1
|
Zhang C, Cai H, Ye M, Wang L, Liu W, Huang Q, Peng X, Mao G, Zhang Q, Mei Y. TCF7 functions as a prognostic biomarker in bladder cancer by strengthening EMT and stemness associated with TGF-β/SMAD3 signaling. Mol Cell Biochem 2025:10.1007/s11010-025-05241-y. [PMID: 40025258 DOI: 10.1007/s11010-025-05241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Bladder cancer (BC) is one of the top ten most common tumors, with recurrence and metastasis being major causes of mortality among patients. A high recurrence rate is a hallmark of BC. Epithelial-mesenchymal transition (EMT) plays a role in the formation of cancer stem cells, tumor metastasis, and immune evasion. In our preliminary research, single-cell sequencing identified TCF7 as a gene associated with EMT. However, its biological function and transcriptional regulation mechanisms in BC remain unclear. This study aims to investigate TCF7's role and regulatory mechanisms in BC progression. TCF7 is a critical transcription factor promoting BC progression. High TCF7 expression in BC is significantly linked to poor patient prognosis. We uncovered a novel mechanism by which TCF7 drives EMT and stemness in BC through transcriptional regulation of TGFBR1, impacting the TGF-β/SMAD3 pathway. These findings enhance our understanding of BC progression and offer potential strategies for diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Congcong Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Haiping Cai
- Department of Neurosurgery, Guangdong Provincial People'S Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Mengnan Ye
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Le Wang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510080, Guangdong, China
| | - Weiwei Liu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Qun Huang
- Department of Urology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xingsi Peng
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, 510163, Guangdong, China
| | - Guanquan Mao
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Qingling Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Yan Mei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Gottumukkala SB, Palanisamy A. Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators. Mamm Genome 2025:10.1007/s00335-025-10110-6. [PMID: 39939487 DOI: 10.1007/s00335-025-10110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.
Collapse
Affiliation(s)
- Sai Bhavani Gottumukkala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| |
Collapse
|
3
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
4
|
Buono L, Annona G, Magri MS, Negueruela S, Sepe RM, Caccavale F, Maeso I, Arnone MI, D’Aniello S. Conservation of cis-Regulatory Syntax Underlying Deuterostome Gastrulation. Cells 2024; 13:1121. [PMID: 38994973 PMCID: PMC11240583 DOI: 10.3390/cells13131121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Throughout embryonic development, the shaping of the functional and morphological characteristics of embryos is orchestrated by an intricate interaction between transcription factors and cis-regulatory elements. In this study, we conducted a comprehensive analysis of deuterostome cis-regulatory landscapes during gastrulation, focusing on four paradigmatic species: the echinoderm Strongylocentrotus purpuratus, the cephalochordate Branchiostoma lanceolatum, the urochordate Ciona intestinalis, and the vertebrate Danio rerio. Our approach involved comparative computational analysis of ATAC-seq datasets to explore the genome-wide blueprint of conserved transcription factor binding motifs underlying gastrulation. We identified a core set of conserved DNA binding motifs associated with 62 known transcription factors, indicating the remarkable conservation of the gastrulation regulatory landscape across deuterostomes. Our findings offer valuable insights into the evolutionary molecular dynamics of embryonic development, shedding light on conserved regulatory subprograms and providing a comprehensive perspective on the conservation and divergence of gene regulation underlying the gastrulation process.
Collapse
Affiliation(s)
- Lorena Buono
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
- Department of Research Infrastructure for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Marta Silvia Magri
- Centro Andaluz de Biología del Desarollo (CABD), Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | | | - Rosa Maria Sepe
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
- Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| |
Collapse
|
5
|
Kao TW, Chen HH, Lin J, Wang TL, Shen YA. PBX1 as a novel master regulator in cancer: Its regulation, molecular biology, and therapeutic applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189085. [PMID: 38341110 DOI: 10.1016/j.bbcan.2024.189085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiao-Han Chen
- Department of General Medicine, National Taiwan University Hospital, Taipei 100224, Taiwan
| | - James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
6
|
Yuan Y, Li Y, Wu X, Bo J, Zhang L, Zhang J, Hu Y, Chen Y, Zeng Y, Wei X, Zhang H. POH1 induces Smad3 deubiquitination and promotes lung cancer metastasis. Cancer Lett 2024; 582:216526. [PMID: 38061486 DOI: 10.1016/j.canlet.2023.216526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Smad3 is the key mediator of TGF-β1-triggered signal transduction and the related biological responses, promoting cell invasion and metastasis in various cancers, including lung cancer. However, the deubiquitinase stabilizing Smad3 remains unknown. In this study, we present a paradigm in which POH1 is identified as a novel deubiquitinase of Smad3 that plays a tumor-promoting role in lung adenocarcinoma (LUAD) by regulating Smad3 stability. POH1 markedly increased Smad3 protein levels and prolonged its half-life. POH1 directly interacted and colocalized with Smad3, leading to the removal of poly-deubiquitination of Smad3. Functionally, POH1 facilitated cell proliferation, migration, and invasion by stabilizing Smad3. Importantly, POH1 also promoted liver metastasis of lung cancer cells. The protein levels of both POH1 and Smad3 were raised in the tumor tissues of patients with LUAD, which predicts poor prognosis. Collectively, we demonstrate that POH1 acts as an oncoprotein by enhancing TGF-β1/Smad3 signaling and TGF-β1-mediated metastasis of lung cancer.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yixiao Li
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Wu
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jinsuo Bo
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Ye Hu
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yining Chen
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yiyan Zeng
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaofan Wei
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Shenzhen University School of Medicine, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, Sarkar D, Ulukaya GB, Sabnis HS, Park SI, DeRyckere D, Raikar SS, Pauly M, Summers RJ, Castellino SM, Wechsler DS, Porter CC, Graham DK, Bhasin M. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat Commun 2023; 14:6209. [PMID: 37798266 PMCID: PMC10556066 DOI: 10.1038/s41467-023-41994-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.
Collapse
Affiliation(s)
- Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Upaasana Krishnan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Pruthvi Perumalla
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Debasree Sarkar
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gulay B Ulukaya
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Himalee S Sabnis
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melinda Pauly
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Andalib KMS, Ahmed A, Habib A. Omics data analysis reveals common molecular basis of small cell lung cancer and COVID-19. J Biomol Struct Dyn 2023; 42:10577-10592. [PMID: 37708006 DOI: 10.1080/07391102.2023.2257803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The impact of COVID-19 infection on individuals with small cell lung cancer (SCLC) poses a serious threat. Unfortunately, the molecular basis of this severe comorbidity has yet to be elucidated. The present study addresses this gap utilizing publicly available omics data of COVID-19 and SCLC to explore the key molecules and associated pathways involved in the convergence of these diseases. Findings revealed 402 genes, that exhibited differential expression patterns in SCLC patients and also play a pivotal role in COVID-19 pathogenesis. Subsequent functional enrichment analyses identified relevant ontologies and pathways that are significantly associated with these genes, revealing important insights into their potential biological, molecular and cellular functions. The protein-protein interaction network, constructed under four combinatorial topological assessments, highlighted SMAD3, CAV1, PIK3R1, and FN1 as the primary components to this comorbidity. Our results suggest that these components significantly regulate this cross-talk triggering the PI3K-AKT and TGF-β signaling pathways. Lastly, this study made a multi-step computational attempt and identified corylifol A and ginkgetin from natural sources that can potentially inhibit these components. Therefore, the outcomes of this study offer novel perspectives on the common molecular mechanisms underlying SCLC and COVID-19 and present future opportunities for drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K M Salim Andalib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
9
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
10
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
11
|
Sun L, Qiu Y, Ching WK, Zhao P, Zou Q. PCB: A pseudotemporal causality-based Bayesian approach to identify EMT-associated regulatory relationships of AS events and RBPs during breast cancer progression. PLoS Comput Biol 2023; 19:e1010939. [PMID: 36930678 PMCID: PMC10057809 DOI: 10.1371/journal.pcbi.1010939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/29/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
During breast cancer metastasis, the developmental process epithelial-mesenchymal (EM) transition is abnormally activated. Transcriptional regulatory networks controlling EM transition are well-studied; however, alternative RNA splicing also plays a critical regulatory role during this process. Alternative splicing was proved to control the EM transition process, and RNA-binding proteins were determined to regulate alternative splicing. A comprehensive understanding of alternative splicing and the RNA-binding proteins that regulate it during EM transition and their dynamic impact on breast cancer remains largely unknown. To accurately study the dynamic regulatory relationships, time-series data of the EM transition process are essential. However, only cross-sectional data of epithelial and mesenchymal specimens are available. Therefore, we developed a pseudotemporal causality-based Bayesian (PCB) approach to infer the dynamic regulatory relationships between alternative splicing events and RNA-binding proteins. Our study sheds light on facilitating the regulatory network-based approach to identify key RNA-binding proteins or target alternative splicing events for the diagnosis or treatment of cancers. The data and code for PCB are available at: http://hkumath.hku.hk/~wkc/PCB(data+code).zip.
Collapse
Affiliation(s)
- Liangjie Sun
- Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Yushan Qiu
- College of Mathematics and Statistics, Shenzhen University, Shenzhen, China
- * E-mail:
| | - Wai-Ki Ching
- Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Liu B, Zhao S, Liu L. PKNOX1 acts as a transcription factor of DHH and promotes the progression of stomach adenocarcinoma by regulating the Hedgehog signalling pathway. Int J Immunopathol Pharmacol 2023; 37:3946320231208833. [PMID: 37864517 PMCID: PMC10591495 DOI: 10.1177/03946320231208833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND This study explored the effects and potential mechanism by which PBX/knotted 1 homeobox 1 (PKNOX1) may exacerbate stomach adenocarcinoma (STAD). METHODS For the in silico analysis, we examined TCGA-PKNOX1 expression using the UALCAN website, as well as its expression patterns in the GSE172032 and GSE174237 datasets, obtained from the GEO database. The associated patient survival curves, were analysed via the KMplot webtool. In vitro, we measured cell viability, proliferation, migration, and invasion using cell counting kit-8, colony formation, wound healing, and cell migration assays, respectively. Real time qPCR and western blotting assessed the mRNA and protein levels of PKNOX1, Snail, vimentin, N-cadherin, E-cadherin, desert hedgehog (DHH), cyclin D2, glioma-associated oncogene homolog 1, and smoothened. Gene Set Enrichment Analysis was performed using LinkedOmics webtools and the clusterProfiler package in R. Dual-luciferase reporter assay was used to examine the interactions of PKNOX1 with DHH, and of TEA domain transcription factor 4 (TEAD4) with PKNOX1. RESULTS PKNOX1 was highly expressed in STAD and linked to poor patient survival. Downregulation of PKNOX1 inhibited STAD cell viability, proliferation, migration, invasion, and epithelial-mesenchymal transition. Upregulation of TEAD4 promoted colony formation and migration, while these effects were reversed by PKNOX1 depletion. Furthermore, PKNOX1 regulated the activation of the hedgehog signalling pathway at the gene level, as we identified PKNOX1 to be a putative transcription factor for DHH that promotes its expression. CONCLUSION Our results show that PKNOX1 acts as a candidate transcription factor for DHH and facilitates STAD development by regulating the hedgehog signalling pathway.
Collapse
Affiliation(s)
- Bing Liu
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Cancer Hospital, Jinan, P. R. China
| | - Siwei Zhao
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Cancer Hospital, Jinan, P. R. China
| | - Liqing Liu
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Cancer Hospital, Jinan, P. R. China
| |
Collapse
|
14
|
The transcription factor PREP1(PKNOX1) regulates nuclear stiffness, the expression of LINC complex proteins and mechanotransduction. Commun Biol 2022; 5:456. [PMID: 35550602 PMCID: PMC9098460 DOI: 10.1038/s42003-022-03406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanosignaling, initiated by extracellular forces and propagated through the intracellular cytoskeletal network, triggers signaling cascades employed in processes as embryogenesis, tissue maintenance and disease development. While signal transduction by transcription factors occurs downstream of cellular mechanosensing, little is known about the cell intrinsic mechanisms that can regulate mechanosignaling. Here we show that transcription factor PREP1 (PKNOX1) regulates the stiffness of the nucleus, the expression of LINC complex proteins and mechanotransduction of YAP-TAZ. PREP1 depletion upsets the nuclear membrane protein stoichiometry and renders nuclei soft. Intriguingly, these cells display fortified actomyosin network with bigger focal adhesion complexes resulting in greater traction forces at the substratum. Despite the high traction, YAP-TAZ translocation is impaired indicating disrupted mechanotransduction. Our data demonstrate mechanosignaling upstream of YAP-TAZ and suggest the existence of a transcriptional mechanism actively regulating nuclear membrane homeostasis and signal transduction through the active engagement/disengagement of the cell from the extracellular matrix. The transcription factor PREP1 binds to promoter regions of SUN1, SUN2 and LAP2 genes and promotes nuclear stiffness, and its depletion results in impaired mechanotransduction.
Collapse
|
15
|
Dong C, Wu K, Gu S, Wang W, Xie S, Zhou Y. PTBP3 mediates TGF-β-induced EMT and metastasis of lung adenocarcinoma. Cell Cycle 2022; 21:1406-1421. [PMID: 35323096 PMCID: PMC9345618 DOI: 10.1080/15384101.2022.2052530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is associated with a poor prognosis due to early metastasis to distant organs. TGF-β potently induces epithelial-to-mesenchymal transition (EMT) and promotes invasion and metastasis of cancers. However, the mechanisms underlying this alteration are largely unknown. PTBP3 plays a critical role in RNA splicing and transcriptional regulation. Although accumulating evidence has revealed that PTBP3 exhibits a pro-oncogenic role in several cancers, whether and how PTBP3 mediates TGF-β-induced EMT and metastasis in LUAD remains unknown. The expression levels and prognostic value of PTBP3 were analyzed in human LUAD tissues and matched normal tissues. siRNAs and lentivirus-mediated vectors were used to transfect LUAD cell lines. Various in vitro experiments including western blot, qRT-PCR, a luciferase reporter assay, chromatin immunoprecipitation (ChIP), transwell migration and invasion assay and in vivo metastasis experiment were performed to determine the roles of PTBP3 in TGF-β-induced EMT and metastasis. PTBP3 expression was significantly upregulated in patients with LUAD, and high expression of PTBP3 indicated a poor prognosis. Intriguingly, we found that PTBP3 expression level in LUAD cell lines was significantly increased by exogenous TGF-β1 in a Smad-dependent manner. Mechanistically, p-Smad3 was recruited to the PTBP3 promoter and activated its transcription. In turn, PTBP3 knockdown abolished TGF-β1-mediated EMT through the inhibition of Smad2/3 expression. Furthermore, PTBP3 overexpression increased lung and liver metastasis of LUAD cells in vivo. PTBP3 is indispensable to TGF-β-induced EMT and metastasis of LUAD cells and is a novel potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiqin Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenli Wang
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiliang Xie
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Cao M, Tian K, Sun W, Xu J, Tang Y, Wu S. MicroRNA-141-3p inhibits the progression of oral squamous cell carcinoma via targeting PBX1 through the JAK2/STAT3 pathway. Exp Ther Med 2022; 23:97. [PMID: 34976139 PMCID: PMC8674974 DOI: 10.3892/etm.2021.11020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), which is the most common epithelial malignant neoplasm in the head and neck, is characterized by local infiltration and metastasis of lymph nodes. The five-year survival rate of OSCC remains low despite the advances in clinical methods. miR-141-3p has been shown to activate or inhibit tumorigenesis. However, the effects of miR-141-3p on invasion and migration of OSCC remain unclear. The present study aimed to evaluate the effects of miR-141-3p on invasion, proliferation, and migration in oral squamous cell carcinoma (OSCC). Reverse transcription quantitative PCR, western blotting and immunohistochemistry were used to detect microRNA(miR)-141-3p and pre-B-cell leukaemia homeobox-1 (PBX1) expression in OSCC tissues and cell lines. The luciferase reporter assay was used to detect targets of miR-141-3p in OSCC. MTT, Transwell and wound healing assays were used to determine the cell proliferation and invasive and migratory abilities, respectively. Expression of constitutive phosphorylated (p)-Janus kinase 2 (JAK2) and p-signal transducer and activator of transcription 3 (STAT3) was detected using western blotting in tissues and cells. miR-141-3p expression was decreased in OSCC tissues and cells, while PBX1 protein expression was increased compared with non-cancerous controls. The result from the dual-luciferase reporter assay revealed that PBX1 was the direct target of miR-141-3p in OSCC tissues. Furthermore, miR-141-3p overexpression and PBX1 knockdown could reduce cell invasion, proliferation and migration, and inhibit the JAK2/STAT3 pathway; however, miR-141-3p downregulation had the opposite effects. In addition, silencing of PBX1 using small interfering RNA could weaken the effects of miR-141-3p inhibitor on JAK2/STAT3 pathway and cell progression in CAL27 cells. In summary, the findings from this study indicated that miR-141-3p upregulation could inhibit OSCC cell invasion, proliferation and migration, by targeting PBX1 via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Mingguo Cao
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Kebin Tian
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Weifeng Sun
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Jun Xu
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Yu Tang
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Shilian Wu
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
17
|
Zhao Y, Che J, Tian A, Zhang G, Xu Y, Li S, Liu S, Wan Y. PBX1 Participates in Estrogen-mediated Bladder Cancer Progression and Chemo-resistance Affecting Estrogen Receptors. Curr Cancer Drug Targets 2022; 22:757-770. [PMID: 35422219 DOI: 10.2174/1568009622666220413084456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is a common cancer associated with high morbidity and mortality worldwide. Pre-B-cell leukemia transcription factor 1 (PBX1) has been reported to be involved in tumor progression. OBJECTIVE The aim of the study was to explore the specific role of PBX1 in BCa and its underlying mechanisms. METHODS The relative expressions of PBX1 in muscle-invasive BCa tissues and cell lines were analyzed through RT-qPCR and western blotting. Kaplan-Meier analysis was used to analyze the relationship between PBX1 levels and survival status. Co-immunoprecipitation (CO-IP) and chromatin immunoprecipitation (ChIP)-qPCR assays were adopted to verify the interaction between PBX1 and Estrogen receptors (ERs) and explore the estrogen receptors (ERs)-dependent genes transcription. RESULTS PBX1 was upregulated in invasive BCa patients and BCa cells, positively associated with tumor size, lymph node metastasis, distant metastasis and poorer survival status. The overexpression of PBX1 promoted cell growth, invasion, epithelial-mesenchymal transition (EMT) process and cisplatin resistance in BCa cells, while the silence of PBX1 showed opposite effects. Furthermore, PBX1 interacted with ERs and was required for ER function. PBX1 overexpression aggravated the tumorpromoting effect of estrogen on BCa cells, while it partially suppressed the inhibitory effects of ER antagonist AZD9496 on BCa cells. CONCLUSION This study revealed that PBX1 participated in estrogen mediated BCa progression and chemo-resistance through binding and activating estrogen receptors. Hence, PBX1 may serve as a potential prognostic and therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Jizhong Che
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Gang Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Shuhang Li
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Songlin Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Yinxu Wan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| |
Collapse
|
18
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
19
|
Shen YA, Jung J, Shimberg GD, Hsu FC, Rahmanto YS, Gaillard SL, Hong J, Bosch J, Shih IM, Chuang CM, Wang TL. Development of small molecule inhibitors targeting PBX1 transcription signaling as a novel cancer therapeutic strategy. iScience 2021; 24:103297. [PMID: 34816098 PMCID: PMC8591422 DOI: 10.1016/j.isci.2021.103297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
PBX1 is a transcription factor involved in diverse cellular functions including organ development, stem cell renewal, and tumorigenesis. PBX1 is localized at chr1q23.3, a frequently amplified chromosomal region, and it is overexpressed in many human malignancies. Cancer cells with elevated PBX1 signaling are particularly vulnerable to PBX1 withdrawal. We designed a series of small molecule compounds capable of docking to the interface between PBX1 and its cognate DNA target sequence. Among them, T417 is found to be a lead compound. In cell-based assays, T417 significantly suppressed self-renewal and proliferation of cancer cells expressing high levels of PBX1. T417 also re-sensitized platinum-resistant ovarian tumors to carboplatin. T417 did not affect healthy tissues likely due to their lower PBX1 expression levels. Therefore, targeting PBX-DNA interface can be a promising strategy for treating human tumors reliant on PBX1 for survival.
Collapse
Affiliation(s)
- Yao-An Shen
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jin Jung
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geoffrey D. Shimberg
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fang-Chi Hsu
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
| | - Yohan Suryo Rahmanto
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie L. Gaillard
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiaxin Hong
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jürgen Bosch
- Division of Pulmonology and Allergy/Immunology, Case Western Reserve University, Cleveland, OH, USA
- InterRayBio, LLC, Baltimore MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 2021; 56:726-746. [PMID: 33756119 DOI: 10.1016/j.devcel.2021.02.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial cells repress epithelial characteristics and elaborate mesenchymal characteristics to migrate to other locations and acquire new properties. Epithelial plasticity responses are directed through cooperation of signaling pathways, with TGF-β and TGF-β-related proteins playing prominent instructive roles. Epithelial-mesenchymal transitions (EMTs) directed by activin-like molecules, bone morphogenetic proteins, or TGF-β regulate metazoan development and wound healing and drive fibrosis and cancer progression. In carcinomas, diverse EMTs enable stem cell generation, anti-cancer drug resistance, genomic instability, and localized immunosuppression. This review discusses roles of TGF-β and TGF-β-related proteins, and underlying molecular mechanisms, in epithelial plasticity in development and wound healing, fibrosis, and cancer.
Collapse
|
21
|
Zhang Y, Xiang J, Zhu N, Ge H, Sheng X, Deng S, Chen J, Yu L, Zhou Y, Shen J. Curcumin in combination with homoharringtonine suppresses lymphoma cell growth by inhibiting the TGF-β/Smad3 signaling pathway. Aging (Albany NY) 2021; 13:18757-18768. [PMID: 34324434 PMCID: PMC8351727 DOI: 10.18632/aging.203319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
Both homoharringtonine (HHT) and curcumin exhibit anti-proliferative effects on lymphoma cells, but the effects of combined HHT and curcumin treatment remain unclear. Here, we investigated the effects of HHT/curcumin combination on the proliferation, apoptosis, and invasion in lymphoma cells. CCK-8, flow cytometry, and transwell assays were used to assess proliferation, apoptosis, and invasion of U937 and Raji cells. p-Smad3, E-cadherin, and N-cadherin expression were also measured in Raji cells using Western blot assays. Combination of HHT and curcumin synergistically inhibited U937 and Raji cell proliferation and invasion. In addition, the combination treatment markedly increased apoptosis of Raji cells as evidenced by increased Bax, cleaved caspase 3, and cleaved caspase 9 expression. Meanwhile, the combination treatment promoted anti-tumor mechanisms in Raji cells as indicated by decreases in p-Smad3 and N-cadherin and increases in E-cadherin. In vivo experiments showed that the combination treatment suppressed tumor growth in a mouse Raji xenograft model. Our findings indicate that combination of HHT and curcumin inhibited lymphoma cell growth by downregulating the TGF-β/Smad3 pathway. These results suggest that HHT combined with curcumin might be a promising therapeutic approach for the treatment of lymphoma.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Jingjing Xiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Ni Zhu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Hangping Ge
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Xianfu Sheng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Shu Deng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Junfa Chen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Lihong Yu
- The First Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yan Zhou
- The First Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
22
|
Bruno A, Di Sano C, Simon HU, Chanez P, Patti AM, Di Vincenzo S, Dino P, D'Esposito V, Formisano P, Beguinot F, Pace E. Leptin and TGF-β1 Downregulate PREP1 Expression in Human Adipose-Derived Mesenchymal Stem Cells and Mature Adipocytes. Front Cell Dev Biol 2021; 9:700481. [PMID: 34327205 PMCID: PMC8315375 DOI: 10.3389/fcell.2021.700481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue is widely recognized as an extremely active endocrine organ producing adipokines as leptin that bridge metabolism and the immune system. Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (PREP1) is a ubiquitous homeodomain transcription factor involved in the adipogenic differentiation and insulin-sensitivity processes. Leptin, as pleiotropic adipokine, and TGF-β, known to be expressed by primary pre-adipocytes [adipose-derived stem cells (ASCs)] and mature differentiated adipocytes, modulate inflammatory responses. We aimed to assess for the first time if leptin and TGF-β interfere with PREP1 expression in both ASCs and mature differentiated adipocytes. Human ASCs were isolated from subcutaneous adipose liposuction and, after expansion, fully differentiated to mature adipocytes. In both ASCs and adipocytes, leptin and TGF-β1 significantly decreased the expression of PREP1, alone and following concurrent Toll-like receptor 4 (TLR4) activation. Moreover, in adipocytes, but not in ASCs, leptin increased TLR4 and IL-33 expression, whereas TGF-β1 enhanced TLR4 and IL-6 expression. Taken together, we provide evidence for a direct regulation of PREP1 by leptin and TGF-β1 in ASCs and mature adipocytes. The effects of leptin and TGF-β1 on immune receptors and cytokines, however, are limited to mature adipocytes, suggesting that modulating immune responses depends on the differentiation of ASCs. Further studies are needed to fully understand the regulation of PREP1 expression and its potential for the development of new therapeutic approaches in obesity-related diseases.
Collapse
Affiliation(s)
- Andreina Bruno
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| | - Caterina Di Sano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Pascal Chanez
- Department of Respiratory Diseases CIC Nord INSERM, INRAE, C2VN, Aix Marseille University, Marseille, France
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Serena Di Vincenzo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| | - Paola Dino
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| | - Vittoria D'Esposito
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Pietro Formisano
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| |
Collapse
|
23
|
IR-Surviving NSCLC Cells Exhibit Different Patterns of Molecular and Cellular Reactions Relating to the Multifraction Irradiation Regimen and p53-Family Proteins Expression. Cancers (Basel) 2021; 13:cancers13112669. [PMID: 34071477 PMCID: PMC8198560 DOI: 10.3390/cancers13112669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary For the first time, we demonstrated that the significant decrease in p63/p73 expression together with the absence of functional p53 could underlie an increase in the fraction of polyploid cells, transformation rates, and the glycolytic NAD(P)H production in multifraction X-ray radiation exposure (MFR)-surviving cancer cells, providing conditions for radioresistance associated with epithelial–mesenchymal transition (EMT)-like process activation. During radiation therapy (RT), the treatment dose, fractionation, and dose limits for organs at risk (OARs) do not change between patients and are still prescribed mainly based on the Tumor, Node, Metastasis (TNM) stage, performance status, and comorbidities, taking no account of the tumor biology. Our data once again emphasize that non-small cell lung cancer (NSCLC) therapy approaches should become more personalized according to RT regimen, tumor histology, and molecular status of critical proteins. Abstract Radiotherapy is a primary treatment modality for patients with unresectable non-small cell lung cancer (NSCLC). Tumor heterogeneity still poses the central question of cancer radioresistance, whether the presence of a particular cell population inside a tumor undergoing a selective outgrowth during radio- and chemotherapy give rise to metastasis and tumor recurrence. In this study, we examined the impact of two different multifraction X-ray radiation exposure (MFR) regimens, fraction dose escalation (FDE) in the split course and the conventional hypofractionation (HF), on the phenotypic and molecular signatures of four MFR-surviving NSCLC cell sublines derived from parental A549 (p53 wild-type) and H1299 (p53-null) cells, namely A549FR/A549HR, H1299FR/H1299HR cells. We demonstrate that sublines surviving different MFR regimens in a total dose of 60 Gy significantly diverge in their molecular traits related to irradiation regimen and p53 status. The observed changes regarding radiosensitivity, transformation, proliferation, metabolic activity, partial epithelial-to-mesenchymal transition (EMT) program activation and 1D confined migratory behavior (wound healing). For the first time, we demonstrated that MFR exposure led to the significant decrease in the expression of p63 and p73, the p53-family members, in p53null cells, which correlated with the increase in cell polyploidy. We could not find significant differences in FRA1 expression between parental cells and their sublines that survived after any MFR regimen regardless of p53 status. In our study, the FDE regimen probably causes partial EMT program activation in MFR-survived NSCLC cells through either Vimentin upregulation in p53null or an aberrant N-cadherin upregulation in p53wt cells. The HF regimen likely less influences the EMT activation irrespectively of the p53 status of MFR-survived NSCLC cells. Our data highlight that both MFR regimens caused overall higher cell transformation of p53null H1299FR and H1299HR cells than their parental H1299 cells. Moreover, our results indicate that the FDE regimen raised the radioresistance and transformation of MFR-surviving NSCLC cells irrespectively of their p53 status, though the HF regimen demonstrated a similar effect on p53null NSCLC cells only. Our data once again emphasize that NSCLC therapy approaches should become more personalized according to radiation therapy (RT) regimen, tumor histology, and molecular status of critical proteins.
Collapse
|
24
|
Menju T, Date H. Lung cancer and epithelial-mesenchymal transition. Gen Thorac Cardiovasc Surg 2021; 69:781-789. [PMID: 33754237 DOI: 10.1007/s11748-021-01595-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) is a well-known phenomenon that promotes the invasive and metastatic capabilities of LC. Especially, EMT is assumed to be a pivotal mechanism for tumor cell invasion and metastasis, thereby limiting the efficacy of surgery and medical treatments, resulting in poor patient prognoses. Thus, the elucidation and reversal of EMT could provide changes in therapeutic strategies for LC. To overcome the limitations of currents treatment regimens for LC, it is important for surgeons to be familiar with this complex tumor characteristic. In this review, the activating signaling pathways underlying EMT and the associated tumor phenotypes are briefly described.
Collapse
Affiliation(s)
- Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
25
|
Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. ACTA ACUST UNITED AC 2021; 44:328-355. [PMID: 33402862 PMCID: PMC7759197 DOI: 10.3906/biy-2006-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
MEIS proteins are historically associated with tumorigenesis, metastasis, and invasion in cancer. MEIS and associated PBX-HOX proteins may act as tumor suppressors or oncogenes in different cellular settings. Their expressions tend to be misregulated in various cancers. Bioinformatic analyses have suggested their upregulation in leukemia/lymphoma, thymoma, pancreas, glioma, and glioblastoma, and downregulation in cervical, uterine, rectum, and colon cancers. However, every cancer type includes, at least, a subtype with high MEIS expression. In addition, studies have highlighted that MEIS proteins and associated factors may function as diagnostic or therapeutic biomarkers for various diseases. Herein, MEIS proteins and associated factors in tumorigenesis are discussed with recent discoveries in addition to how they could be modulated by noncoding RNAs or newly developed small-molecule MEIS inhibitors.
Collapse
Affiliation(s)
- Birkan Gİrgİn
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| | - Medine KaradaĞ-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| | - Fatih KocabaŞ
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
26
|
Fares J, Cordero A, Kanojia D, Lesniak MS. The Network of Cytokines in Brain Metastases. Cancers (Basel) 2021; 13:E142. [PMID: 33466236 PMCID: PMC7795138 DOI: 10.3390/cancers13010142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Brain metastases are the most common of all intracranial tumors and a major cause of death in patients with cancer. Cytokines, including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors are key regulators in the formation of brain metastases. They regulate the infiltration of different cellular subsets into the tumor microenvironment and affect the therapeutic outcomes in patients. Elucidating the cancer cell-cytokine interactions in the setting of brain metastases is crucial for the development of more accurate diagnostics and efficacious therapies. In this review, we focus on cytokines that are found in the tumor microenvironment of brain metastases and elaborate on their trends of expression, regulation, and roles in cellular recruitment and tumorigenesis. We also explore how cytokines can alter the anti-tumor response in the context of brain metastases and discuss ways through which cytokine networks can be manipulated for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.F.); (A.C.); (D.K.)
| |
Collapse
|
27
|
Wang J, Xu M, Li DD, Abudukelimu W, Zhou XH. GPR37 promotes the malignancy of lung adenocarcinoma via TGF-β/Smad pathway. Open Med (Wars) 2020; 16:24-32. [PMID: 33364431 PMCID: PMC7730288 DOI: 10.1515/med-2021-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
This paper aimed to research the function and in-depth mechanism of GPR37 in lung adenocarcinoma (LUAD). Herein, based on TCGA and Oncomine databases, we revealed that GPR37 was expressed at high levels in LUAD, and upregulation of GPR37 was related to the poor outcomes. Furthermore, biological function experiments in vitro were utilized to assess whether GPR37 impacts malignant phenotype of LUAD cells. Gain- or loss-of-function assays indicated that the upregulation of GPR37 contributed to improving the proliferation, migration, and invasion of LUAD cells in vitro, while knockdown of GPR37 can inhibit the malignant biological behaviors. Then, we found that depletion of GPR37 resulted in a decrease in the expression of TGF-β1 as well as the extents of Smad2 and Smad3 phosphorylation, while overexpression of GPR37 presented opposite outcomes. Altogether, our findings indicated that GPR37 is a potential oncogene of LUAD, and its promoting effects on the malignant progression of LUAD may be realized via TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Jian Wang
- Department of Respiration, Midong Branch of People's Hospital of Xinjiang Autonomous Region, 1302-17 Midong South Road, Urumqi, Xinjiang, People's Republic of China
| | - Min Xu
- Department of Medical, Midong Branch of People's Hospital of Xinjiang Autonomous Region, Urumqi, Xinjiang, People's Republic of China
| | - Dan-Dan Li
- Department of Endocrinology, Midong Branch of People's Hospital of Xinjiang Autonomous Region, Xinjiang, Urumqi, People's Republic of China
| | - Wujikenayi Abudukelimu
- Department of Respiration, Midong Branch of People's Hospital of Xinjiang Autonomous Region, 1302-17 Midong South Road, Urumqi, Xinjiang, People's Republic of China
| | - Xiu-Hong Zhou
- Department of Respiration, Midong Branch of People's Hospital of Xinjiang Autonomous Region, 1302-17 Midong South Road, Urumqi, Xinjiang, People's Republic of China
| |
Collapse
|
28
|
Bruckmann C, Tamburri S, De Lorenzi V, Doti N, Monti A, Mathiasen L, Cattaneo A, Ruvo M, Bachi A, Blasi F. Mapping the native interaction surfaces of PREP1 with PBX1 by cross-linking mass-spectrometry and mutagenesis. Sci Rep 2020; 10:16809. [PMID: 33033354 PMCID: PMC7545097 DOI: 10.1038/s41598-020-74032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/25/2020] [Indexed: 02/08/2023] Open
Abstract
Both onco-suppressor PREP1 and the oncogene MEIS1 bind to PBX1. This interaction stabilizes the two proteins and allows their translocation into the nucleus and thus their transcriptional activity. Here, we have combined cross-linking mass-spectrometry and systematic mutagenesis to detail the binding geometry of the PBX1-PREP1 (and PBX1-MEIS1) complexes, under native in vivo conditions. The data confirm the existence of two distinct interaction sites within the PBC domain of PBX1 and unravel differences among the highly similar binding sites of MEIS1 and PREP1. The HR2 domain has a fundamental role in binding the PBC-B domain of PBX1 in both PREP1 and MEIS1. The HR1 domain of MEIS1, however, seem to play a less stringent role in PBX1 interaction with respect to that of PREP1. This difference is also reflected by the different binding affinity of the two proteins to PBX1. Although partial, this analysis provides for the first time some ideas on the tertiary structure of the complexes not available before. Moreover, the extensive mutagenic analysis of PREP1 identifies the role of individual hydrophobic HR1 and HR2 residues, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Bruckmann
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy.
| | - Simone Tamburri
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Valentina De Lorenzi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56124, Pisa, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Lisa Mathiasen
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
| | - Angela Cattaneo
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Cogentech S.R.L. Benefit Corporation IT, Via Adamello 16, 20139, Milan, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Angela Bachi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
| | - Francesco Blasi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
29
|
Popper H. Primary tumor and metastasis-sectioning the different steps of the metastatic cascade. Transl Lung Cancer Res 2020; 9:2277-2300. [PMID: 33209649 PMCID: PMC7653118 DOI: 10.21037/tlcr-20-175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patients with lung cancer in the majority die of metastases. Treatment options include surgery, chemo- and radiotherapy, targeted therapy by tyrosine kinase inhibitors (TKIs), and immuno-oncologic treatment. Despite the success with these treatment options, cure of lung cancer is achieved in only a very small proportion of patients. In most patients’ recurrence and metastasis will occur, and finally kill the patient. Metastasis is a multistep procedure. It requires a change in adhesion of tumor cells for detachment from their neighboring cells. The next step is migration either as single cells [epithelial-mesenchymal transition (EMT)], or as cell clusters (hybrid-EMT or bulk migration). A combination of genetic changes is required to facilitate migration. Then tumor cells have to orient themselves along matrix proteins, detect oxygen concentrations, prevent attacks by immune cells, and induce a tumor-friendly switch of stroma cells (macrophages, myofibroblasts, etc.). Having entered the blood stream tumor cells need to adapt to shear stress, avoid being trapped by coagulation, but also use coagulation in small veins for adherence to endothelia, and express homing molecules for extravasation. Within a metastatic site, tumor cells need a well-prepared niche to establish a metastatic focus. Tumor cells again have to establish a vascular net for maintaining nutrition and oxygen supply, communicate with stroma cells, grow out and set further metastases. In this review the different steps will be discussed with a focus on pulmonary carcinomas. The vast amount of research manuscripts published so far are not easy to analyze: in most reports’ single steps of the metastatic cascade are interpreted as evidence for the whole process; for example, migration is interpreted as evidence for metastasis. In lung cancer most often latency periods are shorter, in between 1–5 years. In other cases, despite widespread migration occurs, tumor cells die within the circulation and do not reach a metastatic site. Therefore, migration is a requisite, but does not necessarily predict metastasis. The intention of this review is to point to these different aspects and hopefully provoke research directed into a more functional analysis of the metastatic process.
Collapse
Affiliation(s)
- Helmut Popper
- Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Yang W, Feng W, Wu F, Gao Y, Sun Q, Hu N, Lu W, Zhou J. MiR-135-5p inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by targeting SMAD3 in breast cancer. J Cancer 2020; 11:6402-6412. [PMID: 33033523 PMCID: PMC7532519 DOI: 10.7150/jca.47083] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignant tumors and the leading cause of death due to cancer in women around the world. A growing body of studies have documented that microRNA (miR)-135-5p is associated with the development and progression of BC. Considering that sekelsky mothers against dpp3 (SMAD3) plays a crucial role in transforming growth factor (TGF)-β/SMAD pathway and epithelial-mesenchymal transition (EMT) process, it is critical to elucidate the crosstalk and underlying regulatory mechanisms between miR-135-5p and SMAD3 in controlling TGF-β-mediated EMT in BC metastasis. Our results revealed a reciprocal expression pattern between miR-135-5p and SMAD3 mRNA in BC tissues and cell lines. Moreover, miR-135-5p was decreased in BC tissues compared to adjacent breast tissues; more interesting, miR-135-5p mRNA levels (Tumor/Normal, T/N) was further decreased in BC patients with lymph node metastasis, while SMAD3 mRNA levels were increased. Gain- and loss-of-function assays indicated that overexpression of miR-135-5p inhibited TGF-β-mediated EMT and BC metastasis in vitro and in vivo. Furthermore, knockdown of SMAD3 produced a consistent phenotype of miR-135-5p overexpression in breast cancer cells. Mechanistically, SMAD3, a pivotal transcriptional modulator of TGF-β/SMAD pathway, for the first time, was analyzed and identified as a target gene of miR-135-5p by bioinformatic algorithms and dual-luciferase reporter assays. Taken together, we clarified that miR-135-5p suppressed TGF-β-mediated EMT and BC metastasis by negatively regulating SMAD3 and TGF-β/SMAD signaling. Our findings supported that miR-135-5p may serve as a tumor suppressor, and be a valuable diagnostic biomarker for the treatment of BC.
Collapse
Affiliation(s)
- Wen Yang
- Department of Obstetrics and Gynecology, The First People's Hospital of Lianyungang, Jiangsu 222061, P.R. China
| | - Wen Feng
- Department of Obstetrics and Gynecology, The First People's Hospital of Lianyungang, Jiangsu 222061, P.R. China
| | - Fenglei Wu
- Department of Oncology, The First People's Hospital of Lianyungang, Jiangsu 222061, P.R. China
| | - Yuan Gao
- Department of Obstetrics and Gynecology, The First People's Hospital of Lianyungang, Jiangsu 222061, P.R. China
| | - Qian Sun
- Department of Obstetrics and Gynecology, The First People's Hospital of Lianyungang, Jiangsu 222061, P.R. China
| | - Nan Hu
- Department of Oncology, The First People's Hospital of Lianyungang, Jiangsu 222061, P.R. China
| | - Wei Lu
- Department of Obstetrics and Gynecology, The First People's Hospital of Lianyungang, Jiangsu 222061, P.R. China
| | - Jun Zhou
- Department of Breast surgery, The First People's Hospital of Lianyungang, Jiangsu 222061, P.R. China
| |
Collapse
|
31
|
Wen H, Qian M, He J, Li M, Yu Q, Leng Z. Inhibiting of self-renewal, migration and invasion of ovarian cancer stem cells by blocking TGF-β pathway. PLoS One 2020; 15:e0230230. [PMID: 32214328 PMCID: PMC7098562 DOI: 10.1371/journal.pone.0230230] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the effect and mechanism of SB525334 on self-renewal, migration and invasion of ovarian cancer stem cells. METHODS ALDHhigh-expressing cancer stem cells (CSCs) were isolated from human ovarian cancer cell line SKOV-3 by flow cytometry and treated with 2μg/mL SB525334 for 6h. The sphere forming assay was used to detect the ability of self-renewal of CSCs and the colony formation assay was used to detect the tumorigenicity in vitro. Transwell migration and invasion assay were used to detect the migration and invasion ability of CSCs. To further explore the mechanism, real-time quantitative PCR and flow cytometry were used to detect the mRNA and protein expression of TGF-β, Smad2, Smad3, phosphorylated Smad2, phosphorylated Smad3 and Smad4, respectively. Expressions of epithelial-mesenchymal transition (EMT)-related genes E-cadherin, Snail, Vimentin were also assessed. RESULTS The self-renewal ability, tumorigenicity in vitro, migration and invasion ability of CSCs were significantly attenuated after SB525334 treatment. The expressions of TGF-β, phosphorylated Smad2, phosphorylated Smad3, Snail, and Vimentin were decreased, while Smad4 and E-cadherin expressions were increased. CONCLUSION SB525334 may inhibit the self-renewal, invasion and migration of ovarian CSCs by blocking the TGF-β/Smad/EMT pathway.
Collapse
Affiliation(s)
- Haiyan Wen
- Obstetrics Department, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
- * E-mail: (HW); (ZL)
| | - Min Qian
- Obstetrics Department, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Jing He
- Obstetrics Department, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Meihui Li
- Obstetrics Department, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Qing Yu
- Obstetrics Department, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Zhengwei Leng
- General Surgical Teaching and Research Office, North Sichuan Medical College, Nanchong, Sichuan, China
- * E-mail: (HW); (ZL)
| |
Collapse
|
32
|
Hu Y, Yu J, Wang Q, Zhang L, Chen X, Cao Y, Zhao J, Xu Y, Jiang D, Wang Y, Xiong W. Tartrate-Resistant Acid Phosphatase 5/ACP5 Interacts with p53 to Control the Expression of SMAD3 in Lung Adenocarcinoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:272-288. [PMID: 32181328 PMCID: PMC7066063 DOI: 10.1016/j.omto.2020.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Tartrate-resistant acid phosphatase 5 (TRAP/ACP5) has been shown to involve the development and prognosis of multiple tumors in previous studies; however, the mechanism in lung cancer is still unclear, and thus this study investigated the role of ACP5 in the progression of lung adenocarcinoma. After a series of in vitro and in vivo experiments, we observed that ACP5 expression was increased in lung adenocarcinomas (40/69, 57.97%); importantly, an increased ACP5 level was associated with patient age (p = 0.044) and lymph node metastasis (p = 0.0385). ACP5 overexpression significantly enhanced A549 and NCI-H1975 cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and reduced cell apoptosis. Knocking down the expression of ACP5 could rescue the above cell phenotypes. Furthermore, enhancing ACP5 expression promoted lung adenocarcinoma cell hyperplasia and intrapulmonary metastasis in a mouse model. Additionally, mechanistic studies revealed that ACP5 might regulate p53 phosphorylation at Ser392, thereby enhancing the ubiquitination of p53, which then underwent degradation. Reducing the levels of p53 intensified the transcription of SMAD3, which promotes EMT in lung adenocarcinoma cells. In summary, the present study provides a theoretical basis and important scientific evidence on the key role of ACP5 in lung adenocarcinoma progression by inducing EMT via the regulation of p53/SMAD3 signaling.
Collapse
Affiliation(s)
- Yinan Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xueying Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yong Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Corresponding author: Yi Wang, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Department of Respiratory Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai 200011, China
- Corresponding author: Weining Xiong, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
33
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
34
|
The role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases: an update on its pathological significance and therapeutic potential. Contemp Oncol (Pozn) 2019; 23:187-194. [PMID: 31992949 PMCID: PMC6978756 DOI: 10.5114/wo.2019.91543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LA) is the most common cause of cancer-related death worldwide. Despite the advances over last decade in new targeted therapies, cancer genetics, diagnostics, staging, and surgical techniques as well as new chemotherapy and radiotherapy protocols, the death rate from LA remains high. The tumour microenvironment is composed of several cytokines, one of which is transforming growth factor β1 (TGF-β1), which modulates and mediates the expression of epithelial-mesenchymal transition (EMT), correlated with invasive growth in LAs, and exhibits its pleiotropic effects through binding to transmembrane receptors TβR-1 (also termed activin receptor-like kinases – ALKs) and TβR-2. Accordingly, there is an urgent need to elucidate the molecular mechanisms associated with the tumoural spreading process and therapeutic resistance of this serious pathology. In this review, we briefly discuss the current role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases, and give an overview of our current mechanistic understanding of the TGF-β1-related pathways in brain metastases progression, TGF-β1 pathway inhibitors that could be used for clinical treatment, and examination of models used to study these processes. Finally, we summarise the current progress in the therapeutic approaches targeting TGF-β1.
Collapse
|
35
|
Wang M, Wang W, Ding J, Wang J, Zhang J. Downregulation of Rab17 promotes cell proliferation and invasion in non-small cell lung cancer through STAT3/HIF-1α/VEGF signaling. Thorac Cancer 2019; 11:379-388. [PMID: 31841274 PMCID: PMC6997001 DOI: 10.1111/1759-7714.13278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Rab GTPases play a key role in regulating intercellular vesicle trafficking in both exo- and endocytic pathways. Recent studies have reported that Rab small GTPases and the associated regulatory proteins and effectors are involved in many cancers. The purpose of this study was to investigate the biological role of Rab17 in non-small cell lung cancer (NSCLC) and the relative mechanism. METHODS Rab17 expression in human NSCLC cell lines and tissues was evaluated using real-time PCR (RT-PCR), western blot and immunohistochemical (IHC) staining. NSCLC cell lines with RAB17 stable knockdown were generated to explore its function in vitro and in vivo. Additionally, we investigated the potential mechanism of Rab17 by identifying the expression levels of STAT3/HIF-1α/VEGF pathway using western blot analysis. RESULTS Decreased Rab17 expression was correlated with poor overall survival in NSCLC patients. The functional assays showed that knockdown of Rab17 could promote tumorigenic properties of NSCLC cells in vitro and in vivo, including enhanced cell proliferation, colony formation, invasion and migration, angiogenesis and tumor xenograft growth, and suppressed apoptosis. Moreover, Rab17 downregulation decreased epithelial marker E-cadherin and increased mesenchymal markers Vimentin and β-catenin, suggesting knockdown of Rab17 induced epithelial-mesenchymal transition (EMT). CONCLUSION Downregulation of Rab17 promotes cell invasion and enhances tumorigenicity in part through the STAT3/HIF-1α/VEGF pathway, which may represent a novel potential therapeutic target.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wendong Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingmin Ding
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiashun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Fan X, Jin S, Li Y, Khadaroo PA, Dai Y, He L, Zhou D, Lin H. Genetic And Epigenetic Regulation Of E-Cadherin Signaling In Human Hepatocellular Carcinoma. Cancer Manag Res 2019; 11:8947-8963. [PMID: 31802937 PMCID: PMC6801489 DOI: 10.2147/cmar.s225606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
E-cadherin is well known as a growth and invasion suppressor and belongs to the large cadherin family. Loss of E-cadherin is widely known as the hallmark of epithelial-to-mesenchymal transition (EMT) with the involvement of transcription factors such as Snail, Slug, Twist and Zeb1/2. Tumor cells undergoing EMT could migrate to distant sites and become metastases. Recently, numerous studies have revealed how the expression of E-cadherin is regulated by different kinds of genetic and epigenetic alteration, which are implicated in several crucial transcription factors and pathways. E-cadherin signaling plays an important role in hepatocellular carcinoma (HCC) initiation and progression considering the highly mutated frequency of CTNNB1 (27%). Combining the data from The Cancer Genome Atlas (TCGA) database and previous studies, we have summarized the roles of gene mutations, chromosome instability, DNA methylation, histone modifications and non-coding RNA in E-cadherin in HCC. In this review, we discuss the current understanding of the relationship between these modifications and HCC. Perspectives on E-cadherin-related research in HCC are provided.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Parikshit Asutosh Khadaroo
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
37
|
Cimmino I, Margheri F, Prisco F, Perruolo G, D'Esposito V, Laurenzana A, Fibbi G, Paciello O, Doti N, Ruvo M, Miele C, Beguinot F, Formisano P, Oriente F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism. FASEB J 2019; 33:13893-13904. [PMID: 31618597 DOI: 10.1096/fj.201901230rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiogenesis depends on a delicate balance between the different transcription factors, and their control should be considered necessary for preventing or treating diseases. Pre-B-cell leukemia transcription factor regulating protein 1 (Prep1) is a homeodomain transcription factor that plays a primary role in organogenesis and metabolism. Observations performed in a Prep1 hypomorphic mouse model, expressing 3-5% of the protein, show an increase of embryonic lethality due, in part, to defects in angiogenesis. In this study, we provide evidence that overexpression of Prep1 in mouse aortic endothelial cells (MAECs) stimulates migration, proliferation, and tube formation. These effects are paralleled by an increase of several proangiogenic factors and by a decrease of the antiangiogenic gene neurogenic locus notch homolog protein 1 (Notch1). Prep1-mediated angiogenesis involves the activation of the p160 Myb-binding protein (p160)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Indeed, Prep1 overexpression increases its binding with p160 and induces a 4-fold increase of p160 and 70% reduction of PGC-1α compared with control cells. Incubation of MAECs with a synthetic Prep1(54-72) peptide, mimicking the Prep1 region involved in the interaction with p160, reverts the proangiogenic effects mediated by Prep1. In addition, Prep1 levels increase by 3.2-fold during the fibroblast growth factor β (bFGF)-mediated endothelial colony-forming cells' activation, whereas Prep1(54-72) peptide reduces the capability of these cells to generate tubular-like structures in response to bFGF, suggesting a possible role of Prep1 both in angiogenesis from preexisting vessels and in postnatal vasculogenesis. Finally, Prep1 hypomorphic heterozygous mice, expressing low levels of Prep1, show attenuated placental angiogenesis and vessel formation within Matrigel plugs. All of these observations indicate that Prep1, complexing with p160, decreases PGC-1α and stimulates angiogenesis.-Cimmino, I., Margheri, F., Prisco, F., Perruolo, G., D'Esposito, V., Laurenzana, A., Fibbi, G., Paciello, O., Doti, N., Ruvo, M., Miele, C., Beguinot, F., Formisano, P., Oriente, F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Vittoria D'Esposito
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Nunzianna Doti
- Institute of Biostructure and Bioimaging, National Research Council-Interuniversity Research Centre on Bioactive Peptides, Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council-Interuniversity Research Centre on Bioactive Peptides, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| |
Collapse
|
38
|
Kun C, Tao L, Leiyuan H, Yunhao F, Ning W, Zhe L, Yuanyuan C, Xiao L, Hongran Q, Jianming C, Fu G, Yanyong Y. Heat-killed Salmonella typhimurium mitigated radiation-induced lung injury. Clin Exp Pharmacol Physiol 2019; 46:1084-1091. [PMID: 31291700 DOI: 10.1111/1440-1681.13135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023]
Abstract
Radiation-induced lung injury (RILI) is a serious complication in thoracic tumour radiotherapy. It often occurs in clinical chest radiotherapy and acute whole-body irradiation (WBI) caused by nuclear accidents or nuclear weapon attack. Some radioprotective agents have been reported to exert protective effects when given prior to radiation exposure, however, there is no treatment strategy available for preventing RILI. In this study, we demonstrated that heat-killed Salmonella typhimurium (HKST), a co-agonist of Toll-like receptors 2 (TLR2), Toll-like receptors 4 (TLR4) and Toll-like receptors 5 (TLR5), mitigated radiation-induced lung injury through the transforming growth factor-β (TGF-β) signalling pathway. We found that HKST alleviated lung hyperaemia and pathological damage after irradiation, indicated that HKST inhibits the early inflammatory reaction of radiation-induced lung injury. Then, for the first time, we observed HKST reduced collagen deposit induced by irradiation in the later phase (7-14 week) of RILI, and we found that HKST inhibited radiation-induced cell apoptosis in lung tissues. We found that HKST reduced the level of TGF-β and regulated its downstream signalling pathway. Finally, it was found that HKST inhibited radiation-induced epithelial-mesenchymal transition (EMT) in lung tissues. In conclusion, our data showed that HKST effectively mitigated RILI through regulating TGF-β, provide novel treatment strategy for RILI in whole-body irradiation and radiotherapy.
Collapse
Affiliation(s)
- Cao Kun
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Luo Tao
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Hu Leiyuan
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Fang Yunhao
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Wu Ning
- Department of Respiratory, Changhai Hospital, Shanghai, China
| | - Liu Zhe
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Chen Yuanyuan
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Lei Xiao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qin Hongran
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Cai Jianming
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Gao Fu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yang Yanyong
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Liu X, Li C, Yang Y, Liu X, Li R, Zhang M, Yin Y, Qu Y. Synaptotagmin 7 in twist-related protein 1-mediated epithelial - Mesenchymal transition of non-small cell lung cancer. EBioMedicine 2019; 46:42-53. [PMID: 31395502 PMCID: PMC6711891 DOI: 10.1016/j.ebiom.2019.07.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Twist-related protein 1 (TWIST1) plays an essential role in the carcinogenesis and metastasis of NSCLC. Our aims were to identify the molecule at the downstream of TWIST1 and to evaluate its potential as a diagnostic and a prognostic marker in NSCLC. Methods The functional genes at the downstream of TWIST1 were obtained via microarray gene expression analyses in the NSCLC cell line. The expression levels of synaptotagmin 7 (SYT7) in a cohort of patients with NSCLC (n = 154) were examined using immunohistochemistry staining and assessed by Kaplan-Meier survival analysis and Cox regression analysis. The effects of SYT7 on the tumorigenesis and metastasis of NSCLC were measured in NSCLC cells. In vivo xenograft lung cancer models were used to study the tumorigenesis role of SYT7. Findings We discovered that SYT7 is significantly altered by TWIST1 expression. We further confirmed that SYT7 protein was significantly higher in NSCLC than that in the adjacent normal lung tissue, and higher SYT7 expression was associated with poor survival of NSCLC patients. The protein level of SYT7 was positively correlated with TWIST1 in NSCLC tissue. Functional experiments indicated that SYT7 promoted proliferation, invasion, and metastasis and inhibited cell apoptosis of NSCLC cells in vitro. In vivo experiments showed that shSYT7 inhibited the xenograft tumor growth of NSCLC cells. Knocking down of SYT7 increased the expression of E-cadherin and decreased the level of N-cadherin and Vimentin in cultured cells. Interpretation Our data indicate that SYT7 is an important promoter for EMT and tumor progression in NSCLC. Fund This project was supported by grants from the Major Scientific and Technological Innovation Project of Shandong Province (2018CXGC1212), Science and Technology Foundation of Shandong Province (2014GSF118084, 2016GSF121043), Medical and Health Technology Innovation Plan of Jinan City (201805002) and the National Natural Science Foundation of China (81372333).
Collapse
Affiliation(s)
- Xiao Liu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Chunyu Li
- Department of Respiratory Medicine, First Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yie Yang
- Department of Clinical Laboratory, Qianfoshan Hospital of Shandong Province, Jinan 250012, China
| | - Xiaoxia Liu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Rui Li
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Mengyu Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yunhong Yin
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yiqing Qu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
40
|
Clinical significance of epithelial–mesenchymal transition-related markers expression in the micrometastatic sentinel lymph node of NSCLC. Clin Transl Oncol 2019; 22:381-391. [DOI: 10.1007/s12094-019-02138-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022]
|
41
|
Liu Y, Xu X, Lin P, He Y, Zhang Y, Cao B, Zhang Z, Sethi G, Liu J, Zhou X, Mao X. Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. J Biol Chem 2019; 294:4572-4582. [PMID: 30718275 PMCID: PMC6433065 DOI: 10.1074/jbc.ra118.006057] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/29/2019] [Indexed: 01/21/2023] Open
Abstract
Chemoresistance is a leading obstacle in effective management of advanced prostate cancer (PCa). A better understanding of the molecular mechanisms involved in PCa chemoresistance could improve treatment of patients with PCa. In the present study, using immune histochemical, chemistry, and precipitation assays with cells from individuals with benign or malignant prostate cancer or established PCa cell lines, we found that the oncogenic transcription factor pre-B cell leukemia homeobox-1 (PBX1) promotes PCa cell proliferation and confers to resistance against common anti-cancer drugs such as doxorubicin and cisplatin. We observed that genetic PBX1 knockdown abrogates this resistance, and further experiments revealed that PBX1 stability was modulated by the ubiquitin-proteasomal pathway. To directly probe the impact of this pathway on PBX1 activity, we screened for PBX1-specific deubiquitinases (Dubs) and found that ubiquitin-specific peptidase 9 X-linked (USP9x) interacted with and stabilized the PBX1 protein by attenuating its Lys-48-linked polyubiquitination. Moreover, the USP9x inhibitor WP1130 markedly induced PBX1 degradation and promoted PCa cell apoptosis. The results in this study indicate that PBX1 confers to PCa chemoresistance and identify USP9x as a Dub of PBX1. We concluded that targeting the USP9x/PBX1 axis could be a potential therapeutic strategy for managing advanced prostate cancer.
Collapse
Affiliation(s)
- Yan Liu
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Sichuan Kelun Pharmaceutical Co., Ltd., Chengdu, Sichuan 610071, China
| | - Xiaofeng Xu
- the Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 21002, China
| | - Peng Lin
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuanming He
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yawen Zhang
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Biyin Cao
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zubin Zhang
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Gautam Sethi
- the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
| | - Jinbao Liu
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
| | - Xiumin Zhou
- the Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China, and
| | - Xinliang Mao
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China,
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
42
|
Selleri L, Zappavigna V, Ferretti E. 'Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks. Genes Dev 2019; 33:258-275. [PMID: 30824532 PMCID: PMC6411007 DOI: 10.1101/gad.318774.118] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pbx genes encode transcription factors that belong to the TALE (three-amino-acid loop extension) superclass of homeodomain proteins. We have witnessed a surge in information about the roles of this gene family as leading actors in the transcriptional control of development. PBX proteins represent a clear example of how transcription factors can regulate developmental processes by combinatorial properties, acting within multimeric complexes to implement activation or repression of transcription depending on their interaction partners. Here, we revisit long-emphasized functions of PBX transcription factors as cofactors for HOX proteins, major architects of the body plan. We further discuss new knowledge on roles of PBX proteins in different developmental contexts as upstream regulators of Hox genes-as factors that interact with non-HOX proteins and can work independently of HOX-as well as potential pioneer factors. Committed to building a perfect body, PBX proteins govern regulatory networks that direct essential morphogenetic processes and organogenesis in vertebrate development. Perturbations of PBX-dependent networks can cause human congenital disease and cancer.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California 94143, USA
- Institute of Human Genetics, University of California at San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Ferretti
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
43
|
Zhang YL, Ding C, Sun L. High Expression B3GAT3 Is Related with Poor Prognosis of Liver Cancer. Open Med (Wars) 2019; 14:251-258. [PMID: 30847403 PMCID: PMC6401394 DOI: 10.1515/med-2019-0020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/28/2019] [Indexed: 11/15/2022] Open
Abstract
Liver cancer is one of the most malignant tumors with poor prognosis. Finding molecular markers that can predict prognosis is very important for the treatment of liver cancer. The present research is trying to find a new biomarker for human liver cancer. The analysis of abnormal expression genes and prognosis value on liver cancer by Gene Expression Profiling Interactive Analysis (GEPIA) database, the Pathology Atlas of the Human Protein Atlas (HPA), and Kaplan Meier-plotter (KM plotter), proved that B3GAT3 might be one of the important candidates. Furthermore, we investigated the specific role of B3GAT3 on liver cancer through the transfection of B3GAT3 siRNA in HepG2 cells. The proliferation was detected using CCK8, and migration and invasion were determined using Transwell assay. Our results proved that knockdown of B3GAT3 inhibited the proliferation, migration, and invasion. Moreover, B3GAT3 knockdown inhibited the expression of EMT related proteins, N-cad, Snail, and Twist, while promoting the expression of E-cad, suggesting that B3GAT3 knockdown reversed the EMT process of liver cancer cells. In conclusion, overexpressed B3GAT3 promotes the process of tumor EMT, which is an independent prognostic marker to predict the prognosis of liver cancer and might be a potential new target for liver cancer therapy.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Medical Department, Maternity and Child Care centers, Zaozhuang 277100, Shandong Province, China
| | - Chao Ding
- Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang 277100, Shandong Province, China
| | - Lei Sun
- Department of General Surgery, Zaozhuang Municipal Hospital, Zaozhuang 277100, Shandong Province, China
| |
Collapse
|
44
|
FOSB⁻PCDHB13 Axis Disrupts the Microtubule Network in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11010107. [PMID: 30658436 PMCID: PMC6357195 DOI: 10.3390/cancers11010107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is among the leading causes of human mortality. One reason for high rates of NSCLC mortality is that drug resistance is a major problem for both conventional chemotherapies and less-toxic targeted therapies. Thus, novel mechanistic insights into disease pathogenesis may benefit the development of urgently needed therapies. Here we show that FBJ murine osteosarcoma viral oncogene homolog B (FOSB) was induced by an antimicrobial peptide, tilapia piscidin-4 (TP4), through the dysregulation of mitochondrial Ca2+ homeostasis in NSCLC cells. Transcriptomic, chromatin immunoprecipitation quantitative PCR, and immunocytochemical studies reveal that protocadherin-β13 (PCDHB13) as a target of FOSB that was functionally associated with microtubule. Overexpression of either PCDHB13 or FOSB attenuated NSCLC growth and survival in vitro and in vivo. Importantly, downregulation of both FOSB and PCDHB13 was observed in NSCLC patients and was negatively correlated with pathological grade. These findings introduce the FOSB⁻PCDHB13 axis as a novel tumor suppressive pathway in NSCLC.
Collapse
|
45
|
Deng G, Chen L, Zhang Y, Fan S, Li W, Lu J, Chen X. Fucosyltransferase 2 induced epithelial-mesenchymal transition via TGF-β/Smad signaling pathway in lung adenocarcinaoma. Exp Cell Res 2018; 370:613-622. [PMID: 30031128 DOI: 10.1016/j.yexcr.2018.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/08/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
Fucosyltransferase 2 (FUT2), the enzyme catalyzing α-1,2-fucosylation in mammals, has been implicated in cancer. The up-regulation of FUT2 has been observed in lung adenocarcinoma (LUAD), and FUT2 can enhance the cell migration and invasion of LUAD cell lines. However, the underlying mechanism of FUT2 in LUAD remains largely unknown. Abundant studies have revealed that epithelial-mesenchymal transition (EMT) played a pivotal role during lung cancer metastasis and progression. In the present study, we showed that knocking down FUT2 in LUAD cell lines increased the expression of E-cadherin and reduced the expression of Vimentin, N-cadherin, TβRII, p-Smad2, p-Smad3 and Snail, which were the makers of EMT. Meanwhile, the expression of E-cadherin was decreased, and the expression of Vimentin was increased by restoring the expression of FUT2 in RNA interference FUT2 (RNAi-FUT2) cells, suggesting that FUT2 enhanced the EMT process in LUAD. Additionally, silencing FUT2 expression can up-regulate E-cadherin and down-regulate Vimentin, significantly attenuated EMT in vivo. Treated with the SIS3, a new-type inhibitor of p-Smad3 of TGF-β signaling, the expression of E-cadherin, Vimentin and Snail were not affected by RNAi-FUT2 cells, indicating that the effect of FUT2 on EMT depended on TGF-β/Smad signaling. Overall, the current results indicated that FUT2 might promote LUAD metastasis through the EMT initiated by TGF-β/Smad signaling. Therefore, FUT2 might be a prognostic factor and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Guoqing Deng
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lvao Chen
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqi Zhang
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sairong Fan
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wencan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Jianxin Lu
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Xiaoming Chen
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
46
|
Li X, Yuan N, Lin L, Yin L, Qu Y. Targeting cysteine-rich angiogenic inducer-61 by antibody immunotherapy suppresses growth and migration of non-small cell lung cancer. Exp Ther Med 2018; 16:730-738. [PMID: 30116327 PMCID: PMC6090314 DOI: 10.3892/etm.2018.6274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 03/17/2017] [Indexed: 02/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most frequent type of human lung cancer; lung cancer is responsible for the highest rates of cancer-associated mortality in the world. Cysteine-rich angiogenic inducer-61 (CYR-61) has been identified as a tumorigenesis-, development- and metastasis-related gene, and is reported to enhance proliferation, migration and invasion through hepatocyte growth factor (HGF)-induced scattering and the metastasis-inducing HGF/Met signaling pathway in tumor cells and xenograft models. CYR-61 is a protein that promotes human lung cancer cell metastasis and is closely related to the patient's prognosis in NSCLC. The purpose of the present study was to investigate whether CYR-61 may serve as a dual potential target for gene therapy of human NSCLC. In the present study, an antibody targeted against CYR-61 (anti-CYR-61) was constructed and the therapeutic effects and underlying mechanism of this antibody in NSCLC cells and mice with NSCLC was investigated. It was observed that NSCLC cell viability, migration and invasion were inhibited while cell apoptosis was induced by the neutralization of CYR-61 protein by anti-CYR-61. Western blotting demonstrated that extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) expression levels in NSCLC cells were decreased following treatment with anti-CYR-61. In addition, it was observed that inhibition of NSCLC cell viability was achieved by the suppression of the epithelial-mesenchymal transition signaling pathway. ERK and AKT phosphorylation levels were downregulated in NSCLC cells and tumors following anti-CYR-61 treatment. Analysis of a murine model indicated that tumor growth was inhibited and tumor metastasis was significantly suppressed (P<0.01) following anti-CYR-61 treatment for CYR-61. In conclusion, CYR-61 may serve as a potential target for gene therapy for the treatment of human NSCLC.
Collapse
Affiliation(s)
- Xinpeng Li
- Department of Respiration, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Respiration, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Naxin Yuan
- Department of Respiration, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Lingdan Lin
- Department of Cardiology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Lixia Yin
- Department of Respiration, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Yiqing Qu
- Department of Respiration, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
47
|
The p21-activated kinase 4-Slug transcription factor axis promotes epithelial-mesenchymal transition and worsens prognosis in prostate cancer. Oncogene 2018; 37:5147-5159. [PMID: 29849120 DOI: 10.1038/s41388-018-0327-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 01/01/2023]
Abstract
Epithelial-mesenchymal transition (EMT) facilitates cancer invasion and metastasis and thus accelerates cancer progression. p21-activated kinase 4 (PAK4) is a critical regulator of prostate cancer (PC) progression. Here, we report that PAK4 activation promotes PC progression through the EMT regulator Slug. We find that phosphorylated PAK4S474 (pPAK4) levels, an index of PAK4 activation, were tightly associated with Gleason score (p < 0.001), a clinical indicator of PC progression, but not with prostate serum antigen levels or tumor stage. Stable silencing of PAK4 in PC cells reduced their potential for EMT, cellular invasion, and metastasis in vivo. PAK4 bound and directly phosphorylated Slug at two previously unknown sites, S158 and S254, which resulted in its stabilization. The non-phosphorylatable form SlugS158A/S254A upregulated transcription of CDH1, which encodes E-cadherin, and thus suppressed EMT and invasion, to a greater extent than did wild-type Slug. The strong EMT inducer TGF-β elevated pPAK4 and pSlugS158 levels; PAK4 knockdown or introduction of a dominant-negative form of PAK4 inhibited both TGF-β-stimulated EMT and an increase in pSlugS158 levels. Finally, immunohistochemistry revealed a positive correlation between pPAK4 and pSlugS158 but an inverse correlation between pSlugS158 and E-cadherin. The results suggest that the PAK4-Slug axis represents a novel pathway that promotes PC progression.
Collapse
|
48
|
Pedrosa RMSM, Mustafa DAM, Aerts JGJV, Kros JM. Potential Molecular Signatures Predictive of Lung Cancer Brain Metastasis. Front Oncol 2018; 8:159. [PMID: 29868480 PMCID: PMC5958181 DOI: 10.3389/fonc.2018.00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Brain metastases are the most common tumors of the central nervous system (CNS). Incidence rates vary according to primary tumor origin, whereas the majority of the cerebral metastases arise from primary tumors in the lung (40-50%). Brain metastases from lung cancer can occur concurrently or within months after lung cancer diagnosis. Survival rates after lung cancer brain metastasis diagnosis remain poor, to an utmost of 10 months. Therefore, prevention of brain metastasis is a critical concern in order to improve survival among cancer patients. Although several studies have been made in order to disclose the genetic and molecular mechanisms associated with CNS metastasis, the precise mechanisms that govern the CNS metastasis from lung cancer are yet to be clarified. The ability to forecast, which patients have a higher risk of brain metastasis occurrence, would aid cancer management approaches to diminish or prevent the development of brain metastasis and improve the clinical outcome for such patients. In this work, we revise genetic and molecular targets suitable for prediction of lung cancer CNS disease.
Collapse
Affiliation(s)
| | - Dana A M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
49
|
He C, Wang Z, Zhang L, Yang L, Li J, Chen X, Zhang J, Chang Q, Yu Y, Liu B, Zhu Z. A hydrophobic residue in the TALE homeodomain of PBX1 promotes epithelial-to-mesenchymal transition of gastric carcinoma. Oncotarget 2018; 8:46818-46833. [PMID: 28514754 PMCID: PMC5564525 DOI: 10.18632/oncotarget.17473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 01/24/2023] Open
Abstract
Pre-B-cell leukemia homeobox 1 (PBX1) was originally identified as a proto-oncogene in human leukemia. Although this protein has been shown to contribute to cellular development and tumorigenesis, the role of PBX1 in gastric carcinoma (GC) remains unclear. In this study, we observed increased expression of PBX1 in GC tissues compared with adjacent normal tissues. This increase in PBX1 expression levels negatively correlated with HOXB9 mRNA expression and was also associated with malignancy and metastasis. PBX1 promoted proliferation and metastasis of GC cells both in vitro and in vivo. These phenomena were also accompanied by epithelial-to-mesenchymal transition (EMT). Additionally, we observed that PBX1 promotes the expression of tumor growth and angiogenic factors. A structural model of the PBX1-HOX complex revealed that hydrophobic binding between PBX1 and the hexapeptide motif might be required for EMT induction. This analysis also demonstrated that the Phe252 residue in the first helix of the TALE homeodomain is involved in the latter hydrophobic binding reaction. In vitro data from PBX1 mutants suggest that PBX1 cannot promote tumorigenesis of GC cells via EMT induction when Phe252 residues lose hydrophobicity. It is likely that the presence of this residue is essential in facilitating hydrophobic binding with the hexapeptide motif. These findings suggest that PBX1 may be a potential target for GC treatment and this study provides a platform to elucidate the molecular mechanisms that underpin the role of PBX1 in GC tumorigenesis.
Collapse
Affiliation(s)
- Changyu He
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqiang Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyun Yang
- Department of Otolaryngology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehua Chen
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Clinical Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yingyan Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Baudier J, Jenkins ZA, Robertson SP. The filamin-B–refilin axis – spatiotemporal regulators of the actin-cytoskeleton in development and disease. J Cell Sci 2018; 131:131/8/jcs213959. [DOI: 10.1242/jcs.213959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
During development, cycles of spatiotemporal remodeling of higher-order networks of actin filaments contribute to control cell fate specification and differentiation. Programs for controlling these dynamics are hard-wired into actin-regulatory proteins. The filamin family of actin-binding proteins exert crucial mechanotransduction and signaling functions in tissue morphogenesis. Filamin-B (FLNB) is a key player in chondrocyte progenitor differentiation for endochondral ossification. Biallelic loss-of-function mutations or gain-of-function mutations in FLNB cause two groups of skeletal disorders that can be attributed to either the loss of repressive function on TGF-β signaling or a disruption in mechanosensory properties, respectively. In this Review, we highlight a unique family of vertebrate-specific short-lived filamin-binding proteins, the refilins (refilin-A and refilin-B), that modulate filamin-dependent actin crosslinking properties. Refilins are downstream TGF-β effectors in epithelial cells. Double knockout of both refilin-A and refilin-B in mice results in precocious ossification of some axial skeletal elements, leading to malformations that are similar to those seen in FLNB-deficient mice. Based on these findings, we present a model summarizing the role of refilins in regulating the mechanosensory functions of FLNB during skeletal development. We also discuss the possible contribution of refilins to FLNB-related skeletal pathologies that are associated with gain-of-function mutations.
Collapse
Affiliation(s)
- Jacques Baudier
- Aix Marseille Université, CNRS, IBDM, 13284 Marseille Cedex 07, France
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Campus de Luminy-Case 907, 13288 Marseille Cedex 9, France
| | - Zandra A. Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|