1
|
Mertz KL, Jordahl, Hemme CA, Probasco MD, Forbes DS, Ducos PL, Salome AZ, Westphall MS, Quarmby ST, Grant T, Coon JJ. Laser-Induced Rehydration of Cryo-Landed Proteins Restores Native Structure. Mol Cell Proteomics 2025:100987. [PMID: 40349920 DOI: 10.1016/j.mcpro.2025.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
The use of native mass spectrometry (MS) to land biological molecules for subsequent cryogenic electron microscopy (cryoEM) imaging and three-dimensional reconstruction has gained momentum in recent years as a means to overcome longstanding challenges posed by traditional cryoEM sample preparation. However, recent results obtained with this approach have been constrained by low resolution and the compaction of cryo-landed particles, likely due to dehydration during exposure to vacuum. Here, we describe a new sample preparation method that uses a laser integrated into a cryogenic soft-landing apparatus to liquefy precisely deposited amorphous ice, rehydrating particles and restoring their solution structure prior to rapid revitrification via the thermal mass of the grid. With this technique, we demonstrate the reconstruction of cryo-landed, rehydrated, and revitrified β-galactosidase that is comparable in resolution to that achieved with plunge freezing. Further, these particles are not compacted, matching the known structure and conformation obtained with traditionally plunge-frozen particles. These results establish the viability of coupling native MS with cryoEM for high-resolution structural determination without the limitations imposed by conventional sample preparation, and they open a path to solving previously inaccessible molecules and to integrating MS capabilities such as gas-phase purification to complex samples such as cell lysates.
Collapse
Affiliation(s)
- Keaton L Mertz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jordahl
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Colin A Hemme
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| | | | - Dylan S Forbes
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Peter L Ducos
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| | - Austin Z Salome
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Scott T Quarmby
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; Morgridge Institute for Research, Madison, Wisconsin 53515, United States.
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States; Morgridge Institute for Research, Madison, Wisconsin 53515, United States.
| |
Collapse
|
2
|
Kühlbrandt W, Carreira LAM, Yildiz Ö. Cryo-EM of Mitochondrial Complex I and ATP Synthase. Annu Rev Biophys 2025; 54:209-226. [PMID: 40327437 DOI: 10.1146/annurev-biophys-060724-110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Cryo-electron microscopy (cryo-EM) is the method of choice for investigating the structures of membrane protein complexes at high resolution under near-native conditions. This review focuses on recent cryo-EM work on mitochondrial complex I and ATP synthase. Single-particle cryo-EM structures of complex I from mammals, plants, and fungi extending to a resolution of 2 Å show different functional states, indicating consistent conformational changes of loops near the Q binding site, clusters of internal water molecules in the membrane arm, and an α-π transition in a membrane-spanning helix that opens and closes the proton transfer path. Cryo-EM structures of ATP synthase dimers from mammalian, yeast, and Polytomella mitochondria show several rotary states at a resolution of 2.7 to 3.5 Å. The new structures of complex I and ATP synthase are important steps along the way toward understanding the detailed molecular mechanisms of both complexes. Cryo-electron tomography and subtomogram averaging have the potential to resolve their high-resolution structures in situ.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany;
| | - Luis A M Carreira
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany;
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany;
| |
Collapse
|
3
|
Kelly DF. Liquid-Electron Microscopy and the Real-Time Revolution. Annu Rev Biophys 2025; 54:1-15. [PMID: 40327441 DOI: 10.1146/annurev-biophys-071624-095107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Advances in imaging technology enable striking views of life's most minute details. A missing piece of the puzzle, however, is the direct atomic observation of biomolecules in action. Liquid-phase transmission electron microscopy (liquid-EM) is the room-temperature correlate to cryo-electron microscopy, which is leading the resolution revolution in biophysics. This article reviews current challenges and opportunities in the liquid-EM field while discussing technical considerations for specimen enclosures, devices and systems, and scientific data management. Since liquid-EM is gaining traction in the life sciences community, cross talk among the disciplines of materials and life sciences is needed to disseminate knowledge of best practices along with high-level user engagement. How liquid-EM technology is inspiring the real-time revolution in molecular microscopy is also discussed. Looking ahead, the new movement can be better supported through open resource sharing and partnerships among academic, industry, and federal organizations, which may benefit from the scientific equity foundational to the technique.
Collapse
|
4
|
Hovorková M, Kaščáková B, Petrásková L, Havlíčková P, Nováček J, Pinkas D, Gardian Z, Křen V, Bojarová P, Smatanová IK. The variable structural flexibility of the Bacillus circulans β-galactosidase isoforms determines their unique functionalities. Structure 2024; 32:2023-2037.e5. [PMID: 39353423 DOI: 10.1016/j.str.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
β-Galactosidase from Bacillus circulans ATCC 31382 (BgaD) is a biotechnologically important enzyme for the synthesis of β-galactooligosaccharides (GOS). Among its four isoforms, isoform A (BgaD-A) has distinct synthetic properties. Here, we present cryoelectron microscopy (cryo-EM) structures of BgaD-A and compare them with the known X-ray crystal structure of isoform D (BgaD-D), revealing substantial structural divergences between the two isoforms. In contrast to BgaD-D, BgaD-A features a flexible Big-4 domain and another enigmatic domain. The newly identified flexible region in BgaD-A is termed as "barrier domain 8," and serves as a barricade, obstructing the access of longer oligosaccharide substrates into the active site of BgaD-A. The transgalactosylation reactions catalyzed by both isoforms revealed that BgaD-A has a higher selectivity than BgaD-D in the earlier stages of the reaction and is prevailingly directed to shorter galactooligosaccharides. This study improves our understanding of the structural determinants governing β-galactosidase catalysis, with implications for tailored GOS production.
Collapse
Affiliation(s)
- Michaela Hovorková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, CZ-12843 Praha2, Czech Republic
| | - Barbora Kaščáková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Petra Havlíčková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jiří Nováček
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Daniel Pinkas
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Zdenko Gardian
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic; Laboratory of Electron Microscopy, Biology Centre of the Czech Academy of Sciences, CZ-37005 České Budějovice, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic.
| | - Ivana Kutá Smatanová
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Fritzsche S, Hübner H, Oldiges M, Castiglione K. Comparative evaluation of the extracellular production of a polyethylene terephthalate degrading cutinase by Corynebacterium glutamicum and leaky Escherichia coli in batch and fed-batch processes. Microb Cell Fact 2024; 23:274. [PMID: 39390488 PMCID: PMC11468216 DOI: 10.1186/s12934-024-02547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND With a growing global population, the generation of plastic waste and the depletion of fossil resources are major concerns that need to be addressed by developing sustainable and efficient plastic recycling methods. Biocatalytic recycling is emerging as a promising ecological alternative to conventional processes, particularly in the recycling of polyethylene terephthalate (PET). However, cost-effective production of the involved biocatalyst is essential for the transition of enzymatic PET recycling to a widely used industrial technology. Extracellular enzyme production using established organisms such as Escherichia coli or Corynebacterium glutamicum offers a promising way to reduce downstream processing costs. RESULTS In this study, we compared extracellular recombinant protein production by classical secretion in C. glutamicum and by membrane leakage in E. coli. A superior extracellular release of the cutinase ICCGDAQI was observed with E. coli in batch and fed-batch processes on a litre-scale. This phenomenon in E. coli, in the absence of a signal peptide, might be associated with membrane-destabilizing catalytic properties of the expressed cutinase. Optimisations regarding induction, expression temperature and duration as well as carbon source significantly enhanced extracellular cutinase activity. In particular, in fed-batch cultivation of E. coli at 30 °C with lactose as carbon source and inducer, a remarkable extracellular activity (137 U mL-1) and cutinase titre (660 mg L-1) were achieved after 48 h. Literature values obtained with other secretory organisms, such as Bacillus subtilis or Komagataella phaffii were clearly outperformed. The extracellular ICCGDAQI produced showed high efficacy in the hydrolysis of PET textile fibres, either chromatographically purified or unpurified as culture supernatant. In less than 18 h, 10 g L-1 substrate was hydrolysed using supernatant containing 3 mg cutinase ICCGDAQI at 70 °C, pH 9 with terephthalic acid yields of up to 97.8%. CONCLUSION Extracellular production can reduce the cost of recombinant proteins by simplifying downstream processing. In the case of the PET-hydrolysing cutinase ICCGDAQI, it was even possible to avoid chromatographic purification and still achieve efficient PET hydrolysis. With such production approaches and their further optimisation, enzymatic recycling of PET can contribute to a more efficient and environmentally friendly solution to the industrial recycling of plastics in the future.
Collapse
Affiliation(s)
- Stefanie Fritzsche
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Holger Hübner
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
6
|
Ioannou IA, Monck C, Ceroni F, Brooks NJ, Kuimova MK, Elani Y. Nucleated synthetic cells with genetically driven intercompartment communication. Proc Natl Acad Sci U S A 2024; 121:e2404790121. [PMID: 39186653 PMCID: PMC11388312 DOI: 10.1073/pnas.2404790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Eukaryotic cells are characterized by multiple chemically distinct compartments, one of the most notable being the nucleus. Within these compartments, there is a continuous exchange of information, chemicals, and signaling molecules, essential for coordinating and regulating cellular activities. One of the main goals of bottom-up synthetic biology is to enhance the complexity of synthetic cells by establishing functional compartmentalization. There is a need to mimic autonomous signaling between compartments, which in living cells, is often regulated at the genetic level within the nucleus. This advancement is key to unlocking the potential of synthetic cells as cell models and as microdevices in biotechnology. However, a technological bottleneck exists preventing the creation of synthetic cells with a defined nucleus-like compartment capable of genetically programmed intercompartment signaling events. Here, we present an approach for creating synthetic cells with distinct nucleus-like compartments that can encapsulate different biochemical mixtures in discrete compartments. Our system enables in situ protein expression of membrane proteins, enabling autonomous chemical communication between nuclear and cytoplasmic compartments, leading to downstream activation of enzymatic pathways within the cell.
Collapse
Affiliation(s)
- Ion A Ioannou
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
| | - Carolina Monck
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Cooney I, Schubert HL, Cedeno K, Fisher ON, Carson R, Price JC, Hill CP, Shen PS. Visualization of the Cdc48 AAA+ ATPase protein unfolding pathway. Nat Commun 2024; 15:7505. [PMID: 39209885 PMCID: PMC11362554 DOI: 10.1038/s41467-024-51835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The Cdc48 AAA+ ATPase is an abundant and essential enzyme that unfolds substrates in multiple protein quality control pathways. The enzyme includes two conserved AAA+ ATPase motor domains, D1 and D2, that assemble as hexameric rings with D1 stacked above D2. Here, we report an ensemble of native structures of Cdc48 affinity purified from budding yeast lysate in complex with the adaptor Shp1 in the act of unfolding substrate. Our analysis reveals a continuum of structural snapshots that spans the entire translocation cycle. These data uncover elements of Shp1-Cdc48 interactions and support a 'hand-over-hand' mechanism in which the sequential movement of individual subunits is closely coordinated. D1 hydrolyzes ATP and disengages from substrate prior to D2, while D2 rebinds ATP and re-engages with substrate prior to D1, thereby explaining the dominant role played by the D2 motor in substrate translocation/unfolding.
Collapse
Affiliation(s)
- Ian Cooney
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Heidi L Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Karina Cedeno
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Olivia N Fisher
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Christopher P Hill
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Peter S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Chau CC, Maffeo CM, Aksimentiev A, Radford SE, Hewitt EW, Actis P. Single molecule delivery into living cells. Nat Commun 2024; 15:4403. [PMID: 38782907 PMCID: PMC11116494 DOI: 10.1038/s41467-024-48608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Controlled manipulation of cultured cells by delivery of exogenous macromolecules is a cornerstone of experimental biology. Here we describe a platform that uses nanopipettes to deliver defined numbers of macromolecules into cultured cell lines and primary cells at single molecule resolution. In the nanoinjection platform, the nanopipette is used as both a scanning ion conductance microscope (SICM) probe and an injection probe. The SICM is used to position the nanopipette above the cell surface before the nanopipette is inserted into the cell into a defined location and to a predefined depth. We demonstrate that the nanoinjection platform enables the quantitative delivery of DNA, globular proteins, and protein fibrils into cells with single molecule resolution and that delivery results in a phenotypic change in the cell that depends on the identity of the molecules introduced. Using experiments and computational modeling, we also show that macromolecular crowding in the cell increases the signal-to-noise ratio for the detection of translocation events, thus the cell itself enhances the detection of the molecules delivered.
Collapse
Affiliation(s)
- Chalmers C Chau
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, LS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
| | - Christopher M Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sheena E Radford
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, LS2 9JT, UK.
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Lasham J, Djurabekova A, Zickermann V, Vonck J, Sharma V. Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures. J Phys Chem B 2024; 128:2304-2316. [PMID: 38430110 PMCID: PMC11389979 DOI: 10.1021/acs.jpcb.3c07421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.
Collapse
Affiliation(s)
- Jonathan Lasham
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Amina Djurabekova
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Volker Zickermann
- Institute
of Biochemistry II, University Hospital,
Goethe University, 60590 Frankfurt am Main, Germany
- Centre
for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department
of Structural Biology, Max Planck Institute
of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
- HiLIFE
Institute of Biotechnology, University of
Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Ignatiou A, Macé K, Redzej A, Costa TRD, Waksman G, Orlova EV. Structural Analysis of Protein Complexes by Cryo-Electron Microscopy. Methods Mol Biol 2024; 2715:431-470. [PMID: 37930544 DOI: 10.1007/978-1-0716-3445-5_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Structural studies of bio-complexes using single particle cryo-Electron Microscopy (cryo-EM) is nowadays a well-established technique in structural biology and has become competitive with X-ray crystallography. Development of digital registration systems for electron microscopy images and algorithms for the fast and efficient processing of the recorded images and their following analysis has facilitated the determination of structures at near-atomic resolution. The latest advances in EM have enabled the determination of protein complex structures at 1.4-3 Å resolution for an extremely broad range of sizes (from ~100 kDa up to hundreds of MDa (Bartesaghi et al., Science 348(6239):1147-1151, 2015; Herzik et al., Nat Commun 10:1032, 2019; Wu et al., J Struct Biol X 4:100020, 2020; Zhang et al., Nat Commun 10:5511, 2019; Zhang et al., Cell Res 30(12):1136-1139, 2020; Yip et al., Nature 587(7832):157-161, 2020; https://www.ebi.ac.uk/emdb/statistics/emdb_resolution_year )). In 2022, nearly 1200 structures deposited to the EMDB database were at a resolution of better than 3 Å ( https://www.ebi.ac.uk/emdb/statistics/emdb_resolution_year ).To date, the highest resolutions have been achieved for apoferritin, which comprises a homo-oligomer of high point group symmetry (O432) and has rigid organization together with high stability (Zhang et al., Cell Res 30(12):1136-1139, 2020; Yip et al., Nature 587(7832):157-161, 2020). It has been used as a test object for the assessments of modern cryo-microscopes and processing methods during the last 5 years. In contrast to apoferritin bacterial secretion systems are typical examples of multi protein complexes exhibiting high flexibility owing to their functions relating to the transportation of small molecules, proteins, and DNA into the extracellular space or target cells. This makes their structural characterization extremely challenging (Barlow, Methods Mol Biol 532:397-411, 2009; Costa et al., Nat Rev Microbiol 13:343-359, 2015). The most feasible approach to reveal their spatial organization and functional modification is cryo-electron microscopy (EM). During the last decade, structural cryo-EM has become broadly used for the analysis of the bio-complexes that comprise multiple components and are not amenable to crystallization (Lyumkis, J Biol Chem 294:5181-5197, 2019; Orlova and Saibil, Methods Enzymol 482:321-341, 2010; Orlova and Saibil, Chem Rev 111(12):7710-7748, 2011).In this review, we will describe the basics of sample preparation for cryo-EM, the principles of digital data collection, and the logistics of image analysis focusing on the common steps required for reconstructions of both small and large biological complexes together with refinement of their structures to nearly atomic resolution. The workflow of processing will be illustrated by examples of EM analysis of Type IV Secretion System.
Collapse
Affiliation(s)
- Athanasios Ignatiou
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Kévin Macé
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Adam Redzej
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Gabriel Waksman
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Elena V Orlova
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
11
|
Terashi G, Wang X, Prasad D, Nakamura T, Kihara D. DeepMainmast: integrated protocol of protein structure modeling for cryo-EM with deep learning and structure prediction. Nat Methods 2024; 21:122-131. [PMID: 38066344 DOI: 10.1038/s41592-023-02099-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/22/2023] [Indexed: 12/19/2023]
Abstract
Three-dimensional structure modeling from maps is an indispensable step for studying proteins and their complexes with cryogenic electron microscopy. Although the resolution of determined cryogenic electron microscopy maps has generally improved, there are still many cases where tracing protein main chains is difficult, even in maps determined at a near-atomic resolution. Here we developed a protein structure modeling method, DeepMainmast, which employs deep learning to capture the local map features of amino acids and atoms to assist main-chain tracing. Moreover, we integrated AlphaFold2 with the de novo density tracing protocol to combine their complementary strengths and achieved even higher accuracy than each method alone. Additionally, the protocol is able to accurately assign the chain identity to the structure models of homo-multimers, which is not a trivial task for existing methods.
Collapse
Affiliation(s)
- Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Devashish Prasad
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Tsukasa Nakamura
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
12
|
Liu P, Chen Y, Ma C, Ouyang J, Zheng Z. β-Galactosidase: a traditional enzyme given multiple roles through protein engineering. Crit Rev Food Sci Nutr 2023; 65:1306-1325. [PMID: 38108277 DOI: 10.1080/10408398.2023.2292282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
β-Galactosidases are crucial carbohydrate-active enzymes that naturally catalyze the hydrolysis of galactoside bonds in oligo- and disaccharides. These enzymes are commonly used to degrade lactose and produce low-lactose and lactose-free dairy products that are beneficial for lactose-intolerant people. β-galactosidases exhibit transgalactosylation activity, and they have been employed in the synthesis of galactose-containing compounds such as galactooligosaccharides. However, most β-galactosidases have intrinsic limitations, such as low transglycosylation efficiency, significant product inhibition effects, weak thermal stability, and a narrow substrate spectrum, which greatly hinder their applications. Enzyme engineering offers a solution for optimizing their catalytic performance. The study of the enzyme's structure paves the way toward explaining catalytic mechanisms and increasing the efficiency of enzyme engineering. In this review, the structure features of β-galactosidases from different glycosyl hydrolase families and the catalytic mechanisms are summarized in detail to offer guidance for protein engineering. The properties and applications of β-galactosidases are discussed. Additionally, the latest progress in β-galactosidase engineering and the strategies employed are highlighted. Based on the combined analysis of structure information and catalytic mechanisms, the ultimate goal of this review is to furnish a thorough direction for β-galactosidases engineering and promote their application in the food and dairy industries.
Collapse
Affiliation(s)
- Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuehua Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Tucci FJ, Jodts RJ, Hoffman BM, Rosenzweig AC. Product analog binding identifies the copper active site of particulate methane monooxygenase. Nat Catal 2023; 6:1194-1204. [PMID: 38187819 PMCID: PMC10766429 DOI: 10.1038/s41929-023-01051-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024]
Abstract
Nature's primary methane-oxidizing enzyme, the membrane-bound particulate methane monooxygenase (pMMO), catalyzes the oxidation of methane to methanol. pMMO activity requires copper, and decades of structural and spectroscopic studies have sought to identify the active site among three candidates: the CuB, CuC, and CuD sites. Challenges associated with the isolation of active pMMO have hindered progress toward locating its catalytic center. However, reconstituting pMMO into native lipid nanodiscs stabilizes its structure and recovers its activity. Here, these active samples were incubated with 2,2,2,-trifluoroethanol (TFE), a product analog that serves as a readily visualized active-site probe. Interactions of TFE with the CuD site were observed by both pulsed ENDOR spectroscopy and cryoEM, implicating CuD and the surrounding hydrophobic pocket as the likely site of methane oxidation. Use of these orthogonal techniques on parallel samples is a powerful approach that can circumvent difficulties in interpreting metalloenzyme cryoEM maps.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, USA
- These authors contributed equally
| | - Richard J Jodts
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, USA
- These authors contributed equally
| | - Brian M Hoffman
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, USA
| |
Collapse
|
14
|
Huang C, Kim JS, Kirkland AI. Cryo-electron ptychography: Applications and potential in biological characterisation. Curr Opin Struct Biol 2023; 83:102730. [PMID: 37992450 DOI: 10.1016/j.sbi.2023.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
There is a clear need for developments in characterisation techniques that provide detailed information about structure-function relationships in biology. Using electron microscopy to achieve high resolution while maintaining a broad field of view remains a challenge, particularly for radiation-sensitive specimens where the signal-to-noise ratio required to maintain structural integrity is limited by low electron fluence. In this review, we explore the potential of cryogenic electron ptychography as an alternative method for characterising biological systems under low-fluence conditions. Using this method with increased information content from multiple sampled regions of interest potentially allows 3D reconstruction with far fewer particles than required in conventional cryo-electron microscopy. This is important for achieving higher resolution in systems where distributions of homogeneous single particles are difficult to obtain. We discuss the progress, limitations, and potential areas for future development of this approach for both single particle analysis and applications to heterogeneous large objects.
Collapse
Affiliation(s)
- Chen Huang
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom.
| | - Judy S Kim
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom; Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom
| | - Angus I Kirkland
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom; Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom
| |
Collapse
|
15
|
Liu HF, Zhou Y, Huang Q, Piland J, Jin W, Mandel J, Du X, Martin J, Bartesaghi A. nextPYP: a comprehensive and scalable platform for characterizing protein variability in situ using single-particle cryo-electron tomography. Nat Methods 2023; 20:1909-1919. [PMID: 37884796 PMCID: PMC10703682 DOI: 10.1038/s41592-023-02045-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Single-particle cryo-electron tomography is an emerging technique capable of determining the structure of proteins imaged within the native context of cells at molecular resolution. While high-throughput techniques for sample preparation and tilt-series acquisition are beginning to provide sufficient data to allow structural studies of proteins at physiological concentrations, the complex data analysis pipeline and the demanding storage and computational requirements pose major barriers for the development and broader adoption of this technology. Here, we present a scalable, end-to-end framework for single-particle cryo-electron tomography data analysis from on-the-fly pre-processing of tilt series to high-resolution refinement and classification, which allows efficient analysis and visualization of datasets with hundreds of tilt series and hundreds of thousands of particles. We validate our approach using in vitro and cellular datasets, demonstrating its effectiveness at achieving high-resolution and revealing conformational heterogeneity in situ. The framework is made available through an intuitive and easy-to-use computer application, nextPYP ( http://nextpyp.app ).
Collapse
Affiliation(s)
- Hsuan-Fu Liu
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Qinwen Huang
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Jonathan Piland
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Weisheng Jin
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Justin Mandel
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Xiaochen Du
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey Martin
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Garman EF, Weik M. Radiation damage to biological macromolecules∗. Curr Opin Struct Biol 2023; 82:102662. [PMID: 37573816 DOI: 10.1016/j.sbi.2023.102662] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
In this review, we describe recent research developments into radiation damage effects in macromolecular X-ray crystallography observed at synchrotrons and X-ray free electron lasers. Radiation damage in small molecule X-ray crystallography, small angle X-ray scattering experiments, microelectron diffraction, and single particle cryo-electron microscopy is briefly covered.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| |
Collapse
|
17
|
Cai R, Ren Z, Zhao R, Lu Y, Wang X, Guo Z, Song J, Xiang W, Du R, Zhang X, Han W, Ru H, Gu J. Structural biology and functional features of phage-derived depolymerase Depo32 on Klebsiella pneumoniae with K2 serotype capsular polysaccharides. Microbiol Spectr 2023; 11:e0530422. [PMID: 37750730 PMCID: PMC10581125 DOI: 10.1128/spectrum.05304-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/03/2023] [Indexed: 09/27/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae with capsular polysaccharides (CPSs) causes severe nosocomial- and community-acquired infections. Phage-derived depolymerases can degrade CPSs from K. pneumoniae to attenuate bacterial virulence, but their antimicrobial mechanisms and clinical potential are not well understood. In the present study, Klebsiella phage GH-K3-derived depolymerase Depo32 (encoded by gene gp32) was identified to exhibit high efficiency in specifically degrading the CPSs of K2 serotype K. pneumoniae. The cryo-electron microscopy structure of trimeric Depo32 at a resolution up to 2.32 Å revealed potential catalytic centers in the cleft of each of the two adjacent subunits. K. pneumoniae subjected to Depo32 became more sensitive to phagocytosis by RAW264.7 cells and activated the cells by the mitogen-activated protein kinase signaling pathway. In addition, intranasal inoculation with Depo32 (a single dose of 200 µg, 20 µg daily for 3 days, or in combination with gentamicin) rescued all C57BL/6J mice infected with a lethal dose of K. pneumoniae K7 without interference from its neutralizing antibody. In summary, this work elaborates on the mechanism by which Depo32 targets the degradation of K2 serotype CPSs and its potential as an antivirulence agent. IMPORTANCE Depolymerases specific to more than 20 serotypes of Klebsiella spp. have been identified, but most studies only evaluated the single-dose treatment of depolymerases with relatively simple clinical evaluation indices and did not reveal the anti-infection mechanism of these depolymerases in depth. On the basis of determining the biological characteristics, the structure of Depo32 was analyzed by cryo-electron microscopy, and the potential active center was further identified. In addition, the effects of Depo32 on macrophage phagocytosis, signaling pathway activation, and serum killing were revealed, and the efficacy of the depolymerase (single treatment, multiple treatments, or in combination with gentamicin) against acute pneumonia caused by Klebsiella pneumoniae was evaluated. Moreover, the roles of the active sites of Depo32 were also elucidated in the in vitro and in vivo studies. Therefore, through structural biology, cell biology, and in vivo experiments, this study demonstrated the mechanism by which Depo32 targets K2 serotype K. pneumoniae infection.
Collapse
Affiliation(s)
- Ruopeng Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhuolu Ren
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rihong Zhao
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yan Lu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xinwu Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Changchun, Jilin, China
| | - Zhimin Guo
- Infectious Diseases and Pathogen Biology Center, Clinical Laboratory Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jinming Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Wentao Xiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaokang Zhang
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Inter disciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Heng Ru
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
18
|
Allen ME, Hindley JW, O’Toole N, Cooke HS, Contini C, Law RV, Ces O, Elani Y. Biomimetic behaviors in hydrogel artificial cells through embedded organelles. Proc Natl Acad Sci U S A 2023; 120:e2307772120. [PMID: 37603747 PMCID: PMC10466294 DOI: 10.1073/pnas.2307772120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
Artificial cells are biomimetic structures formed from molecular building blocks that replicate biological processes, behaviors, and architectures. Of these building blocks, hydrogels have emerged as ideal, yet underutilized candidates to provide a gel-like chassis in which to incorporate both biological and nonbiological componentry which enables the replication of cellular functionality. Here, we demonstrate a microfluidic strategy to assemble biocompatible cell-sized hydrogel-based artificial cells with a variety of different embedded functional subcompartments, which act as engineered synthetic organelles. The organelles enable the recreation of increasingly biomimetic behaviors, including stimulus-induced motility, content release through activation of membrane-associated proteins, and enzymatic communication with surrounding bioinspired compartments. In this way, we showcase a foundational strategy for the bottom-up construction of hydrogel-based artificial cell microsystems which replicate fundamental cellular behaviors, paving the way for the construction of next-generation biotechnological devices.
Collapse
Affiliation(s)
- Matthew E. Allen
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - James W. Hindley
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Nina O’Toole
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Hannah S. Cooke
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Claudia Contini
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Robert V. Law
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| |
Collapse
|
19
|
Cooney I, Schubert HL, Cedeno K, Lin HJL, Price JC, Hill CP, Shen PS. Visualization of the Cdc48 AAA+ ATPase protein unfolding pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540638. [PMID: 38654823 PMCID: PMC11037871 DOI: 10.1101/2023.05.13.540638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The Cdc48 AAA+ ATPase is an abundant and essential enzyme that unfolds substrates in multiple protein quality control pathways. The enzyme includes two conserved AAA+ ATPase cassettes, D1 and D2, that assemble as hexameric rings with D1 stacked above D2. Here, we report an ensemble of structures of Cdc48 affinity purified from lysate in complex with the adaptor Shp1 in the act of unfolding substrate. Our analysis reveals a continuum of structural snapshots that spans the entire translocation cycle. These data reveal new elements of Shp1-Cdc48 binding and support a "hand-over-hand" mechanism in which the sequential movement of individual subunits is closely coordinated. D1 hydrolyzes ATP and disengages from substrate prior to D2, while D2 rebinds ATP and re-engages with substrate prior to D1, thereby explaining the dominant role played by D2 in substrate translocation/unfolding.
Collapse
Affiliation(s)
- Ian Cooney
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Heidi L. Schubert
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Karina Cedeno
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hsien-Jung L. Lin
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - John C Price
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Christopher P Hill
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Peter S Shen
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
20
|
Hong B, Li Y, Wang W, Ma Y, Wang J. Separation and colorimetric detection of Escherichia coli by phage tail fiber protein combined with nano-magnetic beads. Mikrochim Acta 2023; 190:202. [PMID: 37145241 DOI: 10.1007/s00604-023-05784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
A colorimetric detection method for Escherichia coli (E. coli) in water was established based on a T7 phage tail fiber protein-magnetic separation. Firstly, the tail fiber protein (TFP) was expressed and purified to specifically recognize E. coli, which was verified by using fusion protein GFP-tagged TFP (GFP-TFP) and fluorescence microscopy. Then TFP conjugated with magnetic beads were applied to capture and separate E. coli. The TFP was covalently immobilized on the surface of magnetic beads and captured E. coli as verified by scanning electron microscopy (SEM). Finally, polymyxin B was used to lyse E. coli in solution and the released intracellular β-galactosidase (β-gal) could hydrolyze the colorimetric substrate chlorophenol red-β-D-galactopyranoside (CPRG), causing color change from yellow to purple. The high capture efficiencies of E. coli ranged from 88.70% to 95.65% and E. coli could be detected at a concentration of 102 CFU/mL by naked eyes. The specificity of the chromogenic substrate was evaluated using five different pathogen strains as competitors and tests with four kinds of real water samples showed recoveries of 86.00% to 92.25%. The colorimetric changes determined by visual inspection can be developed as an efficient platform for point-of-care detection of E. coli in resource-limited regions.
Collapse
Affiliation(s)
- Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
21
|
Akutsu H. Strategies for elucidation of the structure and function of the large membrane protein complex, F oF 1-ATP synthase, by nuclear magnetic resonance. Biophys Chem 2023; 296:106988. [PMID: 36898347 DOI: 10.1016/j.bpc.2023.106988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Nuclear magnetic resonance (NMR) investigation of large membrane proteins requires well-focused questions and critical techniques. Here, research strategies for FoF1-ATP synthase, a membrane-embedded molecular motor, are reviewed, focusing on the β-subunit of F1-ATPase and c-subunit ring of the enzyme. Segmental isotope-labeling provided 89% assignment of the main chain NMR signals of thermophilic Bacillus (T)F1β-monomer. Upon nucleotide binding to Lys164, Asp252 was shown to switch its hydrogen-bonding partner from Lys164 to Thr165, inducing an open-to-closed bend motion of TF1β-subunit. This drives the rotational catalysis. The c-ring structure determined by solid-state NMR showed that cGlu56 and cAsn23 of the active site took a hydrogen-bonded closed conformation in membranes. In 505 kDa TFoF1, the specifically isotope-labeled cGlu56 and cAsn23 provided well-resolved NMR signals, which revealed that 87% of the residue pairs took a deprotonated open conformation at the Foa-c subunit interface, whereas they were in the closed conformation in the lipid-enclosed region.
Collapse
Affiliation(s)
- Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
22
|
Huang Q, Zhou Y, Liu HF, Bartesaghi A. Multiple-image super-resolution of cryo-electron micrographs based on deep internal learning. BIOLOGICAL IMAGING 2023; 3:e3. [PMID: 38510165 PMCID: PMC10951919 DOI: 10.1017/s2633903x2300003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 03/22/2024]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) is a powerful imaging modality capable of visualizing proteins and macromolecular complexes at near-atomic resolution. The low electron-doses used to prevent radiation damage to the biological samples, however, result in images where the power of the noise is 100 times greater than the power of the signal. To overcome these low signal-to-noise ratios (SNRs), hundreds of thousands of particle projections are averaged to determine the three-dimensional structure of the molecule of interest. The sampling requirements of high-resolution imaging impose limitations on the pixel sizes that can be used for acquisition, limiting the size of the field of view and requiring data collection sessions of several days to accumulate sufficient numbers of particles. Meanwhile, recent image super-resolution (SR) techniques based on neural networks have shown state-of-the-art performance on natural images. Building on these advances, here, we present a multiple-image SR algorithm based on deep internal learning designed specifically to work under low-SNR conditions. Our approach leverages the internal image statistics of cryo-EM movies and does not require training on ground-truth data. When applied to single-particle datasets of apoferritin and T20S proteasome, we show that the resolution of the 3D structure obtained from SR micrographs can surpass the limits imposed by the imaging system. Our results indicate that the combination of low magnification imaging with in silico image SR has the potential to accelerate cryo-EM data collection by virtue of including more particles in each exposure and doing so without sacrificing resolution.
Collapse
Affiliation(s)
- Qinwen Huang
- Department of Computer Science, Duke University, Durham, North Carolina, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, North Carolina, USA
| | - Hsuan-Fu Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, North Carolina, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
23
|
Liu S, Xia X, Zhen J, Li Z, Zhou ZH. Structures and comparison of endogenous 2-oxoglutarate and pyruvate dehydrogenase complexes from bovine kidney. Cell Discov 2022; 8:126. [PMID: 36414632 PMCID: PMC9681731 DOI: 10.1038/s41421-022-00487-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
The α-keto acid dehydrogenase complex family catalyzes the essential oxidative decarboxylation of α-keto acids to yield acyl-CoA and NADH. Despite performing the same overarching reaction, members of the family have different component structures and structural organization between each other and across phylogenetic species. While native structures of α-keto acid dehydrogenase complexes from bacteria and fungi became available recently, the atomic structure and organization of their mammalian counterparts in native states remain unknown. Here, we report the cryo-electron microscopy structures of the endogenous cubic 2-oxoglutarate dehydrogenase complex (OGDC) and icosahedral pyruvate dehydrogenase complex (PDC) cores from bovine kidney determined at resolutions of 3.5 Å and 3.8 Å, respectively. The structures of multiple proteins were reconstructed from a single lysate sample, allowing direct structural comparison without the concerns of differences arising from sample preparation and structure determination. Although native and recombinant E2 core scaffold structures are similar, the native structures are decorated with their peripheral E1 and E3 subunits. Asymmetric sub-particle reconstructions support heterogeneity in the arrangements of these peripheral subunits. In addition, despite sharing a similar monomeric fold, OGDC and PDC E2 cores have distinct interdomain and intertrimer interactions, which suggests a means of modulating self-assembly to mitigate heterologous binding between mismatched E2 species. The lipoyl moiety lies near a mobile gatekeeper within the interdomain active site of OGDC E2 and PDC E2. Analysis of the twofold related intertrimer interface identified secondary structural differences and chemical interactions between icosahedral and cubic geometries of the core. Taken together, our study provides a direct structural comparison of OGDC and PDC from the same source and offers new insights into determinants of interdomain interactions and of architecture diversity among α-keto acid dehydrogenase complexes.
Collapse
Affiliation(s)
- Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Xian Xia
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Zihang Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Ochner H, Szilagyi S, Edte M, Malavolti L, Rauschenbach S, Kern K. Phase Reconstruction of Low-Energy Electron Holograms of Individual Proteins. ACS NANO 2022; 16:18568-18578. [PMID: 36367752 PMCID: PMC9706659 DOI: 10.1021/acsnano.2c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Low-energy electron holography (LEEH) is one of the few techniques capable of imaging large and complex three-dimensional molecules, such as proteins, on the single-molecule level at subnanometer resolution. During the imaging process, the structural information about the object is recorded both in the amplitude and in the phase of the hologram. In low-energy electron holography imaging of proteins, the object's amplitude distribution, which directly reveals molecular size and shape on the single-molecule level, can be retrieved via a one-step reconstruction process. However, such a one-step reconstruction routine cannot directly recover the phase information encoded in the hologram. In order to extract the full information about the imaged molecules, we thus implemented an iterative phase retrieval algorithm and applied it to experimentally acquired low-energy electron holograms, reconstructing the phase shift induced by the protein along with the amplitude data. We show that phase imaging can map the projected atomic density of the molecule given by the number of atoms in the electron path. This directly implies a correlation between reconstructed phase shift and projected mean inner potential of the molecule, and thus a sensitivity to local changes in potential, an interpretation that is further substantiated by the strong phase signatures induced by localized charges.
Collapse
Affiliation(s)
- Hannah Ochner
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Sven Szilagyi
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Moritz Edte
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Luigi Malavolti
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Stephan Rauschenbach
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Klaus Kern
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
- Institut
de Physique, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Shi D, Huang R. Analysis and comparison of electron radiation damage assessments in Cryo-EM by single particle analysis and micro-crystal electron diffraction. Front Mol Biosci 2022; 9:988928. [PMID: 36275612 PMCID: PMC9585622 DOI: 10.3389/fmolb.2022.988928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Electron radiation damage to macromolecules is an inevitable resolution limit factor in all major structural determination applications using cryo-electron microscopy (cryo-EM). Single particle analysis (SPA) and micro-crystal electron diffraction (MicroED) have been employed to assess radiation damage with a variety of protein complexes. Although radiation induced sidechain density loss and resolution decay were observed by both methods, the minimum dose of electron irradiation reducing high-resolution limit reported by SPA is more than ten folds higher than measured by MicroED using the conventional dose concept, and there is a gap between the attained resolutions assessed by these two methods. We compared and analyzed these two approaches side-by-side in detail from several aspects to identify some crucial determinants and to explain this discrepancy. Probability of a high energy electron being inelastically scattered by a macromolecule is proportional to number of layers of the molecules in its transmission path. As a result, the same electron dose could induce much more site-specific damage to macromolecules in 3D protein crystal than single particle samples. Major differences in data collection and processing scheme are the key factors to different levels of sensitivity to radiation damage at high resolution between the two methods. High resolution electron diffraction in MicroED dataset is very sensitive to global damage to 3D protein crystals with low dose accumulation, and its intensity attenuation rates at atomic resolution shell could be applied for estimating ratio of damaged and total selected single particles for SPA. More in-depth systematically radiation damage assessments using SPA and MicroED will benefit all applications of cryo-EM, especially cellular structure analysis by tomography.
Collapse
Affiliation(s)
- Dan Shi
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Dan Shi,
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
26
|
Bouvier G, Bardiaux B, Pellarin R, Rapisarda C, Nilges M. Building Protein Atomic Models from Cryo-EM Density Maps and Residue Co-Evolution. Biomolecules 2022; 12:biom12091290. [PMID: 36139128 PMCID: PMC9496541 DOI: 10.3390/biom12091290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Electron cryo-microscopy (cryo-EM) has emerged as a powerful method by which to obtain three-dimensional (3D) structures of macromolecular complexes at atomic or near-atomic resolution. However, de novo building of atomic models from near-atomic resolution (3–5 Å) cryo-EM density maps is a challenging task, in particular because poorly resolved side-chain densities hamper sequence assignment by automatic procedures at a lower resolution. Furthermore, segmentation of EM density maps into individual subunits remains a difficult problem when the structure of the subunits is not known, or when significant conformational rearrangement occurs between the isolated and associated form of the subunits. To tackle these issues, we have developed a graph-based method to thread most of the C-α trace of the protein backbone into the EM density map. The EM density is described as a weighted graph such that the resulting minimum spanning tree encompasses the high-density regions of the map. A pruning algorithm cleans the tree and finds the most probable positions of the C-α atoms, by using side-chain density when available, as a collection of C-α trace fragments. By complementing experimental EM maps with contact predictions from sequence co-evolutionary information, we demonstrate that this approach can correctly segment EM maps into individual subunits and assign amino acid sequences to backbone traces to generate atomic models.
Collapse
Affiliation(s)
- Guillaume Bouvier
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
- Correspondence: (G.B.); (B.B.)
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
- Correspondence: (G.B.); (B.B.)
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| | - Chiara Rapisarda
- Microbiologie Fondamentale et Pathogènicité, University of Bordeaux, CNRS UMR 5234, 33076 Bordeaux, France
- Institut Européen de Chimie et Biologie, University of Bordeaux, 33600 Pessac, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| |
Collapse
|
27
|
Lazić I, Wirix M, Leidl ML, de Haas F, Mann D, Beckers M, Pechnikova EV, Müller-Caspary K, Egoavil R, Bosch EGT, Sachse C. Single-particle cryo-EM structures from iDPC-STEM at near-atomic resolution. Nat Methods 2022; 19:1126-1136. [PMID: 36064775 PMCID: PMC9467914 DOI: 10.1038/s41592-022-01586-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
In electron cryomicroscopy (cryo-EM), molecular images of vitrified biological samples are obtained by conventional transmission microscopy (CTEM) using large underfocuses and subsequently computationally combined into a high-resolution three-dimensional structure. Here, we apply scanning transmission electron microscopy (STEM) using the integrated differential phase contrast mode also known as iDPC-STEM to two cryo-EM test specimens, keyhole limpet hemocyanin (KLH) and tobacco mosaic virus (TMV). The micrographs show complete contrast transfer to high resolution and enable the cryo-EM structure determination for KLH at 6.5 Å resolution, as well as for TMV at 3.5 Å resolution using single-particle reconstruction methods, which share identical features with maps obtained by CTEM of a previously acquired same-sized TMV data set. These data show that STEM imaging in general, and in particular the iDPC-STEM approach, can be applied to vitrified single-particle specimens to determine near-atomic resolution cryo-EM structures of biological macromolecules.
Collapse
Affiliation(s)
- Ivan Lazić
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands.
| | - Maarten Wirix
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Max Leo Leidl
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-1): Physics of Nanoscale Systems, Jülich, Germany
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany
| | - Felix de Haas
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany
| | - Maximilian Beckers
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Evgeniya V Pechnikova
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Knut Müller-Caspary
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-1): Physics of Nanoscale Systems, Jülich, Germany
| | - Ricardo Egoavil
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Eric G T Bosch
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Carsten Sachse
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany.
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
28
|
Fluty AC, Ludtke SJ. Precision requirements and data compression in CryoEM/CryoET. J Struct Biol 2022; 214:107875. [PMID: 35724904 PMCID: PMC9645247 DOI: 10.1016/j.jsb.2022.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
With larger, higher speed detectors and improved automation, individual CryoEM instruments are capable of producing a prodigious amount of data each day, which must then be stored, processed and archived. While it has become routine to use lossless compression on raw counting-mode movies, the averages which result after correcting these movies no longer compress well. These averages could be considered sufficient for long term archival, yet they are conventionally stored with 32 bits of precision, despite high noise levels. Derived images are similarly stored with excess precision, providing an opportunity to decrease project sizes and improve processing speed. We present a simple argument based on propagation of uncertainty for safe bit truncation of flat-fielded images combined with lossless compression. The same method can be used for most derived images throughout the processing pipeline. We test the proposed strategy on two standard, data-limited CryoEM data sets, demonstrating that these limits are safe for real-world use. We find that 5 bits of precision is sufficient for virtually any raw CryoEM data and that 8-12 bits is sufficient for intermediate averages or final 3-D structures. Additionally, we detail and recommend specific rules for discretization of data as well as a practical compressed data representation that is tuned to the specific needs of CryoEM.
Collapse
Affiliation(s)
- Adam C Fluty
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, United States
| | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, United States.
| |
Collapse
|
29
|
Ramírez-Aportela E, Carazo JM, Sorzano COS. Higher resolution in cryo-EM by the combination of macromolecular prior knowledge and image-processing tools. IUCRJ 2022; 9:632-638. [PMID: 36071808 PMCID: PMC9438491 DOI: 10.1107/s2052252522006959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Single-particle cryo-electron microscopy has become a powerful technique for the 3D structure determination of biological molecules. The last decade has seen an astonishing development of both hardware and software, and an exponential growth of new structures obtained at medium-high resolution. However, the knowledge accumulated in this field over the years has hardly been utilized as feedback in the reconstruction of new structures. In this context, this article explores the use of the deep-learning approach deepEMhancer as a regularizer in the RELION refinement process. deepEMhancer introduces prior information derived from macromolecular structures, and contributes to noise reduction and signal enhancement, as well as a higher degree of isotropy. These features have a direct effect on image alignment and reduction of overfitting during iterative refinement. The advantages of this combination are demonstrated for several membrane proteins, for which it is especially useful because of their high disorder and flexibility.
Collapse
Affiliation(s)
- Erney Ramírez-Aportela
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Jose M. Carazo
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
- Universidad CEU San Pablo, Campus Urb. Montepríncipe, Boadilla del Monte, Madrid 28668, Spain
| |
Collapse
|
30
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination. Front Chem 2022; 10:889203. [PMID: 36110139 PMCID: PMC9468540 DOI: 10.3389/fchem.2022.889203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
To understand the dynamic structure-function relationship of soft- and biomolecules, the determination of the three-dimensional (3D) structure of each individual molecule (nonaveraged structure) in its native state is sought-after. Cryo-electron tomography (cryo-ET) is a unique tool for imaging an individual object from a series of tilted views. However, due to radiation damage from the incident electron beam, the tolerable electron dose limits image contrast and the signal-to-noise ratio (SNR) of the data, preventing the 3D structure determination of individual molecules, especially at high-resolution. Although recently developed technologies and techniques, such as the direct electron detector, phase plate, and computational algorithms, can partially improve image contrast/SNR at the same electron dose, the high-resolution structure, such as tertiary structure of individual molecules, has not yet been resolved. Here, we review the cryo-electron microscopy (cryo-EM) and cryo-ET experimental parameters to discuss how these parameters affect the extent of radiation damage. This discussion can guide us in optimizing the experimental strategy to increase the imaging dose or improve image SNR without increasing the radiation damage. With a higher dose, a higher image contrast/SNR can be achieved, which is crucial for individual-molecule 3D structure. With 3D structures determined from an ensemble of individual molecules in different conformations, the molecular mechanism through their biochemical reactions, such as self-folding or synthesis, can be elucidated in a straightforward manner.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
31
|
Todokoro Y, Kang SJ, Suzuki T, Ikegami T, Kainosho M, Yoshida M, Fujiwara T, Akutsu H. Chemical Conformation of the Essential Glutamate Site of the c-Ring within Thermophilic Bacillus F oF 1-ATP Synthase Determined by Solid-State NMR Based on its Isolated c-Ring Structure. J Am Chem Soc 2022; 144:14132-14139. [PMID: 35905443 DOI: 10.1021/jacs.2c03580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton translocation through the membrane-embedded Fo component of F-type ATP synthase (FoF1) is facilitated by the rotation of the Fo c-subunit ring (c-ring), carrying protons at essential acidic amino acid residues. Cryo-electron microscopy (Cryo-EM) structures of FoF1 suggest a unique proton translocation mechanism. To elucidate it based on the chemical conformation of the essential acidic residues of the c-ring in FoF1, we determined the structure of the isolated thermophilic Bacillus Fo (tFo) c-ring, consisting of 10 subunits, in membranes by solid-state NMR. This structure contains a distinct proton-locking conformation, wherein Asn23 (cN23) CγO and Glu56 (cE56) CδOH form a hydrogen bond in a closed form. We introduced stereo-array-isotope-labeled (SAIL) Glu and Asn into the tFoc-ring to clarify the chemical conformation of these residues in tFoF1-ATP synthase (tFoF1). Two well-separated 13C signals could be detected for cN23 and cE56 in a 505 kDa membrane protein complex, respectively, thereby suggesting the presence of two distinct chemical conformations. Based on the signal intensity and structure of the tFoc-ring and tFoF1, six pairs of cN23 and cE56 surrounded by membrane lipids take the closed form, whereas the other four in the a-c interface employ the deprotonated open form at a proportion of 87%. This indicates that the a-c interface is highly hydrophilic. The pKa values of the four cE56 residues in the a-c interface were estimated from the cN23 signal intensity in the open and closed forms and distribution of polar residues around each cE56. The results favor a rotation of the c-ring for ATP synthesis.
Collapse
Affiliation(s)
- Yasuto Todokoro
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan.,Technical Support Division, School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Su-Jin Kang
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan.,Department of Biophysics and Chemical Biology, Seoul National University, Gwanak-Gu, Seoul 151-742, Republic of Korea.,College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Toshiharu Suzuki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-0026, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masatsune Kainosho
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masasuke Yoshida
- Department of Molecular Bioscience, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan.,Department of Biophysics and Chemical Biology, Seoul National University, Gwanak-Gu, Seoul 151-742, Republic of Korea.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
32
|
Zhou Y, Moscovich A, Bartesaghi A. Data-driven determination of number of discrete conformations in single-particle cryo-EM. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106892. [PMID: 35597206 PMCID: PMC10131080 DOI: 10.1016/j.cmpb.2022.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND OBJECTIVE One of the strengths of single-particle cryo-EM compared to other structural determination techniques is its ability to image heterogeneous samples containing multiple molecular species, different oligomeric states or distinct conformations. This is achieved using routines for in-silico 3D classification that are now well established in the field and have successfully been used to characterize the structural heterogeneity of important biomolecules. These techniques, however, rely on expert-user knowledge and trial-and-error experimentation to determine the correct number of conformations, making it a labor intensive, subjective, and difficult to reproduce procedure. METHODS We propose an approach to address the problem of automatically determining the number of discrete conformations present in heterogeneous single-particle cryo-EM datasets. We do this by systematically evaluating all possible partitions of the data and selecting the result that maximizes the average variance of similarities measured between particle images and the corresponding 3D reconstructions. RESULTS Using this strategy, we successfully analyzed datasets of heterogeneous protein complexes, including: 1) in-silico mixtures obtained by combining closely related antibody-bound HIV-1 Env trimers and other important membrane channels, and 2) naturally occurring mixtures from diverse and dynamic protein complexes representing varying degrees of structural heterogeneity and conformational plasticity. CONCLUSIONS The availability of unsupervised strategies for 3D classification combined with existing approaches for fully automatic pre-processing and 3D refinement, represents an important step towards converting single-particle cryo-EM into a high-throughput technique.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Amit Moscovich
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Biochemistry, Duke University School of Medicine, Durham, NC 27708, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
33
|
Treder KP, Huang C, Kim JS, Kirkland AI. Applications of deep learning in electron microscopy. Microscopy (Oxf) 2022; 71:i100-i115. [DOI: 10.1093/jmicro/dfab043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Abstract
We review the growing use of machine learning in electron microscopy (EM) driven in part by the availability of fast detectors operating at kiloHertz frame rates leading to large data sets that cannot be processed using manually implemented algorithms. We summarize the various network architectures and error metrics that have been applied to a range of EM-related problems including denoising and inpainting. We then provide a review of the application of these in both physical and life sciences, highlighting how conventional networks and training data have been specifically modified for EM.
Collapse
Affiliation(s)
- Kevin P Treder
- Department of Materials, University of Oxford, Oxford, Oxfordshire OX1 3PH, UK
| | - Chen Huang
- Rosalind Franklin Institute, Harwell Research Campus, Didcot, Oxfordshire OX11 0FA, UK
| | - Judy S Kim
- Department of Materials, University of Oxford, Oxford, Oxfordshire OX1 3PH, UK
- Rosalind Franklin Institute, Harwell Research Campus, Didcot, Oxfordshire OX11 0FA, UK
| | - Angus I Kirkland
- Department of Materials, University of Oxford, Oxford, Oxfordshire OX1 3PH, UK
- Rosalind Franklin Institute, Harwell Research Campus, Didcot, Oxfordshire OX11 0FA, UK
| |
Collapse
|
34
|
Borges RJ, Salvador GHM, Pimenta DC, Dos Santos LD, Fontes MRM, Usón I. SEQUENCE SLIDER: integration of structural and genetic data to characterize isoforms from natural sources. Nucleic Acids Res 2022; 50:e50. [PMID: 35104880 PMCID: PMC9122596 DOI: 10.1093/nar/gkac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/30/2022] [Indexed: 12/28/2022] Open
Abstract
Proteins isolated from natural sources can be composed of a mixture of isoforms with similar physicochemical properties that coexist in the final steps of purification. Yet, even where unverified, the assumed sequence is enforced throughout the structural studies. Herein, we propose a novel perspective to address the usually neglected sequence heterogeneity of natural products by integrating biophysical, genetic and structural data in our program SEQUENCE SLIDER. The aim is to assess the evidence supporting chemical composition in structure determination. Locally, we interrogate the experimental map to establish which side chains are supported by the structural data, and the genetic information relating sequence conservation is integrated into this statistic. Hence, we build a constrained peptide database, containing most probable sequences to interpret mass spectrometry data (MS). In parallel, we perform MS de novo sequencing with genomic-based algorithms to detect point mutations. We calibrated SLIDER with Gallus gallus lysozyme, whose sequence is unequivocally established and numerous natural isoforms are reported. We used SLIDER to characterize a metalloproteinase and a phospholipase A2-like protein from the venom of Bothrops moojeni and a crotoxin from Crotalus durissus collilineatus. This integrated approach offers a more realistic structural descriptor to characterize macromolecules isolated from natural sources.
Collapse
Affiliation(s)
- Rafael J Borges
- Departament of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil.,Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Guilherme H M Salvador
- Departament of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Daniel C Pimenta
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, São Paulo 05503-900, Brazil
| | - Lucilene D Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo 18618-687, Brazil.,Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, São Paulo 18607-440, Brazil
| | - Marcos R M Fontes
- Departament of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona 08028, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
35
|
Ravikumar A, Gopnarayan MN, Subramaniam S, Srinivasan N. Comparison of side-chain dispersion in protein structures determined by cryo-EM and X-ray crystallography. IUCRJ 2022; 9:98-103. [PMID: 35059214 PMCID: PMC8733892 DOI: 10.1107/s2052252521011945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
An evaluation of systematic differences in local structure and conformation in the interior of protein tertiary structures determined by crystallography and by cryo-electron microscopy (cryo-EM) is reported. The expectation is that any consistent differences between the derived atomic models could provide insights into variations in side-chain packing that result from differences in specimens prepared for analysis between these two methods. By computing an atomic packing score, which provides a quantitative measure of clustering of side-chain atoms in the core of the tertiary structures, it is found that, in general, for structures determined by cryo-EM, side chains are more dispersed than in structures determined by X-ray crystallography over a similar resolution range. This trend is also observed in the packing comparison at subunit interfaces. Similar trends were observed in the packing comparison at the core of tertiary structures of the same proteins determined by both X-ray and cryo-EM methods. It is proposed here that the reduced dispersion of side chains in protein crystals could be due to some level of dehydration in 3D crystals prepared for X-ray crystallography and also because the higher rate of freezing of protein samples for cryo-EM may enable preservation of a more native conformation.
Collapse
Affiliation(s)
- Ashraya Ravikumar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | | | - Sriram Subramaniam
- University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
36
|
Emrani J, Ahmed M, Jeffers-Francis L, Teleha JC, Mowa N, Newman RH, Thomas MD. SARS-COV-2, infection, transmission, transcription, translation, proteins, and treatment: A review. Int J Biol Macromol 2021; 193:1249-1273. [PMID: 34756970 PMCID: PMC8552795 DOI: 10.1016/j.ijbiomac.2021.10.172] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023]
Abstract
In this review, we describe the key molecular entities involved in the process of infection by SARS-CoV-2, while also detailing how those key entities influence the spread of the disease. We further introduce the molecular mechanisms of preventive and treatment strategies including drugs, antibodies, and vaccines.
Collapse
Affiliation(s)
- Jahangir Emrani
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, United States of America.
| | - Maryam Ahmed
- Department of Biology, Appalachian State University, Boone, NC 28608, United States of America
| | - Liesl Jeffers-Francis
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - John C Teleha
- Department of Reference and Instruction, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - Nathan Mowa
- Department of Biology, Appalachian State University, Boone, NC 28608, United States of America
| | - Robert H Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - Misty D Thomas
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| |
Collapse
|
37
|
Himes B, Grigorieff N. Cryo-TEM simulations of amorphous radiation-sensitive samples using multislice wave propagation. IUCRJ 2021; 8:943-953. [PMID: 34804546 PMCID: PMC8562658 DOI: 10.1107/s2052252521008538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Image simulation plays a central role in the development and practice of high-resolution electron microscopy, including transmission electron microscopy of frozen-hydrated specimens (cryo-EM). Simulating images with contrast that matches the contrast observed in experimental images remains challenging, especially for amorphous samples. Current state-of-the-art simulators apply post hoc scaling to approximate empirical solvent contrast, attenuated image intensity due to specimen thickness and amplitude contrast. This practice fails for images that require spatially variable scaling, e.g. simulations of a crowded or cellular environment. Modeling both the signal and the noise accurately is necessary to simulate images of biological specimens with contrast that is correct on an absolute scale. The 'frozen plasmon' method is introduced to explicitly model spatially variable inelastic scattering processes in cryo-EM specimens. This approach produces amplitude contrast that depends on the atomic composition of the specimen, reproduces the total inelastic mean free path as observed experimentally and allows for the incorporation of radiation damage in the simulation. These improvements are quantified using the matched filter concept to compare simulation and experiment. The frozen plasmon method, in combination with a new mathematical formulation for accurately sampling the tabulated atomic scattering potentials onto a Cartesian grid, is implemented in the open-source software package cisTEM.
Collapse
Affiliation(s)
- Benjamin Himes
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Nikolaus Grigorieff
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
38
|
Gao X, Liu L, Cui L, Zheng T, Ji B, Liu K. Characterization of two β-galactosidases LacZ and WspA1 from Nostoc flagelliforme with focus on the latter's central active region. Sci Rep 2021; 11:18448. [PMID: 34531460 PMCID: PMC8445988 DOI: 10.1038/s41598-021-97929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
The identification and characterization of new β-galactosidases will provide diverse candidate enzymes for use in food processing industry. In this study, two β-galactosidases, Nf-LacZ and WspA1, from the terrestrial cyanobacterium Nostoc flagelliforme were heterologously expressed in Escherichia coli, followed by purification and biochemical characterization. Nf-LacZ was characterized to have an optimum activity at 40 °C and pH 6.5, different from that (45 °C and pH 8.0) of WspA1. Two enzymes had a similar Michaelis constant (Km = 0.5 mmol/liter) against the substrate o-nitrophenyl-β-D-galactopyranoside. Their activities could be inhibited by galactostatin bisulfite, with IC50 values of 0.59 µM for Nf-LacZ and 1.18 µM for WspA1, respectively. Gel filtration analysis suggested that the active form of WspA1 was a dimer, while Nf-LacZ was functional as a larger multimer. WspA1 was further characterized by the truncation test, and its minimum central region was found to be from residues 188 to 301, having both the glycosyl hydrolytic and transgalactosylation activities. Finally, transgenic analysis with the GFP reporter protein found that the N-terminus of WspA1 (35 aa) might play a special role in the export of WspA1 from cells. In summary, this study characterized two cyanobacterial β-galactosidases for potential applications in food industry.
Collapse
Affiliation(s)
- Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China. .,School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Litao Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lijuan Cui
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Tao Zheng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Ke Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
39
|
Carabias A, Fuglsang A, Temperini P, Pape T, Sofos N, Stella S, Erlendsson S, Montoya G. Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nat Commun 2021; 12:4476. [PMID: 34294706 PMCID: PMC8298400 DOI: 10.1038/s41467-021-24707-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas12j is a recently identified family of miniaturized RNA-guided endonucleases from phages. These ribonucleoproteins provide a compact scaffold gathering all key activities of a genome editing tool. We provide the first structural insight into the Cas12j family by determining the cryoEM structure of Cas12j3/R-loop complex after DNA cleavage. The structure reveals the machinery for PAM recognition, hybrid assembly and DNA cleavage. The crRNA-DNA hybrid is directed to the stop domain that splits the hybrid, guiding the T-strand towards the catalytic site. The conserved RuvC insertion is anchored in the stop domain and interacts along the phosphate backbone of the crRNA in the hybrid. The assembly of a hybrid longer than 12-nt activates catalysis through key functional residues in the RuvC insertion. Our findings suggest why Cas12j unleashes unspecific ssDNA degradation after activation. A site-directed mutagenesis analysis supports the DNA cutting mechanism, providing new avenues to redesign CRISPR-Cas12j nucleases for genome editing.
Collapse
Affiliation(s)
- Arturo Carabias
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Anders Fuglsang
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Piero Temperini
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
- Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Sofos
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Stefano Stella
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
- Twelve Bio ApS, Copenhagen, Denmark
| | - Simon Erlendsson
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Beckers M, Mann D, Sachse C. Structural interpretation of cryo-EM image reconstructions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 160:26-36. [PMID: 32735944 DOI: 10.1016/j.pbiomolbio.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The productivity of single-particle cryo-EM as a structure determination method has rapidly increased as many novel biological structures are being elucidated. The ultimate result of the cryo-EM experiment is an atomic model that should faithfully represent the computed image reconstruction. Although the principal approach of atomic model building and refinement from maps resembles that of the X-ray crystallographic methods, there are important differences due to the unique properties resulting from the 3D image reconstructions. In this review, we discuss the practiced work-flow from the cryo-EM image reconstruction to the atomic model. We give an overview of (i) resolution determination methods in cryo-EM including local and directional resolution variation, (ii) cryo-EM map contrast optimization including complementary map types that can help in identifying ambiguous density features, (iii) atomic model building and (iv) refinement in various resolution regimes including (v) their validation and (vi) discuss differences between X-ray and cryo-EM maps. Based on the methods originally developed for X-ray crystallography, the path from 3D image reconstruction to atomic coordinates has become an integral and important part of the cryo-EM structure determination work-flow that routinely delivers atomic models.
Collapse
Affiliation(s)
- Maximilian Beckers
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany; Candidate for Joint PhD Degree from EMBL and Heidelberg University, Faculty of Biosciences, Germany; Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Daniel Mann
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany; Chemistry Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
41
|
Yu JC, Mietzsch M, Singh A, Jimenez Ybargollin A, Kailasan S, Chipman P, Bhattacharya N, Fakhiri J, Grimm D, Kapoor A, Kučinskaitė-Kodzė I, Žvirblienė A, Söderlund-Venermo M, McKenna R, Agbandje-McKenna M. Characterization of the GBoV1 Capsid and Its Antibody Interactions. Viruses 2021; 13:v13020330. [PMID: 33672786 PMCID: PMC7924616 DOI: 10.3390/v13020330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Human bocavirus 1 (HBoV1) has gained attention as a gene delivery vector with its ability to infect polarized human airway epithelia and 5.5 kb genome packaging capacity. Gorilla bocavirus 1 (GBoV1) VP3 shares 86% amino acid sequence identity with HBoV1 but has better transduction efficiency in several human cell types. Here, we report the capsid structure of GBoV1 determined to 2.76 Å resolution using cryo-electron microscopy (cryo-EM) and its interaction with mouse monoclonal antibodies (mAbs) and human sera. GBoV1 shares capsid surface morphologies with other parvoviruses, with a channel at the 5-fold symmetry axis, protrusions surrounding the 3-fold axis and a depression at the 2-fold axis. A 2/5-fold wall separates the 2-fold and 5-fold axes. Compared to HBoV1, differences are localized to the 3-fold protrusions. Consistently, native dot immunoblots and cryo-EM showed cross-reactivity and binding, respectively, by a 5-fold targeted HBoV1 mAb, 15C6. Surprisingly, recognition was observed for one out of three 3-fold targeted mAbs, 12C1, indicating some structural similarity at this region. In addition, GBoV1, tested against 40 human sera, showed the similar rates of seropositivity as HBoV1. Immunogenic reactivity against parvoviral vectors is a significant barrier to efficient gene delivery. This study is a step towards optimizing bocaparvovirus vectors with antibody escape properties.
Collapse
Affiliation(s)
- Jennifer Chun Yu
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Amriti Singh
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Alberto Jimenez Ybargollin
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Shweta Kailasan
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Nilakshee Bhattacharya
- Biological Science Imaging Resource, Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA;
| | - Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, BioQuant, University of Heidelberg, 69120 Heidelberg, Germany; (J.F.); (D.G.)
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, BioQuant, University of Heidelberg, 69120 Heidelberg, Germany; (J.F.); (D.G.)
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43220, USA;
| | - Indrė Kučinskaitė-Kodzė
- Department of Immunology and Cell Biology of the Institute of Biotechnology of Vilnius University, 10257 Vilnius, Lithuania; (I.K.-K.); (A.Ž.)
| | - Aurelija Žvirblienė
- Department of Immunology and Cell Biology of the Institute of Biotechnology of Vilnius University, 10257 Vilnius, Lithuania; (I.K.-K.); (A.Ž.)
| | | | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.C.Y.); (M.M.); (A.S.); (A.J.Y.); (S.K.); (P.C.); (R.M.)
- Correspondence:
| |
Collapse
|
42
|
Sauer DB, Song J, Wang B, Hilton JK, Karpowich NK, Mindell JA, Rice WJ, Wang DN. Structure and inhibition mechanism of the human citrate transporter NaCT. Nature 2021; 591:157-161. [PMID: 33597751 PMCID: PMC7933130 DOI: 10.1038/s41586-021-03230-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Abstract
Citrate is most well-known as an intermediate in the TCA cycle of the cell. In addition to this essential role in energy metabolism, the tricarboxylate anion also acts as both a precursor and a regulator of fatty acid synthesis 1–3. Thus, the rate of fatty acid synthesis correlates directly with the cytosolic citrate concentration 4,5. Liver cells import citrate via the sodium-dependent citrate transporter NaCT (SLC13A5), and as a consequence this protein is a potential target for anti-obesity drugs. To understand the structural basis of its inhibition mechanism, we have determined cryo-electron microscopy structures of human NaCT in complex with citrate and with a small molecule inhibitor. These structures reveal how the inhibitor, bound at the same site as citrate, arrests the protein’s transport cycle. The NaCT-inhibitor structure also explains why the compound selectively inhibits NaCT over two homologous human dicarboxylate transporters, and suggests ways to further improve the affinity and selectivity. Finally, the NaCT structures provide a framework for understanding how various mutations abolish NaCT’s transport activity in the brain and thereby cause SLC13A5-Epilepsy in newborns 6–8.
Collapse
Affiliation(s)
- David B Sauer
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Jinmei Song
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Jacob K Hilton
- Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nathan K Karpowich
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA.,Janssen Pharmaceuticals, Spring House, PA, USA
| | - Joseph A Mindell
- Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - William J Rice
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA. .,Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA.
| | - Da-Neng Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA. .,Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
43
|
OUP accepted manuscript. Microscopy (Oxf) 2021; 71:i3-i14. [DOI: 10.1093/jmicro/dfab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
|
44
|
Silveria MA, Large EE, Zane GM, White TA, Chapman MS. The Structure of an AAV5-AAVR Complex at 2.5 Å Resolution: Implications for Cellular Entry and Immune Neutralization of AAV Gene Therapy Vectors. Viruses 2020; 12:E1326. [PMID: 33218165 PMCID: PMC7698955 DOI: 10.3390/v12111326] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
Adeno-Associated Virus is the leading vector for gene therapy. Although it is the vector for all in vivo gene therapies approved for clinical use by the US Food and Drug Administration, its biology is still not yet fully understood. It has been shown that different serotypes of AAV bind to their cellular receptor, AAVR, in different ways. Previously we have reported a 2.4Å structure of AAV2 bound to AAVR that shows ordered structure for only one of the two AAVR domains with which AAV2 interacts. In this study we present a 2.5Å resolution structure of AAV5 bound to AAVR. AAV5 binds to the first polycystic kidney disease (PKD) domain of AAVR that was not ordered in the AAV2 structure. Interactions of AAV5 with AAVR are analyzed in detail, and the implications for AAV2 binding are explored through molecular modeling. Moreover, we find that binding sites for the antibodies ADK5a, ADK5b, and 3C5 on AAV5 overlap with the binding site of AAVR. These insights provide a structural foundation for development of gene therapy agents to better evade immune neutralization without disrupting cellular entry.
Collapse
Affiliation(s)
- Mark A. Silveria
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (M.A.S.); (E.E.L.); (G.M.Z.); (T.A.W.)
| | - Edward E. Large
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (M.A.S.); (E.E.L.); (G.M.Z.); (T.A.W.)
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (M.A.S.); (E.E.L.); (G.M.Z.); (T.A.W.)
| | - Tommi A. White
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (M.A.S.); (E.E.L.); (G.M.Z.); (T.A.W.)
- Electron Microscopy Core, University of Missouri, Columbia, MO 65211, USA
| | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (M.A.S.); (E.E.L.); (G.M.Z.); (T.A.W.)
| |
Collapse
|
45
|
Yao R, Qian J, Huang Q. Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules. Bioinformatics 2020; 36:1252-1259. [PMID: 31584618 DOI: 10.1093/bioinformatics/btz728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/28/2019] [Accepted: 09/26/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Single-particle cryo-electron microscopy (cryo-EM) has become a powerful technique for determining 3D structures of biological macromolecules at near-atomic resolution. However, this approach requires picking huge numbers of macromolecular particle images from thousands of low-contrast, high-noisy electron micrographs. Although machine-learning methods were developed to get rid of this bottleneck, it still lacks universal methods that could automatically picking the noisy cryo-EM particles of various macromolecules. RESULTS Here, we present a deep-learning segmentation model that employs fully convolutional networks trained with synthetic data of known 3D structures, called PARSED (PARticle SEgmentation Detector). Without using any experimental information, PARSED could automatically segment the cryo-EM particles in a whole micrograph at a time, enabling faster particle picking than previous template/feature-matching and particle-classification methods. Applications to six large public cryo-EM datasets clearly validated its universal ability to pick macromolecular particles of various sizes. Thus, our deep-learning method could break the particle-picking bottleneck in the single-particle analysis, and thereby accelerates the high-resolution structure determination by cryo-EM. AVAILABILITY AND IMPLEMENTATION The PARSED package and user manual for noncommercial use are available as Supplementary Material (in the compressed file: parsed_v1.zip). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ruijie Yao
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiaqiang Qian
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
46
|
A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure 2020; 28:1249-1258.e2. [PMID: 32857966 DOI: 10.1016/j.str.2020.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Ramachandran plots report the distribution of the (ϕ, ψ) torsion angles of the protein backbone and are one of the best quality metrics of experimental structure models. Typically, validation software reports the number of residues belonging to "outlier," "allowed," and "favored" regions. While "zero unexplained outliers" can be considered the current "gold standard," this can be misleading if deviations from expected distributions are not considered. We revisited the Ramachandran Z score (Rama-Z), a quality metric introduced more than two decades ago but underutilized. We describe a reimplementation of the Rama-Z score in the Computational Crystallography Toolbox along with an algorithm to estimate its uncertainty for individual models; final implementations are available in Phenix and PDB-REDO. We discuss the interpretation of the Rama-Z score and advocate including it in the validation reports provided by the Protein Data Bank. We also advocate reporting it alongside the outlier/allowed/favored counts in structural publications.
Collapse
|
47
|
Vinothkumar KR, Arya CK, Ramanathan G, Subramanian R. Comparison of CryoEM and X-ray structures of dimethylformamidase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:66-78. [PMID: 32735943 DOI: 10.1016/j.pbiomolbio.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 11/15/2022]
Abstract
Dimethylformamidase (DMFase) catalyzes the hydrolysis of dimethylformamide, an industrial solvent, introduced into the environment by humans. Recently, we determined the structures of dimethylformamidase by electron cryo microscopy and X-ray crystallography revealing a tetrameric enzyme with a mononuclear iron at the active site. DMFase from Paracoccus sp. isolated from a waste water treatment plant around the city of Kanpur in India shows maximal activity at 54 °C and is halotolerant. The structures determined by both techniques are mostly identical and the largest difference is in a loop near the active site. This loop could play a role in co-operativity between the monomers. A number of non-protein densities are observed in the EM map, which are modelled as water molecules. Comparison of the structures determined by the two methods reveals conserved water molecules that could play a structural role. The higher stability, unusual active site and negligible activity at low temperature makes this a very good model to study enzyme mechanism by cryoEM.
Collapse
Affiliation(s)
| | - Chetan Kumar Arya
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bengaluru, India
| | | | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bengaluru, India; Department of Biological Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
48
|
Chau C, Radford SE, Hewitt EW, Actis P. Macromolecular Crowding Enhances the Detection of DNA and Proteins by a Solid-State Nanopore. NANO LETTERS 2020; 20:5553-5561. [PMID: 32559088 PMCID: PMC7357865 DOI: 10.1021/acs.nanolett.0c02246] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Indexed: 05/19/2023]
Abstract
Nanopore analysis of nucleic acid is now routine, but detection of proteins remains challenging. Here, we report the systematic characterization of the effect of macromolecular crowding on the detection sensitivity of a solid-state nanopore for circular and linearized DNA plasmids, globular proteins (β-galactosidase), and filamentous proteins (α-synuclein amyloid fibrils). We observe a remarkable ca. 1000-fold increase in the molecule count for the globular protein β-galactosidase and a 6-fold increase in peak amplitude for plasmid DNA under crowded conditions. We also demonstrate that macromolecular crowding facilitates the study of the topology of DNA plasmids and the characterization of amyloid fibril preparations with different length distributions. A remarkable feature of this method is its ease of use; it simply requires the addition of a macromolecular crowding agent to the electrolyte. We therefore envision that macromolecular crowding can be applied to many applications in the analysis of biomolecules by solid-state nanopores.
Collapse
Affiliation(s)
- Chalmers
C. Chau
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
| | - Sheena E. Radford
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Eric W. Hewitt
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
49
|
Merk A, Fukumura T, Zhu X, Darling JE, Grisshammer R, Ognjenovic J, Subramaniam S. 1.8 Å resolution structure of β-galactosidase with a 200 kV CRYO ARM electron microscope. IUCRJ 2020; 7:639-643. [PMID: 32695410 PMCID: PMC7340270 DOI: 10.1107/s2052252520006855] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/20/2020] [Indexed: 05/26/2023]
Abstract
We report the determination of the structure of Escherichia coli β-galactosidase at a resolution of ∼1.8 Å using data collected on a 200 kV CRYO ARM microscope equipped with a K3 direct electron detector. The data were collected in a single 24 h session by recording images from an array of 7 × 7 holes at each stage position using the automated data collection program SerialEM. In addition to the expected features such as holes in the densities of aromatic residues, the map also shows density bumps corresponding to the locations of hydrogen atoms. The hydrogen densities are useful in assigning absolute orientations for residues such as glutamine or asparagine by removing the uncertainty in the fitting of the amide groups, and are likely to be especially relevant in the context of structure-guided drug design. These findings validate the use of electron microscopes operating at 200 kV for imaging protein complexes at atomic resolution using cryo-EM.
Collapse
Affiliation(s)
- Alan Merk
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | | | - Xing Zhu
- University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Joseph E. Darling
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Reinhard Grisshammer
- National Cancer Institute Frederick Office of Scientific Operations, Frederick, MD 21701, USA
| | - Jana Ognjenovic
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Sriram Subramaniam
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
- University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
50
|
Heimowitz A, Andén J, Singer A. Reducing bias and variance for CTF estimation in single particle cryo-EM. Ultramicroscopy 2020; 212:112950. [PMID: 32151795 PMCID: PMC9930185 DOI: 10.1016/j.ultramic.2020.112950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
When using an electron microscope for imaging of particles embedded in vitreous ice, the recorded image, or micrograph, is a significantly degraded version of the tomographic projection of the sample. Apart from noise, the image is affected by the optical configuration of the microscope. This transformation is typically modeled as a convolution with a point spread function. The Fourier transform of this function, known as the contrast transfer function (CTF), is oscillatory, attenuating and amplifying different frequency bands, and sometimes flipping their signs. High-resolution reconstruction requires this CTF to be accounted for, but as its form depends on experimental parameters, it must first be estimated from the micrograph. We present a new method for CTF estimation based on multitaper techniques that reduce bias and variance in the estimate. We also use known properties of the CTF and the background power spectrum to further reduce the variance through background subtraction and steerable basis projection. We show that the resulting power spectrum estimates better capture the zero-crossings of the CTF and yield accurate CTF estimates on several experimental micrographs.
Collapse
Affiliation(s)
- Ayelet Heimowitz
- The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States.
| | - Joakim Andén
- Center for Computational Mathematics, Flatiron Institute, New York, NY, United States.
| | - Amit Singer
- The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States; Department of Mathematics, Princeton University, Princeton, NJ, United States.
| |
Collapse
|