1
|
Schwarzlmueller P, Triebig A, Assié G, Jouinot A, Theurich S, Maier T, Beuschlein F, Kobold S, Kroiss M. Steroid hormones as modulators of anti-tumoural immunity. Nat Rev Endocrinol 2025; 21:331-343. [PMID: 40128599 DOI: 10.1038/s41574-025-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Immune evasion is a hallmark of cancer progression but the role of steroid hormones in this evasion has long been underrated. This oversight is particularly notable for glucocorticoids given that exogenous glucocorticoids remain a cornerstone therapy in various oncological treatment regimens, supportive care and treatment of immune-related adverse events caused by immune-checkpoint inhibitors. Cortisol, the main endogenous glucocorticoid in humans, is secreted by the adrenal cortex in response to stress. Additionally, cortisol and its inactive metabolite cortisone can be interconverted to further modulate tissue-dependent glucocorticoid action. In the past 5 years, intratumoural production of glucocorticoids, by both immune and tumour cells, has been shown to support tumour immune evasion. Here, we summarize current progress at the crossroads of endocrinology and immuno-oncology. We outline the known effects of steroid hormones on different immune cell types with a focus on glucocorticoids and androgens. We conclude with options for pharmaceutical intervention, including the engineering of cell-based therapies that resist the immunosuppressive action of steroid hormones. Overall, local steroid production and metabolism are emerging elements of tumour immune suppression that are potentially amenable to therapeutic intervention. Targeting steroid hormones to enhance anticancer therapies could increase their efficacy but will require expertise in endocrine care.
Collapse
Affiliation(s)
| | - Alexandra Triebig
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Assié
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Paris, France
| | - Anne Jouinot
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Paris, France
- Université Paris Cité, Institut Cochin, Paris, France
| | - Sebastian Theurich
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), LMU University Hospital, Munich, Germany
- Cancer- and Immunometabolism Research Group, Gene Center, Ludwig Maximilian University (LMU), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, Heidelberg, Germany
| | - Tanja Maier
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix Beuschlein
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), Zurich, Switzerland
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Sebastian Kobold
- German Cancer Consortium (DKTK), Munich Site, Heidelberg, Germany
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
- Kroiss Endokrinologie & Diabetologie, Schweinfurt, Germany.
| |
Collapse
|
2
|
Laaraj J, Lachance G, Bergeron A, Fradet Y, Robitaille K, Fradet V. New insights into gut microbiota-prostate cancer crosstalk. Trends Mol Med 2025:S1471-4914(25)00087-5. [PMID: 40374457 DOI: 10.1016/j.molmed.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 03/28/2025] [Indexed: 05/17/2025]
Abstract
Recent evidence underscores a reciprocal relationship between the gut microbiota and prostate cancer (PCa). Dysbiosis, often driven by Western dietary habits and antibiotic use, can heighten systemic inflammation and hinder antitumor immunity, thereby fostering PCa onset and progression. Conversely, certain gut microbes and their metabolites may protect against tumor growth by modulating immune and hormonal pathways that impact therapeutic responses, including androgen deprivation therapy (ADT). Emerging evidence links gut microbial shifts to PCa aggressiveness, potentially sustaining local androgen production and promoting resistance. In this review, we explore current understanding of the gut-PCa interplay, highlighting key knowledge gaps and the need for further research to clarify how targeting the microbiome might influence PCa outcomes.
Collapse
Affiliation(s)
- Jalal Laaraj
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada; Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center - Nutrition, Health and Society of Université Laval, Québec, QC, Canada
| | - Gabriel Lachance
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center - Nutrition, Health and Society of Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Karine Robitaille
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center - Nutrition, Health and Society of Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada; Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center - Nutrition, Health and Society of Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Tao X, Wang Y, Xiang B, Hu D, Xiong W, Liao W, Zhang S, Liu C, Wang X, Zhao Y. Sex bias in tumor immunity: insights from immune cells. Theranostics 2025; 15:5045-5072. [PMID: 40303343 PMCID: PMC12036885 DOI: 10.7150/thno.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/08/2025] [Indexed: 05/02/2025] Open
Abstract
Significant sex disparities have been observed in cancer incidence, treatment response to immunotherapy, and susceptibility to adverse effects, affecting both reproductive and non-reproductive organ cancers. While lifestyle factors, carcinogenic exposure, and healthcare access contribute to these disparities, they do not fully explain the observed male-female variation in anti-tumor immunity. Despite the preferential expression of sex hormone receptors in immune cells, X chromosome also contains numerous genes involved in immune function, and its incomplete inactivation may enhance anti-tumor immune responses in females. In contrast, loss or downregulation of Y-linked genes in males has been associated with an increased cancer risk. Additionally, estrogen, progesterone and androgen signaling pathways influence both innate and adaptive immune responses, contributing to sex-specific outcomes in cancer progression and therapy. Sex-biased differences are also evident in the epigenetic regulation of gene expression, cellular senescence, microbiota composition, metabolism, and DNA damage response, all of which impact anti-tumor immunity and immunotherapy treatment efficacy. In general, the combination of sex chromosomes, sex hormones, and hormone receptors orchestrates the phenotype and function of various immune cells involved in tumor immunity. However, sex disparity in each specific immune cell are context and environment dependent, considering the preferential expression of hormone receptor in immune cell and sex hormone levels fluctuate significantly across different life stages. This review aims to outline the molecular, cellular, and epigenetic changes in T cells, B cells, NK cells, DCs, neutrophils, and macrophages driven by sex chromosomes and sex hormone signaling. These insights may inform the design of sex-specific targeted therapies and leading to more individualized cancer treatment strategies.
Collapse
Affiliation(s)
- Xuerui Tao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiling Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Binghua Xiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongmei Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Xiong
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjun Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiao Wang
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Zhao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Conforti F, Pala L, Di Mitri D, Catania C, Cocorocchio E, Laszlo D, Ceresoli G, Locatelli M, Facella F, De Pas T, Rambaldi B, Rambaldi A, Viale G, Bagnardi V, Giaccone G, Mantovani A. Sex hormones, the anticancer immune response, and therapeutic opportunities. Cancer Cell 2025; 43:343-360. [PMID: 40068594 DOI: 10.1016/j.ccell.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Sex-based differences have been observed in the incidence and prognosis of various cancers, as well as in the response to immune check point inhibitors (ICIs). These disparities are partially attributed to sex-based differences in the molecular characteristics of the anticancer immune response, which are largely influenced by sex hormones. Here, we provide a comprehensive overview on how sex hormones affect innate and adaptive immunity and contribute to shaping the features of tumor immune microenvironment and response to anticancer immunotherapy. We also discuss the promising potential and challenges of combining sex hormone manipulation with anticancer immunotherapy as new therapeutic strategy. We surmise that a sex-based perspective should be part of precision medicine approaches, and sex hormones manipulation provides opportunities for innovative immune therapeutic approaches.
Collapse
Affiliation(s)
- Fabio Conforti
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy; Humanitas University, Milan, Italy.
| | - Laura Pala
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy; Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Diletta Di Mitri
- Humanitas University, Milan, Italy; Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Catania
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | | | - Daniele Laszlo
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | | | - Marzia Locatelli
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Flaminia Facella
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Tommaso De Pas
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Benedetta Rambaldi
- Department of Oncology and Hematology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Italy; William Harvey Research Institute, Queen Mary University, London, UK
| |
Collapse
|
5
|
Chen HN, Hu YN, Ran LL, Wang M, Zhang Z. Sexual dimorphism in aortic aneurysm: A review of the contributions of sex hormones and sex chromosomes. Vascul Pharmacol 2025; 158:107460. [PMID: 39716526 DOI: 10.1016/j.vph.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Aortic aneurysm is a common cardiovascular disease. Over time, the disease damages the structural and functional integrity of the aorta, causing it to abnormally expand and potentially rupture, which can be fatal. Sex differences are evident in the disease, with men experiencing an earlier onset and higher incidence. However, women may face a worse prognosis and a higher risk of rupture. While there are some studies on the cellular and molecular mechanisms of aneurysm formation, it remains unclear how sex factors contribute to sexual dimorphism. Therefore, this review aims to summarize the role of sex in the occurrence of aortic aneurysms, offering valuable insights for disease prevention and the development of appropriate treatment options.
Collapse
Affiliation(s)
- Hao-Nan Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yan-Ni Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Li-Ling Ran
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Mi Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
6
|
Obinata D, Yamada Y, Sumiyoshi T, Tanegashima T, Watanabe R, Kobayashi H, Ito D, Urabe F. Recent advances in basic research on prostate cancer: Where we are heading? Int J Urol 2025; 32:219-228. [PMID: 39474871 DOI: 10.1111/iju.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 03/21/2025]
Abstract
In the over 80 years since androgens were found to play a pivotal role in prostate cancer (PCa) progression, androgen deprivation therapy (ADT) has been a cornerstone in treating advanced PCa. Castration-resistant PCa persists, however, with some of these tumors evolving to androgen receptor (AR)-independent forms like neuroendocrine PCa. The development of novel diagnostic and therapeutic approaches to PCa is therefore crucial. This review provides an overview of recent basic research in PCa, focusing on two main areas: PCa cells and their tumor microenvironments. The first section describes current knowledge on the intricate mechanisms of AR signaling pathways, emphasizing the roles of coactivators and chromatin state alterations in gene regulation. Genomic analyses have revealed recurrent mutations and copy number alterations critical for precision medicine. Liquid biopsy has become a promising tool for real-time tumor monitoring, identifying genetic alterations in circulating-tumor DNA or extracellular vesicles. The second section describes the tumor microenvironment of PCa, highlighting its immunosuppressive landscape and the potential of combining ADT with immunotherapy. Advanced techniques, including single-cell RNA sequencing and spatial transcriptomics offer insights into cellular heterogeneity and interactions within the tumor microenvironment, paving the way for novel therapeutic strategies. Integration of these diverse research areas will provide a comprehensive understanding of the current state and future directions of PCa research, underscoring the importance of personalized medicine and the dynamic nature of cancer treatment strategies.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasutaka Yamada
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Sumiyoshi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuta Watanabe
- Department of Urology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroaki Kobayashi
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Daisuke Ito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Shiota M, Tanegashima T, Tatarano S, Kamoto T, Matsuyama H, Sakai H, Igawa T, Kamba T, Fujimoto N, Yokomizo A, Naito S, Eto M. The effect of human leukocyte antigen genotype on survival in advanced prostate cancer treated with primary androgen deprivation therapy: the KYUCOG-1401-A study. Prostate Cancer Prostatic Dis 2025; 28:193-201. [PMID: 38368501 DOI: 10.1038/s41391-024-00808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Immune editing, in which human leukocyte antigens (HLA) have critical roles, has been suggested to shape the landscape of human cancer. This study prospectively investigated whether HLA gene zygosity is associated with the prognosis of primary androgen deprivation therapy in advanced prostate cancer. METHODS KYUCOG-1401-A was conducted in conjunction with a prospective clinical trial (KYUCOG-1401). Among the patients enrolled in KYUCOG-1401 and treated with primary androgen deprivation therapy, only Japanese patients were included. HLA genotypes of HLA-A, B, C, DRB1, DQB1, and DPB1 were determined. The effect of divergence of HLA genotypes on time to progression, prostate cancer-specific survival, and overall survival was evaluated. RESULTS Among 127 patients, homozygosity for HLA-DRB1 (HR, 95% CI; 4.05, 1.54-10.7, P = 0.0047) and HLA-DQB1 (HR, 95% CI; 3.75, 1.47-9.58, P = 0.0058) was associated with an increased risk of prostate cancer-specific mortality. Patients with higher HLA evolutionary divergence scores at HLA-DQB1 (HR, 95% CI; 0.90, 0.82-0.97, P = 0.0093) had lower risks of prostate cancer-specific mortality. Androgen-responsive gene sets were upregulated in CD4low and CD8low tumors in the prostate cancer cohort, but not in the bladder and kidney cancer cohorts. CONCLUSIONS This study suggested that the diversity of HLA-II loci including HLA-DRB1 and HLA-DQB1 plays an important role in advanced prostate cancer survival, contributing to improved risk stratification in advanced prostate cancer. Moreover, it was shown that CD4+ T cells play an important role in androgen deprivation therapy, suggesting that immunotherapy targeting CD4+ T cells is promising for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hideki Sakai
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsukasa Igawa
- Department of Urology, School of Medicine, Kurume University, Kurume, Japan
| | - Tomomi Kamba
- Department of Urology, Kumamoto University, Kumamoto, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akira Yokomizo
- Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Seiji Naito
- Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Nasca V, Zhao J, Ros J, Lonardi S, Zwart K, Cohen R, Fakih M, Jayachandran P, Roodhart JML, Derksen J, Intini R, Bergamo F, Mazzoli G, Ghelardi F, Ligero M, Jonnagaddala J, Hawkins N, Ward RL, Wankhede D, Brenner H, Hoffmeister M, Vitellaro M, Salvatore L, Gallois C, Laurent-Puig P, Cremolini C, Overman MJ, Taieb J, Tougeron D, Andre T, Kather JN, Sundar R, Carmona J, Elez E, Koopman M, Pietrantonio F. Sex and outcomes of patients with microsatellite instability-high and BRAF V600E mutated metastatic colorectal cancer receiving immune checkpoint inhibitors. J Immunother Cancer 2025; 13:e010598. [PMID: 39929672 PMCID: PMC11815414 DOI: 10.1136/jitc-2024-010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are the gold standard therapy in patients with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). A significant proportion of patients show resistance, making the identification of determinants of response crucial. Growing evidence supports the role of sex in determining susceptibility to anticancer therapies, but data is lacking for patients with MSI-H CRC. METHODS In this real-world cohort comprising 624 patients with MSI-H mCRC receiving ICIs, we investigated the impact of sex on patients' outcomes, overall and according to RAS-BRAF mutational status or type of treatment (anti-PD-(L)1 with or without anti-CTLA-4 agents). We then investigated these associations also in two independent cohorts of patients with early-stage or advanced MSI-H CRC unexposed to ICIs. Finally, we explored two public microarray and RNA-seq datasets from patients with non-metastatic or metastatic MSI-H CRC to gain translational insights on the association between sex, BRAF status and immune contextures/ICI efficacy. RESULTS Although no differences were observed between females and males either overall or in the BRAF wild-type cohort, male sex was associated with inferior progression-free survival (PFS) and overall survival (OS) in the BRAF mutated cohort (in multivariable models, HR for PFS: 1.79, 95% CI: 1.13 to 2.83, p=0.014, and for OS: 2.33, 95% CI: 1.36 to 3.98, p=0.002). Males receiving anti-PD-(L)1 monotherapy had the worst outcomes, with a 3-year PFS and 3-year OS of 23.9% and 41.8%, respectively, while the addition of anti-CTLA-4 agents rescued such a worse outcome. We also observed that females experienced a higher frequency of any-grade immune-related adverse events. Conversely, sex was not prognostic in the independent cohorts of patients with MSI-H CRCs not treated with ICIs. Exploratory transcriptomic analyses suggest that tumors of males with BRAF mutated MSI-H metastatic CRC are characterized by an enrichment of androgen receptor signature and an immune-depleted microenvironment, with a reduction in memory B cells, activated natural killer cells, and activated myeloid dendritic cells. CONCLUSIONS Overall, our findings suggest a complex interplay between sex and BRAF mutational status that may modulate the activity of ICIs in patients with MSI-H mCRC and pave the way to novel tailored strategies.
Collapse
Affiliation(s)
- Vincenzo Nasca
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Joseph Zhao
- Department of Medicine, National University Hospital, Singapore
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sara Lonardi
- Medical Oncology 1, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Koen Zwart
- Department of Medical Oncology, Utrecht University, Utrecht, The Netherlands
| | - Romain Cohen
- Department of Medical Oncology, Saint-Antoine hospital, APHP, Sorbonne University, Paris, France
| | - Marwan Fakih
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center Duarte, Duarte, California, USA
| | - Priya Jayachandran
- Oncology, University of Southern California, Los Angeles, California, USA
| | | | - Jeroen Derksen
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rossana Intini
- Medical Oncology 1, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Francesca Bergamo
- Medical Oncology 1, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Giacomo Mazzoli
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Filippo Ghelardi
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Marta Ligero
- Else Kroener Fresenius Center for Digital Health, Technical University of Dresden, Dresden, Germany
| | - Jitendra Jonnagaddala
- School of Population Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicholas Hawkins
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Robyn L Ward
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Durgesh Wankhede
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Lisa Salvatore
- Cancer Comprehensive Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Claire Gallois
- CARPEM, SIRIC, Université Paris Cité, Georges Pompidou European Hospital, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Paris, Île-de-France, France
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julien Taieb
- Department of Digestive Oncology, Georges Pompidou European Hospital, Paris, France
| | - David Tougeron
- Gastroenterology and Hepatology Department, University Hospital Centre Poitiers, Poitiers, France
| | - Thierry Andre
- Department of Medical Oncology, Saint-Antoine hospital, APHP, Sorbonne University, Paris, France
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University of Dresden, Dresden, Germany
| | - Raghav Sundar
- Department of Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Javier Carmona
- Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elena Elez
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Miriam Koopman
- Department of Medical Oncology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Dotto GP, Buckinx A, Özdemir BC, Simon C. Androgen receptor signalling in non-prostatic malignancies: challenges and opportunities. Nat Rev Cancer 2025; 25:93-108. [PMID: 39587300 PMCID: PMC11947662 DOI: 10.1038/s41568-024-00772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/27/2024]
Abstract
The androgen receptor (AR) signalling pathway has been intensively studied in the context of prostate cancer, where androgen deprivation therapy is part of the standard of care for metastatic disease. By contrast, fewer studies have investigated the impact and translational potential of targeting AR in other cancer types where it is also expressed and functional. In this Review, we discuss the current understanding of AR in non-prostatic cancer types and summarize ongoing AR-directed clinical trials. While different androgen levels contribute to sexual dimorphism in cancer, targeting the AR system could benefit both sexes and help overcome resistance to targeted therapies. However, a bimodal function of AR signalling, which suppresses stromal changes associated with the early stages of cancer development, also needs to be considered. Future research is necessary to scrutinize cellular and molecular mechanisms of action of AR in cancer cells and the tumour microenvironment, to develop selective modulators of AR activity, and to identify patients with non-prostatic cancer who might benefit from targeting this pathway. AR-directed manipulation of host immune cells may offer a promising therapeutic approach for many types of cancers.
Collapse
Affiliation(s)
- G Paolo Dotto
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- Service d'Oto-rhino-laryngologie et chirurgie cervical faciale, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL), Lausanne, Switzerland.
- International Cancer Prevention Institute, Epalinges, Switzerland.
| | - An Buckinx
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - Berna C Özdemir
- Department of Medical Oncology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christian Simon
- Service d'Oto-rhino-laryngologie et chirurgie cervical faciale, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
10
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
11
|
Di Donato M, Cristiani CM, Capone M, Garofalo C, Madonna G, Passacatini LC, Ottaviano M, Ascierto PA, Auricchio F, Carbone E, Migliaccio A, Castoria G. Role of the androgen receptor in melanoma aggressiveness. Cell Death Dis 2025; 16:34. [PMID: 39837817 PMCID: PMC11751086 DOI: 10.1038/s41419-025-07350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Malignant melanoma represents the fifth most common cancer in the world and its incidence is rising. Novel therapies targeting receptor tyrosine kinases, kinases and immune checkpoints have been employed with a significant improvement of the overall survival and long-term disease containment. Nevertheless, the disease often progresses and becomes resistant to the therapies. As such, the discovery of new targets and drugs for advanced melanoma still remains a difficult task. Gender disparities, with a female advantage in melanoma incidence and outcome, have been reported. Although emerging studies support the pro-tumorigenic role of androgen/androgen receptor axis in melanoma, the molecular bases of such evidence are still under intense investigation. We now report that ligand activation of the androgen receptor drives melanoma invasiveness and its escape from natural killer-mediated cytotoxic effect. By combining different experimental approaches, we observe that melanoma escape is mediated by the androgen-triggered shedding of the surface molecule MICA. Specific blockade of ADAM10 or androgen receptor impairs the androgen-induced MICA shedding and melanoma immune-escape. Further, the increase in MICA serum levels correlates with a poor outcome in melanoma patients treated with the anti-PD-1 monoclonal antibody, pembrolizumab. At last, melanoma cells depleted of the androgen receptor become more responsive to the most commonly used immunocheckpoint inhibitors, suggesting that the receptor dampens the immunotherapy efficacy. Taken together, our findings identify the androgen receptor as a diagnostic guidance in melanoma and support the repositioning of AR blockers in clinical management of patients.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences - 'Magna Graecia' University of Catanzaro, 88100, Catanzaro, Italy
| | - Mariaelena Capone
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, 88100, Catanzaro, Italy
| | - Gabriele Madonna
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | | | - Margaret Ottaviano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Paolo Antonio Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Ferdinando Auricchio
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Ennio Carbone
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
12
|
Gutiérrez-Brito JA, Lomelí-Nieto JÁ, Muñoz-Valle JF, Oregon-Romero E, Corona-Angeles JA, Hernández-Bello J. Sex hormones and allergies: exploring the gender differences in immune responses. FRONTIERS IN ALLERGY 2025; 5:1483919. [PMID: 39840271 PMCID: PMC11747284 DOI: 10.3389/falgy.2024.1483919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025] Open
Abstract
Allergies are closely associated with sex-related hormonal variations that influence immune function, leading to distinct symptom profiles. Similar sex-based differences are observed in other immune disorders, such as autoimmune diseases. In allergies, women exhibit a higher prevalence of atopic conditions, such as allergic asthma and eczema, in comparison to men. However, age-related changes play a significant role because men have a higher incidence of allergies until puberty, and then comes a switch ratio of prevalence and severity in women. Investigations into the mechanisms of how the hormones influence the development of these diseases are crucial to understanding the molecular, cellular, and pathological aspects. Sex hormones control the reproductive system and have several immuno-modulatory effects affecting immune cells, including T and B cell development, antibody production, lymphoid organ size, and lymphocyte death. Moreover, studies have suggested that female sex hormones amplify memory immune responses, which may lead to an excessive immune response impacting the pathogenesis, airway hyperresponsiveness, inflammation of airways, and mucus production of allergic diseases. The evidence suggests that estrogens enhance immune humoral responses, autoimmunity, mast cell reactivity, and delayed IV allergic reactions, while androgens, progesterone, and glucocorticoids suppress them. This review explores the relationship between sex hormones and allergies, including epidemiological data, experimental findings, and insights from animal models. We discuss the general properties of these hormones, their effects on allergic processes, and clinical observations and therapeutic results. Finally, we describe hypersensitivity reactions to these hormones.
Collapse
Affiliation(s)
| | | | | | | | | | - Jorge Hernández-Bello
- Research Institute of Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
13
|
Prasad JL, Rojek MK, Gordon SC, Kaste LM, Halpern LR. Sex and Gender Health Education Tenets: An Essential Paradigm for Inclusivity in Dentistry. Dent Clin North Am 2025; 69:115-130. [PMID: 39603764 DOI: 10.1016/j.cden.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sex and gender are essential components of person-centered care. This article presents and discusses four important tenets regarding sex and gender health that should be incorporated into dental education and oral health care to foster inclusivity and improve care for all patients, including a sex and gender-diverse patient population.
Collapse
Affiliation(s)
- Joanne L Prasad
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, G-133 Salk Annex, Pittsburgh, PA 15261, USA; Department of Diagnostic Sciences, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, G-133 Salk Annex, Pittsburgh, PA 15261, USA.
| | - Mary K Rojek
- University of South Carolina School of Medicine Greenville, 607 Grove Road, Greenville, SC 29605, USA
| | - Sara C Gordon
- Department of Oral Medicine, School of Dentistry, University of Washington, 1959 Northeast Pacific Street, HSB B-530F, Box 357480, Seattle, WA 98195-7480, USA
| | - Linda M Kaste
- Department of Oral Biology, University of Illinois Chicago, 801 South Paulina Street, MC 690, Chicago, IL 60612, USA
| | - Leslie R Halpern
- Oral and Maxillofacial Surgery Residency, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY 10595, USA
| |
Collapse
|
14
|
Nesbitt C, Van Der Walt A, Butzkueven H, Cheung AS, Jokubaitis VG. Exploring the role of sex hormones and gender diversity in multiple sclerosis. Nat Rev Neurol 2025; 21:48-62. [PMID: 39658653 DOI: 10.1038/s41582-024-01042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
Sex and sex hormones are thought to influence multiple sclerosis (MS) through effects on inflammation, myelination and neurodegeneration, and exogenous hormones have been explored for their therapeutic potential. However, our understanding of how sex hormones influence MS disease processes and outcomes remains incomplete. Furthermore, our current knowledge is derived primarily from studies that focus exclusively on cisgender populations with exclusion of gender-diverse people. Gender-affirming hormone therapy comprising exogenous sex hormones or sex hormone blocking agents are commonly used by transgender and gender-diverse individuals, and it could influence MS risk and outcomes at various stages of disease. A better understanding of the impact and potential therapeutic effects of both endogenous and exogenous sex hormones in MS is needed to improve care and outcomes for cisgender individuals and, moreover, for gender-diverse populations wherein an evidence base does not exist. In this Perspective, we discuss the effects of endogenous and exogenous sex hormones in MS, including their potential therapeutic benefits, and examine both established sex-based dimorphisms and the potential for gender-diverse dimorphisms. We advocate for future research that includes gender-diverse people to enhance our knowledge of the interplay of sex and sex hormones in MS, leading to the development of more effective and inclusive treatment strategies and improvement of care for all individuals with MS.
Collapse
Affiliation(s)
- Cassie Nesbitt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia.
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Ada S Cheung
- Trans Health Research Group, Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia.
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
Yamaguchi-Tanaka M, Takagi K, Sato A, Yamazaki Y, Miyashita M, Masamune A, Suzuki T. Regulation of Stromal Cells by Sex Steroid Hormones in the Breast Cancer Microenvironment. Cancers (Basel) 2024; 16:4043. [PMID: 39682229 DOI: 10.3390/cancers16234043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer is a prevalent hormone-dependent malignancy, and estrogens/estrogen receptor (ER) signaling are pivotal therapeutic targets in ER-positive breast cancers, where endocrine therapy has significantly improved treatment efficacy. However, the emergence of both de novo and acquired resistance to these therapies continues to pose challenges. Additionally, androgens are produced locally in breast carcinoma tissues by androgen-producing enzymes, and the androgen receptor (AR) is commonly expressed in breast cancer cells. Intratumoral androgens play a significant role in breast cancer progression and are closely linked to resistance to endocrine treatments. The tumor microenvironment, consisting of tumor cells, immune cells, fibroblasts, extracellular matrix, and blood vessels, is crucial for tumor progression. Stromal cells influence tumor progression through direct interactions with cancer cells, the secretion of soluble factors, and modulation of tumor immunity. Estrogen and androgen signaling in breast cancer cells affects the tumor microenvironment, and the expression of hormone receptors correlates with the diversity of the stromal cell profile. Notably, various stromal cells also express ER or AR, which impacts breast cancer development. This review describes how sex steroid hormones, particularly estrogens and androgens, affect stromal cells in the breast cancer microenvironment. We summarize recent findings focusing on the effects of ER/AR signaling in breast cancer cells on stromal cells, as well as the direct effects of ER/AR signaling in stromal cells.
Collapse
Affiliation(s)
- Mio Yamaguchi-Tanaka
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Masamune
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Japan
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
16
|
D'Onofrio V, Sékaly RP. The immune-endocrine interplay in sex differential responses to viral infection and COVID-19. Trends Immunol 2024; 45:943-958. [PMID: 39562265 DOI: 10.1016/j.it.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024]
Abstract
Men are at higher risk for developing severe COVID-19 than women, while women are at higher risk for developing post-acute sequelae of COVID-19 (PASC). This highlights the impact of sex differences on immune responses and clinical outcomes of acute COVID-19 or PASC. A dynamic immune-endocrine interface plays an important role in the development of effective immune responses impacting the control of viral infections. In this opinion article we discuss mechanisms underlying the transcriptional and epigenetic regulation of immune responses by sex hormones during viral infections. We propose that disruption of this delicate immune-endocrine interplay can result in worsened outcomes of viral disease. We also posit that insights into these immune mechanisms can propel the development of novel immunomodulatory interventions that leverage immune-endocrine pathways to treat viral infections.
Collapse
Affiliation(s)
- Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Rafick Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Niu Q, Hao J, Li Z, Zhang H. Helper T cells: A potential target for sex hormones to ameliorate rheumatoid arthritis? (Review). Mol Med Rep 2024; 30:215. [PMID: 39370806 PMCID: PMC11450432 DOI: 10.3892/mmr.2024.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease whose etiology is not fully understood. Defective peripheral immune tolerance and subsequent mis‑differentiation and aberrant infiltration of synovium by various immune cells, especially helper T (Th) cells, play an important role in the development of RA. There are significant sex differences in RA, but the results of studies on the effects of sex hormones on RA have been difficult to standardize and hormone replacement therapy has been limited by the potential for serious side effects. Existing research has amply demonstrated that cellular immune responses are largely determined by sex and that sex hormones play a key role in Th cell responses. Based on the aforementioned background and the plasticity of Th cells, it is reasonable to hypothesize that the action of sex hormones on Th cells will hopefully become a therapeutic target for RA. The present review discussed the role of various Th cell subsets in the pathogenesis of RA and also explored the role of sex hormones on the phenotype and function of these aberrantly regulated immune cells in RA as well as other pathologic effects on RA.
Collapse
Affiliation(s)
- Quanjun Niu
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Junhang Hao
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Zhen Li
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Huiping Zhang
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| |
Collapse
|
18
|
Ying B, Liu X, Yang C, Xu J, Chen Y. Gender-specific association between a lipid composite index and asthma among US adults: insights from a population-based study. Lipids Health Dis 2024; 23:353. [PMID: 39478611 PMCID: PMC11523672 DOI: 10.1186/s12944-024-02338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Abnormalities in lipid metabolism are common among adult asthmatics. However, the precise directionality linking asthma to blood lipid levels remains controversial. Our study aimed to evaluate the association between the Non-HDL to HDL Ratio (NHHR), a lipid composite index, and asthma prevalence among the adult population in the United States. METHODS Utilizing adult participants' data from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2009 to 2018, the study employed a multivariable logistic regression model, adjusting for covariables, to establish the relationship between NHHR levels and the prevalence of asthma. Furthermore, smoothing curve fitting and subgroup analyses were conducted to investigate the robustness of this association. RESULTS This study included 26,023 adult individuals (mean age = 49.63 ± 17.66). In the fully adjusted model, a significant inverse association was observed between log-transformed NHHR values and asthma prevalence (OR = 0.85, 95% CI: 0.79-0.93). Subgroup analysis revealed that gender served as a modulator, altering the association between NHHR levels and asthma prevalence. A more pronounced negative association between lnNHHR and asthma prevalence was noted among male participants [(Male: OR = 0.78, 95% CI: 0.69-0.88) vs. (Female: OR = 0.92, 95% CI: 0.83-1.03), P for interaction = 0.0313]. CONCLUSIONS Our study revealed an inverse association between NHHR levels and the prevalence of asthma in the US adult population, which is influenced by gender. NHHR measurement may be a potential tool for early identification and prediction of adult asthmatics in specific populations.
Collapse
Affiliation(s)
- Bufan Ying
- School of Basic Medical Sciences, Naval Medical University, No 800. Xiangyin Road, Yangpu, Shanghai, 200433, China
| | - Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China
| | - Chengming Yang
- School of Basic Medical Sciences, Naval Medical University, No 800. Xiangyin Road, Yangpu, Shanghai, 200433, China
| | - Jinfang Xu
- Department of Health Statistics, Naval Medical University, No 800. Xiangyin Road, Yangpu, Shanghai, 200433, China.
| | - Ying Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
19
|
Stocking SQ, Webb CK, Miller GH, Thomeer MB, Goodin BR, Sorge RE. Understanding Risk of Chronic Pain Development and Related Mental Health Disparities Among Transgender People: A Review of Current Literature and Future Directions. THE JOURNAL OF PAIN 2024:104681. [PMID: 39307445 DOI: 10.1016/j.jpain.2024.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Biomedical and clinical research has traditionally focused on binary sex assignments as opposed to gender identity. This oversight has resulted in other gender minority populations being understudied. As a result, there is limited literature on chronic pain and mental health in transgender populations. These socially vulnerable individuals may be at increased risk for chronic pain development and related mental health disorders. Transgender individuals experience higher rates of social stigma and discrimination than their cisgender counterparts, and these factors have been linked to an increased prevalence of chronic pain, depression, and stress. Beyond chronic pain and mental health research, large overall health disparities and differences exist for transgender people compared with their cisgender peers. Therefore, it is crucial to include transgender individuals, as well as other gender minority people, in research in order to fully understand the impact of gender minority status on pain and quality of life. PERSPECTIVE: This review explores the intersectional impact of stress and mental health on chronic pain development and the unequal risk for transgender individuals. Promoting inclusion of gender minority individuals in research is a critical step to understanding the factors contributing to minority stress.
Collapse
Affiliation(s)
- Samantha Q Stocking
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Caroline K Webb
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Gabe H Miller
- Department of Sociology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Mieke B Thomeer
- Department of Sociology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Burel R Goodin
- Department of Anesthesiology, Washington University Pain Center, Washington University, St Louis, Missouri
| | - Robert E Sorge
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
20
|
Lee J, Yurkovetskiy LA, Reiman D, Frommer L, Strong Z, Chang A, Kahaly GJ, Khan AA, Chervonsky AV. Androgens contribute to sex bias of autoimmunity in mice by T cell-intrinsic regulation of Ptpn22 phosphatase expression. Nat Commun 2024; 15:7688. [PMID: 39227386 PMCID: PMC11372096 DOI: 10.1038/s41467-024-51869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Autoimmune diseases such as systemic lupus erythematosus (SLE) display a strong female bias. Although sex hormones have been associated with protecting males from autoimmunity, the molecular mechanisms are incompletely understood. Here we report that androgen receptor (AR) expressed in T cells regulates genes involved in T cell activation directly, or indirectly via controlling other transcription factors. T cell-specific deletion of AR in mice leads to T cell activation and enhanced autoimmunity in male mice. Mechanistically, Ptpn22, a phosphatase and negative regulator of T cell receptor signaling, is downregulated in AR-deficient T cells. Moreover, a conserved androgen-response element is found in the regulatory region of Ptpn22 gene, and the mutation of this transcription element in non-obese diabetic mice increases the incidence of spontaneous and inducible diabetes in male mice. Lastly, Ptpn22 deficiency increases the disease severity of male mice in a mouse model of SLE. Our results thus implicate AR-regulated genes such as PTPN22 as potential therapeutic targets for autoimmune diseases.
Collapse
MESH Headings
- Animals
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
- Male
- Female
- Autoimmunity
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Mice
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/genetics
- Androgens/metabolism
- Mice, Knockout
- Lymphocyte Activation
- Mice, Inbred NOD
- Mice, Inbred C57BL
- Disease Models, Animal
- Signal Transduction
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, 60637, USA
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonid A Yurkovetskiy
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
- Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Lara Frommer
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, 55101, Germany
| | - Zoe Strong
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, 55101, Germany
| | - Aly A Khan
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA.
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA.
- Department of Family Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| | - Alexander V Chervonsky
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA.
- Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
21
|
Alanazi H, Zhang Y, Fatunbi J, Luu T, Kwak-Kim J. The impact of reproductive hormones on T cell immunity; normal and assisted reproductive cycles. J Reprod Immunol 2024; 165:104295. [PMID: 39053203 DOI: 10.1016/j.jri.2024.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
During pregnancy, a unique immune milieu is established systemically and locally at the maternal-fetal interface. While preparing for embryonic implantation, endometrial effectors significantly change their proportions and function, which are synchronized with hormonal changes. During assisted reproductive technology cycles, various cytokines, chemokines, and immune factors dynamically change with the altered receptor expressions on the immune effectors. Thus, the hormonal regulation of immune effectors is critical to maintaining the immune milieu. In this review, hormonal effects on T cell subsets are reviewed. Sex hormones affect T cell ontogeny and development, consequently affecting their functions. Like other T cell subsets, CD4+ T helper (Th) cells are modulated by estrogen, where low estrogen concentration promotes Th1-driven cell-mediated immunity in the uterus and in vitro by enhancing IFN-γ production, while a high estrogen level decreases it. The abundance and differentiation of T regulatory (Treg) cells are controlled by estrogen, inducing Treg expansion. Conversely, progesterone maintains immune homeostasis by balancing Th1/Th2 and Th17/Treg immunity, leading to maternal-fetal tolerance. Therefore, the understanding of the hormonal impact on various T cell subsets during the reproductive cycles is critical to improving reproductive outcomes in women with recurrent pregnancy losses, repeated implantation failures, and undergoing assisted reproductive cycles.
Collapse
Affiliation(s)
- Hallah Alanazi
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; IVF and Reproductive Endocrinology Department, Women's Health Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Yuan Zhang
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Department of Reproductive Medicine, Jiangsu Province Hospital, Guangzhou Road 300, Nanjing, Jiangsu 210029, China
| | - Joy Fatunbi
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Than Luu
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA.
| |
Collapse
|
22
|
Lakshmikanth T, Consiglio C, Sardh F, Forlin R, Wang J, Tan Z, Barcenilla H, Rodriguez L, Sugrue J, Noori P, Ivanchenko M, Piñero Páez L, Gonzalez L, Habimana Mugabo C, Johnsson A, Ryberg H, Hallgren Å, Pou C, Chen Y, Mikeš J, James A, Dahlqvist P, Wahlberg J, Hagelin A, Holmberg M, Degerblad M, Isaksson M, Duffy D, Kämpe O, Landegren N, Brodin P. Immune system adaptation during gender-affirming testosterone treatment. Nature 2024; 633:155-164. [PMID: 39232147 PMCID: PMC11374716 DOI: 10.1038/s41586-024-07789-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/04/2024] [Indexed: 09/06/2024]
Abstract
Infectious, inflammatory and autoimmune conditions present differently in males and females. SARS-CoV-2 infection in naive males is associated with increased risk of death, whereas females are at increased risk of long COVID1, similar to observations in other infections2. Females respond more strongly to vaccines, and adverse reactions are more frequent3, like most autoimmune diseases4. Immunological sex differences stem from genetic, hormonal and behavioural factors5 but their relative importance is only partially understood6-8. In individuals assigned female sex at birth and undergoing gender-affirming testosterone therapy (trans men), hormone concentrations change markedly but the immunological consequences are poorly understood. Here we performed longitudinal systems-level analyses in 23 trans men and found that testosterone modulates a cross-regulated axis between type-I interferon and tumour necrosis factor. This is mediated by functional attenuation of type-I interferon responses in both plasmacytoid dendritic cells and monocytes. Conversely, testosterone potentiates monocyte responses leading to increased tumour necrosis factor, interleukin-6 and interleukin-15 production and downstream activation of nuclear factor kappa B-regulated genes and potentiation of interferon-γ responses, primarily in natural killer cells. These findings in trans men are corroborated by sex-divergent responses in public datasets and illustrate the dynamic regulation of human immunity by sex hormones, with implications for the health of individuals undergoing hormone therapy and our understanding of sex-divergent immune responses in cisgender individuals.
Collapse
Affiliation(s)
| | - Camila Consiglio
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Fabian Sardh
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Rikard Forlin
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jun Wang
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ziyang Tan
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Hugo Barcenilla
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Lucie Rodriguez
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jamie Sugrue
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Peri Noori
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Margarita Ivanchenko
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Laura Piñero Páez
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Laura Gonzalez
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | | | - Anette Johnsson
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Henrik Ryberg
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Hallgren
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Christian Pou
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yang Chen
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jaromír Mikeš
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Anna James
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Anders Hagelin
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Holmberg
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Degerblad
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Magnus Isaksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Olle Kämpe
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Nils Landegren
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
- Medical Research Council, Laboratory of Medical Sciences, London, UK.
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
23
|
Egilmez CB, Pazarlar BA, Erdogan MA, Uyanikgil Y, Erbas O. Choline chloride shows gender-dependent positive effects on social deficits, learning/memory impairments, neuronal loss and neuroinflammation in the lipopolysaccharide-induced rat model of autism. Int J Dev Neurosci 2024; 84:392-405. [PMID: 38721665 DOI: 10.1002/jdn.10335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 08/06/2024] Open
Abstract
The neuroprotective effects of choline chloride, an essential nutrient, a precursor for the acetylcholine and synthesis of membrane phospholipids, have been associated with neurological and neurodegenerative diseases. Its contribution to autism spectrum disorder, a neurodevelopmental disorder, remains unknown. Thus, we aimed to evaluate the effects of choline chloride on social behaviours, and histopathological and biochemical changes in a rat autism model. The autism model was induced by administration of 100 μg/kg lipopolysaccharide (LPS) on the 10th day of gestation. Choline chloride treatment (100 mg/kg/day) was commenced on PN5 and maintained until PN50. Social deficits were assessed by three-chamber sociability, open field, and passive avoidance learning tests. Tumour necrosis factor alpha (TNF-α), interleukin-2 (IL) and IL-17, nerve growth factor (NGF), and glutamate decarboxylase 67 (GAD67) levels were measured to assess neuroinflammatory responses. In addition, the number of hippocampal and cerebellar neurons and glial fibrillary acidic protein (GFAP) expression were evaluated. Social novelty and passive avoidance learning tests revealed significant differences in choline chloride-treated male rats compared with saline-treated groups. TNF-α, IL-2, and IL-17 were significantly decreased after choline chloride treatment in both males and females. NGF and GAD67 levels were unchanged in females, while there were significant differences in males. Histologically, significant changes in terms of gliosis were detected in hippocampal CA1 and CA3 regions and cerebellum in choline chloride-treated groups. The presence of ameliorative effects of choline chloride treatment on social behaviour and neuroinflammation through neuroinflammatory, neurotrophic, and neurotransmission pathways in a sex-dependent rat model of LPS-induced autism was demonstrated.
Collapse
Affiliation(s)
- Cansu Bilister Egilmez
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Burcu Azak Pazarlar
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Yiğit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Bilim University, Istanbul, Turkey
| |
Collapse
|
24
|
Perez-Navarro E, Conteduca V, Funes JM, Dominguez JI, Martin-Serrano M, Cremaschi P, Fernandez-Perez MP, Gordoa TA, Font A, Vázquez-Estévez S, González-del-Alba A, Wetterskog D, Mellado B, Fernandez-Calvo O, Méndez-Vidal MJ, Climent MA, Duran I, Gallardo E, Rodriguez Sanchez A, Santander C, Sáez MI, Puente J, Tudela J, Marinas C, López-Andreo MJ, Castellano D, Attard G, Grande E, Rosino A, Botia JA, Palma-Mendez J, De Giorgi U, Gonzalez-Billalabeitia E. Prognostic Implications of Blood Immune-Cell Composition in Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2024; 16:2535. [PMID: 39061175 PMCID: PMC11274568 DOI: 10.3390/cancers16142535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The prognosis for patients with metastatic castration-resistant prostate cancer (mCRPC) varies, being influenced by blood-related factors such as transcriptional profiling and immune cell ratios. We aimed to address the contribution of distinct whole blood immune cell components to the prognosis of these patients. This study analyzed pre-treatment blood samples from 152 chemotherapy-naive mCRPC patients participating in a phase 2 clinical trial (NCT02288936) and a validation cohort. We used CIBERSORT-X to quantify 22 immune cell types and assessed their prognostic significance using Kaplan-Meier and Cox regression analyses. Reduced CD8 T-cell proportions and elevated monocyte levels were substantially connected with a worse survival. High monocyte counts correlated with a median survival of 32.2 months versus 40.3 months for lower counts (HR: 1.96, 95% CI 1.11-3.45). Low CD8 T-cell levels were associated with a median survival of 31.8 months compared to 40.3 months for higher levels (HR: 1.97, 95% CI 1.11-3.5). These findings were consistent in both the trial and validation cohorts. Multivariate analysis further confirmed the independent prognostic value of CD8 T-cell counts. This study highlights the prognostic implications of specific blood immune cells, suggesting they could serve as biomarkers in mCRPC patient management and should be further explored in clinical trials.
Collapse
Affiliation(s)
- Enrique Perez-Navarro
- Department of Medical Oncology, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.P.-N.); (J.M.F.); (M.M.-S.)
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, 30100 Murcia, Spain (J.P.-M.)
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Juan M. Funes
- Department of Medical Oncology, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.P.-N.); (J.M.F.); (M.M.-S.)
| | - Jose I. Dominguez
- Department of Medical Oncology, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.P.-N.); (J.M.F.); (M.M.-S.)
| | - Miguel Martin-Serrano
- Department of Medical Oncology, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.P.-N.); (J.M.F.); (M.M.-S.)
| | - Paolo Cremaschi
- University College London Cancer Institute, London WC1E 6DD, UK
| | - Maria Piedad Fernandez-Perez
- Department of Haematology and Medical Oncology, Hospital Universitario Morales Meseguer, Instituto Murciano de Investigaciones Biosanitarias (IMIB), 30005 Murcia, Spain
| | - Teresa Alonso Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Albert Font
- Institut Català dOncologia, Hospital Universitari Germans Trias i Pujol, 08029 Badalona, Spain
| | | | | | | | - Begona Mellado
- Medical Oncology Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Ovidio Fernandez-Calvo
- Department of Medical Oncology, Complejo Hospitalario Universitario Ourense, 32005 Orense, Spain
| | - María José Méndez-Vidal
- Medical Oncology Department, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | | | - Ignacio Duran
- Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Enrique Gallardo
- Medical Oncology Service, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | | | - Carmen Santander
- Department of Medical Oncology, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | - Maria Isabel Sáez
- UGCI Oncología Médica, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Javier Puente
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), CIBERONC, 28040 Madrid, Spain
| | - Julian Tudela
- Department of Pathology, Hospital Morales Meseguer, 30008 Murcia, Spain;
| | - Cecilia Marinas
- Department of Medical Oncology, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.P.-N.); (J.M.F.); (M.M.-S.)
| | - María Jose López-Andreo
- Department of Molecular Biology, Servicio de Apoyo a la Investigación-Instituto Murciano de Investigación Biosanitaria (SAI-IMIB), Universidad de Murcia, 30100 Murcia, Spain
| | - Daniel Castellano
- Department of Medical Oncology, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.P.-N.); (J.M.F.); (M.M.-S.)
| | - Gerhardt Attard
- University College London Cancer Institute, London WC1E 6DD, UK
| | - Enrique Grande
- Medical Oncology Department, MD Anderson Cancer Center Madrid, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Antonio Rosino
- Urology Department, Hospital Universitario Morales Meseguer, 30005 Murcia, Spain
| | - Juan A. Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, 30100 Murcia, Spain (J.P.-M.)
| | - Jose Palma-Mendez
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, 30100 Murcia, Spain (J.P.-M.)
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Enrique Gonzalez-Billalabeitia
- Department of Medical Oncology, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (E.P.-N.); (J.M.F.); (M.M.-S.)
- Facultad de Medicina, Universidad Católica San Antonio de Murcia (UCAM), 30107 Murcia, Spain
| |
Collapse
|
25
|
Forsyth KS, Jiwrajka N, Lovell CD, Toothacre NE, Anguera MC. The conneXion between sex and immune responses. Nat Rev Immunol 2024; 24:487-502. [PMID: 38383754 PMCID: PMC11216897 DOI: 10.1038/s41577-024-00996-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
There are notable sex-based differences in immune responses to pathogens and self-antigens, with female individuals exhibiting increased susceptibility to various autoimmune diseases, and male individuals displaying preferential susceptibility to some viral, bacterial, parasitic and fungal infections. Although sex hormones clearly contribute to sex differences in immune cell composition and function, the presence of two X chromosomes in female individuals suggests that differential gene expression of numerous X chromosome-linked immune-related genes may also influence sex-biased innate and adaptive immune cell function in health and disease. Here, we review the sex differences in immune system composition and function, examining how hormones and genetics influence the immune system. We focus on the genetic and epigenetic contributions responsible for altered X chromosome-linked gene expression, and how this impacts sex-biased immune responses in the context of pathogen infection and systemic autoimmunity.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Claudia D Lovell
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Dourson AJ, Darken RS, Baranski TJ, Gereau RW, Ross WT, Nahman-Averbuch H. The role of androgens in migraine pathophysiology. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100171. [PMID: 39498299 PMCID: PMC11532460 DOI: 10.1016/j.ynpai.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
Migraine affects ∼12 % of the worldwide population and is more prevalent in females, which suggests a role of sex hormones in migraine pathophysiology. Most studies have focused on estrogen and progesterone, and the involvement of androgens has been less studied. However, due to the recent advances in androgen interventions, which could advance new androgen-based migraine treatments, it is critical to better understand the role of androgens in migraine. Testosterone, the most studied androgen, was found to have an antinociceptive effect in various animal and human pain studies. Thus, it could also have a protective effect related to lower migraine severity and prevalence. In this review, we discuss studies examining the role of androgens on migraine-related symptoms in migraine animal models. Additionally, we summarize the results of human studies comparing androgen levels between patients with migraine and healthy controls, studies assessing the relationships between androgen levels and migraine severity, and intervention studies examining the impact of testosterone treatment on migraine severity. Many of the studies have limitations, however, the results suggest that androgens may have a minor effect on migraine. Still, it is possible that androgens are involved in migraine pathophysiology in a sub-group of patients such as in adolescents or postmenopausal women. We discuss potential mechanisms in which testosterone, as the main androgen tested, can impact migraine. These mechanisms range from the cellular level to systems and behavior and include the effect of testosterone on sensory neurons, the immune and vascular systems, the stress response, brain function, and mood. Lastly, we suggest future directions to advance this line of research.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel S. Darken
- Department of Neurology, Washington University School of Medicine, St. Louis Missouri, USA
| | - Thomas J. Baranski
- Division of Endocrinology, Diabetes and Metabolism Washington University School of Medicine in St. Louis Missouri, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney Trotter Ross
- Division of Minimally Invasive Gynecologic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Sutherland L, Carter L. Sex as a Biological Variable in Early-Phase Oncology Clinical Trials: Enhancing the Path to Personalised Medicine. Heliyon 2024; 10:e32597. [PMID: 39183838 PMCID: PMC11341330 DOI: 10.1016/j.heliyon.2024.e32597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/05/2024] [Indexed: 08/27/2024] Open
Abstract
Sex is an essential biological variable that influences the development, progression and response to treatment in cancer. Despite this, early-phase cancer clinical trials frequently neglect to consider sex as a variable, creating a barrier to the development of personalised medicine. This article argues that failure to identify and infer sex differences in early-phase clinical trials may result in suboptimal dosing, underestimation of toxicity, and the failure to identify potential sex-specific responses to new systemic anticancer therapies. There should be a greater focus on sex as a biological variable in drug development so that thoughtful and deliberate study design can bring precision to the development of new systemic cancer therapies.
Collapse
Affiliation(s)
- Lydia Sutherland
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
- Department of Pharmacy, The Christie NHS Foundation Trust, Manchester, UK
| | - Louise Carter
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
28
|
Абсатарова ЮС, Евсеева ЮС, Андреева ЕН, Зураева ЗТ, Шереметьева ЕВ, Григорян ОР, Михеев РК. [Immunological status in patients with amenorrhea (literature review)]. PROBLEMY ENDOKRINOLOGII 2024; 70:118-126. [PMID: 39868454 PMCID: PMC11775678 DOI: 10.14341/probl13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 01/28/2025]
Abstract
Amenorrhea is a common symptom of a whole range of nosologies among women of reproductive age, which can accompany any endocrinopathy in the stage of decompensation. In all the diversity of various links in the pathogenesis of reproductive disorders, the problem of immunopathology remains a little aside, however, the significance of these disorders is underestimated. This publication provides an overview of immune system abnormalities in a women with amenorrhea. As is known, in polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI), one of the clinical manifestations is amenorrhea. On the one hand, these nosologies differ significantly from each other in etiology, pathogenesis and approaches to therapy, and on the other hand, they have a common similarity, manifested by immunological disorders. The article provides information about the immune status of patients with PCOS and POI. Works devoted to various disorders in the immune system, pathologies of humoral and cellular immunity, which in the future may serve as the key to the development of new and non-standard methods of treating such socially significant diseases, are analyzed. Literature search was carried out in national (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases in Russian and English. The choice of sources was prioritized for the period from 2018 to 2024.
Collapse
Affiliation(s)
| | - Ю. С. Евсеева
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии;
Российский университет медицины
| | - З. Т. Зураева
- Национальный медицинский исследовательский центр эндокринологии
| | | | - О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | - Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
29
|
Ainslie RJ, Simitsidellis I, Kirkwood PM, Gibson DA. RISING STARS: Androgens and immune cell function. J Endocrinol 2024; 261:e230398. [PMID: 38579776 PMCID: PMC11103679 DOI: 10.1530/joe-23-0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Androgens can modulate immune cell function and may contribute to differences in the prevalence and severity of common inflammatory conditions. Although most immune cells are androgen targets, our understanding of how changes in androgen bioavailability can affect immune responses is incomplete. Androgens alter immune cell composition, phenotype, and activation by modulating the expression and secretion of inflammatory mediators or by altering the development and maturation of immune cell precursors. Androgens are generally associated with having suppressive effects on the immune system, but their impacts are cell and tissue context-dependent and can be highly nuanced even within immune cell subsets. In response to androgens, innate immune cells such as neutrophils, monocytes, and macrophages increase the production of the anti-inflammatory cytokine IL-10 and decrease nitric oxide production. Androgens promote the differentiation of T cell subsets and reduce the production of inflammatory mediators, such as IFNG, IL-4 and IL-5. Additionally, androgens/androgen receptor can promote the maturation of B cells. Thus, androgens can be considered as immunomodulatory agents, but further work is required to understand the precise molecular pathways that are regulated at the intersection between endocrine and inflammatory signals. This narrative review focusses on summarising our current understanding of how androgens can alter immune cell function and how this might affect inflammatory responses in health and disease.
Collapse
Affiliation(s)
- Rebecca J Ainslie
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Ioannis Simitsidellis
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Phoebe M Kirkwood
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Douglas A Gibson
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Zhao J, Wang Q, Tan AF, Loh CJL, Toh HC. Sex differences in cancer and immunotherapy outcomes: the role of androgen receptor. Front Immunol 2024; 15:1416941. [PMID: 38863718 PMCID: PMC11165033 DOI: 10.3389/fimmu.2024.1416941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Across the wide range of clinical conditions, there exists a sex imbalance where biological females are more prone to autoimmune diseases and males to some cancers. These discrepancies are the combinatory consequence of lifestyle and environmental factors such as smoking, alcohol consumption, obesity, and oncogenic viruses, as well as other intrinsic biological traits including sex chromosomes and sex hormones. While the emergence of immuno-oncology (I/O) has revolutionised cancer care, the efficacy across multiple cancers may be limited because of a complex, dynamic interplay between the tumour and its microenvironment (TME). Indeed, sex and gender can also influence the varying effectiveness of I/O. Androgen receptor (AR) plays an important role in tumorigenesis and in shaping the TME. Here, we lay out the epidemiological context of sex disparity in cancer and then review the current literature on how AR signalling contributes to such observation via altered tumour development and immunology. We offer insights into AR-mediated immunosuppressive mechanisms, with the hope of translating preclinical and clinical evidence in gender oncology into improved outcomes in personalised, I/O-based cancer care.
Collapse
Affiliation(s)
- Junzhe Zhao
- Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Qian Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Medical Oncology Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | | | - Celestine Jia Ling Loh
- Duke-NUS Medical School, Singapore, Singapore
- Sengkang General Hospital, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Hu YM, Zhao F, Graff JN, Chen C, Zhao X, Thomas GV, Wu H, Kardosh A, Mills GB, Alumkal JJ, Moran AE, Xia Z. Androgen receptor activity inversely correlates with immune cell infiltration and immunotherapy response across multiple cancer lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593181. [PMID: 38798471 PMCID: PMC11118439 DOI: 10.1101/2024.05.08.593181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
There is now increasing recognition of the important role of androgen receptor (AR) in modulating immune function. To gain a comprehensive understanding of the effects of AR activity on cancer immunity, we employed a computational approach to profile AR activity in 33 human tumor types using RNA-Seq datasets from The Cancer Genome Atlas. Our pan-cancer analysis revealed that the genes most negatively correlated with AR activity across cancers are involved in active immune system processes. Importantly, we observed a significant negative correlation between AR activity and IFNγ pathway activity at the pan-cancer level. Indeed, using a matched biopsy dataset from subjects with prostate cancer before and after AR-targeted treatment, we verified that inhibiting AR enriches immune cell abundances and is associated with higher IFNγ pathway activity. Furthermore, by analyzing immunotherapy datasets in multiple cancers, our results demonstrate that low AR activity was significantly associated with a favorable response to immunotherapy. Together, our data provide a comprehensive assessment of the relationship between AR signaling and tumor immunity.
Collapse
Affiliation(s)
- Ya-Mei Hu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Faming Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Julie N. Graff
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Canping Chen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Xiyue Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - George V. Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Hui Wu
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, Portland, OR, USA
| | - Adel Kardosh
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Gordon B. Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joshi J. Alumkal
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Amy E. Moran
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
32
|
Xiao T, Lee J, Gauntner TD, Velegraki M, Lathia JD, Li Z. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat Rev Cancer 2024; 24:338-355. [PMID: 38589557 DOI: 10.1038/s41568-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are present across multiple non-reproductive organ cancers, with male individuals generally experiencing higher incidence of cancer with poorer outcomes. Although some mechanisms underlying these differences are emerging, the immunological basis is not well understood. Observations from clinical trials also suggest a sex bias in conventional immunotherapies with male individuals experiencing a more favourable response and female individuals experiencing more severe adverse events to immune checkpoint blockade. In this Perspective article, we summarize the major biological hallmarks underlying sex bias in immuno-oncology. We focus on signalling from sex hormones and chromosome-encoded gene products, along with sex hormone-independent and chromosome-independent epigenetic mechanisms in tumour and immune cells such as myeloid cells and T cells. Finally, we highlight opportunities for future studies on sex differences that integrate sex hormones and chromosomes and other emerging cancer hallmarks such as ageing and the microbiome to provide a more comprehensive view of how sex differences underlie the response in cancer that can be leveraged for more effective immuno-oncology approaches.
Collapse
Affiliation(s)
- Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy D Gauntner
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Rose Ella Burkhardt Brain Tumour Center, Cleveland Clinic, Cleveland, OH, USA.
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA.
| |
Collapse
|
33
|
Perez-Quintero LA, Abidin BM, Tremblay ML. Immunotherapeutic implications of negative regulation by protein tyrosine phosphatases in T cells: the emerging cases of PTP1B and TCPTP. Front Med (Lausanne) 2024; 11:1364778. [PMID: 38707187 PMCID: PMC11066278 DOI: 10.3389/fmed.2024.1364778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
In the context of inflammation, T cell activation occurs by the concerted signals of the T cell receptor (TCR), co-stimulatory receptors ligation, and a pro-inflammatory cytokine microenvironment. Fine-tuning these signals is crucial to maintain T cell homeostasis and prevent self-reactivity while offering protection against infectious diseases and cancer. Recent developments in understanding the complex crosstalk between the molecular events controlling T cell activation and the balancing regulatory cues offer novel approaches for the development of T cell-based immunotherapies. Among the complex regulatory processes, the balance between protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) controls the transcriptional and metabolic programs that determine T cell function, fate decision, and activation. In those, PTPs are de facto regulators of signaling in T cells acting for the most part as negative regulators of the canonical TCR pathway, costimulatory molecules such as CD28, and cytokine signaling. In this review, we examine the function of two close PTP homologs, PTP1B (PTPN1) and T-cell PTP (TCPTP; PTPN2), which have been recently identified as promising candidates for novel T-cell immunotherapeutic approaches. Herein, we focus on recent studies that examine the known contributions of these PTPs to T-cell development, homeostasis, and T-cell-mediated immunity. Additionally, we describe the signaling networks that underscored the ability of TCPTP and PTP1B, either individually and notably in combination, to attenuate TCR and JAK/STAT signals affecting T cell responses. Thus, we anticipate that uncovering the role of these two PTPs in T-cell biology may lead to new treatment strategies in the field of cancer immunotherapy. This review concludes by exploring the impacts and risks that pharmacological inhibition of these PTP enzymes offers as a therapeutic approach in T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Luis Alberto Perez-Quintero
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
34
|
Fan Y, Ge Y, Niu K, Li Y, Qi LW, Zhu H, Ma G. MLXIPL associated with tumor-infiltrating CD8+ T cells is involved in poor prostate cancer prognosis. Front Immunol 2024; 15:1364329. [PMID: 38698844 PMCID: PMC11063283 DOI: 10.3389/fimmu.2024.1364329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Within tumor microenvironment, the presence of preexisting antitumor CD8+ T Q7 cells have been shown to be associated with a favorable prognosis in most solid cancers. However, in the case of prostate cancer (PCa), they have been linked to a negative impact on prognosis. Methods To gain a deeper understanding of the contribution of infiltrating CD8+ T cells to poor prognosis in PCa, the infiltration levelsof CD8+ T cells were estimated using the TCGA PRAD (The Cancer Genome Atlas Prostate Adenocarcinoma dataset) and MSKCC (Memorial Sloan Kettering Cancer Center) cohorts. Results Bioinformatic analyses revealed that CD8+ T cells likely influence PCa prognosis through increased expression of immune checkpoint molecules and enhanced recruitment of regulatory T cells. The MLXIPL was identified as the gene expressed in response to CD8+ T cell infiltration and was found to be associated with PCa prognosis. The prognostic role of MLXIPL was examined in two cohorts: TCGA PRAD (p = 2.3E-02) and the MSKCC cohort (p = 1.6E-02). Subsequently, MLXIPL was confirmed to be associated with an unfavorable prognosis in PCa, as evidenced by an independent cohort study (hazard ratio [HR] = 2.57, 95% CI: 1.42- 4.65, p = 1.76E-03). Discussion In summary, the findings suggested that MLXIPL related to tumor-infiltrating CD8+ T cells facilitated a poor prognosis in PCa.
Collapse
Affiliation(s)
- Yuanming Fan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuqiu Ge
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kaiming Niu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Haixia Zhu
- Clinical Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Gaoxiang Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Oncology, Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, Nanjing, China
| |
Collapse
|
35
|
Rio P, Caldarelli M, Chiantore M, Ocarino F, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Immune Cells, Gut Microbiota, and Vaccines: A Gender Perspective. Cells 2024; 13:526. [PMID: 38534370 PMCID: PMC10969451 DOI: 10.3390/cells13060526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The development of preventive and therapeutic vaccines has played a crucial role in preventing infections and treating chronic and non-communicable diseases, respectively. For a long time, the influence of sex differences on modifying health and disease has not been addressed in clinical and preclinical studies. The interaction of genetic, epigenetic, and hormonal factors plays a role in the sex-related differences in the epidemiology of diseases, clinical manifestations, and the response to treatment. Moreover, sex is one of the leading factors influencing the gut microbiota composition, which could further explain the different predisposition to diseases in men and women. In the same way, differences between sexes occur also in the immune response to vaccines. This narrative review aims to highlight these differences, focusing on the immune response to vaccines. Comparative data about immune responses, vaccine effectiveness, and side effects are reviewed. Hence, the intricate interplay between sex, immunity, and the gut microbiota will be discussed for its potential role in the response to vaccination. Embracing a sex-oriented perspective in research may improve the efficacy of the immune response and allow the design of tailored vaccine schedules.
Collapse
Affiliation(s)
- Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| |
Collapse
|
36
|
Silva J, Takahashi T, Wood J, Lu P, Tabachnikova A, Gehlhausen JR, Greene K, Bhattacharjee B, Monteiro VS, Lucas C, Dhodapkar RM, Tabacof L, Peña-Hernandez M, Kamath K, Mao T, Mccarthy D, Medzhitov R, van Dijk D, Krumholz HM, Guan L, Putrino D, Iwasaki A. Sex differences in symptomatology and immune profiles of Long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.29.24303568. [PMID: 38496502 PMCID: PMC10942502 DOI: 10.1101/2024.02.29.24303568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Strong sex differences in the frequencies and manifestations of Long COVID (LC) have been reported with females significantly more likely than males to present with LC after acute SARS-CoV-2 infection 1-7 . However, whether immunological traits underlying LC differ between sexes, and whether such differences explain the differential manifestations of LC symptomology is currently unknown. Here, we performed sex-based multi-dimensional immune-endocrine profiling of 165 individuals 8 with and without LC in an exploratory, cross-sectional study to identify key immunological traits underlying biological sex differences in LC. We found that female and male participants with LC experienced different sets of symptoms, and distinct patterns of organ system involvement, with female participants suffering from a higher symptom burden. Machine learning approaches identified differential sets of immune features that characterized LC in females and males. Males with LC had decreased frequencies of monocyte and DC populations, elevated NK cells, and plasma cytokines including IL-8 and TGF-β-family members. Females with LC had increased frequencies of exhausted T cells, cytokine-secreting T cells, higher antibody reactivity to latent herpes viruses including EBV, HSV-2, and CMV, and lower testosterone levels than their control female counterparts. Testosterone levels were significantly associated with lower symptom burden in LC participants over sex designation. These findings suggest distinct immunological processes of LC in females and males and illuminate the crucial role of immune-endocrine dysregulation in sex-specific pathology.
Collapse
|
37
|
Bergom HE, Sena LA, Day A, Miller B, Miller CD, Lozada JR, Zorko N, Wang J, Shenderov E, Lobo FP, Caramella-Pereira F, Marchionni L, Drake CG, Lotan T, De Marzo AM, Hwang J, Antonarakis ES. Divergent immune microenvironments in two tumor nodules from a patient with mismatch repair-deficient prostate cancer. NPJ Genom Med 2024; 9:7. [PMID: 38253539 PMCID: PMC10803790 DOI: 10.1038/s41525-024-00392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Patients with prostate cancer (PC) generally do not respond favorably to immune checkpoint inhibitors, which may be due to a low abundance of tumor-infiltrating lymphocytes even when mutational load is high. Here, we identified a patient who presented with high-grade primary prostate cancer with two adjacent tumor nodules. While both nodules were mismatch repair-deficient (MMRd), exhibited pathogenic MSH2 and MSH6 alterations, had a high tumor mutational burden (TMB), and demonstrated high microsatellite instability (MSI), they had markedly distinct immune phenotypes. The first displayed a dense infiltrate of lymphocytes ("hot nodule"), while the second displayed significantly fewer infiltrating lymphocytes ("cold nodule"). Whole-exome DNA analysis found that both nodules shared many identical mutations, indicating that they were derived from a single clone. However, the cold nodule appeared to be sub-clonal relative to the hot nodule, suggesting divergent evolution of the cold nodule from the hot nodule. Whole-transcriptome RNA analysis found that the cold nodule demonstrated lower expression of genes related to antigen presentation (HLA) and, paradoxically, classical tumor immune tolerance markers such as PD-L1 (CD274) and CTLA-4. Immune cell deconvolution suggested that the hot nodule was enriched not only in CD8+ and CD4 + T lymphocytes, but also in M1 macrophages, activated NK cells, and γδ T cells compared to the cold nodule. This case highlights that MMRd/TMB-high PC can evolve to minimize an anti-tumor immune response, and nominates downregulation of antigen presentation machinery (HLA loss) as a potential mechanism of adaptive immune evasion in PC.
Collapse
Affiliation(s)
- Hannah E Bergom
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Laura A Sena
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Abderrahman Day
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Miller
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Carly D Miller
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - John R Lozada
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas Zorko
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jinhua Wang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eugene Shenderov
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Francisco Pereira Lobo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
- Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luigi Marchionni
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Charles G Drake
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
- Janssen Research and Development, LLC, Springhouse, PA, USA
| | - Tamara Lotan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Justin Hwang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
- Division of Hematology, Oncology and Transplantation, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
38
|
Gao Q, Liu MQ, Li JX, Wang Y, Zhang Y, Zhu H. Sex differences in stress-induced hyperalgesia and its mechanisms. J Neurosci Res 2024; 102:e25266. [PMID: 38284853 DOI: 10.1002/jnr.25266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 01/30/2024]
Abstract
Chronic stress induces a variety of physiological and/or psychological abnormalities, including hyperalgesia. Researchers have discovered sex differences in the prevalence of stress-induced hyperalgesia (SIH) in recent years. Sex differences may be one of the reasons for the heterogeneity of susceptibility to stress-related diseases. In this review, the potential mechanisms of sex differences in SIH are discussed, such as hypothalamus-pituitary-adrenal axis responses, regulation of sex hormones, and immune system responses.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Mei-Qi Liu
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Jia-Xin Li
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Yi Wang
- Biotechnology Experimental Teaching Center, Harbin Medical University, Harbin, P. R. China
| | - Ying Zhang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
39
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
40
|
Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity 2023; 56:2472-2491. [PMID: 37967530 DOI: 10.1016/j.immuni.2023.10.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Hawley JE, Obradovic AZ, Dallos MC, Lim EA, Runcie K, Ager CR, McKiernan J, Anderson CB, Decastro GJ, Weintraub J, Virk R, Lowy I, Hu J, Chaimowitz MG, Guo XV, Zhang Y, Haffner MC, Worley J, Stein MN, Califano A, Drake CG. Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer. Cancer Cell 2023; 41:1972-1988.e5. [PMID: 37922910 PMCID: PMC11184948 DOI: 10.1016/j.ccell.2023.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
When compared to other malignancies, the tumor microenvironment (TME) of primary and castration-resistant prostate cancer (CRPC) is relatively devoid of immune infiltrates. While androgen deprivation therapy (ADT) induces a complex immune infiltrate in localized prostate cancer, the composition of the TME in metastatic castration-sensitive prostate cancer (mCSPC), and the effects of ADT and other treatments in this context are poorly understood. Here, we perform a comprehensive single-cell RNA sequencing (scRNA-seq) profiling of metastatic sites from patients participating in a phase 2 clinical trial (NCT03951831) that evaluated standard-of-care chemo-hormonal therapy combined with anti-PD-1 immunotherapy. We perform a longitudinal, protein activity-based analysis of TME subpopulations, revealing immune subpopulations conserved across multiple metastatic sites. We also observe dynamic changes in these immune subpopulations in response to treatment and a correlation with clinical outcomes. Our study uncovers a therapy-resistant, transcriptionally distinct tumor subpopulation that expands in cell number in treatment-refractory patients.
Collapse
Affiliation(s)
- Jessica E Hawley
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aleksandar Z Obradovic
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew C Dallos
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Emerson A Lim
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Karie Runcie
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey R Ager
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - James McKiernan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Christopher B Anderson
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Guarionex J Decastro
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Joshua Weintraub
- Department of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu Virk
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jianhua Hu
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xinzheng V Guo
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark N Stein
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032 USA.
| | - Charles G Drake
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA; Department of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Treeful AE, Searle KM, Carroll DM, Yost KJ, Hedger AL, Friedenberg SG. A case-control survey study of environmental risk factors for primary hypoadrenocorticism in dogs. J Vet Intern Med 2023; 37:2073-2083. [PMID: 37830238 PMCID: PMC10658521 DOI: 10.1111/jvim.16896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Primary hypoadrenocorticism in dogs is thought to be multifactorial with roles for both genetic and environmental factors. The contributions of environmental factors remain unexplored. OBJECTIVE Identify environmental and lifestyle exposures associated with primary hypoadrenocorticism in 2 dog breeds with high risk of developing the disease. ANIMALS Animals were not used in this study. Owners of Standard Poodles (STPDs) and Portuguese water dogs (POWDs) participated in a survey. METHODS Retrospective case-control study. Dog owners were invited to participate in an online survey through convenience sampling. Questions regarded the demographics, health histories, and indoor/outdoor environments in which their dogs live and play. Responses for dogs with primary hypoadrenocorticism were compared to those without the disease using univariate and multivariate logistic regression models. RESULTS Five thousand forty-seven responses (358 cases, 4689 controls) met initial inclusion criteria. Significant associations with modest effect size were found for community type, ingestion of canned food, and use of lawn fertilizer in some analysis models. Reproductive (spay/neuter) status exhibited the strongest association with high effect size across all models with adjusted odds ratio (OR) 2.5 (95% confidence interval [CI], 1.4-4.5; P = .003) for spayed females and 6.0 (95% CI, 2.6-13.9; P < .001) for neutered males. CONCLUSIONS AND CLINICAL IMPORTANCE The large effect size for reproductive status reflects its high potential clinical relevance, whereas modest effect sizes for other environmental variables suggest lower potential clinical relevance. These findings are associations and do not necessarily imply causation. Before any actionable recommendations are warranted, additional evidence regarding biological mechanisms is needed.
Collapse
Affiliation(s)
- Amy E. Treeful
- Department of Veterinary Population Medicine, College of Veterinary MedicineUniversity of MinnesotaSt. Paul, Minnesota 55108USA
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineUniversity of MinnesotaSt. Paul, Minnesota 55108USA
| | - Kelly M. Searle
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolis, Minnesota 55455USA
| | - Dana M. Carroll
- Division of Environmental Health Sciences, School of Public HealthUniversity of MinnesotaMinneapolis, Minnesota 55455USA
| | - Kathleen J. Yost
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Anna L. Hedger
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineUniversity of MinnesotaSt. Paul, Minnesota 55108USA
| | - Steven G. Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineUniversity of MinnesotaSt. Paul, Minnesota 55108USA
| |
Collapse
|
43
|
Sooi K, Walsh R, Kumarakulasinghe N, Wong A, Ngoi N. A review of strategies to overcome immune resistance in the treatment of advanced prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:656-673. [PMID: 37842236 PMCID: PMC10571060 DOI: 10.20517/cdr.2023.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Immunotherapy has become integral in cancer therapeutics over the past two decades and is now part of standard-of-care treatment in multiple cancer types. While various biomarkers and pathway alterations such as dMMR, CDK12, and AR-V7 have been identified in advanced prostate cancer to predict immunotherapy responsiveness, the vast majority of prostate cancer remain intrinsically immune-resistant, as evidenced by low response rates to anti-PD(L)1 monotherapy. Since regulatory approval of the vaccine therapy sipuleucel-T in the biomarker-unselected population, there has not been much success with immunotherapy treatment in advanced prostate cancer. Researchers have looked at various strategies to overcome immune resistance, including the identification of more biomarkers and the combination of immunotherapy with existing effective prostate cancer treatments. On the horizon, novel drugs using bispecific T-cell engager (BiTE) and chimeric antigen receptors (CAR) technology are being explored and have shown promising early efficacy in this disease. Here we discuss the features of the tumour microenvironment that predispose to immune resistance and rational strategies to enhance antitumour responsiveness in advanced prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
44
|
Taves MD, Donahue KM, Bian J, Cam MC, Ashwell JD. Aire drives steroid hormone biosynthesis by medullary thymic epithelial cells. Sci Immunol 2023; 8:eabo7975. [PMID: 37595021 PMCID: PMC10732315 DOI: 10.1126/sciimmunol.abo7975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Thymic epithelial cells (TECs) produce glucocorticoids, which antagonize negative selection of autoreactive thymocytes and promote a competent T cell antigen-specific repertoire. To characterize their source, we generated a knock-in reporter mouse in which endogenous Cyp11b1, the final enzyme in de novo production of active glucocorticoids, was fluorescently tagged with mScarlet. Here, we find that Cyp11b1 is expressed in medullary TECs (mTECs) but not cortical TECs or other cells in the thymus. A distinct characteristic of mTECs is the presence of Aire, a transcription factor that drives expression of tissue-restricted antigens (TRAs) important for establishing immune tolerance. Cyp11b1 expression was highest in Aire+ mTECs, lower in post-Aire mTECs, and absent in mTECs of Aire-deficient mice. Transcriptomic analyses found that multiple enzymatic biosynthetic pathways are expressed specifically in mTECs and are also Aire dependent. In particular, we found that the thymus expresses messenger RNA for enzymes that catalyze production of many bioactive steroids and that glucocorticoids and sex steroids were secreted by cultured thymi. Expression of the transcripts for these genes and production of their final steroid products were markedly reduced in the absence of Aire. Thus, in addition to its well-established role in inducing TRAs that promote negative selection, Aire has an additional and contrary function of inducing glucocorticoids that antagonize negative selection, which together may expand and enhance the TCR repertoire. Furthermore, because Aire drives expression of multiple enzymes responsible for production of other non-gene-encoded bioactive molecules, it might have yet other roles in thymus development and function.
Collapse
Affiliation(s)
- Matthew D. Taves
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kaitlynn M. Donahue
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jing Bian
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, Bethesda, MD 20892, USA
| | - Margaret C. Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, Bethesda, MD 20892, USA
| | - Jonathan D. Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Zapatero A, Conde Moreno AJ, Barrado Los Arcos M, Aldave D. Node Oligorecurrence in Prostate Cancer: A Challenge. Cancers (Basel) 2023; 15:4159. [PMID: 37627187 PMCID: PMC10453311 DOI: 10.3390/cancers15164159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Within the oligometastatic state, oligorecurrent lymph node disease in prostate cancer represents an interesting clinical entity characterized by a relatively indolent biology that makes it unique: it can be treated radically, and its treatment is usually associated with a long period of control and excellent survival. Additionally, it is an emergent situation that we are facing more frequently mainly due to (a) the incorporation into clinical practice of the PSMA-PET that provides strikingly increased superior images in comparison to conventional imaging, with higher sensitivity and specificity; (b) the higher detection rates of bone and node disease with extremely low levels of PSA; and (c) the availability of high-precision technology in radiotherapy treatments with the incorporation of stereotaxic body radiotherapy (SBRT) or stereotaxic ablative radiotherapy (SABR) technology that allows the safe administration of high doses of radiation in a very limited number of fractions with low toxicity and excellent tolerance. This approach of new image-guided patient management is compelling for doctors and patients since it can potentially contribute to improving the clinical outcome. In this work, we discuss the available evidence, areas of debate, and potential future directions concerning the utilization of new imaging-guided SBRT for the treatment of nodal recurrence in prostate cancer.
Collapse
Affiliation(s)
- Almudena Zapatero
- Health Research Institute, University Hospital La Princesa, 28006 Madrid, Spain
| | | | | | - Diego Aldave
- University Clinical Hospital of Valladolid, 47003 Valladolid, Spain;
| |
Collapse
|
46
|
Katleba KD, Ghosh PM, Mudryj M. Beyond Prostate Cancer: An Androgen Receptor Splice Variant Expression in Multiple Malignancies, Non-Cancer Pathologies, and Development. Biomedicines 2023; 11:2215. [PMID: 37626712 PMCID: PMC10452427 DOI: 10.3390/biomedicines11082215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple studies have demonstrated the importance of androgen receptor (AR) splice variants (SVs) in the progression of prostate cancer to the castration-resistant phenotype and their utility as a diagnostic. However, studies on AR expression in non-prostatic malignancies uncovered that AR-SVs are expressed in glioblastoma, breast, salivary, bladder, kidney, and liver cancers, where they have diverse roles in tumorigenesis. AR-SVs also have roles in non-cancer pathologies. In granulosa cells from women with polycystic ovarian syndrome, unique AR-SVs lead to an increase in androgen production. In patients with nonobstructive azoospermia, testicular Sertoli cells exhibit differential expression of AR-SVs, which is associated with impaired spermatogenesis. Moreover, AR-SVs have been identified in normal cells, including blood mononuclear cells, neuronal lipid rafts, and the placenta. The detection and characterization of AR-SVs in mammalian and non-mammalian species argue that AR-SV expression is evolutionarily conserved and that AR-SV-dependent signaling is a fundamental regulatory feature in multiple cellular contexts. These discoveries argue that alternative splicing of the AR transcript is a commonly used mechanism that leads to an expansion in the repertoire of signaling molecules needed in certain tissues. Various malignancies appropriate this mechanism of alternative AR splicing to acquire a proliferative and survival advantage.
Collapse
Affiliation(s)
- Kimberley D. Katleba
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Urologic Surgery, 4860 Y Street, UC Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
47
|
Lutshumba J, Wilcock DM, Monson NL, Stowe AM. Sex-based differences in effector cells of the adaptive immune system during Alzheimer's disease and related dementias. Neurobiol Dis 2023; 184:106202. [PMID: 37330146 PMCID: PMC10481581 DOI: 10.1016/j.nbd.2023.106202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Neurological conditions such as Alzheimer's disease (AD) and related dementias (ADRD) present with many challenges due to the heterogeneity of the related disease(s), making it difficult to develop effective treatments. Additionally, the progression of ADRD-related pathologies presents differently between men and women. With two-thirds of the population affected with ADRD being women, ADRD has presented itself with a bias toward the female population. However, studies of ADRD generally do not incorporate sex-based differences in investigating the development and progression of the disease, which is detrimental to understanding and treating dementia. Additionally, recent implications for the adaptive immune system in the development of ADRD bring in new factors to be considered as part of the disease, including sex-based differences in immune response(s) during ADRD development. Here, we review the sex-based differences of pathological hallmarks of ADRD presentation and progression, sex-based differences in the adaptive immune system and how it changes with ADRD, and the importance of precision medicine in the development of a more targeted and personalized treatment for this devastating and prevalent neurodegenerative condition.
Collapse
Affiliation(s)
- Jenny Lutshumba
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Nancy L Monson
- Department of Neurology and Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Ann M Stowe
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America; Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
48
|
Li JXL, Wang X, Henry A, Anderson CS, Hammond N, Harris K, Liu H, Loffler K, Myburgh J, Pandian J, Smyth B, Venkatesh B, Carcel C, Woodward M. Sex differences in pain expressed by patients across diverse disease states: individual patient data meta-analysis of 33,957 participants in 10 randomized controlled trials. Pain 2023; 164:1666-1676. [PMID: 36972472 DOI: 10.1097/j.pain.0000000000002884] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/28/2022] [Indexed: 03/29/2023]
Abstract
ABSTRACT The experience of pain is determined by many factors and has a significant impact on quality of life. This study aimed to determine sex differences in pain prevalence and intensity reported by participants with diverse disease states in several large international clinical trials. Individual participant data meta-analysis was conducted using EuroQol-5 Dimension (EQ-5D) questionnaire pain data from randomised controlled trials published between January 2000 and January 2020 and undertaken by investigators at the George Institute for Global Health. Proportional odds logistic regression models, comparing pain scores between females and males and fitted with adjustments for age and randomized treatment, were pooled in a random-effects meta-analysis. In 10 trials involving 33,957 participants (38% females) with EQ-5D pain score data, the mean age ranged between 50 and 74. Pain was reported more frequently by females than males (47% vs 37%; P < 0.001). Females also reported greater levels of pain than males (adjusted odds ratio 1.41, 95% CI 1.24-1.61; P < 0.001). In stratified analyses, there were differences in pain by disease group ( P for heterogeneity <0.001), but not by age group or region of recruitment. Females were more likely to report pain, and at a higher level, compared with males across diverse diseases, all ages, and geographical regions. This study reinforces the importance of reporting sex-disaggregated analysis to identify similarities and differences between females and males that reflect variable biology and may affect disease profiles and have implications for management.
Collapse
Affiliation(s)
| | - Xia Wang
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Amanda Henry
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Craig S Anderson
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- The George Institute China at Peking University Health Sciences Centre, Beijing, P.R. China
- Neurology Department, Royal Prince Alfred Hospital, Sydney Health Partners, Sydney, Australia
| | - Naomi Hammond
- University of New South Wales, Sydney, Australia
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, Sydney, Australia
| | - Katie Harris
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Hueiming Liu
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Kelly Loffler
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research, Flinders University, Bedford Park, Australia
| | - John Myburgh
- University of New South Wales, Sydney, Australia
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Department of Intensive Care Medicine, St George Hospital, Sydney, Australia
| | - Jeyaraj Pandian
- Department of Neurology, Christian Medical College, Ludhiana, India
| | - Brendan Smyth
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Department of Renal Medicine, St George Hospital, Kogarah, Australia
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, Australia
| | - Balasubramanian Venkatesh
- University of New South Wales, Sydney, Australia
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Cheryl Carcel
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Mark Woodward
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- School of Public Health, Imperial College London, The George Institute for Global Health, London, United Kingdom
| |
Collapse
|
49
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 PMCID: PMC10216808 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C. Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
50
|
Wang D, Cheng C, Chen X, Wang J, Liu K, Jing N, Xu P, Xi X, Sun Y, Ji Z, Zhao H, He Y, Zhang K, Du X, Dong B, Fang Y, Zhang P, Qian X, Xue W, Gao WQ, Zhu HH. IL-1β Is an Androgen-Responsive Target in Macrophages for Immunotherapy of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206889. [PMID: 37092583 DOI: 10.1002/advs.202206889] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Great attention is paid to the role of androgen receptor (AR) as a central transcriptional factor in driving the growth of prostate cancer (PCa) epithelial cells. However, the understanding of the role of androgen in PCa-infiltrated immune cells and the impact of androgen deprivation therapy (ADT), the first-line treatment for advanced PCa, on the PCa immune microenvironment remains limited. On the other hand, immune checkpoint blockade has revolutionized the treatment of certain cancer types, but fails to achieve any benefit in advanced PCa, due to an immune suppressive environment. In this study, it is reported that AR signaling pathway is evidently activated in tumor-associated macrophages (TAMs) of PCa both in mice and humans. AR acts as a transcriptional repressor for IL1B in TAMs. ADT releases the restraint of AR on IL1B and therefore leads to an excessive expression and secretion of IL-1β in TAMs. IL-1β induces myeloid-derived suppressor cells (MDSCs) accumulation that inhibits the activation of cytotoxic T cells, leading to the immune suppressive microenvironment. Critically, anti-IL-1β antibody coupled with ADT and the immune checkpoint inhibitor anti-PD-1 antibody exerts a stronger anticancer effect on PCa following castration. Together, IL-1β is an important androgen-responsive immunotherapeutic target for advanced PCa.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Kaiyuan Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Na Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Penghui Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xialian Xi
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yujiao Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yuxiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Pengcheng Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xueming Qian
- Mabspace Biosciences (Suzhou) Co. Limited, Suzhou, 215123, P. R. China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|