1
|
Khmelinskaia A, Bethel NP, Fatehi F, Mallik BB, Antanasijevic A, Borst AJ, Lai SH, Chim HY, Wang JY'J, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. Nat Struct Mol Biol 2025:10.1038/s41594-025-01490-z. [PMID: 40011747 DOI: 10.1038/s41594-025-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, they primarily focus on designing static structures. Here we characterize three distinct computationally designed protein assemblies that exhibit unanticipated structural diversity arising from flexibility in their subunits. Cryo-EM single-particle reconstructions and native mass spectrometry reveal two distinct architectures for two assemblies, while six cryo-EM reconstructions for the third likely represent a subset of its solution-phase structures. Structural modeling and molecular dynamics simulations indicate that constrained flexibility within the subunits of each assembly promotes a defined range of architectures rather than nonspecific aggregation. Redesigning the flexible region in one building block rescues the intended monomorphic assembly. These findings highlight structural flexibility as a powerful design principle, enabling exploration of new structural and functional spaces in protein assembly design.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany.
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Neville P Bethel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Farzad Fatehi
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
| | - Bhoomika Basu Mallik
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Szu-Hsueh Lai
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Ho Yeung Chim
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jing Yang 'John' Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shane Caldwell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mengyu Wu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Andrew B Ward
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Reidun Twarock
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Nemerow GR. Integrin-Targeting Strategies for Adenovirus Gene Therapy. Viruses 2024; 16:770. [PMID: 38793651 PMCID: PMC11125847 DOI: 10.3390/v16050770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous human adenovirus (AdV) types are endowed with arginine-glycine-aspartic acid (RGD) sequences that enable them to recognize vitronectin-binding (αv) integrins. These RGD-binding cell receptors mediate AdV entry into host cells, a crucial early step in virus infection. Integrin interactions with adenoviruses not only initiate receptor-mediated endocytosis but also facilitate AdV capsid disassembly, a prerequisite for membrane penetration by AdV protein VI. This review discusses fundamental aspects of AdV-host interactions mediated by integrins. Recent efforts to re-engineer AdV vectors and non-viral nanoparticles to target αv integrins for bioimaging and the eradication of cancer cells will also be discussed.
Collapse
Affiliation(s)
- Glen R Nemerow
- Department of Immunology, The Scripps Research Institute, 10666 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Khmelinskaia A, Bethel NP, Fatehi F, Antanasijevic A, Borst AJ, Lai SH, Wang JYJ, Mallik BB, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562842. [PMID: 37905007 PMCID: PMC10614843 DOI: 10.1101/2023.10.18.562842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. For example, clathrin coats adopt a wide variety of architectures to adapt to vesicular cargos of various sizes. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, most existing methods focus on designing static structures with high accuracy. Here we characterize the structures of three distinct computationally designed protein assemblies that each form multiple unanticipated architectures, and identify flexibility in specific regions of the subunits of each assembly as the source of structural diversity. Cryo-EM single-particle reconstructions and native mass spectrometry showed that only two distinct architectures were observed in two of the three cases, while we obtained six cryo-EM reconstructions that likely represent a subset of the architectures present in solution in the third case. Structural modeling and molecular dynamics simulations indicated that the surprising observation of a defined range of architectures, instead of non-specific aggregation, can be explained by constrained flexibility within the building blocks. Our results suggest that deliberate use of structural flexibility as a design principle will allow exploration of previously inaccessible structural and functional space in designed protein assemblies.
Collapse
|
4
|
Ols S, Lenart K, Arcoverde Cerveira R, Miranda MC, Brunette N, Kochmann J, Corcoran M, Skotheim R, Philomin A, Cagigi A, Fiala B, Wrenn S, Marcandalli J, Hellgren F, Thompson EA, Lin A, Gegenfurtner F, Kumar A, Chen M, Phad GE, Graham BS, Perez L, Borst AJ, Karlsson Hedestam GB, Ruckwardt TJ, King NP, Loré K. Multivalent antigen display on nanoparticle immunogens increases B cell clonotype diversity and neutralization breadth to pneumoviruses. Immunity 2023; 56:2425-2441.e14. [PMID: 37689061 DOI: 10.1016/j.immuni.2023.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/19/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
Nanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells. Antibody cloning and repertoire sequencing revealed that focusing was driven by the expansion of clonally distinct B cells through recruitment of diverse precursors. We identified two antibody lineages that developed either ultrapotent neutralization or pneumovirus cross-neutralization from precursor B cells with low initial affinity for the RSV-F immunogen. This suggests that increased avidity by multivalent display facilitates the activation and recruitment of these cells. Diversification of the B cell response by multivalent nanoparticle immunogens has broad implications for vaccine design.
Collapse
Affiliation(s)
- Sebastian Ols
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcos C Miranda
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jana Kochmann
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Skotheim
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Annika Philomin
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alberto Cagigi
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jessica Marcandalli
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Fredrika Hellgren
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth A Thompson
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Florian Gegenfurtner
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Azad Kumar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ganesh E Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Department of Medicine, Service of Immunology and Allergy, and Center for Human Immunology (CHIL), Lausanne, Switzerland
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Karin Loré
- Division of Immunology & Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Rossi E, Pericacho M, Kauskot A, Gamella-Pozuelo L, Reboul E, Leuci A, Egido-Turrion C, El Hamaoui D, Marchelli A, Fernández FJ, Margaill I, Vega MC, Gaussem P, Pasquali S, Smadja DM, Bachelot-Loza C, Bernabeu C. Soluble endoglin reduces thrombus formation and platelet aggregation via interaction with αIIbβ3 integrin. J Thromb Haemost 2023; 21:1943-1956. [PMID: 36990159 DOI: 10.1016/j.jtha.2023.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND The circulating form of human endoglin (sEng) is a cleavage product of membrane-bound endoglin present on endothelial cells. Because sEng encompasses an RGD motif involved in integrin binding, we hypothesized that sEng would be able to bind integrin αIIbβ3, thereby compromising platelet binding to fibrinogen and thrombus stability. METHODS In vitro human platelet aggregation, thrombus retraction, and secretion-competition assays were performed in the presence of sEng. Surface plasmon resonance (SPR) binding and computational (docking) analyses were carried out to evaluate protein-protein interactions. A transgenic mouse overexpressing human sEng (hsEng+) was used to measure bleeding/rebleeding, prothrombin time (PT), blood stream, and embolus formation after FeCl3-induced injury of the carotid artery. RESULTS Under flow conditions, supplementation of human whole blood with sEng led to a smaller thrombus size. sEng inhibited platelet aggregation and thrombus retraction, interfering with fibrinogen binding, but did not affect platelet activation. SPR binding studies demonstrated that the specific interaction between αIIbβ3 and sEng and molecular modeling showed a good fitting between αIIbβ3 and sEng structures involving the endoglin RGD motif, suggesting the possible formation of a highly stable αIIbβ3/sEng. hsEng+ mice showed increased bleeding time and number of rebleedings compared to wild-type mice. No differences in PT were denoted between genotypes. After FeCl3 injury, the number of released emboli in hsEng+ mice was higher and the occlusion was slower compared to controls. CONCLUSIONS Our results demonstrate that sEng interferes with thrombus formation and stabilization, likely via its binding to platelet αIIbβ3, suggesting its involvement in primary hemostasis control.
Collapse
Affiliation(s)
- Elisa Rossi
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France.
| | - Miguel Pericacho
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain
| | - Alexandre Kauskot
- HITh, INSERM UMR-S 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Luis Gamella-Pozuelo
- Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Etienne Reboul
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Alexandre Leuci
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | | | - Divina El Hamaoui
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Aurore Marchelli
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - Francisco J Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabelle Margaill
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France
| | - M Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pascale Gaussem
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France; Service d'hématologie biologique, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Samuela Pasquali
- Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), UMR8038 CNRS, Paris, France
| | - David M Smadja
- Innovative Therapies in Hemostasis, INSERM U1140, Université Paris Cité, Paris, France; Service d'hématologie biologique, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Laboratory of Biosurgical Research, Carpentier Foundation, Paris, France
| | | | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
6
|
Viruses Binding to Host Receptors Interacts with Autophagy. Int J Mol Sci 2023; 24:ijms24043423. [PMID: 36834833 PMCID: PMC9968160 DOI: 10.3390/ijms24043423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Viruses must cross the plasma membrane to infect cells, making them eager to overcome this barrier in order to replicate in hosts. They bind to cell surface receptors as the first step of initiating entry. Viruses can use several surface molecules that allow them to evade defense mechanisms. Various mechanisms are stimulated to defend against viruses upon their entry into cells. Autophagy, one of the defense systems, degrades cellular components to maintain homeostasis. The presence of viruses in the cytosol regulates autophagy; however, the mechanisms by which viral binding to receptors regulates autophagy have not yet been fully established. This review discusses recent findings on autophagy induced by interactions between viruses and receptors. It provides novel perspectives on the mechanism of autophagy as regulated by viruses.
Collapse
|
7
|
Gerben S, Borst AJ, Hicks DR, Moczygemba I, Feldman D, Coventry B, Yang W, Bera AK, Miranda M, Kang A, Nguyen H, Baker D. Design of Diverse Asymmetric Pockets in De Novo Homo-oligomeric Proteins. Biochemistry 2023; 62:358-368. [PMID: 36627259 PMCID: PMC9850923 DOI: 10.1021/acs.biochem.2c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/28/2022] [Indexed: 01/12/2023]
Abstract
A challenge for design of protein-small-molecule recognition is that incorporation of cavities with size, shape, and composition suitable for specific recognition can considerably destabilize protein monomers. This challenge can be overcome through binding pockets formed at homo-oligomeric interfaces between folded monomers. Interfaces surrounding the central homo-oligomer symmetry axes necessarily have the same symmetry and so may not be well suited to binding asymmetric molecules. To enable general recognition of arbitrary asymmetric substrates and small molecules, we developed an approach to designing asymmetric interfaces at off-axis sites on homo-oligomers, analogous to those found in native homo-oligomeric proteins such as glutamine synthetase. We symmetrically dock curved helical repeat proteins such that they form pockets at the asymmetric interface of the oligomer with sizes ranging from several angstroms, appropriate for binding a single ion, to up to more than 20 Å across. Of the 133 proteins tested, 84 had soluble expression in E. coli, 47 had correct oligomeric states in solution, 35 had small-angle X-ray scattering (SAXS) data largely consistent with design models, and 8 had negative-stain electron microscopy (nsEM) 2D class averages showing the structures coming together as designed. Both an X-ray crystal structure and a cryogenic electron microscopy (cryoEM) structure are close to the computational design models. The nature of these proteins as homo-oligomers allows them to be readily built into higher-order structures such as nanocages, and the asymmetric pockets of these structures open rich possibilities for small-molecule binder design free from the constraints associated with monomer destabilization.
Collapse
Affiliation(s)
- Stacey
R Gerben
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Borst
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Derrick R Hicks
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Isabelle Moczygemba
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - David Feldman
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Brian Coventry
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Wei Yang
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Asim K. Bera
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Marcos Miranda
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Alex Kang
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Hannah Nguyen
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Howard
Hughes Medical Institute, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
MacNeil KM, Dodge MJ, Evans AM, Tessier TM, Weinberg JB, Mymryk JS. Adenoviruses in medicine: innocuous pathogen, predator, or partner. Trends Mol Med 2023; 29:4-19. [PMID: 36336610 PMCID: PMC9742145 DOI: 10.1016/j.molmed.2022.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The consequences of human adenovirus (HAdV) infections are generally mild. However, despite the perception that HAdVs are harmless, infections can cause severe disease in certain individuals, including newborns, the immunocompromised, and those with pre-existing conditions, including respiratory or cardiac disease. In addition, HAdV outbreaks remain relatively common events and the recent emergence of more pathogenic genomic variants of various genotypes has been well documented. Coupled with evidence of zoonotic transmission, interspecies recombination, and the lack of approved AdV antivirals or widely available vaccines, HAdVs remain a threat to public health. At the same time, the detailed understanding of AdV biology garnered over nearly 7 decades of study has made this group of viruses a molecular workhorse for vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
9
|
Malhi H, Homad LJ, Wan YH, Poudel B, Fiala B, Borst AJ, Wang JY, Walkey C, Price J, Wall A, Singh S, Moodie Z, Carter L, Handa S, Correnti CE, Stoddard BL, Veesler D, Pancera M, Olson J, King NP, McGuire AT. Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge. Cell Rep Med 2022; 3:100658. [PMID: 35705092 PMCID: PMC9245003 DOI: 10.1016/j.xcrm.2022.100658] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023]
Abstract
Epstein-Barr virus (EBV) is a cancer-associated pathogen responsible for 165,000 deaths annually. EBV is also the etiological agent of infectious mononucleosis and is linked to multiple sclerosis and rheumatoid arthritis. Thus, an EBV vaccine would have a significant global health impact. EBV is orally transmitted and has tropism for epithelial and B cells. Therefore, a vaccine would need to prevent infection of both in the oral cavity. Passive transfer of monoclonal antibodies against the gH/gL glycoprotein complex prevent experimental EBV infection in humanized mice and rhesus macaques, suggesting that gH/gL is an attractive vaccine candidate. Here, we evaluate the immunogenicity of several gH/gL nanoparticle vaccines. All display superior immunogenicity relative to monomeric gH/gL. A nanoparticle displaying 60 copies of gH/gL elicits antibodies that protect against lethal EBV challenge in humanized mice, whereas antibodies elicited by monomeric gH/gL do not. These data motivate further development of gH/gL nanoparticle vaccines for EBV.
Collapse
Affiliation(s)
- Harman Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Yu-Hsin Wan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Bibhav Poudel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jing Yang Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jason Price
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Abigail Wall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Suruchi Singh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Simran Handa
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - James Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98115, USA.
| |
Collapse
|
10
|
Lin YR, Parks KR, Weidle C, Naidu AS, Khechaduri A, Riker AO, Takushi B, Chun JH, Borst AJ, Veesler D, Stuart A, Agrawal P, Gray M, Pancera M, Huang PS, Stamatatos L. HIV-1 VRC01 Germline-Targeting Immunogens Select Distinct Epitope-Specific B Cell Receptors. Immunity 2021; 53:840-851.e6. [PMID: 33053332 DOI: 10.1016/j.immuni.2020.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/12/2020] [Accepted: 09/10/2020] [Indexed: 01/23/2023]
Abstract
Activating precursor B cell receptors of HIV-1 broadly neutralizing antibodies requires specifically designed immunogens. Here, we compared the abilities of three such germline-targeting immunogens against the VRC01-class receptors to activate the targeted B cells in transgenic mice expressing the germline VH of the VRC01 antibody but diverse mouse light chains. Immunogen-specific VRC01-like B cells were isolated at different time points after immunization, their VH and VL genes were sequenced, and the corresponding antibodies characterized. VRC01 B cell sub-populations with distinct cross-reactivity properties were activated by each immunogen, and these differences correlated with distinct biophysical and biochemical features of the germline-targeting immunogens. Our study indicates that the design of effective immunogens to activate B cell receptors leading to protective HIV-1 antibodies will require a better understanding of how the biophysical properties of the epitope and its surrounding surface on the germline-targeting immunogen influence its interaction with the available receptor variants in vivo.
Collapse
Affiliation(s)
- Yu-Ru Lin
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - K Rachael Parks
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA; University of Washington, Department of Global Health, Seattle, WA, USA
| | - Connor Weidle
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Anika S Naidu
- Stanford University, Department of Bioengineering, Stanford, CA, USA
| | - Arineh Khechaduri
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Andrew O Riker
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Brittany Takushi
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Jung-Ho Chun
- University of Washington, Department of Biochemistry, Seattle, WA, USA
| | - Andrew J Borst
- University of Washington, Department of Biochemistry, Seattle, WA, USA
| | - David Veesler
- University of Washington, Department of Biochemistry, Seattle, WA, USA
| | - Andrew Stuart
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Parul Agrawal
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Matthew Gray
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA; Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA.
| | - Po-Ssu Huang
- Stanford University, Department of Bioengineering, Stanford, CA, USA.
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA; University of Washington, Department of Global Health, Seattle, WA, USA.
| |
Collapse
|
11
|
Jakhmola S, Indari O, Kashyap D, Varshney N, Das A, Manivannan E, Jha HC. Mutational analysis of structural proteins of SARS-CoV-2. Heliyon 2021; 7:e06572. [PMID: 33778179 PMCID: PMC7980187 DOI: 10.1016/j.heliyon.2021.e06572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 transmissibility is higher than that of other human coronaviruses; therefore, it poses a threat to the populated communities. We investigated mutations among envelope (E), membrane (M), and spike (S) proteins from different isolates of SARS-CoV-2 and plausible signaling influenced by mutated virus in a host. We procured updated protein sequences from the NCBI virus database. Mutations were analyzed in the retrieved sequences of the viral proteins through multiple sequence alignment. Additionally, the data was subjected to ScanPROSITE to analyse if the mutations generated a relevant sequence for host signaling. Unique mutations in E, M, and S proteins resulted in modification sites like PKC phosphorylation and N-myristoylation sites. Based on structural analysis, our study revealed that the D614G mutation in the S protein diminished the interaction with T859 and K854 of adjacent chains. Moreover, the S protein of SARS-CoV-2 consists of an Arg-Gly-Asp (RGD) tripeptide sequence, which could potentially interact with various members of integrin family receptors. RGD sequence in S protein might aid in the initial virus attachment. We speculated crucial host pathways which the mutated isolates of SARS-CoV-2 may alter like PKC, Src, and integrin mediated signaling pathways. PKC signaling is known to influence the caveosome/raft pathway which is critical for virus entry. Additionally, the myristoylated proteins might activate NF-κB, a master molecule of inflammation. Thus the mutations may contribute to the disease pathogenesis and distinct lung pathophysiological changes. Further the frequently occurring mutations in the protein can be studied for possible therapeutic interventions.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Ayan Das
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | | | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
12
|
Adenovirus and the Cornea: More Than Meets the Eye. Viruses 2021; 13:v13020293. [PMID: 33668417 PMCID: PMC7917768 DOI: 10.3390/v13020293] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Human adenoviruses cause disease at multiple mucosal sites, including the respiratory, gastrointestinal, and genitourinary tracts, and are common agents of conjunctivitis. One site of infection that has received sparse attention is the cornea, a transparent tissue and the window of the eye. While most adenovirus infections are self-limited, corneal inflammation (keratitis) due to adenovirus can persist or recur for months to years after infection, leading to reduced vision, discomfort, and light sensitivity. Topical corticosteroids effectively suppress late adenovirus keratitis but are associated with vision-threatening side effects. In this short review, we summarize current knowledge on infection of the cornea by adenoviruses, including corneal epithelial cell receptors and determinants of corneal tropism. We briefly discuss mechanisms of stromal keratitis due to adenovirus infection, and review an emerging therapy to mitigate adenovirus corneal infections based on evolving knowledge of corneal epithelial receptor usage.
Collapse
|
13
|
Biological and Clinical Consequences of Integrin Binding via a Rogue RGD Motif in the SARS CoV-2 Spike Protein. Viruses 2021; 13:v13020146. [PMID: 33498225 PMCID: PMC7909284 DOI: 10.3390/v13020146] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Although ACE2 (angiotensin converting enzyme 2) is considered the primary receptor for CoV-2 cell entry, recent reports suggest that alternative pathways may contribute. This paper considers the hypothesis that viral binding to cell-surface integrins may contribute to the high infectivity and widespread extra-pulmonary impacts of the SARS-CoV-2 virus. This potential is suggested on the basis of the emergence of an RGD (arginine-glycine-aspartate) sequence in the receptor-binding domain of the spike protein. RGD is a motif commonly used by viruses to bind cell-surface integrins. Numerous signaling pathways are mediated by integrins and virion binding could lead to dysregulation of these pathways, with consequent tissue damage. Integrins on the surfaces of pneumocytes, endothelial cells and platelets may be vulnerable to CoV-2 virion binding. For instance, binding of intact virions to integrins on alveolar cells could enhance viral entry. Binding of virions to integrins on endothelial cells could activate angiogenic cell signaling pathways; dysregulate integrin-mediated signaling pathways controlling developmental processes; and precipitate endothelial activation to initiate blood clotting. Such a procoagulant state, perhaps together with enhancement of platelet aggregation through virions binding to integrins on platelets, could amplify the production of microthrombi that pose the threat of pulmonary thrombosis and embolism, strokes and other thrombotic consequences. The susceptibility of different tissues to virion–integrin interactions may be modulated by a host of factors, including the conformation of relevant integrins and the impact of the tissue microenvironment on spike protein conformation. Patient-specific differences in these factors may contribute to the high variability of clinical presentation. There is danger that the emergence of receptor-binding domain mutations that increase infectivity may also enhance access of the RGD motif for integrin binding, resulting in viral strains with ACE2 independent routes of cell entry and novel integrin-mediated biological and clinical impacts. The highly infectious variant, B.1.1.7 (or VUI 202012/01), includes a receptor-binding domain amino acid replacement, N501Y, that could potentially provide the RGD motif with enhanced access to cell-surface integrins, with consequent clinical impacts.
Collapse
|
14
|
Nemerow G, Flint J. Lessons learned from adenovirus (1970-2019). FEBS Lett 2019; 593:3395-3418. [PMID: 31777951 DOI: 10.1002/1873-3468.13700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022]
Abstract
Animal viruses are well recognized for their ability to uncover fundamental cell and molecular processes, and adenovirus certainly provides a prime example. This review illustrates the lessons learned from studying adenovirus over the past five decades. We take a look back at the key studies of adenovirus structure and biophysical properties, which revealed the mechanisms of adenovirus association with antibody, cell receptor, and immune molecules that regulate infection. In addition, we discuss the critical contribution of studies of adenovirus gene expression to elucidation of fundamental reactions in pre-mRNA processing and its regulation. Other pioneering studies furnished the first examples of protein-primed initiation of DNA synthesis and viral small RNAs. As a nonenveloped virus, adenoviruses have furnished insights into the modes of virus attachment, entry, and penetration of host cells, and we discuss the diversity of cell receptors that support these processes, as well as membrane penetration. As a result of these extensive studies, adenovirus vectors were among the first to be developed for therapeutic applications. We highlight some of the early (unsuccessful) trials and the lessons learned from them.
Collapse
Affiliation(s)
- Glen Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Jane Flint
- Department of Molecular Biology, Princeton University, NJ, USA
| |
Collapse
|
15
|
Parks KR, MacCamy AJ, Trichka J, Gray M, Weidle C, Borst AJ, Khechaduri A, Takushi B, Agrawal P, Guenaga J, Wyatt RT, Coler R, Seaman M, LaBranche C, Montefiori DC, Veesler D, Pancera M, McGuire A, Stamatatos L. Overcoming Steric Restrictions of VRC01 HIV-1 Neutralizing Antibodies through Immunization. Cell Rep 2019; 29:3060-3072.e7. [PMID: 31801073 PMCID: PMC6936959 DOI: 10.1016/j.celrep.2019.10.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/20/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Broadly HIV-1 neutralizing VRC01 class antibodies target the CD4-binding site of Env. They are derived from VH1-2∗02 antibody heavy chains paired with rare light chains expressing 5-amino acid-long CDRL3s. They have been isolated from infected subjects but have not yet been elicited by immunization. Env-derived immunogens capable of binding the germline forms of VRC01 B cell receptors on naive B cells have been designed and evaluated in knockin mice. However, the elicited antibodies cannot bypass glycans present on the conserved position N276 of Env, which restricts access to the CD4-binding site. Efforts to guide the appropriate maturation of these antibodies by sequential immunization have not yet been successful. Here, we report on a two-step immunization scheme that leads to the maturation of VRC01-like antibodies capable of accommodating the N276 glycan and displaying autologous tier 2 neutralizing activities. Our results are relevant to clinical trials aiming to elicit VRC01 antibodies.
Collapse
Affiliation(s)
- K Rachael Parks
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Anna J MacCamy
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Josephine Trichka
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matthew Gray
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Connor Weidle
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Arineh Khechaduri
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brittany Takushi
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Parul Agrawal
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Javier Guenaga
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, USA
| | - Richard T Wyatt
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, USA
| | - Rhea Coler
- Department of Global Health, University of Washington, Seattle, WA, USA; Infectious Disease Research Institute, Seattle, WA, USA
| | - Michael Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Celia LaBranche
- Laboratory for AIDS Vaccine Research and Development, Duke University, Durham, NC, USA
| | - David C Montefiori
- Laboratory for AIDS Vaccine Research and Development, Duke University, Durham, NC, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Marie Pancera
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | - Andrew McGuire
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Leonidas Stamatatos
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Human adenovirus binding to host cell receptors: a structural view. Med Microbiol Immunol 2019; 209:325-333. [PMID: 31784892 PMCID: PMC7248032 DOI: 10.1007/s00430-019-00645-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Abstract
Human Adenoviruses (HAdVs) are a family of clinically and therapeutically relevant viruses. A precise understanding of their host cell attachment and entry mechanisms can be applied in inhibitor design and the construction of targeted gene delivery vectors. In this article, structural data on adenovirus attachment and entry are reviewed. HAdVs engage two types of receptors: first, an attachment receptor that is bound by the fibre knob protein protruding from the icosahedral capsid, and next, an integrin entry receptor bound by the pentameric penton base at the capsid vertices. Adenoviruses use remarkably diverse attachment receptors, five of which have been studied structurally in the context of HAdV binding: Coxsackie and Adenovirus Receptor, CD46, the glycans GD1a and polysialic acid, and desmoglein-2. Together with the integrin entry receptors, they display both symmetrical and asymmetrical modes of binding to the virus as demonstrated by the structural analyses reviewed here. The diversity of HAdV receptors contributes to the broad tropism of these viruses, and structural studies are thus an important source of information on HAdV-host cell interactions. The imbalance in structural data between the more and less extensively studied receptors remains to be addressed by future research.
Collapse
|
17
|
Jayawardena N, Burga LN, Poirier JT, Bostina M. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. Oncolytic Virother 2019; 8:39-56. [PMID: 31754615 PMCID: PMC6825474 DOI: 10.2147/ov.s218494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent advancements in oncolytic virotherapy commend a special attention to developing new strategies for targeting cancer cells with oncolytic viruses (OVs). Modifications of the viral envelope or coat proteins serve as a logical mean of repurposing viruses for cancer treatment. In this review, we discuss how detailed structural knowledge of the interactions between OVs and their natural receptors provide valuable insights into tumor specificity of some viruses and re-targeting of alternate receptors for broad tumor tropism or improved tumor selectivity.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Poirier
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Comparative proteomic analysis provides new insight into differential transmission of two begomoviruses by a whitefly. Virol J 2019; 16:32. [PMID: 30857562 PMCID: PMC6413443 DOI: 10.1186/s12985-019-1138-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
Background Viruses in the genus Begomovirus (Family Geminiviridae) include many important economic plant viruses transmitted by whiteflies of the Bemisia tabaci species complex. In general, different begomoviruses may be acquired and transmitted by the same whitefly species with different efficiencies. For example, the species Mediterranean (MED) in this whitefly species complex transmits tomato yellow leaf curl virus (TYLCV) at a higher efficiency than papaya leaf curl China virus (PaLCuCNV). However, the proteomic responses of whitefly to the infection of different begomoviruses remain largely unknown. Methods We used iTRAQ-based proteomics coupled with RT-qPCR to investigate and compare responses of the MED whitefly to the infection of TYLCV and PaLCuCNV. Results Totally, 259, 395 and 74 differently expressed proteins (DEPs) were identified in the comparisons of TYLCV-infected vs. un-infected, PaLCuCNV-infected vs. un-infected, and TYLCV-infected vs. PaLCuCNV-infected whiteflies, respectively. These proteins appear associated with catabolic process, metabolic process, transport, defense response, cell cycle, and receptor. The comparisons of TYLCV-infected vs. un-infected and PaLCuCNV-infected vs. un-infected shared some similar DEPs, indicating possible involvement of laminin subunit alpha, dystroglycan, integrin alpha-PS2 and cuticle proteins in viral transport as well as the role of putative defense proteins 3 and PITH in anti-viral response. However, 20S proteasome subunits associated with regulation of virus degradation and accumulation were up-regulated in PaLCuCNV-infected but not in TYLCV-infected whiteflies, which may be related to the constraints of PaLCuCNV accumulation in MED. Conclusions These findings provide valuable clues for unravelling the roles of some whitefly proteins in begomovirus transmission. Electronic supplementary material The online version of this article (10.1186/s12985-019-1138-4) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
αvβ3 Integrin Is Required for Efficient Infection of Epithelial Cells with Human Adenovirus Type 26. J Virol 2018; 93:JVI.01474-18. [PMID: 30333171 DOI: 10.1128/jvi.01474-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/30/2018] [Indexed: 11/20/2022] Open
Abstract
Human adenoviruses (HAdVs) are being explored as vectors for gene transfer and vaccination. Human adenovirus type 26 (HAdV26), which belongs to the largest subgroup of adenoviruses, species D, has a short fiber and a so-far-unknown natural tropism. Due to its low seroprevalence, HAdV26 has been considered a promising vector for the development of vaccines. Despite the fact that the in vivo safety and immunogenicity of HAdV26 have been extensively studied, the basic biology of the virus with regard to receptor use, cell attachment, internalization, and intracellular trafficking is poorly understood. In this work, we investigated the roles of the coxsackievirus and adenovirus receptor (CAR), CD46, and αv integrins in HAdV26 infection of human epithelial cell lines. By performing different gain- and loss-of-function studies, we found that αvβ3 integrin is required for efficient infection of epithelial cells by HAdV26, while CAR and CD46 did not increase the transduction efficiency of HAdV26. By studying intracellular trafficking of fluorescently labeled HAdV26 in A549 cells and A549-derived cell clones with stably increased expression of αvβ3 integrin, we observed that HAdV26 colocalizes with αvβ3 integrin and that increased αvβ3 integrin enhances internalization of HAdV26. Thus, we conclude that HAdV26 uses αvβ3 integrin as a receptor for infecting epithelial cells. These results give us new insight into the HAdV26 infection pathway and will be helpful in further defining HAdV-based vector manufacturing and vaccination strategies.IMPORTANCE Adenovirus-based vectors are used today for gene transfer and vaccination. HAdV26 has emerged as a promising candidate vector for development of vaccines due to its relatively low seroprevalence and its ability to induce potent immune responses against inserted transgenes. However, data regarding the basic biology of the virus, like receptor usage or intracellular trafficking, are limited. In this work, we found that efficient infection of human epithelial cell lines by HAdV26 requires the expression of the αvβ3 integrin. By studying intracellular trafficking of fluorescently labeled HAdV26 in a cell clone with stably increased expression of αvβ3 integrin, we observed that HAdV26 colocalizes with αvβ3 integrin and confirmed that αvβ3 integrin expression facilitates efficient HAdV26 internalization. These results will allow further improvement of HAdV26-based vectors for gene transfer and vaccination.
Collapse
|
20
|
Wang Y, Dong T, Qi G, Qu L, Liang W, Qi B, Zhang Z, Shang L, Gao H, Du X, Lu B, Guo Y, Liu Z, Yu H, Cui Q, Wang X, Li Y, Guo W, Qu Z. Prevalence of Common Respiratory Viral Infections and Identification of Adenovirus in Hospitalized Adults in Harbin, China 2014 to 2017. Front Microbiol 2018; 9:2919. [PMID: 30542337 PMCID: PMC6277751 DOI: 10.3389/fmicb.2018.02919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023] Open
Abstract
Background: Respiratory infections pose a great challenge in global health, and the prevalence of viral infection in adult patients has been poorly understood in northeast China. Harbin is one of the major cities in northeast China, and more than half of any given year in Harbin is occupied by winter. To reveal the viral etiology and seasonality in adult patients from Harbin, a 4-year consecutive survey was conducted in Harbin, China. Methods: From January 2014 to December 2017, specimens were obtained from adult patients admitted to the Second Affiliated Hospital of Harbin Medical University with lower respiratory tract infections. Sputum samples were examined by direct immunofluorescence assays to detect seven common respiratory viruses, including influenza virus (type A and B), parainfluenza virus (type 1 to 3), respiratory syncytial virus and adenovirus. Adenovirus positive samples were seeded onto A549 cells to isolate viral strains. Phylogenetic analysis was conducted on the highly variable region of adenoviral hexon gene. Results: A total of 1,300 hospitalized adult patients with lower respiratory tract infections were enrolled, in which 189 patients (14.5%) were detected as having at least one viral infection. The co-infection rate in this study was 25.9% (49/189). The dominant viral pathogen from 2014 to 2017 was parainfluenza virus, with a detection rate of 7.2%, followed by influenza virus, respiratory syncytial virus and adenovirus. Based on the climate seasons determined by daily average temperature, the highest overall viral detection rate was detected in spring (22.0%, 52/236), followed by winter (13.4%, 109/813), autumn (11.4%, 13/114) and summer (10.9%, 15/137). Adenovirus type 3 strains with slight variations were isolated from positive cases, which were closely related to the GB strain from the United States, as well as the Harbin04B strain isolated locally. Conclusion: This study demonstrated that common respiratory viruses were partially responsible for hospitalized lower respiratory tract infections in adult patients from Harbin, China, with parainfluenza virus as the dominant viral pathogen. Climate seasons could be rational indicators for the seasonality analysis of airborne viral infections. Future surveillance on viral mutations would be necessary to reveal the evolutionary history of respiratory viruses.
Collapse
Affiliation(s)
- Yingchen Wang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Tuo Dong
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Guiyun Qi
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixin Qu
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Wei Liang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Binbin Qi
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Zhe Zhang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Lei Shang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Hong Gao
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Xiqiao Du
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Bing Lu
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Yan Guo
- Department of Ear Nose Throat, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenwei Liu
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Huisong Yu
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Qi Cui
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Xiaocen Wang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Ye Li
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Weiyuan Guo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangyi Qu
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China.,Department of Natural Focus Disease Control, Institute of Environment-Associated Disease, Sino-Russia Joint Medical Research Center, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Borst AJ, Weidle CE, Gray MD, Frenz B, Snijder J, Joyce MG, Georgiev IS, Stewart-Jones GBE, Kwong PD, McGuire AT, DiMaio F, Stamatatos L, Pancera M, Veesler D. Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core. eLife 2018; 7:e37688. [PMID: 30403372 PMCID: PMC6237438 DOI: 10.7554/elife.37688] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022] Open
Abstract
VRC01 broadly neutralizing antibodies (bnAbs) target the CD4-binding site (CD4BS) of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein (Env). Unlike mature antibodies, corresponding VRC01 germline precursors poorly bind to Env. Immunogen design has mostly relied on glycan removal from trimeric Env constructs and has had limited success in eliciting mature VRC01 bnAbs. To better understand elicitation of such bnAbs, we characterized the inferred germline precursor of VRC01 in complex with a modified trimeric 426c Env by cryo-electron microscopy and a 426c gp120 core by X-ray crystallography, biolayer interferometry, immunoprecipitation, and glycoproteomics. Our results show VRC01 germline antibodies interacted with a wild-type 426c core lacking variable loops 1-3 in the presence and absence of a glycan at position Asn276, with the latter form binding with higher affinity than the former. Interactions in the presence of an Asn276 oligosaccharide could be enhanced upon carbohydrate shortening, which should be considered for immunogen design.
Collapse
Affiliation(s)
- Andrew J Borst
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Connor E Weidle
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Matthew D Gray
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Brandon Frenz
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Joost Snijder
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - M Gordon Joyce
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Ivelin S Georgiev
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Guillaume BE Stewart-Jones
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Peter D Kwong
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Andrew T McGuire
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Frank DiMaio
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Global HealthUniversity of WashingtonSeattleUnited States
| | - Marie Pancera
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - David Veesler
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| |
Collapse
|
22
|
Borst AJ, James ZM, Zagotta WN, Ginsberg M, Rey FA, DiMaio F, Backovic M, Veesler D. The Therapeutic Antibody LM609 Selectively Inhibits Ligand Binding to Human α Vβ 3 Integrin via Steric Hindrance. Structure 2017; 25:1732-1739.e5. [PMID: 29033288 DOI: 10.1016/j.str.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
The LM609 antibody specifically recognizes αVβ3 integrin and inhibits angiogenesis, bone resorption, and viral infections in an arginine-glycine-aspartate-independent manner. LM609 entered phase II clinical trials for the treatment of several cancers and was also used for αVβ3-targeted radioimmunotherapy. To elucidate the mechanisms of recognition and inhibition of αVβ3 integrin, we solved the structure of the LM609 antigen-binding fragment by X-ray crystallography and determined its binding affinity for αVβ3. Using single-particle electron microscopy, we show that LM609 binds at the interface between the β-propeller domain of the αV chain and the βI domain of the β3 chain, near the RGD-binding site, of all observed integrin conformational states. Integrating these data with fluorescence size-exclusion chromatography, we demonstrate that LM609 sterically hinders access of large ligands to the RGD-binding pocket, without obstructing it. This work provides a structural framework to expedite future efforts utilizing LM609 as a diagnostic or therapeutic tool.
Collapse
Affiliation(s)
- Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mark Ginsberg
- Department of Hematology and Oncology, University of California at San Diego, La Jolla, CA 92093-0726, USA
| | - Felix A Rey
- Unité de Virologie Structurale, Institut Pasteur, Paris, France; CNRS UMR 3569 Virologie, Paris, France
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marija Backovic
- Unité de Virologie Structurale, Institut Pasteur, Paris, France; CNRS UMR 3569 Virologie, Paris, France.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Abstract
Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from Leptospira licerasiae-which shares sequence similarity to eukaryotic CNG and HCN channels-in the presence of a saturating concentration of cAMP. A short S4-S5 linker connects nearby voltage-sensing and pore domains to produce a non-domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies.
Collapse
|
24
|
Snijder J, Borst AJ, Dosey A, Walls AC, Burrell A, Reddy VS, Kollman JM, Veesler D. Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids. J Struct Biol 2017; 198:38-42. [PMID: 28254381 PMCID: PMC5400742 DOI: 10.1016/j.jsb.2017.02.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/22/2022]
Abstract
Single particle cryo-electron microscopy (cryoEM) is becoming widely adopted as a tool for structural characterization of biomolecules at near-atomic resolution. Vitrification of the sample to obtain a dense distribution of particles within a single field of view remains a major bottleneck for the success of such experiments. Here, we describe a simple and cost-effective method to increase the density of frozen-hydrated particles on grids with holey carbon support films. It relies on performing multiple rounds of sample application and blotting prior to plunge freezing in liquid ethane. We show that this approach is generally applicable and significantly increases particle density for a range of samples, such as small protein complexes, viruses and filamentous assemblies. The method is versatile, easy to implement, minimizes sample requirements and can enable characterization of samples that would otherwise resist structural studies using single particle cryoEM.
Collapse
Affiliation(s)
- Joost Snijder
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Vijay S Reddy
- Department of Integrative Computational and Structural Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Xu XP, Kim E, Swift M, Smith JW, Volkmann N, Hanein D. Three-Dimensional Structures of Full-Length, Membrane-Embedded Human α(IIb)β(3) Integrin Complexes. Biophys J 2016; 110:798-809. [PMID: 26910421 DOI: 10.1016/j.bpj.2016.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/08/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022] Open
Abstract
Integrins are bidirectional, allosteric transmembrane receptors that play a central role in hemostasis and arterial thrombosis. Using cryo-electron microscopy, multireference single-particle reconstruction methods, and statistics-based computational fitting approaches, we determined three-dimensional structures of human integrin αIIbβ3 embedded in a lipid bilayer (nanodiscs) while bound to domains of the cytosolic regulator talin and to extracellular ligands. We also determined the conformations of integrin in solution by itself to localize the membrane and the talin-binding site. To our knowledge, our data provide unprecedented three-dimensional information about the conformational states of intact, full-length integrin within membrane bilayers under near-physiological conditions and in the presence of cytosolic activators and extracellular ligands. We show that αIIbβ3 integrins exist in a conformational equilibrium clustered around four main states. These conformations range from a compact bent nodule to two partially extended intermediate conformers and finally to a fully upright state. In the presence of nanodiscs and the two ligands, the equilibrium is significantly shifted toward the upright conformation. In this conformation, the receptor extends ∼20 nm upward from the membrane. There are no observable contacts between the two subunits other than those in the headpiece near the ligand-binding pocket, and the α- and β-subunits are well separated with their cytoplasmic tails ∼8 nm apart. Our results indicate that extension of the ectodomain is possible without separating the legs or extending the hybrid domain, and that the ligand-binding pocket is not occluded by the membrane in any conformations of the equilibrium. Further, they suggest that integrin activation may be influenced by equilibrium shifts.
Collapse
Affiliation(s)
- Xiao-Ping Xu
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Eldar Kim
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Mark Swift
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Jeffrey W Smith
- Infectious Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
26
|
Hussein HAM, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AKM, Akula SM. Beyond RGD: virus interactions with integrins. Arch Virol 2015; 160:2669-81. [PMID: 26321473 PMCID: PMC7086847 DOI: 10.1007/s00705-015-2579-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
Viruses successfully infect host cells by initially binding to the surfaces of the cells, followed by an intricate entry process. As multifunctional heterodimeric cell-surface receptor molecules, integrins have been shown to usefully serve as entry receptors for a plethora of viruses. However, the exact role(s) of integrins in viral pathogen internalization has yet to be elaborately described. Notably, several viruses harbor integrin-recognition motifs displayed on viral envelope/capsid-associated proteins. The most common of these motifs is the minimal peptide sequence for binding integrins, RGD (Arg-Gly-Asp), which is known for its role in virus infection via its ability to interact with over half of the more than 20 known integrins. Not all virus-integrin interactions are RGD-dependent, however. Non-RGD-binding integrins have also been shown to effectively promote virus entry and infection as well. Such virus-integrin binding is shown to facilitate adhesion, cytoskeleton rearrangement, integrin activation, and increased intracellular signaling. Also, we have attempted to discuss the role of carbohydrate moieties in virus interactions with receptor-like host cell surface integrins that drive the process of internalization. As much as possible, this article examines the published literature regarding the role of integrins in terms of virus infection and virus-encoded glycosylated proteins that mediate interactions with integrins, and it explores the idea of targeting these receptors as a therapeutic treatment option.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sayed A Desouky
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
27
|
Nygren PJ, Scott JD. Therapeutic strategies for anchored kinases and phosphatases: exploiting short linear motifs and intrinsic disorder. Front Pharmacol 2015; 6:158. [PMID: 26283967 PMCID: PMC4516873 DOI: 10.3389/fphar.2015.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/16/2015] [Indexed: 12/17/2022] Open
Abstract
Phosphorylation events that occur in response to the second messenger cAMP are controlled spatially and temporally by protein kinase A (PKA) interacting with A-kinase anchoring proteins (AKAPs). Recent advances in understanding the structural basis for this interaction have reinforced the hypothesis that AKAPs create spatially constrained signaling microdomains. This has led to the realization that the PKA/AKAP interface is a potential drug target for modulating a plethora of cell-signaling events. Pharmacological disruption of kinase–AKAP interactions has previously been explored for disease treatment and remains an interesting area of research. However, disrupting or enhancing the association of phosphatases with AKAPs is a therapeutic concept of equal promise, particularly since they oppose the actions of many anchored kinases. Accordingly, numerous AKAPs bind phosphatases such as protein phosphatase 1 (PP1), calcineurin (PP2B), and PP2A. These multimodal signaling hubs are equally able to control the addition of phosphate groups onto target substrates, as well as the removal of these phosphate groups. In this review, we describe recent advances in structural analysis of kinase and phosphatase interactions with AKAPs, and suggest future possibilities for targeting these interactions for therapeutic benefit.
Collapse
Affiliation(s)
- Patrick J Nygren
- Department of Pharmacology, University of Washington Seattle, WA, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| | - John D Scott
- Department of Pharmacology, University of Washington Seattle, WA, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| |
Collapse
|