1
|
Syage AR, Pachow C, Murray KM, Henningfield C, Fernandez K, Du A, Cheng Y, Olivarria G, Kawauchi S, MacGregor GR, Green KN, Lane TE. Cystatin F attenuates neuroinflammation and demyelination following murine coronavirus infection of the central nervous system. J Neuroinflammation 2024; 21:157. [PMID: 38879499 PMCID: PMC11179388 DOI: 10.1186/s12974-024-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination. METHODS Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios. RESULTS JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls. CONCLUSIONS Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.
Collapse
Affiliation(s)
- Amber R Syage
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Collin Pachow
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Kaitlin M Murray
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Caden Henningfield
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Kellie Fernandez
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Annie Du
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Yuting Cheng
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Gema Olivarria
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Shimako Kawauchi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, 92697, USA
| | - Grant R MacGregor
- Department of Developmental & Cell Biology, University of California, Irvine, 92697, USA
| | - Kim N Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Thomas E Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA.
- Center for Virus Research, University of California, Irvine, 92697, USA.
| |
Collapse
|
2
|
Christodoulou MV, Petkou E, Atzemoglou N, Gkorla E, Karamitrou A, Simos YV, Bellos S, Bekiari C, Kouklis P, Konitsiotis S, Vezyraki P, Peschos D, Tsamis KI. Cell replacement therapy with stem cells in multiple sclerosis, a systematic review. Hum Cell 2024; 37:9-53. [PMID: 37985645 PMCID: PMC10764451 DOI: 10.1007/s13577-023-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system (CNS), characterized by demyelination and axonal loss. It is induced by attack of autoreactive lymphocytes on the myelin sheath and endogenous remyelination failure, eventually leading to accumulation of neurological disability. Disease-modifying agents can successfully address inflammatory relapses, but have low efficacy in progressive forms of MS, and cannot stop the progressive neurodegenerative process. Thus, the stem cell replacement therapy approach, which aims to overcome CNS cell loss and remyelination failure, is considered a promising alternative treatment. Although the mechanisms behind the beneficial effects of stem cell transplantation are not yet fully understood, neurotrophic support, immunomodulation, and cell replacement appear to play an important role, leading to a multifaceted fight against the pathology of the disease. The present systematic review is focusing on the efficacy of stem cells to migrate at the lesion sites of the CNS and develop functional oligodendrocytes remyelinating axons. While most studies confirm the improvement of neurological deficits after the administration of different stem cell types, many critical issues need to be clarified before they can be efficiently introduced into clinical practice.
Collapse
Affiliation(s)
- Maria Veatriki Christodoulou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ermioni Petkou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Natalia Atzemoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eleni Gkorla
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Aikaterini Karamitrou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panos Kouklis
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece
| | | | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantinos I Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
- Department of Neurology, University Hospital of Ioannina, Ioannina, Greece.
| |
Collapse
|
3
|
Mali SB. Role of in vivo imaging in Head and Neck cancer management. Oral Oncol 2023; 146:106575. [PMID: 37741020 DOI: 10.1016/j.oraloncology.2023.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Intravital microscopy (IVM) and optical coherency tomography (OCT) are powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. They have been used in preclinical and clinical cancer imaging, providing insights into the complex physiological, cellular, and molecular behaviors of tumors. They have revolutionized cancer diagnosis and therapies, allowing for real-time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. Recent developments in techniques for observing deep tissues of living animals have improved bioluminescent proteins, fluorescent proteins, fluorescent dyes, and detection technologies like two-photon excitation microscopy. These technologies have become indispensable tools in basic sciences, preclinical research, and modern drug development. In Vivo imaging can detect subcellular signaling or metabolic events in living animals, but depth-dependent signal attenuation limits the depth from which significant data can be obtained. Cancer cell motility and invasion are key features of metastatic tumors, but only a small portion of tumor cells are motile and metastasize due to genetic, epigenetic, and microenvironmental heterogeneities.
Collapse
Affiliation(s)
- Shrikant B Mali
- Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Nashik, India.
| |
Collapse
|
4
|
Greilach SA, McIntyre LL, Nguyen QH, Silva J, Kessenbrock K, Lane TE, Walsh CM. Presentation of Human Neural Stem Cell Antigens Drives Regulatory T Cell Induction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1677-1686. [PMID: 37083696 PMCID: PMC10192095 DOI: 10.4049/jimmunol.2200798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Transplantation of human neural stem cells (hNSCs) is a promising regenerative therapy to promote remyelination in patients with multiple sclerosis (MS). Transplantation of hNSCs has been shown to increase the number of CD4+CD25+Foxp3+ T regulatory cells (Tregs) in the spinal cords of murine models of MS, which is correlated with a strong localized remyelination response. However, the mechanisms by which hNSC transplantation leads to an increase in Tregs in the CNS remains unclear. We report that hNSCs drive the conversion of T conventional (Tconv) cells into Tregs in vitro. Conversion of Tconv cells is Ag driven and fails to occur in the absence of TCR stimulation by cognate antigenic self-peptides. Furthermore, CNS Ags are sufficient to drive this conversion in the absence of hNSCs in vitro and in vivo. Importantly, only Ags presented in the thymus during T cell selection drive this Treg response. In this study, we investigate the mechanisms by which hNSC Ags drive the conversion of Tconv cells into Tregs and may provide key insight needed for the development of MS therapies.
Collapse
Affiliation(s)
- Scott A. Greilach
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Laura L. McIntyre
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Quy H. Nguyen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697
| | - Jorge Silva
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697
| | - Craig M. Walsh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| |
Collapse
|
5
|
Kim JU, Park H, Ok J, Lee J, Jung W, Kim J, Kim J, Kim S, Kim YH, Suh M, Kim TI. Cerebrospinal Fluid-philic and Biocompatibility-Enhanced Soft Cranial Window for Long-Term In Vivo Brain Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15035-15046. [PMID: 35344336 DOI: 10.1021/acsami.2c01929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft, transparent poly(dimethyl siloxane) (PDMS)-based cranial windows in animal models have created many opportunities to investigate brain functions with multiple in vivo imaging modalities. However, due to the hydrophobic nature of PDMS, the wettability by cerebrospinal fluid (CSF) is poor, which may cause air bubble trapping beneath the window during implantation surgery, and favorable heterogeneous bubble nucleation at the interface between hydrophobic PDMS and CSF. This may result in excessive growth of the entrapped bubble under the soft cranial window. Herein, to yield biocompatibility-enhanced, trapped bubble-minimized, and soft cranial windows, this report introduces a CSF-philic PDMS window coated with hydroxyl-enriched poly(vinyl alcohol) (PVA) for long-term in vivo imaging. The PVA-coated PDMS (PVA/PDMS) film exhibits a low contact angle θACA (33.7 ± 1.9°) with artificial CSF solution and maintains sustained CSF-philicity. The presence of the PVA layer achieves air bubble-free implantation of the soft cranial window, as well as induces the formation of a thin wetting film that shows anti-biofouling performance through abundant water molecules on the surface, leading to long-term optical clarity. In vivo studies on the mice cortex verify that the soft and CSF-philic features of the PVA/PDMS film provide minimal damage to neuronal tissues and attenuate immune response. These advantages of the PVA/PDMS window are strongly correlated with the enhancement of cortical hemodynamic changes and the local field potential recorded through the PVA/PDMS film, respectively. This collection of results demonstrates the potential for future microfluidic platforms for minimally invasive CSF extraction utilizing a CSF-philic fluidic passage.
Collapse
Affiliation(s)
- Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyejin Park
- IMNEWRUN Inc., N Center Bldg. A 5F, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Juheon Lee
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jiwon Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaehyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Suhyeon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yong Ho Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Minah Suh
- IMNEWRUN Inc., N Center Bldg. A 5F, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Choo YW, Jeong J, Jung K. Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo. BMB Rep 2021. [PMID: 32475382 PMCID: PMC7396917 DOI: 10.5483/bmbrep.2020.53.7.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the real-time IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes.
Collapse
Affiliation(s)
- Yeon Woong Choo
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Juhee Jeong
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080; Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
7
|
Libbey JE, Fujinami RS. Viral mouse models used to study multiple sclerosis: past and present. Arch Virol 2021; 166:1015-1033. [PMID: 33582855 PMCID: PMC7882042 DOI: 10.1007/s00705-021-04968-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory demyelinating disease of the central nervous system. Although the etiology of MS is unknown, genetics and environmental factors, such as infections, play a role. Viral infections of mice have been used as model systems to study this demyelinating disease of humans. Three viruses that have long been studied in this capacity are Theiler’s murine encephalomyelitis virus, mouse hepatitis virus, and Semliki Forest virus. This review describes the viruses themselves, the infection process, the disease caused by infection and its accompanying pathology, and the model systems and their usefulness in studying MS.
Collapse
Affiliation(s)
- J E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - R S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
8
|
Regulatory T cells suppress Th17 cell Ca 2+ signaling in the spinal cord during murine autoimmune neuroinflammation. Proc Natl Acad Sci U S A 2020; 117:20088-20099. [PMID: 32732436 PMCID: PMC7443932 DOI: 10.1073/pnas.2006895117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
T lymphocyte motility and interaction dynamics with other immune cells are vital determinants of immune responses. Regulatory T (Treg) cells prevent autoimmune disorders by suppressing excessive lymphocyte activity, but how interstitial motility patterns of Treg cells limit neuroinflammation is not well understood. We used two-photon microscopy to elucidate the spatial organization, motility characteristics, and interactions of endogenous Treg and Th17 cells together with antigen-presenting cells (APCs) within the spinal cord leptomeninges in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Th17 cells arrive before the onset of clinical symptoms, distribute uniformly during the peak, and decline in numbers during later stages of EAE. In contrast, Treg cells arrive after Th17 cells and persist during the chronic phase. Th17 cells meander widely, interact with APCs, and exhibit cytosolic Ca2+ transients and elevated basal Ca2+ levels before the arrival of Treg cells. In contrast, Treg cells adopt a confined, repetitive-scanning motility while contacting APCs. These locally confined but highly motile Treg cells limit Th17 cells from accessing APCs and suppress Th17 cell Ca2+ signaling by a mechanism that is upstream of store-operated Ca2+ entry. Finally, Treg cell depletion increases APC numbers in the spinal cord and exaggerates ongoing neuroinflammation. Our results point to fundamental differences in motility characteristics between Th17 and Treg cells in the inflamed spinal cord and reveal three potential cellular mechanisms by which Treg cells regulate Th17 cell effector functions: reduction of APC density, limiting access of Th17 cells to APCs, and suppression of Th17 Ca2+ signaling.
Collapse
|
9
|
McIntyre LL, Greilach SA, Othy S, Sears-Kraxberger I, Wi B, Ayala-Angulo J, Vu E, Pham Q, Silva J, Dang K, Rezk F, Steward O, Cahalan MD, Lane TE, Walsh CM. Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol Dis 2020. [PMID: 32276110 DOI: 10.1016/j.nbd.2020.14868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory autoimmune disease that affects the central nervous system (CNS) for which there is no cure. In MS, encephalitogenic T cells infiltrate the CNS causing demyelination and neuroinflammation; however, little is known about the role of regulatory T cells (Tregs) in CNS tissue repair. Transplantation of neural stem and progenitor cells (NSCs and NPCs) is a promising therapeutic strategy to promote repair through cell replacement, although recent findings suggest transplanted NSCs also instruct endogenous repair mechanisms. We have recently described that dampened neuroinflammation and increased remyelination is correlated with emergence of Tregs following human NPC transplantation in a murine viral model of immune-mediated demyelination. In the current study we utilized the prototypic murine autoimmune model of demyelination experimental autoimmune encephalomyelitis (EAE) to test the efficacy of hNSC transplantation. Eight-week-old, male EAE mice receiving an intraspinal transplant of hNSCs during the chronic phase of disease displayed remyelination, dampened neuroinflammation, and an increase in CNS CD4+CD25+FoxP3+ regulatory T cells (Tregs). Importantly, ablation of Tregs abrogated histopathological improvement. Tregs are essential for maintenance of T cell homeostasis and prevention of autoimmunity, and an emerging role for Tregs in maintenance of tissue homeostasis through interactions with stem and progenitor cells has recently been suggested. The data presented here provide direct evidence for collaboration between CNS Tregs and hNSCs promoting remyelination.
Collapse
Affiliation(s)
- Laura L McIntyre
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America.
| | - Scott A Greilach
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, United States of America
| | - Ilse Sears-Kraxberger
- Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Brian Wi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Julio Ayala-Angulo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Estelle Vu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Quan Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Jorge Silva
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Kody Dang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Fady Rezk
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Oswald Steward
- Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, United States of America
| | - Thomas E Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, United States of America
| | - Craig M Walsh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America.
| |
Collapse
|
10
|
Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol Dis 2020; 140:104868. [PMID: 32276110 DOI: 10.1016/j.nbd.2020.104868] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/05/2020] [Accepted: 04/05/2020] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory autoimmune disease that affects the central nervous system (CNS) for which there is no cure. In MS, encephalitogenic T cells infiltrate the CNS causing demyelination and neuroinflammation; however, little is known about the role of regulatory T cells (Tregs) in CNS tissue repair. Transplantation of neural stem and progenitor cells (NSCs and NPCs) is a promising therapeutic strategy to promote repair through cell replacement, although recent findings suggest transplanted NSCs also instruct endogenous repair mechanisms. We have recently described that dampened neuroinflammation and increased remyelination is correlated with emergence of Tregs following human NPC transplantation in a murine viral model of immune-mediated demyelination. In the current study we utilized the prototypic murine autoimmune model of demyelination experimental autoimmune encephalomyelitis (EAE) to test the efficacy of hNSC transplantation. Eight-week-old, male EAE mice receiving an intraspinal transplant of hNSCs during the chronic phase of disease displayed remyelination, dampened neuroinflammation, and an increase in CNS CD4+CD25+FoxP3+ regulatory T cells (Tregs). Importantly, ablation of Tregs abrogated histopathological improvement. Tregs are essential for maintenance of T cell homeostasis and prevention of autoimmunity, and an emerging role for Tregs in maintenance of tissue homeostasis through interactions with stem and progenitor cells has recently been suggested. The data presented here provide direct evidence for collaboration between CNS Tregs and hNSCs promoting remyelination.
Collapse
|
11
|
Gruchot J, Weyers V, Göttle P, Förster M, Hartung HP, Küry P, Kremer D. The Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells 2019; 8:cells8080825. [PMID: 31382620 PMCID: PMC6721708 DOI: 10.3390/cells8080825] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Myelin sheaths in the central nervous system (CNS) insulate axons and thereby allow saltatory nerve conduction, which is a prerequisite for complex brain function. Multiple sclerosis (MS), the most common inflammatory autoimmune disease of the CNS, leads to the destruction of myelin sheaths and the myelin-producing oligodendrocytes, thus leaving behind demyelinated axons prone to injury and degeneration. Clinically, this process manifests itself in significant neurological symptoms and disability. Resident oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) are present in the adult brain, and can differentiate into mature oligodendrocytes which then remyelinate the demyelinated axons. However, for multiple reasons, in MS the regenerative capacity of these cell populations diminishes significantly over time, ultimately leading to neurodegeneration, which currently remains untreatable. In addition, microglial cells, the resident innate immune cells of the CNS, can contribute further to inflammatory and degenerative axonal damage. Here, we review the molecular factors contributing to remyelination failure in MS by inhibiting OPC and NSC differentiation or modulating microglial behavior.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
Brown DG, Soto R, Yandamuri S, Stone C, Dickey L, Gomes-Neto JC, Pastuzyn ED, Bell R, Petersen C, Buhrke K, Fujinami RS, O'Connell RM, Stephens WZ, Shepherd JD, Lane TE, Round JL. The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. eLife 2019; 8:e47117. [PMID: 31309928 PMCID: PMC6634972 DOI: 10.7554/elife.47117] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022] Open
Abstract
Symbiotic microbes impact the function and development of the central nervous system (CNS); however, little is known about the contribution of the microbiota during viral-induced neurologic damage. We identify that commensals aid in host defense following infection with a neurotropic virus through enhancing microglia function. Germfree mice or animals that receive antibiotics are unable to control viral replication within the brain leading to increased paralysis. Microglia derived from germfree or antibiotic-treated animals cannot stimulate viral-specific immunity and microglia depletion leads to worsened demyelination. Oral administration of toll-like receptor (TLR) ligands to virally infected germfree mice limits neurologic damage. Homeostatic activation of microglia is dependent on intrinsic signaling through TLR4, as disruption of TLR4 within microglia, but not the entire CNS (excluding microglia), leads to increased viral-induced clinical disease. This work demonstrates that gut immune-stimulatory products can influence microglia function to prevent CNS damage following viral infection.
Collapse
Affiliation(s)
- D Garrett Brown
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Raymond Soto
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Soumya Yandamuri
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Colleen Stone
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Laura Dickey
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Joao Carlos Gomes-Neto
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Elissa D Pastuzyn
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Charisse Petersen
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Kaitlin Buhrke
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Robert S Fujinami
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Ryan M O'Connell
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - W Zac Stephens
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Jason D Shepherd
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Thomas E Lane
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - June L Round
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
13
|
Evans TA, Barkauskas DS, Silver J. Intravital imaging of immune cells and their interactions with other cell types in the spinal cord: Experiments with multicolored moving cells. Exp Neurol 2019; 320:112972. [PMID: 31234058 DOI: 10.1016/j.expneurol.2019.112972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
Intravital imaging of the immune system is a powerful technique for studying biology of the immune response in the spinal cord using a variety of disease models ranging from traumatic injury to autoimmune disorders. Here, we will discuss specific technical aspects as well as many intriguing biological phenomena that have been revealed with the use of intravital imaging for investigation of the immune system in the spinal cord. We will discuss surgical techniques for exposing and stabilizing the spine that are critical for obtaining images, visualizing immune and CNS cells with genetically expressed fluorescent proteins, fluorescent labeling techniques and briefly discuss some of the challenges of image analysis.
Collapse
Affiliation(s)
- Teresa A Evans
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | | | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
14
|
Sano T, Kohyama-Koganeya A, Kinoshita MO, Tatsukawa T, Shimizu C, Oshima E, Yamada K, Le TD, Akagi T, Tohyama K, Nagao S, Hirabayashi Y. Loss of GPRC5B impairs synapse formation of Purkinje cells with cerebellar nuclear neurons and disrupts cerebellar synaptic plasticity and motor learning. Neurosci Res 2018; 136:33-47. [DOI: 10.1016/j.neures.2018.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022]
|
15
|
Mangale V, McIntyre LL, Walsh CM, Loring JF, Lane TE. Promoting remyelination through cell transplantation therapies in a model of viral-induced neurodegenerative disease. Dev Dyn 2018; 248:43-52. [PMID: 30067309 DOI: 10.1002/dvdy.24658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Several United States Food and Drug Administration-approved therapies exist that impede activated lymphocytes from entering the CNS thereby limiting new lesion formation in patients with relapse-remitting forms of MS. However, a significant challenge within the field of MS research is to develop effective and sustained therapies that allow for axonal protection and remyelination. In recent years, there has been increasing evidence that some kinds of stem cells and their derivatives seem to be able to mute neuroinflammation as well as promote remyelination and axonal integrity. Intracranial infection of mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in immune-mediated demyelination and axonopathy, making this an excellent model to interrogate the therapeutic potential of stem cell derivatives in evoking remyelination. This review provides a succinct overview of our recent findings using intraspinal injection of mouse CNS neural progenitor cells and human neural precursors into JHMV-infected mice. JHMV-infected mice receiving these cells display extensive remyelination associated with axonal sparing. In addition, we discuss possible mechanisms associated with sustained clinical recovery. Developmental Dynamics 248:43-52, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vrushali Mangale
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laura L McIntyre
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Center, University of California, Irvine, California
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Center, University of California, Irvine, California
| | - Jeanne F Loring
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Immunology, Inflammation, and Infectious Disease Initiative, University of Utah, Salt Lake City, Utah
| |
Collapse
|
16
|
Skinner D, Marro BS, Lane TE. Chemokine CXCL10 and Coronavirus-Induced Neurologic Disease. Viral Immunol 2018; 32:25-37. [PMID: 30109979 DOI: 10.1089/vim.2018.0073] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chemokines (chemotactic cytokines) are involved in a wide variety of biological processes. Following microbial infection, there is often robust chemokine signaling elicited from infected cells, which contributes to both innate and adaptive immune responses that control growth of the invading pathogen. Infection of the central nervous system (CNS) by the neuroadapted John Howard Mueller (JHM) strain of mouse hepatitis virus (JHMV) provides an excellent example of how chemokines aid in host defense as well as contribute to disease. Intracranial inoculation of the CNS of susceptible mice with JHMV results in an acute encephalomyelitis characterized by widespread dissemination of virus throughout the parenchyma. Virus-specific T cells are recruited to the CNS, and control viral replication through release of antiviral cytokines and cytolytic activity. Sterile immunity is not acquired, and virus will persist primarily in white matter tracts leading to chronic neuroinflammation and demyelination. Chemokines are expressed and contribute to defense as well as chronic disease by attracting targeted populations of leukocytes to the CNS. The T cell chemoattractant chemokine CXCL10 (interferon-inducible protein 10 kDa, IP-10) is prominently expressed in both stages of disease, and serves to attract activated T and B lymphocytes expressing CXC chemokine receptor 3 (CXCR3), the receptor for CXCL10. Functional studies that have blocked expression of either CXCL10 or CXCR3 illuminate the important role of this signaling pathway in host defense and neurodegeneration in a model of viral-induced neurologic disease.
Collapse
Affiliation(s)
- Dominic Skinner
- 1 Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Brett S Marro
- 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Thomas E Lane
- 1 Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,3 Immunology, Inflammation and Infectious Disease Initiative, University of Utah School of Medicine, Salt Lake City, Utah.,4 Neuroscience Initiative, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
17
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
18
|
Aberration correction considering curved sample surface shape for non-contact two-photon excitation microscopy with spatial light modulator. Sci Rep 2018; 8:9252. [PMID: 29915203 PMCID: PMC6018692 DOI: 10.1038/s41598-018-27693-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/06/2018] [Indexed: 11/08/2022] Open
Abstract
In this paper, excitation light wavefront modulation is performed considering the curved sample surface shape to demonstrate high-quality deep observation using two-photon excitation microscopy (TPM) with a dry objective lens. A large spherical aberration typically occurs when the refractive index (RI) interface between air and the sample is a plane perpendicular to the optical axis. Moreover, the curved sample surface shape and the RI mismatch cause various aberrations, including spherical ones. Consequently, the fluorescence intensity and resolution of the obtained image are degraded in the deep regions. To improve them, we designed a pre-distortion wavefront for correcting the aberration caused by the curved sample surface shape by using a novel, simple optical path length difference calculation method. The excitation light wavefront is modulated to the pre-distortion wavefront by a spatial light modulator incorporated in the TPM system before passing through the interface, where the RI mismatch occurs. Thus, the excitation light is condensed without aberrations. Blood vessels were thereby observed up to an optical depth of 2,000 μm in a cleared mouse brain by using a dry objective lens.
Collapse
|
19
|
Cartarozzi LP, Rieder P, Bai X, Scheller A, Oliveira ALRD, Kirchhoff F. In vivo two-photon imaging of motoneurons and adjacent glia in the ventral spinal cord. J Neurosci Methods 2018; 299:8-15. [PMID: 29408351 DOI: 10.1016/j.jneumeth.2018.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/11/2018] [Accepted: 01/28/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Interactions between motoneurons and glial cells are pivotal to regulate and maintain functional states and synaptic connectivity in the spinal cord. In vivo two-photon imaging of the nervous system provided novel and unexpected knowledge about structural and physiological changes in the grey matter of the forebrain and in the dorsal white matter of the spinal cord. NEW METHOD Here, we describe a novel experimental strategy to investigate the spinal grey matter, i.e. the ventral horn motoneurons and their adjacent glial cells by employing in vivo two-photon laser-scanning microscopy (2P-LSM) in anesthetized transgenic mice. RESULTS After retrograde tracer labelling in transgenic mice with cell-specific expression of fluorescent proteins and surgical exposure of the lumbar intumescence groups of motoneurons could be visualized deeply localized in the ventral horn. In this region, morphological responses of microglial cells to ATP could be recorded for an hour. In addition, using in mice with expression of GCaMP3 in astrocytes, physiological Ca2+ signals could be recorded after local noradrenalin application. COMPARISON WITH EXISTING METHODS Previous in vivo imaging protocols were restricted to the superficial dorsal white matter or upper layers of the dorsal horn. Here, we modified a multi-step procedure originally established for a root-crush injury. We adapted it to simultaneously visualize motoneurons and adjacent glial cells in living animals. CONCLUSION A modified surgery approach is presented to visualize fluorescently labelled motoneurons and glial cells at a depth of more than 200 μm in the grey matter ventral horn of the mouse spinal cord.
Collapse
Affiliation(s)
- Luciana Politti Cartarozzi
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany; Laboratory of Nerve Regeneration, State University of Campinas - UNICAMP, Cidade Universitária "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083970 - Campinas-SP, Brazil
| | - Phillip Rieder
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, State University of Campinas - UNICAMP, Cidade Universitária "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083970 - Campinas-SP, Brazil.
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany.
| |
Collapse
|
20
|
Mangale V, Marro BS, Plaisted WC, Walsh CM, Lane TE. Neural precursor cells derived from induced pluripotent stem cells exhibit reduced susceptibility to infection with a neurotropic coronavirus. Virology 2017; 511:49-55. [PMID: 28822268 PMCID: PMC5623645 DOI: 10.1016/j.virol.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
Abstract
The present study examines the susceptibility of mouse induced pluripotent stem cell-derived neural precursor cells (iPSC-NPCs) to infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV). Similar to NPCs derived from striatum of day 1 postnatal GFP-transgenic mice (GFP-NPCs), iPSC-derived NPCs (iPSC-NPCs) are able to differentiate into terminal neural cell types and express MHC class I and II in response to IFN-γ treatment. However, in contrast to postnatally-derived NPCs, iPSC-NPCs express low levels of carcinoembryonic antigen-cell adhesion molecule 1a (CEACAM1a), the surface receptor for JHMV, and are less susceptible to infection and virus-induced cytopathic effects. The relevance of this in terms of therapeutic application of NPCs resistant to viral infection is discussed. The neurotropic virus JHMV infects and kills mouse post-natal neural progenitor cells (NPCs). This study examines if JHMV infects mouse inducible pluripotent stem cell-derived NPCs. iPSC-NPCs are less susceptible to infection with JHMV and subsequent lytic effects.
Collapse
Affiliation(s)
- Vrushali Mangale
- Department of Pathology, Division of Microbiology & Immunology University of Utah, Salt Lake City, UT 84112, United States
| | - Brett S Marro
- Department of Molecular Biology & Biochemistry and Institute for Immunology, University of California, Irvine 92697, United States
| | - Warren C Plaisted
- Department of Molecular Biology & Biochemistry and Institute for Immunology, University of California, Irvine 92697, United States
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry and Institute for Immunology, University of California, Irvine 92697, United States
| | - Thomas E Lane
- Department of Pathology, Division of Microbiology & Immunology University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
21
|
Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells. Stem Cells Int 2016; 2016:5457132. [PMID: 27746820 PMCID: PMC5056264 DOI: 10.1155/2016/5457132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023] Open
Abstract
In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM) and second harmonic generation (SHG) could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin.
Collapse
|
22
|
Okada T, Takahashi S, Ishida A, Ishigame H. In vivo multiphoton imaging of immune cell dynamics. Pflugers Arch 2016; 468:1793-1801. [PMID: 27659161 PMCID: PMC5138265 DOI: 10.1007/s00424-016-1882-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
Abstract
Multiphoton imaging has been utilized to analyze in vivo immune cell dynamics over the last 15 years. Particularly, it has deepened the understanding of how immune responses are organized by immune cell migration and interactions. In this review, we first describe the following technical advances in recent imaging studies that contributed to the new findings on the regulation of immune responses and inflammation. Improved multicolor imaging of immune cell behavior has revealed that their interactions are spatiotemporally coordinated to achieve efficient and long-term immunity. The use of photoactivatable and photoconvertible fluorescent proteins has increased duration and volume of cell tracking, even enabling the analysis of inter-organ migration of immune cells. In addition, visualization of immune cell activation using biosensors for intracellular calcium concentration and signaling molecule activities has started to give further mechanistic insights. Then, we also introduce recent imaging analyses of interactions between immune cells and non-immune cells including endothelial, fibroblastic, epithelial, and nerve cells. It is argued that future imaging studies that apply updated technical advances to analyze interactions between immune cells and non-immune cells will be important for thorough physiological understanding of the immune system.
Collapse
Affiliation(s)
- Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Sonoko Takahashi
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Azusa Ishida
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Harumichi Ishigame
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
23
|
Yandamuri SS, Lane TE. Imaging Axonal Degeneration and Repair in Preclinical Animal Models of Multiple Sclerosis. Front Immunol 2016; 7:189. [PMID: 27242796 PMCID: PMC4871863 DOI: 10.3389/fimmu.2016.00189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/02/2016] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Over time, this neurologic damage manifests clinically as debilitating motor and cognitive symptoms. Existing MS therapies focus on symptom relief and delay of disease progression through reduction of neuroinflammation. However, long-term strategies to remyelinate, protect, or regenerate axons have remained elusive, posing a challenge to treating progressive forms of MS. Preclinical mouse models and techniques, such as immunohistochemistry, flow cytometry, and genomic and proteomic analysis have provided advances in our understanding of discrete time-points of pathology following disease induction. More recently, in vivo and in situ two-photon (2P) microscopy has made it possible to visualize continuous real-time cellular behavior and structural changes occurring within the CNS during neuropathology. Research utilizing 2P imaging to study axonopathy in neuroinflammatory demyelinating disease has focused on five areas: (1) axonal morphologic changes, (2) organelle transport and health, (3) relationship to inflammation, (4) neuronal excitotoxicity, and (5) regenerative therapies. 2P imaging may also be used to identify novel therapeutic targets via identification and clarification of dynamic cellular and molecular mechanisms of axonal regeneration and remyelination. Here, we review tools that have made 2P accessible for imaging neuropathologies and advances in our understanding of axonal degeneration and repair in preclinical models of demyelinating diseases.
Collapse
Affiliation(s)
| | - Thomas E. Lane
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Blanc CA, Grist JJ, Rosen H, Sears-Kraxberger I, Steward O, Lane TE. Sphingosine-1-phosphate receptor antagonism enhances proliferation and migration of engrafted neural progenitor cells in a model of viral-induced demyelination. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2819-32. [PMID: 26435414 DOI: 10.1016/j.ajpath.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 01/12/2023]
Abstract
The oral drug FTY720 affects sphingosine-1-phosphate (S1P) signaling on targeted cells that bear the S1P receptors S1P1, S1P3, S1P4, and S1P5. We examined the effect of FTY720 treatment on the biology of mouse neural progenitor cells (NPCs) after transplantation in a viral model of demyelination. Intracerebral infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in an acute encephalomyelitis, followed by demyelination similar in pathology to the human demyelinating disease, multiple sclerosis. We have previously reported that intraspinal transplantation of mouse NPCs into JHMV-infected animals resulted in selective colonization of demyelinated lesions, preferential differentiation into oligodendroglia accompanied by axonal preservation, and increased remyelination. Cultured NPCs expressed transcripts for S1P receptors S1P1, S1P2, S1P3, S1P4, and S1P5. FTY720 treatment of cultured NPCs resulted in increased mitogen-activated protein kinase phosphorylation and migration after exposure to the chemokine CXCL12. Administration of FTY720 to JHMV-infected mice resulted in enhanced migration and increased proliferation of transplanted NPCs after spinal cord engraftment. FTY720 treatment did not improve clinical disease, diminish neuroinflammation or the severity of demyelination, nor increase remyelination. These findings argue that FTY720 treatment selectively increases NPC proliferation and migration but does not either improve clinical outcome or enhance remyelination after transplantation into animals in which immune-mediated demyelination is initiated by the viral infection of the central nervous system.
Collapse
Affiliation(s)
- Caroline A Blanc
- Department of Molecular Biology and Biochemistry, Reeve-Irvine Research Center Irvine School of Medicine, University of California, Irvine, California
| | - Jonathan J Grist
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hugh Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California
| | - Ilse Sears-Kraxberger
- Departments of Anatomy and Neurobiology and Neurobiology and Behavior, Reeve-Irvine Research Center Irvine School of Medicine, University of California, Irvine, California
| | - Oswald Steward
- Departments of Anatomy and Neurobiology and Neurobiology and Behavior, Reeve-Irvine Research Center Irvine School of Medicine, University of California, Irvine, California
| | - Thomas E Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
25
|
Heuke S, Chernavskaia O, Bocklitz T, Legesse FB, Meyer T, Akimov D, Dirsch O, Ernst G, von Eggeling F, Petersen I, Guntinas-Lichius O, Schmitt M, Popp J. Multimodal nonlinear microscopy of head and neck carcinoma - toward surgery assisting frozen section analysis. Head Neck 2016; 38:1545-52. [PMID: 27098552 DOI: 10.1002/hed.24477] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 01/06/2016] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of early cancer stages is deeply connected to a good prognosis, a moderate reduction of the quality of life, and comparably low treatment costs. METHODS Head and neck squamous cell carcinomas were investigated using the multimodal combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second-harmonic generation (SHG) microscopy. RESULTS An increased median TPEF to CARS contrast was found comparing cancerous and healthy squamous epithelium with a p value of 1.8·10(-10) . A following comprehensive image analysis was able to predict the diagnosis of imaged tissue sections with an overall accuracy of 90% for a 4-class model. CONCLUSION Nonlinear multimodal imaging is verified objectively as a valuable diagnostic tool that complements conventional staining protocols and can serve as filter in future clinical routine reducing the pathologist's workload. © 2016 Wiley Periodicals, Inc. Head Neck 38: First-1552, 2016.
Collapse
Affiliation(s)
- Sandro Heuke
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Olga Chernavskaia
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Fisseha Bekele Legesse
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Tobias Meyer
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Denis Akimov
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz, Chemnitz, Germany
| | - Günther Ernst
- Leibniz Institute of Photonic Technology, Jena, Germany.,Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Ferdinand von Eggeling
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany.,Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | | | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany. .,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
26
|
Scutellarin Alleviates Behavioral Deficits in a Mouse Model of Multiple Sclerosis, Possibly Through Protecting Neural Stem Cells. J Mol Neurosci 2015; 58:210-20. [PMID: 26514969 DOI: 10.1007/s12031-015-0660-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022]
Abstract
Scutellarin, a flavonoid extracted from an herbal medication (Erigeron breviscapus Hand-Mazz), has been shown to protect neurons against damage and to promote neurogenesis, and thus has therapeutic potential in the treatment of a variety of neurodegenerative diseases. Since neural stem cells (NSCs) could differentiate into myelin-producing oligodendrocytes, we speculate that scutellarin could also be used to treat multiple sclerosis (MS). In the current study, we examined potential effects of scutellarin using a mouse model of MS. Briefly, adult C57BL/6 mice exposed to cuprizone (8 mg/day through diet, for 6 consecutive weeks) randomly received scutellarin (50 mg/kg/day) or vehicle for 10 consecutive days. In the scutellarin-treated group, rotarod testing at the end of the treatment showed significant improvement of motor function (increased time to fall); myelin basic protein (MBP) staining of the corpus callosum revealed decreased demyelination; TUNEL staining followed by Nestin or Sox2 staining revealed increased number of NSCs and decreased rate of NSC apoptosis in the subventricular zone (SVZ) of the lateral ventricles (LV). In a series of experiments using cultured NSCs subjected to cuprizone injury, we confirmed the protective effects of scutellarin. At 30 μM, scutellarin increased the commitment of NSCs to the oligodendrocyte and neuronal lineages, as evidenced by NG2 chondroitin sulfate proteoglycan (NG2) and doublecortin (DCX) staining. Differentiation into astrocytes (as revealed by glial fibrillary acidic protein (GFAP) staining) was decreased. Maturation of the NSCs committed to the oligodendrocyte lineage, as evidenced by oligodendrocyte marker O4 antibody (O4) staining and MBP staining, was also promoted by scutellarin. Further analysis revealed that scutellarin might suppress the phosphorylation of p38 in cuprizone-induced NSCs. In summary, scutellarin could alleviate motor deficits in a mouse model for MS, possibly by inhibiting NSC apoptosis and promoting differentiation of NSCs to myelin-producing oligodendrocytes.
Collapse
|
27
|
Marro BS, Blanc CA, Loring JF, Cahalan MD, Lane TE. Promoting remyelination: utilizing a viral model of demyelination to assess cell-based therapies. Expert Rev Neurother 2015; 14:1169-79. [PMID: 25245576 DOI: 10.1586/14737175.2014.955854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS. While a broad range of therapeutics effectively reduce the incidence of focal white matter inflammation and plaque formation for patients with relapse-remitting forms of MS, a challenge within the field is to develop therapies that allow for axonal protection and remyelination. In the last decade, growing interest has focused on utilizing neural precursor cells (NPCs) to promote remyelination. To understand how NPCs function in chronic demyelinating environments, several excellent pre-clinical mouse models have been developed. One well accepted model is infection of susceptible mice with neurotropic variants of mouse hepatitis virus (MHV) that undergo chronic demyelination exhibiting clinical and histopathologic similarities to MS patients. Combined with the possibility that an environmental agent such as a virus could trigger MS, the MHV model of demyelination presents a relevant mouse model to assess the therapeutic potential of NPCs transplanted into an environment in which inflammatory-mediated demyelination is established.
Collapse
Affiliation(s)
- Brett S Marro
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA
| | | | | | | | | |
Collapse
|
28
|
Weinger JG, Greenberg ML, Matheu MP, Parker I, Walsh CM, Lane TE, Cahalan MD. Two-photon imaging of cellular dynamics in the mouse spinal cord. J Vis Exp 2015. [PMID: 25742043 DOI: 10.3791/52580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two-photon (2P) microscopy is utilized to reveal cellular dynamics and interactions deep within living, intact tissues. Here, we present a method for live-cell imaging in the murine spinal cord. This technique is uniquely suited to analyze neural precursor cell (NPC) dynamics following transplantation into spinal cords undergoing neuroinflammatory demyelinating disorders. NPCs migrate to sites of axonal damage, proliferate, differentiate into oligodendrocytes, and participate in direct remyelination. NPCs are thereby a promising therapeutic treatment to ameliorate chronic demyelinating diseases. Because transplanted NPCs migrate to the damaged areas on the ventral side of the spinal cord, traditional intravital 2P imaging is impossible, and only information on static interactions was previously available using histochemical staining approaches. Although this method was generated to image transplanted NPCs in the ventral spinal cord, it can be applied to numerous studies of transplanted and endogenous cells throughout the entire spinal cord. In this article, we demonstrate the preparation and imaging of a spinal cord with enhanced yellow fluorescent protein-expressing axons and enhanced green fluorescent protein-expressing transplanted NPCs.
Collapse
Affiliation(s)
- Jason G Weinger
- Molecular Biology and Biochemistry, University of California, Irvine
| | | | - Melanie P Matheu
- University of California San Francisco Diabetes Center, University of California, San Francisco
| | - Ian Parker
- Neurobiology and Behavior, University of California, Irvine
| | - Craig M Walsh
- Molecular Biology and Biochemistry, University of California, Irvine
| | | | | |
Collapse
|
29
|
Libbey JE, Lane TE, Fujinami RS. Axonal pathology and demyelination in viral models of multiple sclerosis. DISCOVERY MEDICINE 2014; 18:79-89. [PMID: 25091490 PMCID: PMC4371782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory demyelinating disease of the central nervous system (CNS). Monozygotic twin studies suggest that while there is a genetic contribution, genetics alone cannot be the sole determining factor in the development of MS. As the rates of MS are increasing, particularly among women, environmental factors such as viral infections are coming to the foreground as potential agents in triggering disease in genetically susceptible individuals. This review highlights pathological aspects related to two pre-clinical viral models for MS; data are consistent between these two models as experimental infection of susceptible mice can induce axonal degeneration associated with demyelination. These data are consistent with observations in MS that axonal damage or Wallerian degeneration is occurring within the CNS contributing to the disability and disease severity. Such early damage, where axonal damage is primary to secondary demyelination, could set the stage for more extensive immune mediated demyelination arising later.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, 15 North Medical Drive East, 2600A EEJMRB, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|