT INTERNATIONAL 2024; 190:108920. [PMID: 39094405 DOI: 10.1016/j.envint.2024.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Sludge bulking caused by filamentous bacteria is a prevalent issue in wastewater treatment systems. While previous studies have primarily concentrated on controlling sludge bulking, the biological risks associated with it have been overlooked. This study demonstrates that excessive growth of filamentous bacteria during sludge bulking can significantly increase the abundance of antibiotic resistance genes (ARGs) in activated sludge. Through metagenomic analysis, we identified specific ARGs carried by filamentous bacteria, such as Sphaerotilus and Thiothrix, which are responsible for bulking. Additionally, by examining over 1,000 filamentous bacterial genomes, we discovered a diverse array of ARGs across different filamentous bacteria derived from wastewater treatment systems. Our findings indicate that 74.84% of the filamentous bacteria harbor at least one ARG, with the occurrence frequency of ARGs in these bacteria being approximately 1.5 times higher than that in the overall bacterial population in activated sludge. Furthermore, genomic and metagenomic analyses have shown that the ARGs in filamentous bacteria are closely linked to mobile genetic elements and are frequently found in potentially pathogenic bacteria, highlighting potential risks posed by these filamentous bacteria. These insights enhance our understanding of ARGs in activated sludge and underscore the importance of risk management in wastewater treatment systems.
Collapse
Affiliation(s)
- Yanyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yiheng Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Amoros J, Fattar N, Buysse M, Louni M, Bertaux J, Bouchon D, Duron O. Reassessment of the genetic basis of natural rifampin resistance in the genus Rickettsia. Microbiologyopen 2024; 13:e1431. [PMID: 39082505 PMCID: PMC11289727 DOI: 10.1002/mbo3.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024] Open
Abstract
Rickettsia, a genus of obligate intracellular bacteria, includes species that cause significant human diseases. This study challenges previous claims that the Leucine-973 residue in the RNA polymerase beta subunit is the primary determinant of rifampin resistance in Rickettsia. We investigated a previously untested Rickettsia species, R. lusitaniae, from the Transitional group and found it susceptible to rifampin, despite possessing the Leu-973 residue. Interestingly, we observed the conservation of this residue in several rifampin-susceptible species across most Rickettsia phylogenetic groups. Comparative genomics revealed potential alternative resistance mechanisms, including additional amino acid variants that could hinder rifampin binding and genes that could facilitate rifampin detoxification through efflux pumps. Importantly, the evolutionary history of Rickettsia genomes indicates that the emergence of natural rifampin resistance is phylogenetically constrained within the genus, originating from ancient genetic features shared among a unique set of closely related Rickettsia species. Phylogenetic patterns appear to be the most reliable predictors of natural rifampin resistance, which is confined to a distinct monophyletic subclade known as Massiliae. The distinctive features of the RNA polymerase beta subunit in certain untested Rickettsia species suggest that R. raoultii, R. amblyommatis, R. gravesii, and R. kotlanii may also be naturally rifampin-resistant species.
Collapse
Affiliation(s)
- Julien Amoros
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - Noor Fattar
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - Marie Buysse
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | | | | | | | - Olivier Duron
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| |
Collapse
|
11
|
Zhao W, Wu J, Luo S, Jiang X, He T, Hu X. Subtask-Aware Representation Learning for Predicting Antibiotic Resistance Gene Properties via Gating-Controlled Mechanism. IEEE J Biomed Health Inform 2024; 28:4348-4360. [PMID: 38640044 DOI: 10.1109/jbhi.2024.3390246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The crisis of antibiotic resistance has become a significant global threat to human health. Understanding properties of antibiotic resistance genes (ARGs) is the first step to mitigate this issue. Although many methods have been proposed for predicting properties of ARGs, most of these methods focus only on predicting antibiotic classes, while ignoring other properties of ARGs, such as resistance mechanisms and transferability. However, acquiring all of these properties of ARGs can help researchers gain a more comprehensive understanding of the essence of antibiotic resistance, which will facilitate the development of antibiotics. In this paper, the task of predicting properties of ARGs is modeled as a multi-task learning problem, and an effective subtask-aware representation learning-based framework is proposed accordingly. More specifically, property-specific expert networks and shared expert networks are utilized respectively to learn subtask-specific features for each subtask and shared features among different subtasks. In addition, a gating-controlled mechanism is employed to dynamically allocate weights to subtask-specific semantics and shared semantics obtained respectively from property-specific expert networks and shared expert networks, thus adjusting distinctive contributions of subtask-specific features and shared features to achieve optimal performance for each subtask simultaneously. Extensive experiments are conducted on publicly available data, and experimental results demonstrate the effectiveness of the proposed framework on the task of ARGs properties prediction.
Collapse
|
12
|
Sudzinová P, Šanderová H, Koval' T, Skálová T, Borah N, Hnilicová J, Kouba T, Dohnálek J, Krásný L. What the Hel: recent advances in understanding rifampicin resistance in bacteria. FEMS Microbiol Rev 2023; 47:fuac051. [PMID: 36549665 PMCID: PMC10719064 DOI: 10.1093/femsre/fuac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Petra Sudzinová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tomáš Koval'
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Tereza Skálová
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Nabajyoti Borah
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tomáš Kouba
- Cryogenic Electron Microscopy Research-Service Group, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16000 Prague, Czech Republic
| | - Jan Dohnálek
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
13
|
Timms VJ, Hassan KA, Pearson LA, Neilan BA. Cyanobacteria as a critical reservoir of the environmental antimicrobial resistome. Environ Microbiol 2023; 25:2266-2276. [PMID: 37365851 DOI: 10.1111/1462-2920.16453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023]
Abstract
Antimicrobial resistance (AMR) is predicted to cause a worldwide annual toll of 10 million deaths by 2050. This looming public health threat has been linked to antibiotic overuse and pollution, which places selective pressures on AMR maintenance and transfer in and between microbial populations. We examined the distribution, diversity and potential mobility of AMR genes in cyanobacteria. While cyanobacteria are not pathogenic, we hypothesised that they could be a major environmental reservoir for AMR genes. Genes encoding AMR to seven antimicrobial drug classes were found in 10% of cyanobacterial genomes. AMR genes were found in 13% of freshwater, 19% of terrestrial, 34% of symbiotic, 2% of thermal spring, and 3% of marine genomes. AMR genes were found in five cyanobacterial orders with 23% of Nostocales and 8% of Oscillatoriales strains containing AMR genes. The most frequently observed alleles were ansamycin resistance genes, which were present in 7% of strains. AMR genes responsible for resistance to broad-spectrum β-lactams, chloramphenicols, tetracyclines, macrolides, and aminoglycosides were associated with mobile genetic elements or plasmid replicons or both. These results suggest that cyanobacteria are an extensive reservoir, and potential vector, for AMR genes in diverse terrestrial and aquatic habitats.
Collapse
Affiliation(s)
- V J Timms
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - K A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - L A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - B A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
14
|
Zheng M, Lupoli TJ. Counteracting antibiotic resistance enzymes and efflux pumps. Curr Opin Microbiol 2023; 75:102334. [PMID: 37329679 DOI: 10.1016/j.mib.2023.102334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
Bacterial pathogens are constantly evolving new resistance mechanisms against antibiotics; hence, strategies to potentiate existing antibiotics or combat mechanisms of resistance using adjuvants are always in demand. Recently, inhibitors have been identified that counteract enzymatic modification of the drugs isoniazid and rifampin, which have implications in the study of multi-drug-resistant mycobacteria. A wealth of structural studies on efflux pumps from diverse bacteria has also fueled the design of new small-molecule and peptide-based agents to prevent the active transport of antibiotics. We envision that these findings will inspire microbiologists to apply existing adjuvants to clinically relevant resistant strains, or to use described platforms to discover novel antibiotic adjuvant scaffolds.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
15
|
D'Angelo EM. Diversity of virulence and antibiotic resistance genes expressed in Class A biosolids and biosolids-amended soil as revealed by metatranscriptomic analysis. Lett Appl Microbiol 2023; 76:ovad097. [PMID: 37596067 DOI: 10.1093/lambio/ovad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
Class A biosolids is a treated sewage sludge, commonly applied to agricultural fields, home lawns/gardens, golf courses, forests, and remediation sites around the world. This practice is of public and agricultural concern due to the possibility that biosolids contain antibiotic-resistant bacteria and fungal pathogens that could persist for extended periods in soil. This possibility was determined by metatranscriptomic analysis of virulence, antibiotic resistance, and plasmid conjugation genes, a Class A biosolids, organically managed soil, and biosolids-amended soil under realistic conditions. Biosolids harbored numerous transcriptionally active pathogens, antibiotic resistance genes, and conjugative genes that annotated mostly to Gram-positive pathogens of animal hosts. Biosolids amendment to soil significantly increased the expression of virulence genes by numerous pathogens and antibiotic-resistant genes that were strongly associated with biosolids. Biosolids amendment also significantly increased the expression of virulence genes by native soil fungal pathogens of plant hosts, which suggests higher risks of crop damage by soil fungal pathogens in biosolids-amended soil. Although results are likely to be different in other soils, biosolids, and microbial growth conditions, they provide a more holistic, accurate view of potential health risks associated with biosolids and biosolids-amended soils than has been achievable with more selective cultivation and PCR-based techniques.
Collapse
Affiliation(s)
- Elisa Marie D'Angelo
- Plant and Soil Sciences Department, University of Kentucky, N-122 Agricultural Science Center North, Lexington, KY 40546, United States
| |
Collapse
|
16
|
Velema WA. Exploring antibiotic resistance with chemical tools. Chem Commun (Camb) 2023; 59:6148-6158. [PMID: 37039397 PMCID: PMC10194278 DOI: 10.1039/d3cc00759f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Antibiotic resistance is an enormous problem that is accountable for over a million deaths annually, with numbers expected to significantly increase over the coming decades. Although some of the underlying causes leading up to antibiotic resistance are well understood, many of the molecular processes involved remain elusive. To better appreciate at a molecular level how resistance emerges, customized chemical biology tools can offer a solution. This Feature Article attempts to provide an overview of the wide variety of tools that have been developed over the last decade, by highlighting some of the more illustrative examples. These include the use of fluorescent, photoaffinity and activatable antibiotics and bacterial components to start to unravel the molecular mechanisms involved in resistance. The antibiotic crisis is an eminent global threat and requires the continuous development of creative chemical tools to dissect and ultimately counteract resistance.
Collapse
Affiliation(s)
- Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280-295. [PMID: 36411397 DOI: 10.1038/s41579-022-00820-y] [Citation(s) in RCA: 494] [Impact Index Per Article: 247.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.
Collapse
Affiliation(s)
- Elizabeth M Darby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
18
|
O’Connor L, Heyderman R. The challenges of defining the human nasopharyngeal resistome. Trends Microbiol 2023:S0966-842X(23)00056-2. [DOI: 10.1016/j.tim.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
|
19
|
Campa MF, Chen See JR, Unverdorben LV, Wright OG, Roth KA, Niles JM, Ressler D, Macatugal EMS, Putt AD, Techtmann SM, Righetti TL, Hazen TC, Lamendella R. Geochemistry and Multiomics Data Differentiate Streams in Pennsylvania Based on Unconventional Oil and Gas Activity. Microbiol Spectr 2022; 10:e0077022. [PMID: 35980272 PMCID: PMC9603415 DOI: 10.1128/spectrum.00770-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/15/2022] [Indexed: 12/30/2022] Open
Abstract
Unconventional oil and gas (UOG) extraction is increasing exponentially around the world, as new technological advances have provided cost-effective methods to extract hard-to-reach hydrocarbons. While UOG has increased the energy output of some countries, past research indicates potential impacts in nearby stream ecosystems as measured by geochemical and microbial markers. Here, we utilized a robust data set that combines 16S rRNA gene amplicon sequencing (DNA), metatranscriptomics (RNA), geochemistry, and trace element analyses to establish the impact of UOG activity in 21 sites in northern Pennsylvania. These data were also used to design predictive machine learning models to determine the UOG impact on streams. We identified multiple biomarkers of UOG activity and contributors of antimicrobial resistance within the order Burkholderiales. Furthermore, we identified expressed antimicrobial resistance genes, land coverage, geochemistry, and specific microbes as strong predictors of UOG status. Of the predictive models constructed (n = 30), 15 had accuracies higher than expected by chance and area under the curve values above 0.70. The supervised random forest models with the highest accuracy were constructed with 16S rRNA gene profiles, metatranscriptomics active microbial composition, metatranscriptomics active antimicrobial resistance genes, land coverage, and geochemistry (n = 23). The models identified the most important features within those data sets for classifying UOG status. These findings identified specific shifts in gene presence and expression, as well as geochemical measures, that can be used to build robust models to identify impacts of UOG development. IMPORTANCE The environmental implications of unconventional oil and gas extraction are only recently starting to be systematically recorded. Our research shows the utility of microbial communities paired with geochemical markers to build strong predictive random forest models of unconventional oil and gas activity and the identification of key biomarkers. Microbial communities, their transcribed genes, and key biomarkers can be used as sentinels of environmental changes. Slight changes in microbial function and composition can be detected before chemical markers of contamination. Potential contamination, specifically from biocides, is especially concerning due to its potential to promote antibiotic resistance in the environment. Additionally, as microbial communities facilitate the bulk of nutrient cycling in the environment, small changes may have long-term repercussions. Supervised random forest models can be used to identify changes in those communities, greatly enhance our understanding of what such impacts entail, and inform environmental management decisions.
Collapse
Affiliation(s)
- Maria Fernanda Campa
- University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | | | | | | | | | | | - Andrew D. Putt
- University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | - Terry C. Hazen
- University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | |
Collapse
|
20
|
Spanogiannopoulos P, Kyaw TS, Guthrie BGH, Bradley PH, Lee JV, Melamed J, Malig YNA, Lam KN, Gempis D, Sandy M, Kidder W, Van Blarigan EL, Atreya CE, Venook A, Gerona RR, Goga A, Pollard KS, Turnbaugh PJ. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism. Nat Microbiol 2022; 7:1605-1620. [PMID: 36138165 PMCID: PMC9530025 DOI: 10.1038/s41564-022-01226-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
Pharmaceuticals have extensive reciprocal interactions with the microbiome, but whether bacterial drug sensitivity and metabolism is driven by pathways conserved in host cells remains unclear. Here we show that anti-cancer fluoropyrimidine drugs inhibit the growth of gut bacterial strains from 6 phyla. In both Escherichia coli and mammalian cells, fluoropyrimidines disrupt pyrimidine metabolism. Proteobacteria and Firmicutes metabolized 5-fluorouracil to its inactive metabolite dihydrofluorouracil, mimicking the major host mechanism for drug clearance. The preTA operon was necessary and sufficient for 5-fluorouracil inactivation by E. coli, exhibited high catalytic efficiency for the reductive reaction, decreased the bioavailability and efficacy of oral fluoropyrimidine treatment in mice and was prevalent in the gut microbiomes of colorectal cancer patients. The conservation of both the targets and enzymes for metabolism of therapeutics across domains highlights the need to distinguish the relative contributions of human and microbial cells to drug efficacy and side-effect profiles.
Collapse
Affiliation(s)
- Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Than S Kyaw
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Ben G H Guthrie
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Patrick H Bradley
- Gladstone Institutes, San Francisco, CA, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Joyce V Lee
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Melamed
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Ysabella Noelle Amora Malig
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Kathy N Lam
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Daryll Gempis
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Moriah Sandy
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Wesley Kidder
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Erin L Van Blarigan
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Chloe E Atreya
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Alan Venook
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
21
|
Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Food Sci Biotechnol 2022; 31:1481-1499. [PMID: 36065433 PMCID: PMC9435411 DOI: 10.1007/s10068-022-01157-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.
Collapse
|
22
|
Hurst-Hess KR, Saxena A, Rudra P, Yang Y, Ghosh P. Mycobacterium abscessus HelR interacts with RNA polymerase to confer intrinsic rifamycin resistance. Mol Cell 2022; 82:3166-3177.e5. [PMID: 35905736 PMCID: PMC9444957 DOI: 10.1016/j.molcel.2022.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/08/2022] [Accepted: 06/28/2022] [Indexed: 10/16/2022]
Abstract
Rifampicin (RIF), the frontline drug against M. tuberculosis, is completely ineffective against M. abscessus, partially due to the presence of an ADP-ribosyltransferase (Arr) that inactivates RIF. Using RNA-seq, we show that exposure of M. abscessus to sublethal doses of RIF and Rifabutin (RBT), a close analog of RIF, results in an ∼25-fold upregulation of Mab_helR in laboratory and clinical isolates. An isogenic deletion in Mab_helR results in RIF/RBT hypersensitivity, and overexpression of Mab_helR confers RIF tolerance in M. tuberculosis. We demonstrate an increased HelR-RNAP association in RIF-exposed bacteria and a MabHelR-mediated dissociation of RNAP from stalled initiation complexes in vitro. Finally, we show that the tip of the PCh-loop of Mab_helR, present in proximity to RIF, is critical for conferring RIF resistance but dispensable for dissociation of stalled RNAP complexes, suggesting that HelR-mediated RIF resistance requires a step in addition to displacement of RIF-stalled RNAP.
Collapse
Affiliation(s)
- Kelley R Hurst-Hess
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Aavrati Saxena
- School of Public Health, University at Albany, Albany, NY 12208, USA
| | - Paulami Rudra
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Yong Yang
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Pallavi Ghosh
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; School of Public Health, University at Albany, Albany, NY 12208, USA.
| |
Collapse
|
23
|
Surette MD, Waglechner N, Koteva K, Wright GD. HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics. Mol Cell 2022; 82:3151-3165.e9. [PMID: 35907401 DOI: 10.1016/j.molcel.2022.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/15/2022] [Accepted: 06/12/2022] [Indexed: 10/16/2022]
Abstract
Rifamycin antibiotics such as rifampin are potent inhibitors of prokaryotic RNA polymerase (RNAP) used to treat tuberculosis and other bacterial infections. Although resistance arises in the clinic principally through mutations in RNAP, many bacteria possess highly specific enzyme-mediated resistance mechanisms that modify and inactivate rifamycins. The expression of these enzymes is controlled by a 19-bp cis-acting rifamycin-associated element (RAE). Guided by the presence of RAE sequences, we identify a helicase-like protein, HelR, in Streptomyces venezuelae that confers broad-spectrum rifamycin resistance. We show that HelR also promotes tolerance to rifamycins, enabling bacterial evasion of the toxic properties of these antibiotics. HelR forms a complex with RNAP and rescues transcription inhibition by displacing rifamycins from RNAP, thereby providing resistance by target protection . Furthermore, HelRs are broadly distributed in Actinobacteria, including several opportunistic Mycobacterial pathogens, offering yet another challenge for developing new rifamycin antibiotics.
Collapse
Affiliation(s)
- Matthew D Surette
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicholas Waglechner
- Toronto Invasive Bacterial Diseases Network, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Kalinka Koteva
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
24
|
Alam KM, Yan Y, Lin M, Islam MA, Gaber A, Hossain A. Insight rifampicin-resistant (rpoB) mutation in Pseudomonas stutzeri leads to enhance the biosynthesis of secondary metabolites to survive against harsh environments. Arch Microbiol 2022; 204:437. [PMID: 35768665 DOI: 10.1007/s00203-022-03064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
In this study, a wild-type and five distinct rifampicin-resistant (Rifr) rpoB mutants of Pseudomonas stutzeri (i.e., Q518R, D521Y, D521V, H531R and I614T) ability were investigated against harsh environments (particularly nutritional complexity). Among these, the robust Rifr phenotype of P. Stutzeri was associated only with base replacements of the amino deposits. The use of carboxylic and amino acids significantly increased in various Rifr mutants than that of wild type of P. stutzeri. The assimilation of carbon and nitrogen (N) sources of Rifr mutants' confirmed that the organism maintains the adaptation in nutritionally complex environments. Acetylene reduction assay at different times also found the variability for N-fixation in all strains. Among them, the highest nitrogenase activity was determined in mutant 'D521V'. The assimilation of carbon and nitrogen sources of P. stutzeri and its Rifr mutants ensures that the organism maintains the adaptability in nutritionally complex environments through fixing more nitrogen.
Collapse
Affiliation(s)
- Khandakar Mohiul Alam
- Soils and Nutrition Division, Bangladesh Sugarcrop Research Institute, Pabna, 6620, Bangladesh
| | - Yongliang Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South StHaidian District, Beijing, People's Republic of China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South StHaidian District, Beijing, People's Republic of China
| | - Md Ariful Islam
- On-Farm Research Division, Bangladesh Agricultural Research Institute, Pabna, 6600, Bangladesh
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
| |
Collapse
|
25
|
Harnessing Rare Actinomycete Interactions and Intrinsic Antimicrobial Resistance Enables Discovery of an Unusual Metabolic Inhibitor. mBio 2022; 13:e0039322. [PMID: 35608300 PMCID: PMC9239090 DOI: 10.1128/mbio.00393-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial natural products have historically been a deep source of new medicines, but their slowed discovery in recent decades has put a premium on developing strategies that enhance the likelihood of capturing novel compounds. Here, we used a straightforward approach that capitalizes on the interactive ecology of “rare” actinomycetes. Specifically, we screened for interactions that triggered the production of antimicrobials that inhibited the growth of a bacterial strain with exceptionally diverse natural antimicrobial resistance. This strategy led to the discovery of a family of antimicrobials we term the dynaplanins. Heterologous expression enabled identification of the dynaplanin biosynthetic gene cluster, which was missed by typical algorithms for natural product gene cluster detection. Genome sequencing of partially resistant mutants revealed a 2-oxo acid dehydrogenase E2 subunit as the likely molecular target of the dynaplanins, and this finding was supported by computational modeling of the dynaplanin scaffold within the active site of this enzyme. Thus, this simple strategy, which leverages microbial interactions and natural antibiotic resistance, can enable discovery of molecules with unique antimicrobial activity. In addition, these results indicate that primary metabolism may be a direct target for inhibition via chemical interference in competitive microbial interactions.
Collapse
|
26
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
27
|
Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nat Ecol Evol 2022; 6:555-564. [PMID: 35347261 DOI: 10.1038/s41559-022-01705-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/17/2022] [Indexed: 12/30/2022]
Abstract
The spread of genes encoding antibiotic resistance is often mediated by horizontal gene transfer (HGT). Many of these genes are associated with transposons, a type of mobile genetic element that can translocate between the chromosome and plasmids. It is widely accepted that the translocation of antibiotic resistance genes onto plasmids potentiates their spread by HGT. However, it is unclear how this process is modulated by environmental factors, especially antibiotic treatment. To address this issue, we asked whether antibiotic exposure would select for the transposition of resistance genes from chromosomes onto plasmids and, if so, whether antibiotic concentration could tune the distribution of resistance genes between chromosomes and plasmids. We addressed these questions by analysing the transposition dynamics of synthetic and natural transposons that encode resistance to different antibiotics. We found that stronger antibiotic selection leads to a higher fraction of cells carrying the resistance on plasmids because the increased copy number of resistance genes on multicopy plasmids leads to higher expression of those genes and thus higher cell survival when facing antibiotic selection. Once they have transposed to plasmids, antibiotic resistance genes are primed for rapid spread by HGT. Our results provide quantitative evidence for a mechanism by which antibiotic selection accelerates the spread of antibiotic resistance in microbial communities.
Collapse
|
28
|
Kim H, Kim M, Kim S, Lee YM, Shin SC. Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118634. [PMID: 34875269 DOI: 10.1016/j.envpol.2021.118634] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) constitute a serious threat to public health, and climate change has been predicted to affect the increase in bacterial pathogens harboring ARGs and VFGs. However, studies on bacterial pathogens and their ARGs and VFGs in permafrost region have received limited attention. In this study, a metagenomic approach was applied to a comprehensive survey to detect potential ARGs, VFGs, and pathogenic antibiotic resistant bacteria (PARB) carrying both ARGs and VFGs in the active layer and permafrost. Overall, 70 unique ARGs against 18 antimicrobial drug classes and 599 VFGs classified as 38 virulence factors were detected in the Arctic permafrost region. Eight genes with mobile genetic elements (MGEs) carrying ARGs were identified; most MGEs were classified as phages. In the metagenome-assembled genomes, the presence of 15 PARB was confirmed. The soil profile showed that the transcripts per million (TPM) values of ARGs and VFGs in the sub-soil horizon were significantly lower than those in the top soil horizon. Based on the TPM value of each gene, major ARGs, VFGs, and these genes in PARB from the Arctic permafrost region were identified and their distribution was confirmed. The major host bacteria for ARGs and VFGs and PARB were identified. A comparison of the percentage identity distribution of ARGs and VFGs to reference databases indicated that ARGs and VFGs in the Arctic soils differ from previously identified genes. Our results may help understand the characteristics and distribution of ARGs, VFGs, and these genes in PARB in the Arctic permafrost region. This findings suggest that the Arctic permafrost region may serve as potential reservoirs for ARGs, VFGs, and PARB. These genes could pose a new threat to human health if they are released by permafrost thawing owing to global warming and propagate to other regions.
Collapse
Affiliation(s)
- Heesoo Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| |
Collapse
|
29
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
30
|
Rifamycin antibiotics and the mechanisms of their failure. J Antibiot (Tokyo) 2021; 74:786-798. [PMID: 34400805 DOI: 10.1038/s41429-021-00462-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Rifamycins are a class of antibiotics that were first discovered in 1957 and are known for their use in treating tuberculosis (TB). Rifamycins exhibit bactericidal activity against many Gram-positive and Gram-negative bacteria by inhibiting RNA polymerase (RNAP); however, resistance is prevalent and the mechanisms range from primary target modification and antibiotic inactivation to cytoplasmic exclusion. Further, phenotypic resistance, in which only a subpopulation of bacteria grow in concentrations exceeding their minimum inhibitory concentration, and tolerance, which is characterized by reduced rates of bacterial cell death, have been identified as additional causes of rifamycin failure. Here we summarize current understanding and recent developments regarding this critical antibiotic class.
Collapse
|
31
|
Novel Ansa-Chain Conformation of a Semi-Synthetic Rifamycin Prepared Employing the Alder-Ene Reaction: Crystal Structure and Absolute Stereochemistry. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rifamycins are an extremely important class of antibacterial agents whose action results from the inhibition of DNA-dependent RNA synthesis. A special arrangement of unsubstituted hydroxy groups at C21 and C23, with oxygen atoms at C1 and C8 is essential for activity. Moreover, it is known that the antibacterial action of rifamycin is lost if either of the two former hydroxy groups undergo substitution and are no longer free to act in enzyme inhibition. In the present work, we describe the successful use of an Alder-Ene reaction between Rifamycin O, 1 and diethyl azodicarboxylate, yielding 2, which was a targeted introduction of a relatively bulky group close to C21 to protect its hydroxy group. Many related azo diesters were found to react analogously, giving one predominant product in each case. To determine unambiguously the stereochemistry of the Alder-Ene addition process, a crystalline zwitterionic derivative 3 of the diethyl azodicarboxylate adduct 2 was prepared by reductive amination at its spirocyclic centre C4. The adduct, as a mono chloroform solvate, crystallized in the non-centrosymmetric Sohnke orthorhombic space group, P212121. The unique conformation and absolute stereochemistry of 3 revealed through X-ray crystal structure analysis is described.
Collapse
|
32
|
Yang SB, Zheng HC, Xu JY, Zhao XY, Shu WJ, Li XM, Song H, Ma YH. New Biotransformation Mode of Zearalenone Identified in Bacillus subtilis Y816 Revealing a Novel ZEN Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7409-7419. [PMID: 34180240 DOI: 10.1021/acs.jafc.1c01817] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An increasing number of Bacillus strains have been identified, and the removal capacity of zearalenone (ZEN) was determined; however, they failed to reveal the detoxification mechanism and transformation product. Here, Bacillus subtilis Y816, which could transform 40 mg/L of ZEN within 7 h of fermentation, was identified and studied. First, the biotransformation products of ZEN and 17-β-estradiol (E2) were identified as ZEN-14-phosphate and E2-3-phosphate by HPLC-TOF-MS and NMR, respectively. An intracellular zearalenone phosphotransferase (ZPH) was found through transcriptome sequencing analysis of B. subtilis Y816. The phosphorylated reaction conditions of ZEN by ZPH were further revealed in this work. Furthermore, the phosphorylated conjugates showed reduced estrogenic toxicity compared with their original substances (ZEN and α/β-zearalenol) using an engineered yeast biosensor system. The first report on the phosphorylated conjugated mode of ZEN in B. subtilis Y816 will inspire new perspectives on the biotransformation of ZEN in Bacillus strains.
Collapse
Affiliation(s)
- Shi Bin Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hong Chen Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian Yong Xu
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xing Ya Zhao
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wen Ju Shu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiang Ming Li
- Preventive Medicine Department, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Hui Song
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yan He Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
33
|
Surette MD, Spanogiannopoulos P, Wright GD. The Enzymes of the Rifamycin Antibiotic Resistome. Acc Chem Res 2021; 54:2065-2075. [PMID: 33877820 DOI: 10.1021/acs.accounts.1c00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rifamycin antibiotics include the WHO essential medicines rifampin, rifabutin, and rifapentine. These are semisynthetic derivatives of the natural product rifamycins, originally isolated from the soil bacterium Amycolatopsis rifamycinica. These antibiotics are primarily used to treat mycobacterial infections, including tuberculosis. Rifamycins act by binding to the β-subunit of bacterial RNA polymerase, inhibiting transcription, which results in cell death. These antibiotics consist of a naphthalene core spanned by a polyketide ansa bridge. This structure presents a unique 3D configuration that engages RNA polymerase through a series of hydrogen bonds between hydroxyl groups linked to the naphthalene core and C21 and C23 of the ansa bridge. This binding occurs not in the enzyme active site where template-directed RNA synthesis occurs but instead in the RNA exit tunnel, thereby blocking productive formation of full-length RNA. In their clinical use to treat tuberculosis, resistance to rifamycin antibiotics arises principally from point mutations in RNA polymerase that decrease the antibiotic's affinity for the binding site in the RNA exit tunnel. In contrast, the rifamycin resistome of environmental mycobacteria and actinomycetes is much richer and diverse. In these organisms, rifamycin resistance includes many different enzymatic mechanisms that modify and alter the antibiotic directly, thereby inactivating it. These enzymes include ADP ribosyltransferases, glycosyltransferases, phosphotransferases, and monooxygenases.ADP ribosyltransferases catalyze group transfer of ADP ribose from the cofactor NAD+, which is more commonly deployed for metabolic redox reactions. ADP ribose is transferred to the hydroxyl linked to C23 of the antibiotic, thereby sterically blocking productive interaction with RNA polymerase. Like ADP ribosyltransferases, rifamycin glycosyl transferases also modify the hydroxyl of position C23 of rifamycins, transferring a glucose moiety from the donor molecule UDP-glucose. Unlike other antibiotic resistance kinases that transfer the γ-phosphate of ATP to inactivate antibiotics such as aminoglycosides or macrolides, rifamycin phosphotransferases are ATP-dependent dikinases. These enzymes transfer the β-phosphate of ATP to the C21 hydroxyl of the rifamycin ansa bridge. The result is modification of a critical RNA polymerase binding group that blocks productive complex formation. On the other hand, rifamycin monooxygenases are FAD-dependent enzymes that hydroxylate the naphthoquinone core. The result of this modification is untethering of the ansa chain from the naphthyl moiety, disrupting the essential 3D shape necessary for productive RNA polymerase binding and inhibition that leads to cell death.All of these enzymes have homologues in bacterial metabolism that either are their direct precursors or share common ancestors to the resistance enzyme. The diversity of these resistance mechanisms, often redundant in individual bacterial isolates, speaks to the importance of protecting RNA polymerase from these compounds and validates this enzyme as a critical antibiotic target.
Collapse
Affiliation(s)
- Matthew D. Surette
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| | - Peter Spanogiannopoulos
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| |
Collapse
|
34
|
Bombaywala S, Mandpe A, Paliya S, Kumar S. Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24889-24916. [PMID: 33765260 DOI: 10.1007/s11356-021-13143-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The overuse, misuse, and underuse of antibiotics tend to increase the antibiotic burden in the environment resulting into the evolution in microbial community to possess resistance that renders antibiotics ineffective against them. The current review recapitulates the present state of knowledge about the occurrence and fate of antibiotics in various environmental matrices. Also, the prevalence of antibiotic-resistant bacteria/antibiotic-resistant genes (ARB/ARGs) in various biological and non-biological systems, eco-toxicity of antibiotics on non-target organisms, and remediation methods for antibiotics and ARB/ARGs removal were critically reviewed. Furthermore, a comparison of various technologies for their efficiency to eliminate antibiotic residues and ARB/ARGs is made. The study identified gaps in the investigation of toxic effects of low concentration of antibiotics and the mixture of multiple antibiotics on non-target organisms. The study of antibiotics' phytotoxicity and toxicity towards sediment and soil-dwelling organisms are also recognized as a knowledge gap. The review also details policies implemented across the globe to fight against antibiotic resistance, and the scarcity of data on lab to land transferred remediation technology was identified. The present study entails a critical review of literature providing guidelines for the articulation of policies for prudent use of antibiotics, limits on the amount of antibiotics in pharmaceutical formulations, and regular surveillance in the Indian context.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Ashootosh Mandpe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sonam Paliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India.
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
35
|
Zhou Q, Peng SY, Zhang K, Luo GC, Han L, He QL, Tang GL. A Flavin-Dependent Monooxygenase Mediates Divergent Oxidation of Rifamycin. Org Lett 2021; 23:2342-2346. [PMID: 33683897 DOI: 10.1021/acs.orglett.1c00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rifamycins have been clinically utilized against mycobacterial infections for more than 50 years; however, their biosynthesis has not been fully elucidated. Here, on the basis of in vivo gene deletions, in vitro enzyme assays, isotope labeling, and site-directed mutations, we found that a flavin-dependent monooxygenase encoded by a rifamycin biosynthetic gene cluster, Rif-Orf17, not only converted the naphthoquinone chromophore of rifamycin S into benzo-γ-pyrone but also linearized rifamycin SV through phenolic hydroxylation. Both oxidation routes lead to inactivation of rifamycins.
Collapse
Affiliation(s)
- Qiang Zhou
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shu-Ya Peng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Kai Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guang-Cai Luo
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gong-Li Tang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
36
|
Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 2021; 11:4910-4928. [PMID: 33754035 PMCID: PMC7978324 DOI: 10.7150/thno.56205] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been a global health challenge that threatens our ability to control and treat life-threatening bacterial infections. Despite ongoing efforts to identify new drugs or alternatives to antibiotics, no new classes of antibiotic or their alternatives have been clinically approved in the last three decades. A combination of antibiotics and non-antibiotic compounds that could inhibit bacterial resistance determinants or enhance antibiotic activity offers a sustainable and effective strategy to confront multidrug-resistant bacteria. In this review, we provide a brief overview of the co-evolution of antibiotic discovery and the development of bacterial resistance. We summarize drug-drug interactions and uncover the art of repurposing non-antibiotic drugs as potential antibiotic adjuvants, including discussing classification and mechanisms of action, as well as reporting novel screening platforms. A pathogen-by-pathogen approach is then proposed to highlight the critical value of drug repurposing and its therapeutic potential. Finally, general advantages, challenges and development trends of drug combination strategy are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
37
|
Zheng XF, Liu XQ, Peng SY, Zhou Q, Xu B, Yuan H, Tang GL. Characterization of the Rifamycin-Degrading Monooxygenase From Rifamycin Producers Implicating Its Involvement in Saliniketal Biosynthesis. Front Microbiol 2020; 11:971. [PMID: 32582048 PMCID: PMC7283461 DOI: 10.3389/fmicb.2020.00971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 01/18/2023] Open
Abstract
Rifamycin derivatives, such as rifampicin, have potent antibiotic activity and have long been used in the clinic as mainstay components for the treatment of tuberculosis, leprosy, and AIDS-associated mycobacterial infections. However, the extensive usage of these antibiotics has resulted in the rapid development of bacterial resistance. The resistance mechanisms mainly include mutations of the rifamycin target RNA polymerase of bacteria and enzymatic modifications of rifamycin antibiotics. One modification is the recently characterized rifamycin degradation catalyzed by Rox enzymes, which belong to the widely occurring flavin monooxygenases. Intriguingly, our recent sequence analysis revealed the rifamycin producers also encode Rox homologs that are not yet characterized. In this work, we expanded the study of the Rox-catalyzed rifamycin degradation. We first showed that the Rox proteins from rifamycin producers have the enzymatic rifamycin SV-degrading activity. Then we used the structurally diverse rifamycin compounds rifampicin and 16-demethylrifamycin W to probe the substrate scope and found that they each have a slightly different substrate scope. Finally, we demonstrated that Rox proteins can also catalyze the transformation of 16-demethylsalinisporamycin to 16-demethylsaliniketal A. Since 16-demethylsalinisporamycin and 16-demethylsaliniketal A are the counterpart analogs of salinisporamycin and saliniketal A, our biochemical findings not only uncover a previously uncharacterized self-resistance mechanism in the rifamycin producers, but also bridge the gap between the biosynthesis of the potential antitumor compound saliniketal A.
Collapse
Affiliation(s)
- Xiao-Fu Zheng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Xin-Qiang Liu
- CAS-Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Ya Peng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qiang Zhou
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Hua Yuan
- College of Life Sciences, Shanghai Normal University, Shanghai, China.,State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Dias MF, da Rocha Fernandes G, Cristina de Paiva M, Christina de Matos Salim A, Santos AB, Amaral Nascimento AM. Exploring the resistome, virulome and microbiome of drinking water in environmental and clinical settings. WATER RESEARCH 2020; 174:115630. [PMID: 32105997 DOI: 10.1016/j.watres.2020.115630] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 05/09/2023]
Abstract
Aquatic ecosystems harbor a vast pool of antibiotic resistance genes (ARGs), which can suffer mutation, recombination and selection events. Here, we explored the diversity of ARGs, virulence factors and the bacterial community composition in water samples before (surface raw water, RW) and after (disinfected water, DW) drinking water conventional treatment, as well as in tap water (TW) and ultrafiltration membranes (UM, recovered from hemodialysis equipment) through metagenomics. A total of 852 different ARGs were identified, 21.8% of them only in RW, which might reflect the impact of human activities on the river at the sampling point. Although a similar resistance profile has been observed between the samples, significant differences in the frequency of clinically relevant antibiotic classes (penam and peptide) were identified. Resistance determinants to last resort antibiotics, including sequences related to mcr, optrA and poxtA and clinically relevant beta-lactamase genes (i.e. blaKPC, blaGES, blaIMP, blaVIM, blaSPM and blaNDM) were detected. 830 coding sequences (CDSs - related to 217 different ARGs) were embedded in contigs associated with mobile genetic elements, specially plasmids, of which 68% in RW, DW and TW, suggesting the importance of water environments in resistance dissemination. Shifts in bacterial pathogens genera were observed, such as a significant increase in Mycobacterium after treatment and distribution. In UM, the potentially pathogenic genus Halomonas predominated. Its draft genome was closely related to H. stevensii, hosting mainly multidrug efflux pumps. These results broaden our understanding of the global ARGs diversity and stress the importance of tracking the ever-expanding environmental resistome.
Collapse
Affiliation(s)
- Marcela França Dias
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | - Alexandre Bueno Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Andréa Maria Amaral Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
39
|
Wright GD. Environmental and clinical antibiotic resistomes, same only different. Curr Opin Microbiol 2019; 51:57-63. [DOI: 10.1016/j.mib.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
40
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
41
|
Ganapathy US, Dartois V, Dick T. Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opin Drug Discov 2019; 14:867-878. [PMID: 31195849 DOI: 10.1080/17460441.2019.1629414] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The treatment of Mycobacterium abscessus lung disease faces significant challenges due to intrinsic antibiotic resistance. New drugs are needed to cure this incurable disease. The key anti-tubercular rifamycin, rifampicin, suffers from low potency against M. abscessus and is not used clinically. Recently, another member of the rifamycin class, rifabutin, was shown to be active against the opportunistic pathogen. Areas covered: In this review, the authors discuss the rifamycins as a reemerging drug class for treating M. abscessus infections. The authors focus on the differential potency of rifampicin and rifabutin against M. abscessus in the context of intrinsic antibiotic resistance and bacterial uptake and metabolism. Reports of rifamycin-based drug synergies and rifamycin potentiation by host-directed therapy are evaluated. Expert opinion: While repurposing rifabutin for M. abscessus lung disease may provide some immediate relief, the repositioning (chemical optimization) of rifamycins offers long-term potential for improving clinical outcomes. Repositioning will require a multifaceted approach involving renewed screening of rifamycin libraries, medicinal chemistry to improve 'bacterial cell pharmacokinetics', better models of bacterial pathophysiology and infection, and harnessing of drug synergies and host-directed therapy towards the development of a better drug regimen.
Collapse
Affiliation(s)
- Uday S Ganapathy
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| | - Véronique Dartois
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| | - Thomas Dick
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| |
Collapse
|
42
|
Egorov AM, Ulyashova MM, Rubtsova MY. Bacterial Enzymes and Antibiotic Resistance. Acta Naturae 2018; 10:33-48. [PMID: 30713760 PMCID: PMC6351036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 11/01/2022] Open
Abstract
The resistance of microorganisms to antibiotics has been developing for more than 2 billion years and is widely distributed among various representatives of the microbiological world. Bacterial enzymes play a key role in the emergence of resistance. Classification of these enzymes is based on their participation in various biochemical mechanisms: modification of the enzymes that act as antibiotic targets, enzymatic modification of intracellular targets, enzymatic transformation of antibiotics, and the implementation of cellular metabolism reactions. The main mechanisms of resistance development are associated with the evolution of superfamilies of bacterial enzymes due to the variability of the genes encoding them. The collection of all antibiotic resistance genes is known as the resistome. Tens of thousands of enzymes and their mutants that implement various mechanisms of resistance form a new community that is called "the enzystome." Analysis of the structure and functional characteristics of enzymes, which are the targets for different classes of antibiotics, will allow us to develop new strategies for overcoming the resistance.
Collapse
Affiliation(s)
- A. M. Egorov
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| | - M. M. Ulyashova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| | - M. Yu. Rubtsova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| |
Collapse
|
43
|
Koteva K, Cox G, Kelso JK, Surette MD, Zubyk HL, Ejim L, Stogios P, Savchenko A, Sørensen D, Wright GD. Rox, a Rifamycin Resistance Enzyme with an Unprecedented Mechanism of Action. Cell Chem Biol 2018; 25:403-412.e5. [PMID: 29398560 DOI: 10.1016/j.chembiol.2018.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/07/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
Rifamycin monooxygenases (Rox) are present in a variety of environmental bacteria and are associated with decomposition of the clinically utilized antibiotic rifampin. Here we report the structure and function of a drug-inducible rox gene from Streptomyces venezuelae, which encodes a class A flavoprotein monooxygenase that inactivates a broad range of rifamycin antibiotics. Our findings describe a mechanism of rifamycin inactivation initiated by monooxygenation of the 2-position of the naphthyl group, which subsequently results in ring opening and linearization of the antibiotic. The result is an antibiotic that no longer adopts the basket-like structure essential for binding to the RNA exit tunnel of the target RpoB, thereby providing the molecular logic of resistance. This unique mechanism of enzymatic inactivation underpins the broad spectrum of rifamycin resistance mediated by Rox enzymes and presents a new antibiotic resistance mechanism not yet seen in microbial antibiotic detoxification.
Collapse
Affiliation(s)
- Kalinka Koteva
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Georgina Cox
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Jayne K Kelso
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Matthew D Surette
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Haley L Zubyk
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Linda Ejim
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1L6, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dan Sørensen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
44
|
The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies. ISME JOURNAL 2017; 12:885-897. [PMID: 29259290 DOI: 10.1038/s41396-017-0017-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/17/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
The ecology of antibiotic resistance involves the interplay of a long natural history of antibiotic production in the environment, and the modern selection of resistance in pathogens through human use of these drugs. Important components of the resistome are intrinsic resistance genes of environmental bacteria, evolved and acquired over millennia, and their mobilization, which drives dissemination in pathogens. Understanding the dynamics and evolution of resistance across bacterial taxa is essential to address the current crisis in drug-resistant infections. Here we report the exploration of antibiotic resistance in the Paenibacillaceae prompted by our discovery of an ancient intrinsic resistome in Paenibacillus sp. LC231, recovered from the isolated Lechuguilla cave environment. Using biochemical and gene expression analysis, we have mined the resistome of the second member of the Paenibacillaceae family, Brevibacillus brevis VM4, which produces several antimicrobial secondary metabolites. Using phylogenomics, we show that Paenibacillaceae resistomes are in flux, evolve mostly independent of secondary metabolite biosynthetic diversity, and are characterized by cryptic, redundant, pseudoparalogous, and orthologous genes. We find that in contrast to pathogens, mobile genetic elements are not significantly responsible for resistome remodeling. This offers divergent modes of resistome development in pathogens and environmental bacteria.
Collapse
|
45
|
Giguère S, Berghaus LJ, Willingham-Lane JM. Antimicrobial Resistance in Rhodococcus equi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.arba-0004-2016. [PMID: 29052538 PMCID: PMC11687536 DOI: 10.1128/microbiolspec.arba-0004-2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
Pneumonia caused by Rhodococcus equi remains an important cause of disease and death in foals. The combination of a macrolide (erythromycin, azithromycin, or clarithromycin) with rifampin has been the recommended treatment for foals with clinical signs of infection caused by R. equi since the early 1980s with, until recently, only rare reports of resistance. Resistance to macrolides and rifampin in isolates of R. equi cultured from horses is increasing, with isolates resistant to all macrolides and rifampin now being cultured from up to 40% of infected foals at some farms. This text reviews the available data regarding antimicrobial resistance in R. equi, with emphasis on the molecular mechanisms of the recent emergence of resistance to macrolides and rifampin in equine isolates of R. equi.
Collapse
Affiliation(s)
- Steeve Giguère
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30605
| | - Londa J Berghaus
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30605
| | - Jennifer M Willingham-Lane
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30605
| |
Collapse
|
46
|
Arr-cb Is a Rifampin Resistance Determinant Found Active or Cryptic in Clostridium bolteae Strains. Antimicrob Agents Chemother 2017; 61:AAC.00301-17. [PMID: 28533241 DOI: 10.1128/aac.00301-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/16/2017] [Indexed: 11/20/2022] Open
Abstract
Clostridiumbolteae, which belongs to the Clostridium clostridioforme complex, is a member of the human gut microbiota. Recent analysis of seven genomes of Cbolteae revealed the presence of an arr-like gene. Among these strains, only 90A7 was found to be resistant to rifampin in the absence of alteration of RpoB. Cloning of arr-cb from 90A7 in Escherichia coli combined with directed mutagenesis demonstrated that Arr-cb was functional but that a Q127→R variant present in 90A9 and 90B3 was inactive. Quantitative reverse transcription-PCR analysis indicated that arr-cb was silent in the four remaining strains because of defective transcription. Thus, two independent mechanisms can make the probably intrinsic arr-cb gene of Cbolteae cryptic.
Collapse
|
47
|
Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 2017; 15:422-434. [PMID: 28392565 DOI: 10.1038/nrmicro.2017.28] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance is a natural feature of diverse microbial ecosystems. Although recent studies of the antibiotic resistome have highlighted barriers to the horizontal transfer of antibiotic resistance genes between habitats, the rapid global spread of genes that confer resistance to carbapenem, colistin and quinolone antibiotics illustrates the dire clinical and societal consequences of such events. Over time, the study of antibiotic resistance has grown from focusing on single pathogenic organisms in axenic culture to studying antibiotic resistance in pathogenic, commensal and environmental bacteria at the level of microbial communities. As the study of antibiotic resistance advances, it is important to incorporate this comprehensive approach to better inform global antibiotic resistance surveillance and antibiotic development. It is increasingly becoming apparent that although not all resistance genes are likely to geographically and phylogenetically disseminate, the threat presented by those that are is serious and warrants an interdisciplinary research focus. In this Review, we highlight seminal work in the resistome field, discuss recent advances in the studies of resistomes, and propose a resistome paradigm that can pave the way for the improved proactive identification and mitigation of emerging antibiotic resistance threats.
Collapse
Affiliation(s)
- Terence S Crofts
- Center for Genome Sciences &Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, Missouri 63110, USA
| | - Andrew J Gasparrini
- Center for Genome Sciences &Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, Missouri 63110, USA
| | - Gautam Dantas
- Center for Genome Sciences &Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine.,Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
48
|
A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun 2016; 7:13803. [PMID: 27929110 PMCID: PMC5155152 DOI: 10.1038/ncomms13803] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023] Open
Abstract
Antibiotic resistance is ancient and widespread in environmental bacteria. These are therefore reservoirs of resistance elements and reflective of the natural history of antibiotics and resistance. In a previous study, we discovered that multi-drug resistance is common in bacteria isolated from Lechuguilla Cave, an underground ecosystem that has been isolated from the surface for over 4 Myr. Here we use whole-genome sequencing, functional genomics and biochemical assays to reveal the intrinsic resistome of Paenibacillus sp. LC231, a cave bacterial isolate that is resistant to most clinically used antibiotics. We systematically link resistance phenotype to genotype and in doing so, identify 18 chromosomal resistance elements, including five determinants without characterized homologues and three mechanisms not previously shown to be involved in antibiotic resistance. A resistome comparison across related surface Paenibacillus affirms the conservation of resistance over millions of years and establishes the longevity of these genes in this genus.
Antibiotic resistance is common in environmental bacteria, including those living in isolated caves. Here, Pawlowski et al. study one of these bacterial strains, showing that it is resistant to most clinically used antibiotics through a remarkable variety of mechanisms, some of which are new to science.
Collapse
|
49
|
Liu LK, Abdelwahab H, Martin Del Campo JS, Mehra-Chaudhary R, Sobrado P, Tanner JJ. The Structure of the Antibiotic Deactivating, N-hydroxylating Rifampicin Monooxygenase. J Biol Chem 2016; 291:21553-21562. [PMID: 27557658 PMCID: PMC5076826 DOI: 10.1074/jbc.m116.745315] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/22/2016] [Indexed: 11/06/2022] Open
Abstract
Rifampicin monooxygenase (RIFMO) catalyzes the N-hydroxylation of the natural product antibiotic rifampicin (RIF) to 2'-N-hydroxy-4-oxo-rifampicin, a metabolite with much lower antimicrobial activity. RIFMO shares moderate sequence similarity with well characterized flavoprotein monooxygenases, but the protein has not been isolated and characterized at the molecular level. Herein, we report crystal structures of RIFMO from Nocardia farcinica, the determination of the oligomeric state in solution with small angle x-ray scattering, and the spectrophotometric characterization of substrate binding. The structure identifies RIFMO as a class A flavoprotein monooxygenase and is similar in fold and quaternary structure to MtmOIV and OxyS, which are enzymes in the mithramycin and oxytetracycline biosynthetic pathways, respectively. RIFMO is distinguished from other class A flavoprotein monooxygenases by its unique middle domain, which is involved in binding RIF. Small angle x-ray scattering analysis shows that RIFMO dimerizes via the FAD-binding domain to form a bell-shaped homodimer in solution with a maximal dimension of 110 Å. RIF binding was monitored using absorbance at 525 nm to determine a dissociation constant of 13 μm Steady-state oxygen consumption assays show that NADPH efficiently reduces the FAD only when RIF is present, implying that RIF binds before NADPH in the catalytic scheme. The 1.8 Å resolution structure of RIFMO complexed with RIF represents the precatalytic conformation that occurs before formation of the ternary E-RIF-NADPH complex. The RIF naphthoquinone blocks access to the FAD N5 atom, implying that large conformational changes are required for NADPH to reduce the FAD. A model for these conformational changes is proposed.
Collapse
Affiliation(s)
- Li-Kai Liu
- From the Departments of Biochemistry and
| | - Heba Abdelwahab
- the Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
- the Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | | | | | - Pablo Sobrado
- the Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
| | - John J Tanner
- From the Departments of Biochemistry and
- Chemistry and
| |
Collapse
|
50
|
Aminov R. History of antimicrobial drug discovery: Major classes and health impact. Biochem Pharmacol 2016; 133:4-19. [PMID: 27720719 DOI: 10.1016/j.bcp.2016.10.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
The introduction of antibiotics into clinical practice revolutionized the treatment and management of infectious diseases. Before the introduction of antibiotics, these diseases were the leading cause of morbidity and mortality in human populations. This review presents a brief history of discovery of the main antimicrobial classes (arsphenamines, β-lactams, sulphonamides, polypeptides, aminoglycosides, tetracyclines, amphenicols, lipopeptides, macrolides, oxazolidinones, glycopeptides, streptogramins, ansamycins, quinolones, and lincosamides) that have changed the landscape of contemporary medicine. Given within a historical timeline context, the review discusses how the introduction of certain antimicrobial classes affected the morbidity and mortality rates due to bacterial infectious diseases in human populations. Problems of resistance to antibiotics of different classes are also extensively discussed.
Collapse
Affiliation(s)
- Rustam Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|