1
|
Lloyd B, Miletić S, Bazin PL, Isherwood S, Tse DHY, Håberg AK, Forstmann B, Nieuwenhuis S. Subcortical nuclei of the human ascending arousal system encode anticipated reward but do not predict subsequent memory. Cereb Cortex 2025; 35:bhaf101. [PMID: 40346825 PMCID: PMC12064850 DOI: 10.1093/cercor/bhaf101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/27/2025] [Accepted: 04/04/2025] [Indexed: 05/12/2025] Open
Abstract
Subcortical nuclei of the ascending arousal system (AAS) play an important role in regulating brain and cognition. However, functional MRI (fMRI) of these nuclei in humans involves unique challenges due to their size and location deep within the brain. Here, we used ultra-high-field MRI and other methodological advances to investigate the activity of 6 subcortical nuclei during reward anticipation and memory encoding: the locus coeruleus (LC), basal forebrain, median and dorsal raphe nuclei, substantia nigra, and ventral tegmental area. Participants performed a monetary incentive delay task, which successfully induced a state of reward anticipation, and a 24-h delayed surprise memory test. Region-of-interest analyses revealed that activity in all subcortical nuclei increased in anticipation of potential rewards as opposed to neutral outcomes. In contrast, activity in none of the nuclei predicted memory performance 24 h later. These findings provide new insights into the cognitive functions that are supported by the human AAS.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
| | - Steven Miletić
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, the Netherlands
| | - Pierre-Louis Bazin
- Full Brain Picture Analytics, Lage Morsweg 73, 2332XB Leiden, The Netherlands
| | - Scott Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, the Netherlands
| | - Desmond H Y Tse
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030, Trondheim, Norway
| | - Asta K Håberg
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030, Trondheim, Norway
| | - Birte Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, the Netherlands
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
| |
Collapse
|
2
|
Trent S, Abdullah MH, Parwana K, Valdivieso MA, Hassan Z, Müller CP. Fear conditioning: Insights into learning, memory and extinction and its relevance to clinical disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111310. [PMID: 40056965 DOI: 10.1016/j.pnpbp.2025.111310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Fear, whether innate or learned, is an essential emotion required for survival. The learning, and subsequent memory, of fearful events enhances our ability to recognise and respond to threats, aiding adaptation to new, ever-changing environments. Considerable research has leveraged associative learning protocols such as contextual or auditory forms of fear conditioning in rodents, to understand fear learning, memory consolidation and extinction phases of memory. Such assays have led to detailed characterisation of the underlying neurocircuitry and neurobiology supporting fear learning processes. Given fear processing is conserved across rodents and humans, fear conditioning experiments provide translational insights into fundamental memory processes and fear-related pathologies. This review examines associative learning protocols used to measure fear learning, memory and extinction, before providing an overview on the underlying complex neurocircuitry including the amygdala, hippocampus and medial prefrontal cortex. This is followed by an in-depth commentary on the neurobiology, particularly synaptic plasticity mechanisms, which regulate fear learning, memory and extinction. Next, we consider how fear conditioning assays in rodents can inform our understanding of disrupted fear memory in human disorders such as post-traumatic stress disorder (PTSD), anxiety and psychiatric disorders including schizophrenia. Lastly, we critically evaluate fear conditioning protocols, highlighting some of the experimental and theoretical limitations and the considerations required when conducting such assays, alongside recent methodological advancements in the field. Overall, rodent-based fear conditioning assays remain central to making progress in uncovering fundamental memory phenomena and understanding the aetiological mechanisms that underpin fear associated disorders, alongside the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Simon Trent
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK.
| | | | - Krishma Parwana
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| | - Maria Alcocer Valdivieso
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| | - Zurina Hassan
- Centre for Drug Research, Universiti Malaysia (USM), 11800 Penang, Malaysia
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
Chan JC, Salvo GD, Cunningham AM, Dutta S, Brindley EA, Wan E, Zhang C, Maze I. Persistent dopamine-dependent remodeling of the neural transcriptome in response to pregnancy and postpartum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639313. [PMID: 40060435 PMCID: PMC11888212 DOI: 10.1101/2025.02.20.639313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pregnancy and postpartum experiences represent transformative physiological states that impose lasting demands on the maternal body and brain, resulting in lifelong neural adaptations. However, the precise molecular mechanisms driving these persistent alterations remain poorly understood. Here, we used brain-wide transcriptomic profiling to define the molecular landscape of parity-induced neural plasticity, identifying the dorsal hippocampus (dHpc) as a key site of transcriptional remodeling. Combining single-cell RNA sequencing with a maternal-pup separation paradigm, we additionally demonstrated that chronic postpartum stress significantly disrupts dHpc adaptations by altering dopamine dynamics, leading to dysregulated transcription, altered cellular plasticity, and impaired behavior. We further established the sufficiency of dopamine modulation in the regulation of these parity-induced adaptations via chemogenetic suppression of dopamine release into dHpc, which recapitulated key transcriptional and behavioral features of parity in virgin females. In sum, our findings establish dopamine as a central regulator of parity-induced neuroadaptations, revealing a fundamental transcriptional mechanism by which female reproductive experiences remodel the maternal brain to sustain long-term behavioral adaptations.
Collapse
Affiliation(s)
- Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Giuseppina Di Salvo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sohini Dutta
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elizabeth A Brindley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethan Wan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cindy Zhang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
4
|
Conde KM, Wong H, Fang S, Li Y, Yu M, Deng Y, Liu Q, Fang X, Wang M, Shi Y, Ginnard OZ, Yang Y, Tu L, Liu H, Liu H, Yin N, Bean JC, Han J, Burt ME, Jossy SV, Yang Y, Tong Q, Arenkiel BR, Wang C, He Y, Xu Y. Serotonin neurons integrate GABA and dopamine inputs to regulate meal initiation. Metabolism 2025; 163:156099. [PMID: 39667432 PMCID: PMC11924950 DOI: 10.1016/j.metabol.2024.156099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Obesity is a growing global health epidemic with limited orally administered therapeutics. Serotonin (5-HT) is one neurotransmitter which remains an excellent target for new weight-loss therapies, but a gap remains in understanding the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using an optogenetic feeding paradigm, we showed that the 5-HTDRN➔arcuate nucleus (ARH) circuit plays a role in meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the role of dopaminergic inputs via dopamine receptor D2 in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, for the initiation of a meal.
Collapse
Affiliation(s)
- Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - HueyZhong Wong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuzheng Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yue Deng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuhan Shi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Olivia Z Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuxue Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Megan E Burt
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanika V Jossy
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
DeVuono MV, Nashed MG, Sarikahya MH, Kocsis A, Lee K, Vanin SR, Hudson R, Lonnee EP, Rushlow WJ, Hardy DB, Laviolette SR. Prenatal tetrahydrocannabinol and cannabidiol exposure produce sex-specific pathophysiological phenotypes in the adolescent prefrontal cortex and hippocampus. Neurobiol Dis 2024; 199:106588. [PMID: 38960101 DOI: 10.1016/j.nbd.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024] Open
Abstract
Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Mina G Nashed
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mohammed H Sarikahya
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Andrea Kocsis
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Kendrick Lee
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Sebastian R Vanin
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Eryn P Lonnee
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Psychiatry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Daniel B Hardy
- Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada; Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute (CHRI), Lawson Health Research Institute, St. Joseph's Health Care, London, ON N6C 2R5, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Psychiatry, University of Western Ontario, London, ON N6A 3K7, Canada; Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute (CHRI), Lawson Health Research Institute, St. Joseph's Health Care, London, ON N6C 2R5, Canada
| |
Collapse
|
6
|
Schroyens N, Vercammen L, Özcan B, Salazar VAO, Zaman J, De Bundel D, Beckers T, Luyten L. No evidence that post-training dopamine D2 receptor agonism affects fear generalization in male rats. J Psychopharmacol 2024; 38:672-682. [PMID: 39068641 PMCID: PMC7616352 DOI: 10.1177/02698811241261375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND The neurotransmitter dopamine plays an important role in the processing of emotional memories, and prior research suggests that dopaminergic manipulations immediately after fear learning can affect the retention and generalization of acquired fear. AIMS The current study focuses specifically on the role of dopamine D2 receptors (D2Rs) regarding fear generalization in adult, male Wistar rats, and aims to replicate previous findings in mice. METHODS In a series of five experiments, D2R (ant)agonists were injected systemically, immediately after differential cued fear conditioning (CS+ followed by shock, CS- without shock). All five experiments involved the administration of the D2R agonist quinpirole at different doses versus saline (n = 12, 16, or 44 rats/group). In addition, one of the studies administered the D2R antagonist raclopride (n = 12). One day later, freezing during the CS+ and CS- was assessed. RESULTS We found no indications for an effect of quinpirole or raclopride on fear generalization during this drug-free test. Importantly, and contradicting earlier research in mice, the evidence for the absence of an effect of D2R agonist quinpirole (1 mg/kg) on fear generalization was substantial according to Bayesian analyses and was observed in a highly powered experiment (N = 87). We did find acute behavioral effects in line with the literature, for both quinpirole and raclopride in a locomotor activity test. CONCLUSION In contrast with prior studies in mice, we have obtained evidence against a preventative effect of post-training D2R agonist quinpirole administration on subsequent fear generalization in rats.
Collapse
Affiliation(s)
- Natalie Schroyens
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| | - Laura Vercammen
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
- KU Leuven, Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3714, 3000Leuven, Belgium
| | - Burcu Özcan
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
| | - Victoria Aurora Ossorio Salazar
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
- KU Leuven, Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3714, 3000Leuven, Belgium
| | - Jonas Zaman
- KU Leuven, Health Psychology, Tiensestraat 102 box 3726, 3000Leuven, Belgium
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, 1090Brussel, Belgium
| | - Tom Beckers
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| | - Laura Luyten
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| |
Collapse
|
7
|
Conde KM, Wong H, Fang S, Li Y, Yu M, Deng Y, Liu Q, Fang X, Wang M, Shi Y, Ginnard OZ, Yang Y, Tu L, Liu H, Liu H, Yin N, Bean JC, Han J, Burt ME, Jossy SV, Yang Y, Tong Q, Arenkiel BR, Wang C, He Y, Xu Y. 5-HT Neurons Integrate GABA and Dopamine Inputs to Regulate Meal Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591360. [PMID: 38746314 PMCID: PMC11092489 DOI: 10.1101/2024.04.26.591360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Obesity is a growing global health epidemic with limited effective therapeutics. Serotonin (5-HT) is one major neurotransmitter which remains an excellent target for new weight-loss therapies, but there remains a gap in knowledge on the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using a closed-loop optogenetic feeding paradigm, we showed that the 5-HTDRN→arcuate nucleus (ARH) circuit plays an important role in regulating meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response to GABAergic inputs can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the instrumental role of dopaminergic inputs via dopamine receptor D2 in 5-HTDRN neurons in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, which allows for the initiation of a meal.
Collapse
Affiliation(s)
- Kristine M. Conde
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - HueyZhong Wong
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuzheng Fang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Meng Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yue Deng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xing Fang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mengjie Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuhan Shi
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Olivia Z. Ginnard
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuxue Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Na Yin
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C. Bean
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Megan E. Burt
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanika V. Jossy
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunmei Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Wu M, Zhang X, Feng S, Freda SN, Kumari P, Dumrongprechachan V, Kozorovitskiy Y. Dopamine pathways mediating affective state transitions after sleep loss. Neuron 2024; 112:141-154.e8. [PMID: 37922904 PMCID: PMC10841919 DOI: 10.1016/j.neuron.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The pathophysiology of affective disorders-particularly circuit-level mechanisms underlying bidirectional, periodic affective state transitions-remains poorly understood. In patients, disruptions of sleep and circadian rhythm can trigger transitions to manic episodes, whereas depressive states are reversed. Here, we introduce a hybrid automated sleep deprivation platform to induce transitions of affective states in mice. Acute sleep loss causes mixed behavioral states, featuring hyperactivity, elevated social and sexual behaviors, and diminished depressive-like behaviors, where transitions depend on dopamine (DA). Using DA sensor photometry and projection-targeted chemogenetics, we reveal that elevated DA release in specific brain regions mediates distinct behavioral changes in affective state transitions. Acute sleep loss induces DA-dependent enhancement in dendritic spine density and uncaging-evoked dendritic spinogenesis in the medial prefrontal cortex, whereas optically mediated disassembly of enhanced plasticity reverses the antidepressant effects of sleep deprivation on learned helplessness. These findings demonstrate that brain-wide dopaminergic pathways control sleep-loss-induced polymodal affective state transitions.
Collapse
Affiliation(s)
- Mingzheng Wu
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Xin Zhang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sihan Feng
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sara N Freda
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Pushpa Kumari
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Vasin Dumrongprechachan
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
10
|
Yokose J, Yamamoto N, Ogawa SK, Kitamura T. Optogenetic activation of dopamine D1 receptors in island cells of medial entorhinal cortex inhibits temporal association learning. Mol Brain 2023; 16:78. [PMID: 37964372 PMCID: PMC10647136 DOI: 10.1186/s13041-023-01065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
A critical feature of episodic memory formation is to associate temporally segregated events as an episode, called temporal association learning. The medial entorhinal cortical-hippocampal (EC-HPC) networks is essential for temporal association learning. We have previously demonstrated that pyramidal cells in the medial EC (MEC) layer III project to the hippocampal CA1 pyramidal cells and are necessary for trace fear conditioning (TFC), which is an associative learning between tone and aversive shock with the temporal gap. On the other hand, Island cells in MECII, project to GABAergic neurons in hippocampal CA1, suppress the MECIII input into the CA1 pyramidal cells through the feed-forward inhibition, and inhibit TFC. However, it remains unknown about how Island cells activity is regulated during TFC. In this study, we report that dopamine D1 receptor is preferentially expressed in Island cells in the MEC. Optogenetic activation of dopamine D1 receptors in Island cells facilitate the Island cell activity and inhibited hippocampal CA1 pyramidal cell activity during TFC. The optogenetic activation caused the impairment of TFC memory recall without affecting contextual fear memory recall. These results suggest that dopamine D1 receptor in Island cells have a crucial role for the regulation of temporal association learning.
Collapse
Affiliation(s)
- Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Sarikahya MH, Cousineau SL, De Felice M, Szkudlarek HJ, Wong KKW, DeVuono MV, Lee K, Rodríguez-Ruiz M, Gummerson D, Proud E, Ng THJ, Hudson R, Jung T, Hardy DB, Yeung KKC, Schmid S, Rushlow W, Laviolette SR. Prenatal THC exposure induces long-term, sex-dependent cognitive dysfunction associated with lipidomic and neuronal pathology in the prefrontal cortex-hippocampal network. Mol Psychiatry 2023; 28:4234-4250. [PMID: 37525013 DOI: 10.1038/s41380-023-02190-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
With increasing maternal cannabis use, there is a need to investigate the lasting impact of prenatal exposure to Δ9-tetrahydrocannabinol (THC), the main psychotropic compound in cannabis, on cognitive/memory function. The endocannabinoid system (ECS), which relies on polyunsaturated fatty acids (PUFAs) to function, plays a crucial role in regulating prefrontal cortical (PFC) and hippocampal network-dependent behaviors essential for cognition and memory. Using a rodent model of prenatal cannabis exposure (PCE), we report that male and female offspring display long-term deficits in various cognitive domains. However, these phenotypes were associated with highly divergent, sex-dependent mechanisms. Electrophysiological recordings revealed hyperactive PFC pyramidal neuron activity in both males and females, but hypoactivity in the ventral hippocampus (vHIPP) in males, and hyperactivity in females. Further, cortical oscillatory activity states of theta, alpha, delta, beta, and gamma bandwidths were strongly sex divergent. Moreover, protein expression analyses at postnatal day (PD)21 and PD120 revealed primarily PD120 disturbances in dopamine D1R/D2 receptors, NMDA receptor 2B, synaptophysin, gephyrin, GAD67, and PPARα selectively in the PFC and vHIPP, in both regions in males, but only the vHIPP in females. Lastly, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we identified region-, age-, and sex-specific deficiencies in specific neural PUFAs, namely docosahexaenoic acid (DHA) and arachidonic acid (ARA), and related metabolites, in the PFC and hippocampus (ventral/dorsal subiculum, and CA1 regions). This study highlights several novel, long-term and sex-specific consequences of PCE on PFC-hippocampal circuit dysfunction and the potential role of specific PUFA signaling abnormalities underlying these pathological outcomes.
Collapse
Affiliation(s)
- Mohammed H Sarikahya
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Samantha L Cousineau
- Departments of Chemistry and Biochemistry, Western University, London, Ontario, N6A 3K7, Canada
| | - Marta De Felice
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Karen K W Wong
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Marieka V DeVuono
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Kendrick Lee
- Departments of Physiology and Pharmacology and Obstetrics and Gynaecology, Western University, London, Ontario, N6A 5C1, Canada
- Children's Health Research Institute, St. Josephs Health Care,, London, Ontario, N6C 2R5, Canada
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Dana Gummerson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Emma Proud
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Tsun Hay Jason Ng
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Tony Jung
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Daniel B Hardy
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
- Departments of Physiology and Pharmacology and Obstetrics and Gynaecology, Western University, London, Ontario, N6A 5C1, Canada
- Children's Health Research Institute, St. Josephs Health Care,, London, Ontario, N6C 2R5, Canada
| | - Ken K-C Yeung
- Departments of Chemistry and Biochemistry, Western University, London, Ontario, N6A 3K7, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
- Department of Psychology, Western University, London, Ontario, N6A 3K7, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
- Lawson Health Research Institute, St. Josephs Health Care, London, Ontario, N6C 2R5, Canada
- Department of Psychiatry, Western University, London, Ontario, N6A 3K7, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada.
- Lawson Health Research Institute, St. Josephs Health Care, London, Ontario, N6C 2R5, Canada.
- Department of Psychiatry, Western University, London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
12
|
Li C, Saliba NB, Martin H, Losurdo NA, Kolahdouzan K, Siddiqui R, Medeiros D, Li W. Purkinje cell dopaminergic inputs to astrocytes regulate cerebellar-dependent behavior. Nat Commun 2023; 14:1613. [PMID: 36959176 PMCID: PMC10036610 DOI: 10.1038/s41467-023-37319-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Dopamine has a significant role in motor and cognitive function. The dopaminergic pathways originating from the midbrain have received the most attention; however, the relevance of the cerebellar dopaminergic system is largely undiscovered. Here, we show that the major cerebellar astrocyte type Bergmann glial cells express D1 receptors. Dopamine can be synthesized in Purkinje cells by cytochrome P450 and released in an activity-dependent fashion. We demonstrate that activation of D1 receptors induces membrane depolarization and Ca2+ release from the internal store. These astrocytic activities in turn modify Purkinje cell output by altering its excitatory and inhibitory synaptic input. Lastly, we show that conditional knockout of D1 receptors in Bergmann glial cells results in decreased locomotor activity and impaired social activity. These results contribute to the understanding of the molecular, cellular, and circuit mechanisms underlying dopamine function in the cerebellum, revealing a critical role for the cerebellar dopaminergic system in motor and social behavior.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie B Saliba
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah Martin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nicole A Losurdo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Neuroscience Program, The University of Utah, Salt Lake City, UT, USA
| | - Kian Kolahdouzan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Riyan Siddiqui
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Destynie Medeiros
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Tsetsenis T, Broussard JI, Dani JA. Dopaminergic regulation of hippocampal plasticity, learning, and memory. Front Behav Neurosci 2023; 16:1092420. [PMID: 36778837 PMCID: PMC9911454 DOI: 10.3389/fnbeh.2022.1092420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is responsible for encoding behavioral episodes into short-term and long-term memory. The circuits that mediate these processes are subject to neuromodulation, which involves regulation of synaptic plasticity and local neuronal excitability. In this review, we present evidence to demonstrate the influence of dopaminergic neuromodulation on hippocampus-dependent memory, and we address the controversy surrounding the source of dopamine innervation. First, we summarize historical and recent retrograde and anterograde anatomical tracing studies of direct dopaminergic projections from the ventral tegmental area and discuss dopamine release from the adrenergic locus coeruleus. Then, we present evidence of dopaminergic modulation of synaptic plasticity in the hippocampus. Plasticity mechanisms are examined in brain slices and in recordings from in vivo neuronal populations in freely moving rodents. Finally, we review pharmacological, genetic, and circuitry research that demonstrates the importance of dopamine release for learning and memory tasks while dissociating anatomically distinct populations of direct dopaminergic inputs.
Collapse
Affiliation(s)
- Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Theodoros Tsetsenis John I. Broussard John A. Dani
| | - John I. Broussard
- Department of Neurobiology and Anatomy, UT Health Houston McGovern Medical School, Houston, TX, United States,*Correspondence: Theodoros Tsetsenis John I. Broussard John A. Dani
| | - John A. Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Theodoros Tsetsenis John I. Broussard John A. Dani
| |
Collapse
|
14
|
Mustafá ER, McCarthy CI, Portales AE, Cordisco Gonzalez S, Rodríguez SS, Raingo J. Constitutive activity of the dopamine (D 5 ) receptor, highly expressed in CA1 hippocampal neurons, selectively reduces Ca V 3.2 and Ca V 3.3 currents. Br J Pharmacol 2022; 180:1210-1231. [PMID: 36480023 DOI: 10.1111/bph.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE CaV 3.1-3 currents differentially contribute to neuronal firing patterns. CaV 3 are regulated by G protein-coupled receptors (GPCRs) activity, but information about CaV 3 as targets of the constitutive activity of GPCRs is scarce. We investigate the impact of D5 recpetor constitutive activity, a GPCR with high levels of basal activity, on CaV 3 functionality. D5 recpetor and CaV 3 are expressed in the hippocampus and have been independently linked to pathophysiological states associated with epilepsy. EXPERIMENTAL APPROACH Our study models were HEK293T cells heterologously expressing D1 or D5 receptor and CaV 3.1-3, and mouse brain slices containing the hippocampus. We used chlorpromazine (D1 /D5 inverse agonist) and a D5 receptor mutant lacking constitutive activity as experimental tools. We measured CaV 3 currents and excitability parameters using the patch-clamp technique. We completed our study with computational modelling and imaging technique. KEY RESULTS We found a higher sensitivity to TTA-P2 (CaV 3 blocker) in CA1 pyramidal neurons obtained from chlorpromazine-treated animals compared with vehicle-treated animals. We found that CaV 3.2 and CaV 3.3-but not CaV 3.1-are targets of D5 receptor constitutive activity in HEK293T cells. Finally, we found an increased firing rate in CA1 pyramidal neurons from chlorpromazine-treated animals in comparison with vehicle-treated animals. Similar changes in firing rate were observed on a neuronal model with controlled CaV 3 currents levels. CONCLUSIONS AND IMPLICATIONS Native hippocampal CaV 3 and recombinant CaV 3.2-3 are sensitive to D5 receptor constitutive activity. Manipulation of D5 receptor constitutive activity could be a valuable strategy to control neuronal excitability, especially in exacerbated conditions such as epilepsy.
Collapse
Affiliation(s)
- Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Clara Inés McCarthy
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Andrea Estefanía Portales
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Santiago Cordisco Gonzalez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Jesica Raingo
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| |
Collapse
|
15
|
Biochemical Neuroadaptations in the Rat Striatal Dopaminergic System after Prolonged Exposure to Methamphetamine Self-Administration. Int J Mol Sci 2022; 23:ijms231710092. [PMID: 36077488 PMCID: PMC9456063 DOI: 10.3390/ijms231710092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Perturbations in striatal dopamine (DA) homeostasis might underlie the behavioral and pathobiological consequences of METH use disorder in humans. To identify potential consequences of long-term METH exposure, we modeled the adverse consequence DSM criterion of substance use disorders by giving footshocks to rats that had escalated their intake of METH during a drug self-administration procedure. Next, DA D1 receptor antagonist, SCH23390 was injected. Thereafter, rats were euthanized to measure several indices of the striatal dopaminergic system. Footshocks split the METH rats into two phenotypes: (i) shock-sensitive that decreased their METH-intake and (ii) shock-resistant that continued their METH intake. SCH23390 caused substantial dose-dependent reduction of METH taking in both groups. Stopping SCH23390 caused re-emergence of compulsive METH taking in shock-resistant rats. Compulsive METH takers also exhibited greater incubation of METH seeking than non-compulsive rats during withdrawal from METH SA. Analyses of DA metabolism revealed non-significant decreases (about 35%) in DA levels in resistant and sensitive rats. However, striatal contents of the deaminated metabolites, DOPAL and DOPAC, were significantly increased in sensitive rats. VMAT2 and DAT protein levels were decreased in both phenotypes. Moreover, protein expression levels of the D1-like DA receptor, D5R, and D2-like DA receptors, D3R and D4R, were significantly decreased in the compulsive METH takers. Our results parallel findings in post-mortem striatal tissues of human METH users who develop Parkinsonism after long-term METH intake and support the use of this model to investigate potential therapeutic interventions for METH use disorder.
Collapse
|
16
|
Tsuneoka Y, Atsumi Y, Makanae A, Yashiro M, Funato H. Fluorescence quenching by high-power LEDs for highly sensitive fluorescence in situ hybridization. Front Mol Neurosci 2022; 15:976349. [PMID: 36117911 PMCID: PMC9479452 DOI: 10.3389/fnmol.2022.976349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Recent technical advances have made fluorescent in situ hybridization (ISH) a pivotal method to analyze neural tissue. In a highly sensitive ISH, it is important to reduce tissue autofluorescence. We developed a photobleaching device using a light-emitting diode (LED) illuminator to quench autofluorescence in neural tissue. This device was equipped with 12 high-power LEDs (30 W per single LED) and an evaporative cooling system, and these features achieved highly efficient bleaching of autofluorescence and minimized tissue damage. Even after 60 min of photobleaching with evaporative cooling, the temperature gain of the tissue slide was suppressed almost completely. The autofluorescence of lipofuscin-like granules completely disappeared after 60 min of photobleaching, as did other background autofluorescence observed in the mouse cortex and hippocampus. In combination with the recently developed fluorescent ISH method using the hybridization chain reaction (HCR), high signal/noise ratio imaging was achieved without reduction of ISH sensitivity to visualize rare mRNA at single copy resolution by quenching autofluorescence. Photobleaching by the LED illuminator was also effective in quenching the fluorescent staining of ISH-HCR. We performed multiround ISH by repeating the cycle of HCR staining, confocal imaging, and photobleaching. In addition to the two-round ISH, fluorescent immunohistochemistry or fluorescent Nissl staining was conducted on the same tissue. This LED illuminator provides a quick and simple way to reduce autofluorescence and quench fluorescent dyes for multiround ISH with minimum tissue degradation.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- *Correspondence: Yousuke Tsuneoka Hiromasa Funato
| | - Yusuke Atsumi
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- Center for Research and Product Development, Nepa Gene Co., Ltd., Chiba, Japan
| | - Aki Makanae
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- Center for Research and Product Development, Nepa Gene Co., Ltd., Chiba, Japan
| | - Mitsuru Yashiro
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- Center for Research and Product Development, Nepa Gene Co., Ltd., Chiba, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
- *Correspondence: Yousuke Tsuneoka Hiromasa Funato
| |
Collapse
|
17
|
Cai X, Liu H, Feng B, Yu M, He Y, Liu H, Liang C, Yang Y, Tu L, Zhang N, Wang L, Yin N, Han J, Yan Z, Wang C, Xu P, Wu Q, Tong Q, He Y, Xu Y. A D2 to D1 shift in dopaminergic inputs to midbrain 5-HT neurons causes anorexia in mice. Nat Neurosci 2022; 25:646-658. [PMID: 35501380 PMCID: PMC9926508 DOI: 10.1038/s41593-022-01062-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/24/2022] [Indexed: 12/18/2022]
Abstract
Midbrain dopamine (DA) and serotonin (5-HT) neurons regulate motivated behaviors, including feeding, but less is known about how these circuits may interact. In this study, we found that DA neurons in the mouse ventral tegmental area bidirectionally regulate the activity of 5-HT neurons in the dorsal raphe nucleus (DRN), with weaker stimulation causing DRD2-dependent inhibition and overeating, while stronger stimulation causing DRD1-dependent activation and anorexia. Furthermore, in the activity-based anorexia (ABA) paradigm, which is a mouse model mimicking some clinical features of human anorexia nervosa (AN), we observed a DRD2 to DRD1 shift of DA neurotransmission on 5-HTDRN neurons, which causes constant activation of these neurons and contributes to AN-like behaviors. Finally, we found that systemic administration of a DRD1 antagonist can prevent anorexia and weight loss in ABA. Our results revealed regulation of feeding behavior by stimulation strength-dependent interactions between DA and 5-HT neurons, which may contribute to the pathophysiology of AN.
Collapse
Affiliation(s)
- Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bing Feng
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chen Liang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Nan Zhang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lina Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zili Yan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Qi Wu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Saito N, Itakura M, Sasaoka T. D1 Receptor Mediated Dopaminergic Neurotransmission Facilitates Remote Memory of Contextual Fear Conditioning. Front Behav Neurosci 2022; 16:751053. [PMID: 35309682 PMCID: PMC8925912 DOI: 10.3389/fnbeh.2022.751053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurotransmission via dopamine D1 receptors (D1Rs) is considered to play an important role not only in reward-based learning but also in aversive learning. The contextual and auditory cued fear conditioning tests involve the processing of classical fear conditioning and evaluates aversive learning memory. It is possible to evaluate aversive learning memory in two different types of neural transmission circuits. In addition, when evaluating the role of dopaminergic neurotransmission via D1R, to avoid the effects in D1R-mediated neural circuitry alterations during development, it is important to examine using mice who D1R expression in the mature stage is suppressed. Herein, we investigated the role of dopaminergic neurotransmission via D1Rs in aversive memory formation in contextual and auditory cued fear conditioning tests using D1R knockdown (KD) mice, in which the expression of D1Rs could be conditionally and reversibly controlled with doxycycline (Dox) treatment. For aversive memory, we examined memory formation using recent memory 1 day after conditioning, and remote memory 4 weeks after conditioning. Furthermore, immunostaining of the brain tissues of D1RKD mice was performed after aversive footshock stimulation to investigate the distribution of activated c-Fos, an immediate-early gene, in the hippocampus (CA1, CA3, dentate gyrus), striatum, amygdala, and prefrontal cortex during aversive memory formation. After aversive footshock stimulation, immunoblotting was performed using hippocampal, striatal, and amygdalar samples from D1RKD mice to investigate the increase in the amount of c-Fos and phosphorylated SNAP-25 at Ser187 residue. When D1R expression was suppressed using Dox, behavioral experiments revealed impaired contextual fear learning in remote aversion memory following footshock stimulation. Furthermore, expression analysis showed a slight increase in the post-stimulation amount of c-Fos in the hippocampus and striatum, and a significant increase in the amount of phosphorylated SNAP-25 in the hippocampus, striatum, and prefrontal cortex before and after stimulation. These findings indicate that deficiency in D1R-mediated dopaminergic neurotransmission is an important factor in impairing contextual fear memory formation for remote memory.
Collapse
Affiliation(s)
- Nae Saito
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
- *Correspondence: Toshikuni Sasaoka,
| |
Collapse
|
19
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
20
|
He Z, Jiang Y, Gu S, Wu D, Qin D, Feng G, Ma X, Huang JH, Wang F. The Aversion Function of the Limbic Dopaminergic Neurons and Their Roles in Functional Neurological Disorders. Front Cell Dev Biol 2021; 9:713762. [PMID: 34616730 PMCID: PMC8488171 DOI: 10.3389/fcell.2021.713762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
The Freudian theory of conversion suggested that the major symptoms of functional neurological disorders (FNDs) are due to internal conflicts at motivation, especially at the sex drive or libido. FND patients might behave properly at rewarding situations, but they do not know how to behave at aversive situations. Sex drive is the major source of dopamine (DA) release in the limbic area; however, the neural mechanism involved in FND is not clear. Dopaminergic (DAergic) neurons have been shown to play a key role in processing motivation-related information. Recently, DAergic neurons are found to be involved in reward-related prediction error, as well as the prediction of aversive information. Therefore, it is suggested that DA might change the rewarding reactions to aversive reactions at internal conflicts of FND. So DAergic neurons in the limbic areas might induce two major motivational functions: reward and aversion at internal conflicts. This article reviewed the recent advances on studies about DAergic neurons involved in aversive stimulus processing at internal conflicts and summarizes several neural pathways, including four limbic system brain regions, which are involved in the processing of aversion. Then the article discussed the vital function of these neural circuits in addictive behavior, depression treatment, and FNDs. In all, this review provided a prospect for future research on the aversion function of limbic system DA neurons and the therapy of FNDs.
Collapse
Affiliation(s)
- Zhengming He
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Dandan Wu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Duo Qin
- School of Foreign Languages, China University of Geosciences, Wuhan, China
| | - Guangkui Feng
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianjun Ma
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jason H Huang
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Jeon Y, Lim Y, Yeom J, Kim EK. Comparative metabolic profiling of posterior parietal cortex, amygdala, and hippocampus in conditioned fear memory. Mol Brain 2021; 14:153. [PMID: 34615530 PMCID: PMC8493686 DOI: 10.1186/s13041-021-00863-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
Fear conditioning and retrieval are suitable models to investigate the biological basis of various mental disorders. Hippocampus and amygdala neurons consolidate conditioned stimulus (CS)-dependent fear memory. Posterior parietal cortex is considered important for the CS-dependent conditioning and retrieval of fear memory. Metabolomic screening among functionally related brain areas provides molecular signatures and biomarkers to improve the treatment of psychopathologies. Herein, we analyzed and compared changes of metabolites in the hippocampus, amygdala, and posterior parietal cortex under the fear retrieval condition. Metabolite profiles of posterior parietal cortex and amygdala were similarly changed after fear memory retrieval. While the retrieval of fear memory perturbed various metabolic pathways, most metabolic pathways that overlapped among the three brain regions had high ranks in the enrichment analysis of posterior parietal cortex. In posterior parietal cortex, the most perturbed pathways were pantothenate and CoA biosynthesis, purine metabolism, glutathione metabolism, and NAD+ dependent signaling. Metabolites of posterior parietal cortex including 4'-phosphopantetheine, xanthine, glutathione, ADP-ribose, ADP-ribose 2'-phosphate, and cyclic ADP-ribose were significantly regulated in these metabolic pathways. These results point to the importance of metabolites of posterior parietal cortex in conditioned fear memory retrieval and may provide potential biomarker candidates for traumatic memory-related mental disorders.
Collapse
Affiliation(s)
- Yoonjeong Jeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yun Lim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jiwoo Yeom
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
22
|
Midbrain dopaminergic innervation of the hippocampus is sufficient to modulate formation of aversive memories. Proc Natl Acad Sci U S A 2021; 118:2111069118. [PMID: 34580198 DOI: 10.1073/pnas.2111069118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Aversive memories are important for survival, and dopaminergic signaling in the hippocampus has been implicated in aversive learning. However, the source and mode of action of hippocampal dopamine remain controversial. Here, we utilize anterograde and retrograde viral tracing methods to label midbrain dopaminergic projections to the dorsal hippocampus. We identify a population of midbrain dopaminergic neurons near the border of the substantia nigra pars compacta and the lateral ventral tegmental area that sends direct projections to the dorsal hippocampus. Using optogenetic manipulations and mutant mice to control dopamine transmission in the hippocampus, we show that midbrain dopamine potently modulates aversive memory formation during encoding of contextual fear. Moreover, we demonstrate that dopaminergic transmission in the dorsal CA1 is required for the acquisition of contextual fear memories, and that this acquisition is sustained in the absence of catecholamine release from noradrenergic terminals. Our findings identify a cluster of midbrain dopamine neurons that innervate the hippocampus and show that the midbrain dopamine neuromodulation in the dorsal hippocampus is sufficient to maintain aversive memory formation.
Collapse
|
23
|
Maingret F, Groc L. Characterization of the Functional Cross-Talk between Surface GABA A and Dopamine D5 Receptors. Int J Mol Sci 2021; 22:4867. [PMID: 34064454 PMCID: PMC8125140 DOI: 10.3390/ijms22094867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/17/2023] Open
Abstract
The γ-aminobutyric acid type A receptor (GABAAR) plays a major role in fast inhibitory synaptic transmission and is highly regulated by the neuromodulator dopamine. In this aspect, most of the attention has been focused on the classical intracellular signaling cascades following dopamine G-protein-coupled receptor activation. Interestingly, the GABAAR and dopamine D5 receptor (D5R) have been shown to physically interact in the hippocampus, but whether a functional cross-talk occurs is still debated. In the present study, we use a combination of imaging and single nanoparticle tracking in live hippocampal neurons to provide evidence that GABAARs and D5Rs form dynamic surface clusters. Disrupting the GABAAR-D5R interaction with a competing peptide leads to an increase in the diffusion coefficient and the explored area of both receptors, and a drop in immobile synaptic GABAARs. By means of patch-clamp recordings, we show that this fast lateral redistribution of surface GABAARs correlates with a robust depression in the evoked GABAergic currents. Strikingly, it also shifts in time the expression of long-term potentiation at glutamatergic synapses. Together, our data both set the plasma membrane as the primary stage of a functional interplay between GABAAR and D5R, and uncover a non-canonical role in regulating synaptic transmission.
Collapse
Affiliation(s)
- François Maingret
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, 33076 Bordeaux, France;
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, 33076 Bordeaux, France;
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| |
Collapse
|
24
|
Han Y, Xia G, He Y, He Y, Farias M, Xu Y, Wu Q. A hindbrain dopaminergic neural circuit prevents weight gain by reinforcing food satiation. SCIENCE ADVANCES 2021; 7:eabf8719. [PMID: 34039606 DOI: 10.1126/sciadv.abf8719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The neural circuitry mechanism that underlies dopaminergic (DA) control of innate feeding behavior is largely uncharacterized. Here, we identified a subpopulation of DA neurons situated in the caudal ventral tegmental area (cVTA) directly innervating DRD1-expressing neurons within the lateral parabrachial nucleus (LPBN). This neural circuit potently suppresses food intake via enhanced satiation response. Notably, this cohort of DAcVTA neurons is activated immediately before the cessation of each feeding bout. Acute inhibition of these DA neurons before bout termination substantially suppresses satiety and prolongs the consummatory feeding. Activation of postsynaptic DRD1LPBN neurons inhibits feeding, whereas genetic deletion of Drd1 within the LPBN causes robust increase in food intake and subsequent weight gain. Furthermore, the DRD1LPBN signaling manifests the central mechanism in methylphenidate-induced hypophagia. In conclusion, our study illuminates a hindbrain DAergic circuit that controls feeding through dynamic regulation in satiety response and meal structure.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Guobin Xia
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yanlin He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Monica Farias
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qi Wu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
25
|
Neuronal ensembles in memory processes. Semin Cell Dev Biol 2021; 125:136-143. [PMID: 33858772 DOI: 10.1016/j.semcdb.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
A neuronal ensemble represents the concomitant activity of a specific group of neurons that could encompass a broad repertoire of brain functions such as motor, perceptual, memory or cognitive states. On the other hand, a memory engram portrays the physical manifestation of memory or the changes that enable learning and retrieval. Engram studies focused for many years on finding where memories are stored as in, which cells or brain regions represent a memory trace, and disregarded the investigation of how neuronal activity patterns give rise to such memories. Recent experiments suggest that the association and reactivation of specific neuronal groups could be the main mechanism underlying the brain's ability to remember past experiences and envision future actions. Thus, the growing consensus is that the interaction between neuronal ensembles could allow sequential activity patterns to become memories and recurrent memories to compose complex behaviors. The goal of this review is to propose how the neuronal ensemble framework could be translated and useful to understand memory processes.
Collapse
|
26
|
Pak TK, Carter CS, Zhang Q, Huang SC, Searby C, Hsu Y, Taugher RJ, Vogel T, Cychosz CC, Genova R, Moreira NN, Stevens H, Wemmie JA, Pieper AA, Wang K, Sheffield VC. A mouse model of Bardet-Biedl Syndrome has impaired fear memory, which is rescued by lithium treatment. PLoS Genet 2021; 17:e1009484. [PMID: 33886537 PMCID: PMC8061871 DOI: 10.1371/journal.pgen.1009484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/12/2021] [Indexed: 02/08/2023] Open
Abstract
Primary cilia are microtubule-based organelles present on most cells that regulate many physiological processes, ranging from maintaining energy homeostasis to renal function. However, the role of these structures in the regulation of behavior remains unknown. To study the role of cilia in behavior, we employ mouse models of the human ciliopathy, Bardet-Biedl Syndrome (BBS). Here, we demonstrate that BBS mice have significant impairments in context fear conditioning, a form of associative learning. Moreover, we show that postnatal deletion of BBS gene function, as well as congenital deletion, specifically in the forebrain, impairs context fear conditioning. Analyses indicated that these behavioral impairments are not the result of impaired hippocampal long-term potentiation. However, our results indicate that these behavioral impairments are the result of impaired hippocampal neurogenesis. Two-week treatment with lithium chloride partially restores the proliferation of hippocampal neurons which leads to a rescue of context fear conditioning. Overall, our results identify a novel role of cilia genes in hippocampal neurogenesis and long-term context fear conditioning.
Collapse
Affiliation(s)
- Thomas K. Pak
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Neuroscience Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Calvin S. Carter
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Qihong Zhang
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sunny C. Huang
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles Searby
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ying Hsu
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Rebecca J. Taugher
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Tim Vogel
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher C. Cychosz
- Department of Orthopedics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Rachel Genova
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Nina N. Moreira
- Department of Obstetrics and Gynecology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hanna Stevens
- Neuroscience Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - John A. Wemmie
- Neuroscience Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, Ohio, United States of America
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, United States of America
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Neuroscience Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
27
|
Assali DR, Sidikpramana M, Villa AP, Falkenstein J, Steele AD. Type 1 dopamine receptor (D1R)-independent circadian food anticipatory activity in mice. PLoS One 2021; 16:e0242897. [PMID: 33556069 PMCID: PMC7869994 DOI: 10.1371/journal.pone.0242897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 01/11/2023] Open
Abstract
Circadian rhythms are entrained by light and influenced by non-photic stimuli, such as feeding. The activity preceding scheduled mealtimes, food anticipatory activity (FAA), is elicited in rodents fed a limited amount at scheduled times. FAA is thought to be the output of an unidentified food entrained oscillator. Previous studies, using gene deletion and receptor pharmacology, implicated dopamine type receptor 1 (D1R) signaling in the dorsal striatum as necessary for FAA in mice. To further understand the role of D1R in promoting FAA, we utilized the Cre-lox system to create cell type-specific deletions of D1R, conditionally deleting D1R in GABA neurons using Vgat-ires-Cre line. This conditional deletion mutant had attenuated FAA, but the amount was higher than expected based on prior results using a constitutive knockout of D1R, D1R KODrago. This result prompted us to re-test the original D1R KODrago line, which expressed less FAA than controls, but only moderately so. To determine if genetic drift had diminished the effect of D1R deletion on FAA, we re-established the D1R KODrago knockout line from cryopreserved samples. The reestablished D1R KODrago-cryo had a clear impairment of FAA compared to controls, but still developed increased activity preceding mealtime across the 4 weeks of timed feeding. Finally, we tested a different deletion allele of D1R created by the Knockout Mouse Project. This line of D1R KOKOMP mice had a significant impairment in the acquisition of FAA, but eventually reached similar levels of premeal activity compared to controls after 4 weeks of timed feeding. Taken together, our results suggest that D1R signaling promotes FAA, but other dopamine receptors likely contribute to FAA given that mice lacking the D1 receptor still retain some FAA.
Collapse
Affiliation(s)
- Dina R. Assali
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Michael Sidikpramana
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Andrew P. Villa
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Jeffrey Falkenstein
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Andrew D. Steele
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
- * E-mail:
| |
Collapse
|
28
|
Fredes F, Silva MA, Koppensteiner P, Kobayashi K, Joesch M, Shigemoto R. Ventro-dorsal Hippocampal Pathway Gates Novelty-Induced Contextual Memory Formation. Curr Biol 2021; 31:25-38.e5. [PMID: 33065009 PMCID: PMC7808756 DOI: 10.1016/j.cub.2020.09.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023]
Abstract
Novelty facilitates memory formation and is detected by both the dorsal and ventral hippocampus. Although dentate granule cells (GCs) in the dorsal hippocampus are known to mediate the formation of novelty-induced contextual memories, the required pathways and mechanisms remain unclear. Here we demonstrate that a powerful excitatory pathway from mossy cells (MCs) in the ventral hippocampus to dorsal GCs is necessary and sufficient for driving dorsal GC activation in novel environment exploration. In vivo Ca2+ imaging in freely moving mice indicated that this pathway relays environmental novelty. Furthermore, manipulation of ventral MC activity bidirectionally regulates novelty-induced contextual memory acquisition. Our results show that ventral MC activity gates contextual memory formation through an intra-hippocampal interaction activated by environmental novelty.
Collapse
Affiliation(s)
- Felipe Fredes
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; Department of Biomedicine, Aarhus University, Ole Worms Alle 6, Building 1182, 8000 Aarhus C, Denmark.
| | - Maria Alejandra Silva
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Peter Koppensteiner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan
| | - Maximilian Joesch
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
29
|
Ågren R, Sahlholm K. Voltage-Dependent Dopamine Potency at D 1-Like Dopamine Receptors. Front Pharmacol 2020; 11:581151. [PMID: 33117177 PMCID: PMC7577048 DOI: 10.3389/fphar.2020.581151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 01/17/2023] Open
Abstract
In recent years, transmembrane voltage has been found to modify agonist potencies at several G protein-coupled receptors (GPCRs). Whereas the voltage sensitivities of the Gαi/o-coupled dopamine D2-like receptors (D2R, D3R, D4R) have previously been investigated, the putative impact of transmembrane voltage on agonist potency at the mainly Gαs/olf-coupled dopamine D1-like receptors (D1R, D5R) has hitherto not been reported. Here, we assayed the potency of dopamine in activating G protein-coupled inward rectifier potassium (GIRK) channels co-expressed with D1R and D5R in Xenopus oocytes, at -80 mV and at 0 mV. Furthermore, GIRK response deactivation rates upon dopamine washout were measured to estimate dopamine dissociation rate (koff) constants. Depolarization from -80 to 0 mV was found to reduce dopamine potency by about 7-fold at both D1R and D5R. This potency reduction was accompanied by an increase in estimated dopamine koffs at both receptors. While the GIRK response elicited via D1R was insensitive to pertussis toxin (PTX), the response evoked via D5R was reduced by 64% (-80 mV) and 71% (0 mV) in the presence of PTX. Injection of oocytes with Gαs antisense oligonucleotide inhibited the D1R-mediated response by 62% (-80 mV) and 76% (0 mV) and abolished the D5R response when combined with PTX. Our results suggest that depolarization decreases dopamine affinity at D1R and D5R. The voltage-dependent affinities of dopamine at D1R and D5R may be relevant to the functions of these receptors in learning and memory.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Preto AJ, Barreto CAV, Baptista SJ, Almeida JGD, Lemos A, Melo A, Cordeiro MNDS, Kurkcuoglu Z, Melo R, Moreira IS. Understanding the Binding Specificity of G-Protein Coupled Receptors toward G-Proteins and Arrestins: Application to the Dopamine Receptor Family. J Chem Inf Model 2020; 60:3969-3984. [PMID: 32692555 DOI: 10.1021/acs.jcim.0c00371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-Protein coupled receptors (GPCRs) are involved in a myriad of pathways key for human physiology through the formation of complexes with intracellular partners such as G-proteins and arrestins (Arrs). However, the structural and dynamical determinants of these complexes are still largely unknown. Herein, we developed a computational big-data pipeline that enables the structural characterization of GPCR complexes with no available structure. This pipeline was used to study a well-known group of catecholamine receptors, the human dopamine receptor (DXR) family and its complexes, producing novel insights into the physiological properties of these important drug targets. A detailed description of the protein interfaces of all members of the DXR family (D1R, D2R, D3R, D4R, and D5R) and the corresponding protein interfaces of their binding partners (Arrs: Arr2 and Arr3; G-proteins: Gi1, Gi2, Gi3, Go, Gob, Gq, Gslo, Gssh, Gt2, and Gz) was generated. To produce reliable structures of the DXR family in complex with either G-proteins or Arrs, we performed homology modeling using as templates the structures of the β2-adrenergic receptor (β2AR) bound to Gs, the rhodopsin bound to Gi, and the recently acquired neurotensin receptor-1 (NTSR1) and muscarinic 2 receptor (M2R) bound to arrestin (Arr). Among others, the work demonstrated that the three partner groups, Arrs and Gs- and Gi-proteins, are all structurally and dynamically distinct. Additionally, it was revealed the involvement of different structural motifs in G-protein selective coupling between D1- and D2-like receptors. Having constructed and analyzed 50 models involving DXR, this work represents an unprecedented large-scale analysis of GPCR-intracellular partner interface determinants. All data is available at www.moreiralab.com/resources/dxr.
Collapse
Affiliation(s)
- A J Preto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II
- Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Carlos A V Barreto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II
- Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Salete J Baptista
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139,7, 2695-066 Bobadela, Portugal
| | - José Guilherme de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,European Bioinformatics Institute EMBL-EBI, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Agostinho Lemos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège, Bâtiment B30, Allée du 6 Août, 8, 4000 Liège, Belgium
| | - André Melo
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - M Nátalia D S Cordeiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Zeynep Kurkcuoglu
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rita Melo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139,7, 2695-066 Bobadela, Portugal
| | - Irina S Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Pólo I, 1st floor, 3004-504 Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Colégio de S. Bento, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
31
|
Lei G, Liu F, Liu P, Jiao T, Yang L, Chu Z, Deng LS, Li Y, Dang YH. Does genetic mouse model of constitutive Hint1 deficiency exhibit schizophrenia-like behaviors? Schizophr Res 2020; 222:304-318. [PMID: 32439293 DOI: 10.1016/j.schres.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
Abstract
The histidine triad nucleotide binding protein 1 (HINT1) is closely related to many neuropsychiatric disorders. Clinical studies supported that mutations in the Hint1 gene correlated potentially with schizophrenia. In addition, Hint1 gene knockout (KO) mice exhibited hyperactivity induced by amphetamine and apomorphine. However, it is still unclear whether this animal model exhibits schizophrenia-like behaviors and, if so, their underlying mechanisms remain to be elucidated. Thus, our study sought to evaluate schizophrenia-like behaviors in Hint1-KO mice, and explore the associated changes in neuronal structural plasticity and schizophrenia-related molecules. A series of behavioral tests were used to compare Hint1-KO and their wild-type (WT) littermates, alongside a number of morphological and molecular biological methods. Relative to WT mice, Hint1-KO mice exhibited reduced social interaction behaviors, aggressive behavior, sensorimotor gating deficits, apathetic and self-neglect behaviors, and increased MK-801-induced hyperactivity. Hint1-KO mice also showed partly increased dendritic complexity in the hippocampus (Hip) relative to WT mice. Total glutamate was decreased in the medial prefrontal cortex, nucleus accumbens (NAc), and Hip of KO mice. Expression of NR1, NR2A, and D4R was decreased whereas that of D1R was increased in the NAc of KO relative to WT mice. The expression level of NR2B was increased whereas that of D1R was decreased in the Hip of KO mice. Hint1-KO mice exhibited schizophrenia-like behaviors. Partly increased dendritic complexity and dysfunction in both the dopaminergic and glutamatergic systems may be involved in the abnormalities in Hint1-KO mice.
Collapse
Affiliation(s)
- Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Fei Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Tong Jiao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Liu Yang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zheng Chu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Li-Sha Deng
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
32
|
Papalini S, Beckers T, Vervliet B. Dopamine: from prediction error to psychotherapy. Transl Psychiatry 2020; 10:164. [PMID: 32451377 PMCID: PMC7248121 DOI: 10.1038/s41398-020-0814-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Dopamine, one of the main neurotransmitters in the mammalian brain, has been implicated in the coding of prediction errors that govern reward learning as well as fear extinction learning. Psychotherapy too can be viewed as a form of error-based learning, because it challenges erroneous beliefs and behavioral patterns in order to induce long-term changes in emotions, cognitions, and behaviors. Exposure therapy, for example, relies in part on fear extinction principles to violate erroneous expectancies of danger and induce novel safety learning that inhibits and therefore reduces fear in the long term. As most forms of psychotherapy, however, exposure therapy suffers from non-response, dropout, and relapse. This narrative review focuses on the role of midbrain and prefrontal dopamine in novel safety learning and investigates possible pathways through which dopamine-based interventions could be used as an adjunct to improve both the response and the long-term effects of the therapy. Convincing evidence exists for an involvement of the midbrain dopamine system in the acquisition of new, safe memories. Additionally, prefrontal dopamine is emerging as a key ingredient for the consolidation of fear extinction. We propose that applying a dopamine prediction error perspective to psychotherapy can inspire both pharmacological and non-pharmacological studies aimed at discovering innovative ways to enhance the acquisition of safety memories. Additionally, we call for further empirical investigations on dopamine-oriented drugs that might be able to maximize consolidation of successful fear extinction and its long-term retention after therapy, and we propose to also include investigations on non-pharmacological interventions with putative prefrontal dopaminergic effects, like working memory training.
Collapse
Affiliation(s)
- Silvia Papalini
- Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium. .,Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Centre for the Psychology of Learning and Experimental Psychopathology (CLEP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- grid.5596.f0000 0001 0668 7884Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Stubbendorff C, Stevenson CW. Dopamine regulation of contextual fear and associated neural circuit function. Eur J Neurosci 2020; 54:6933-6947. [DOI: 10.1111/ejn.14772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
|
34
|
Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh YS, Jang JH, Shin CH, Ohnishi YN, Hanada Y, Miyakawa T, Kim Y, Greengard P, Nishi A. Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Mol Psychiatry 2020; 25:1229-1244. [PMID: 30531938 PMCID: PMC7244404 DOI: 10.1038/s41380-018-0316-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
Depression is a leading cause of disability. Current pharmacological treatment of depression is insufficient, and development of improved treatments especially for treatment-resistant depression is desired. Understanding the neurobiology of antidepressant actions may lead to development of improved therapeutic approaches. Here, we demonstrate that dopamine D1 receptors in the dentate gyrus act as a pivotal mediator of antidepressant actions in mice. Chronic administration of a selective serotonin reuptake inhibitor (SSRI), fluoxetine, increases D1 receptor expression in mature granule cells in the dentate gyrus. The increased D1 receptor signaling, in turn, contributes to the actions of chronic fluoxetine treatment, such as suppression of acute stress-evoked serotonin release, stimulation of adult neurogenesis and behavioral improvement. Importantly, under severely stressed conditions, chronic administration of a D1 receptor agonist in conjunction with fluoxetine restores the efficacy of fluoxetine actions on D1 receptor expression and behavioral responses. Thus, our results suggest that stimulation of D1 receptors in the dentate gyrus is a potential adjunctive approach to improve therapeutic efficacy of SSRI antidepressants.
Collapse
Affiliation(s)
- Takahide Shuto
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Mahomi Kuroiwa
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Naoki Sotogaku
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yukie Kawahara
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yong-Seok Oh
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA ,0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jin-Hyeok Jang
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Chang-Hoon Shin
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoshinori N. Ohnishi
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yuuki Hanada
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- 0000 0004 1761 798Xgrid.256115.4Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Yong Kim
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan. .,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
35
|
Umschweif G, Greengard P, Sagi Y. The dentate gyrus in depression. Eur J Neurosci 2019; 53:39-64. [DOI: 10.1111/ejn.14640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Gali Umschweif
- Laboratory for Molecular and Cellular Neuroscience Rockefeller University New York NY USA
| | - Paul Greengard
- Laboratory for Molecular and Cellular Neuroscience Rockefeller University New York NY USA
| | - Yotam Sagi
- Laboratory for Molecular and Cellular Neuroscience Rockefeller University New York NY USA
| |
Collapse
|
36
|
Bocarsly ME, da Silva E Silva D, Kolb V, Luderman KD, Shashikiran S, Rubinstein M, Sibley DR, Dobbs LK, Alvarez VA. A Mechanism Linking Two Known Vulnerability Factors for Alcohol Abuse: Heightened Alcohol Stimulation and Low Striatal Dopamine D2 Receptors. Cell Rep 2019; 29:1147-1163.e5. [PMID: 31665630 PMCID: PMC6880649 DOI: 10.1016/j.celrep.2019.09.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/10/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Alcohol produces both stimulant and sedative effects in humans and rodents. In humans, alcohol abuse disorder is associated with a higher stimulant and lower sedative responses to alcohol. Here, we show that this association is conserved in mice and demonstrate a causal link with another liability factor: low expression of striatal dopamine D2 receptors (D2Rs). Using transgenic mouse lines, we find that the selective loss of D2Rs on striatal medium spiny neurons enhances sensitivity to ethanol stimulation and generates resilience to ethanol sedation. These mice also display higher preference and escalation of ethanol drinking, which continues despite adverse outcomes. We find that striatal D1R activation is required for ethanol stimulation and that this signaling is enhanced in mice with low striatal D2Rs. These data demonstrate a link between two vulnerability factors for alcohol abuse and offer evidence for a mechanism in which low striatal D2Rs trigger D1R hypersensitivity, ultimately leading to compulsive-like drinking.
Collapse
Affiliation(s)
- Miriam E Bocarsly
- Laboratory on the Neurobiology of Compulsive Behaviors, NIAAA, NIH, Bethesda, MD, USA; NIGMS, IRP, NIH, Bethesda, MD, USA
| | | | - Vanessa Kolb
- Laboratory on the Neurobiology of Compulsive Behaviors, NIAAA, NIH, Bethesda, MD, USA
| | | | - Sannidhi Shashikiran
- Laboratory on the Neurobiology of Compulsive Behaviors, NIAAA, NIH, Bethesda, MD, USA
| | - Marcelo Rubinstein
- INGEBI, CONICET, and FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - David R Sibley
- Molecular Neuropharmacology Section, NINDS, IRP, NIH, Bethesda, MD, USA
| | - Lauren K Dobbs
- Laboratory on the Neurobiology of Compulsive Behaviors, NIAAA, NIH, Bethesda, MD, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Veronica A Alvarez
- Laboratory on the Neurobiology of Compulsive Behaviors, NIAAA, NIH, Bethesda, MD, USA; Center on Compulsive Behaviors, IRP, NIH, Bethesda, MD, USA; NIDA, IRP, NIH, Bethesda, MD, USA.
| |
Collapse
|
37
|
Ayabe T, Ano Y, Ohya R, Kitaoka S, Furuyashiki T. The Lacto-Tetrapeptide Gly-Thr-Trp-Tyr, β-Lactolin, Improves Spatial Memory Functions via Dopamine Release and D1 Receptor Activation in the Hippocampus. Nutrients 2019; 11:nu11102469. [PMID: 31618902 PMCID: PMC6835598 DOI: 10.3390/nu11102469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 01/06/2023] Open
Abstract
Scope: Peptides containing tryptophan–tyrosine sequences, including the lacto-tetrapeptide glycine–threonine–tryptophan–tyrosine (GTWY) and β-lactolin, from β-lactoglobulin in whey enzymatic digestion, enhance hippocampus-dependent memory functions, which are blocked by the systemic administration of dopamine D1-like antagonist. In this study, we investigated the role of the hippocampal dopaminergic system in the memory-enhancing effect of β-lactolin. Methods and Results: The results of in vivo microdialysis revealed that oral administration of β-lactolin increased the extracellular concentration of dopamine in the hippocampus and enhanced both spatial working memory, as measured in the Y-maze test, and spatial reference memory, as measured in the novel object location test. These memory-enhancing effects of β-lactolin, but not the baseline memory functions, were impaired by the knockdown of the dopamine D1 receptor subtype in the hippocampus. β-Lactolin also enhanced object memory, as measured by the novel object recognition test. However, D1 knockdown in the hippocampus spared this memory function either with or without the administration of β-lactolin. Conclusions: The present results indicate that oral administration of β-lactolin increases dopamine release and D1 receptor signaling in the hippocampus, thereby enhancing spatial memory, but it may improve object memory via a separate mechanism.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Shiho Kitaoka
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- AMED-CREST, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- AMED-CREST, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
38
|
Xia QP, Cheng ZY, He L. The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol 2019; 76:105908. [PMID: 31622861 DOI: 10.1016/j.intimp.2019.105908] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 01/11/2023]
Abstract
Neuroinflammation is a general pathological feature of central nervous system (CNS) diseases, primarily caused by activation of astrocytes and microglia, as well as the infiltration of peripheral immune cells. Inhibition of neuroinflammation is an important strategy in the treatment of brain disorders. Dopamine (DA) receptor, a significant G protein-coupled receptor (GPCR), is classified into two families: D1-like (D1 and D5) and D2-like (D2, D3 and D4) receptor families, according to their downstream signaling pathways. Traditionally, DA receptor forms a wide variety of psychological activities and motor functions, such as voluntary movement, working memory and learning. Recently, the role of DA receptor in neuroinflammation has been investigated widely, mainly focusing on nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, renin-angiotensin system, αB-crystallin, as well as invading peripheral immune cells, including T cells, dendritic cells, macrophages and monocytes. This review briefly outlined the functions and signaling pathways of DA receptor subtypes as well as its role in inflammation-related glial cells, and subsequently summarized the mechanisms of DA receptors affecting neuroinflammation. Meaningfully, this article provided a theoretical basis for drug development targeting DA receptors in inflammation-related brain diseases.
Collapse
Affiliation(s)
- Qing-Peng Xia
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhao-Yan Cheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
39
|
Arroyo L, Valent D, Carreras R, Peña R, Sabrià J, Velarde A, Bassols A. Housing and road transport modify the brain neurotransmitter systems of pigs: Do pigs raised in different conditions cope differently with unknown environments? PLoS One 2019; 14:e0210406. [PMID: 30650149 PMCID: PMC6334955 DOI: 10.1371/journal.pone.0210406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/06/2018] [Indexed: 12/23/2022] Open
Abstract
How housing and transport conditions may affect welfare in porcine production is a leading topic in livestock research. This study investigated whether pigs present a different neurological response to management conditions and to ascertain whether pigs living partially outdoors cope differently with road transport-associated stress. Twenty-four female pigs were divided in two groups: one living indoors (ID, n = 12) and the other housed combining indoor conditions with 4 hours per day of outdoor pasture (OD, n = 12). After one month, one set of animals from each housing condition were driven in a truck to the slaughterhouse in low-stress conditions (5 min drive, no mixing groups, soft management, LS group, n = 12) or high-stress conditions (2 hours drive, mixing groups, harsh management, HS group, n = 12). At the slaughterhouse, blood was collected, and the prefrontal cortex (PFC) and the hippocampus (HC) dissected. OD pigs had lower serum haptoglobin and increased dopaminergic pathway (DA-system) in the PFC, suggesting that living outdoors increases their wellbeing. HS conditions increased serum creatine kinase (CK) and affected several brain pathways: activation of the noradrenergic (NA-system) and DA -system in the PFC and the activation of the DA-system and an increase in c-Fos as well as a decrease in brain-derived neurotrophic factor (BDNF) in the HC. The serotonergic system (5-HT-system) was mildly altered in both areas. There was an interaction between housing and transport in serum NA and the DA-system in the HC, indicating that living conditions affected the response to stress. Multivariate analysis was able to discriminate the four animal groups. In conclusion, this work indicates that housing conditions and road transport markedly modifies the neurophysiology of pigs, and suggests that animals raised partially outdoors respond differently to transport-associated stress than animals raised indoors, indicating that they cope differently with unknown environments.
Collapse
Affiliation(s)
- Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Carreras
- IRTA, Animal Welfare Subprogram, Veïnat de Sies, s/n, Monells, Spain
| | - Raquel Peña
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Josefa Sabrià
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Antonio Velarde
- IRTA, Animal Welfare Subprogram, Veïnat de Sies, s/n, Monells, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| |
Collapse
|
40
|
Asok A, Kandel ER, Rayman JB. The Neurobiology of Fear Generalization. Front Behav Neurosci 2019; 12:329. [PMID: 30697153 PMCID: PMC6340999 DOI: 10.3389/fnbeh.2018.00329] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The generalization of fear memories is an adaptive neurobiological process that promotes survival in complex and dynamic environments. When confronted with a potential threat, an animal must select an appropriate defensive response based on previous experiences that are not identical, weighing cues and contextual information that may predict safety or danger. Like other aspects of fear memory, generalization is mediated by the coordinated actions of prefrontal, hippocampal, amygdalar, and thalamic brain areas. In this review article, we describe the current understanding of the behavioral, neural, genetic, and biochemical mechanisms involved in the generalization of fear. Fear generalization is a hallmark of many anxiety and stress-related disorders, and its emergence, severity, and manifestation are sex-dependent. Therefore, to improve the dialog between human and animal studies as well as to accelerate the development of effective therapeutics, we emphasize the need to examine both sex differences and remote timescales in rodent models.
Collapse
Affiliation(s)
- Arun Asok
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Eric R. Kandel
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Howard Hughes Medical Institute (HHMI), Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
| | - Joseph B. Rayman
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
41
|
Hsu SPC, Wang DY, Min MY, Fu YS. Long-term challenge of methylphenidate changes the neuronal population and membrane property of dopaminergic neuron in rats. Neurochem Int 2019; 122:187-195. [DOI: 10.1016/j.neuint.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 01/08/2023]
|
42
|
Mishra A, Singh S, Tiwari V, Parul, Shukla S. Dopamine D1 receptor activation improves adult hippocampal neurogenesis and exerts anxiolytic and antidepressant-like effect via activation of Wnt/β-catenin pathways in rat model of Parkinson's disease. Neurochem Int 2018; 122:170-186. [PMID: 30500462 DOI: 10.1016/j.neuint.2018.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is primarily characterized by midbrain dopamine depletion. Dopamine acts through dopamine receptors (D1 to D5) to regulate locomotion, motivation, pleasure, attention, cognitive functions and formation of newborn neurons, all of which are likely to be impaired in PD. Reduced hippocampal neurogenesis associated with dopamine depletion has been demonstrated in patients with PD. However, the precise mechanism to regulate multiple steps of adult hippocampal neurogenesis by dopamine receptor(s) is still unknown. In this study, we tested whether pharmacological agonism and antagonism of dopamine D1 and D2 receptor regulate nonmotor symptoms, neural stem cell (NSC) proliferation and fate specification and explored the cellular mechanism(s) underlying dopamine receptor (D1 and D2) mediated adult hippocampal neurogenesis in rat model of PD-like phenotypes. We found that single unilateral intra-medial forebrain bundle administration of 6-hydroxydopamine (6-OHDA) reduced D1 receptor level in the hippocampus. Pharmacological agonism of D1 receptor exerts anxiolytic and antidepressant-like effects as well as enhanced NSC proliferation, long-term survival and neuronal differentiation by positively regulating Wnt/β-catenin signaling pathway in hippocampus in PD rats. shRNA lentivirus mediated knockdown of Axin-2, a negative regulator of Wnt/β-catenin signaling potentially attenuated D1 receptor antagonist induced anxiety and depression-like phenotypes and impairment in adult hippocampal neurogenesis in PD rats. Our results suggest that improved nonmotor symptoms and hippocampal neurogenesis in PD rats controlled by D1-like receptors that involve the activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India
| | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Parul
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
43
|
Strehl A, Galanis C, Radic T, Schwarzacher SW, Deller T, Vlachos A. Dopamine Modulates Homeostatic Excitatory Synaptic Plasticity of Immature Dentate Granule Cells in Entorhino-Hippocampal Slice Cultures. Front Mol Neurosci 2018; 11:303. [PMID: 30214394 PMCID: PMC6125303 DOI: 10.3389/fnmol.2018.00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/09/2018] [Indexed: 01/27/2023] Open
Abstract
Homeostatic plasticity mechanisms maintain neurons in a stable state. To what extent these mechanisms are relevant during the structural and functional maturation of neural tissue is poorly understood. To reveal developmental changes of a major homeostatic plasticity mechanism, i.e., homeostatic excitatory synaptic plasticity, we analyzed 1-week- and 4-week-old entorhino-hippocampal slice cultures and investigated the ability of immature and mature dentate granule cells (GCs) to express this form of plasticity. Our experiments demonstrate that immature GCs are capable of adjusting their excitatory synaptic strength in a compensatory manner at early postnatal stages, i.e., in 1-week-old preparations, as is the case for mature GCs. This ability of immature dentate GCs is absent in 4-week-old slice cultures. Further investigations into the signaling pathways reveal an important role of dopamine (DA), which prevents homeostatic synaptic up-scaling of immature GCs in young cultures, whereas it does not affect immature and mature GCs in 4-week-old preparations. Together, these results disclose the ability of immature GCs to express homeostatic synaptic plasticity during early postnatal development. They hint toward a novel role of dopaminergic signaling, which may gate activity-dependent changes of newly born neurons by blocking homeostasis.
Collapse
Affiliation(s)
- Andreas Strehl
- Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Frankfurt, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tijana Radic
- Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Thomas Deller
- Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Vlachos
- Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Frankfurt, Germany.,Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Mol Psychiatry 2018; 23:1717-1730. [PMID: 28924188 DOI: 10.1038/mp.2017.177] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/18/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Dopamine in prefrontal cortices is implicated in cognitive and emotional functions, and the dysfunction of prefrontal dopamine has been associated with cognitive and emotional deficits in mental illnesses. These findings have led to clinical trials of dopamine-targeting drugs and brain imaging of dopamine receptors in patients with mental illnesses. Rodent studies have suggested that dopaminergic pathway projecting to the medial prefrontal cortex (mPFC) suppresses stress susceptibility. Although various types of mPFC neurons express several dopamine receptor subtypes, previous studies neither isolated a role of dopamine receptor subtype nor identified the site of its action in mPFC. Using social defeat stress (SDS) in mice, here we identified a role of dopamine D1 receptor subtype in mPFC excitatory neurons in suppressing stress susceptibility. Repeated social defeat stress (R-SDS) reduces the expression of D1 receptor subtype in mPFC of mice susceptible to R-SDS. Knockdown of D1 receptor subtype in whole neuronal populations or excitatory neurons in mPFC facilitates the induction of social avoidance by SDS. Single social defeat stress (S-SDS) induces D1 receptor-mediated extracellular signal-regulated kinase phosphorylation and c-Fos expression in mPFC neurons. Whereas R-SDS reduces dendritic lengths of mPFC layer II/III pyramidal neurons, S-SDS increases arborization and spines of apical dendrites of these neurons in a D1 receptor-dependent manner. Collectively, our findings show that D1 receptor subtype and related signaling in mPFC excitatory neurons mediate acute stress-induced dendritic growth of these neurons and contribute to suppression of stress susceptibility. Therefore, we propose that D1 receptor-mediated dendritic growth in mPFC excitatory neurons suppresses stress susceptibility.
Collapse
|
45
|
Locus Coeruleus and Dopamine-Dependent Memory Consolidation. Neural Plast 2017; 2017:8602690. [PMID: 29123927 PMCID: PMC5662828 DOI: 10.1155/2017/8602690] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/06/2017] [Accepted: 06/18/2017] [Indexed: 12/12/2022] Open
Abstract
Most everyday memories including many episodic-like memories that we may form automatically in the hippocampus (HPC) are forgotten, while some of them are retained for a long time by a memory stabilization process, called initial memory consolidation. Specifically, the retention of everyday memory is enhanced, in humans and animals, when something novel happens shortly before or after the time of encoding. Converging evidence has indicated that dopamine (DA) signaling via D1/D5 receptors in HPC is required for persistence of synaptic plasticity and memory, thereby playing an important role in the novelty-associated memory enhancement. In this review paper, we aim to provide an overview of the key findings related to D1/D5 receptor-dependent persistence of synaptic plasticity and memory in HPC, especially focusing on the emerging evidence for a role of the locus coeruleus (LC) in DA-dependent memory consolidation. We then refer to candidate brain areas and circuits that might be responsible for detection and transmission of the environmental novelty signal and molecular and anatomical evidence for the LC-DA system. We also discuss molecular mechanisms that might mediate the environmental novelty-associated memory enhancement, including plasticity-related proteins that are involved in initial memory consolidation processes in HPC.
Collapse
|
46
|
Carr GV, Maltese F, Sibley DR, Weinberger DR, Papaleo F. The Dopamine D5 Receptor Is Involved in Working Memory. Front Pharmacol 2017; 8:666. [PMID: 29056909 PMCID: PMC5635435 DOI: 10.3389/fphar.2017.00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022] Open
Abstract
Pharmacological studies indicate that dopamine D1-like receptors (D1 and D5) are critically involved in cognitive function. However, the lack of pharmacological ligands selective for either the D1 or D5 receptors has made it difficult to determine the unique contributions of the D1-like family members. To circumvent these pharmacological limitations, we used D5 receptor homozygous (-/-) and heterozygous (+/-) knockout mice, to identify the specific role of this receptor in higher order cognitive functions. We identified a novel role for D5 receptors in the regulation of spatial working memory and temporal order memory function. The D5 mutant mice acquired a discrete paired-trial variable-delay T-maze task at normal rates. However, both [Formula: see text] and [Formula: see text] mice exhibited impaired performance compared to [Formula: see text] littermates when a higher burden on working memory faculties was imposed. In a temporal order object recognition task, [Formula: see text] exhibited significant memory deficits. No D5-dependent differences in locomotor functions and interest in exploring objects were evident. Molecular biomarkers of dopaminergic functions within the prefrontal cortex (PFC) revealed a selective gene-dose effect on Akt phosphorylation at Ser473 with increased levels in [Formula: see text] knockout mice. A trend toward reduced levels in CaMKKbeta brain-specific band (64 kDa) in [Formula: see text] compared to [Formula: see text] was also evident. These findings highlight a previously unidentified role for D5 receptors in working memory function and associated molecular signatures within the PFC.
Collapse
Affiliation(s)
- Gregory V Carr
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Federica Maltese
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Departments of Psychiatry and Behavioral Sciences, Neurology, and Neuroscience, The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Francesco Papaleo
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
47
|
Time-dependent role of prefrontal cortex and hippocampus on cognitive improvement by aripiprazole in olfactory bulbectomized mice. Eur Neuropsychopharmacol 2017; 27:1000-1010. [PMID: 28822602 DOI: 10.1016/j.euroneuro.2017.08.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 07/09/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
Abstract
Dopamine (DA) modulates cognitive functions in the prefrontal cortex (PFC) and hippocampus. Olfactory bulbectomy (OBX) in mice induces cognitive dysfunctions. Recently, we reported that aripiprazole (ARI) normalizes the behavioral hyper-responsivity to DA agonists in OBX mice. However, it remains unclear whether ARI affects OBX-induced cognitive dysfunctions. To address this question we evaluated ARI-treated and untreated OBX mice in a passive avoidance test. Then, we investigated the effects of ARI on cell proliferation in the hippocampal dentate gyrus by immunohistochemistry, and on c-fos levels in the PFC and hippocampus, as well as nerve growth factor (NGF) levels in the hippocampus by western blotting. On the 14th day after surgery OBX mice showed an alteration in passive avoidance and decreases in both cell proliferation and levels of p-ERK, p-CREB and NGF in the hippocampus. The cognitive dysfunctions in OBX mice improved 30min to 24h after the administration of ARI (0.01mg/kg). C-fos levels in the PFC but not in the hippocampus was increased 30min after the administration (early response). This early response was inhibited by the selective D1 receptor antagonist SCH23390. Cell proliferation and NGF levels in the hippocampus increased 24h after ARI administration (late response), and these effects were also inhibited by SCH23390. The MEK1/2 inhibitor U0126 prevented ARI from improving the behavioral impairment as well as enhancing NGF levels in OBX mice. These findings revealed the potential of ARI to improve cognitive dysfunctions via D1 receptors with the PFC and hippocampus being affected sequentially.
Collapse
|
48
|
Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nat Commun 2017; 8:15510. [PMID: 28580949 PMCID: PMC5465319 DOI: 10.1038/ncomms15510] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 04/04/2017] [Indexed: 01/02/2023] Open
Abstract
Efficient energy use has constrained the evolution of nervous systems. However, it is unresolved whether energy metabolism may resultantly regulate major brain functions. Our observation that Drosophila flies double their sucrose intake at an early stage of long-term memory formation initiated the investigation of how energy metabolism intervenes in this process. Cellular-resolution imaging of energy metabolism reveals a concurrent elevation of energy consumption in neurons of the mushroom body, the fly's major memory centre. Strikingly, upregulation of mushroom body energy flux is both necessary and sufficient to drive long-term memory formation. This effect is triggered by a specific pair of dopaminergic neurons afferent to the mushroom bodies, via the D5-like DAMB dopamine receptor. Hence, dopamine signalling mediates an energy switch in the mushroom body that controls long-term memory encoding. Our data thus point to an instructional role for energy flux in the execution of demanding higher brain functions. Energy consumption in the brain is thought to respond to changes in neuronal activity, without informational role. Here the authors show that increased energy flux in the mushroom body, driven by a pair of input dopaminergic neurons, is a command for the formation of long-term memory in Drosophila.
Collapse
|
49
|
Choi WS, Kim HW, Tronche F, Palmiter RD, Storm DR, Xia Z. Conditional deletion of Ndufs4 in dopaminergic neurons promotes Parkinson's disease-like non-motor symptoms without loss of dopamine neurons. Sci Rep 2017; 7:44989. [PMID: 28327638 PMCID: PMC5361188 DOI: 10.1038/srep44989] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
Reduction of mitochondrial complex I activity is one of the major hypotheses for dopaminergic neuron death in Parkinson’s disease. However, reduction of complex I activity in all cells or selectively in dopaminergic neurons via conditional deletion of the Ndufs4 gene, a subunit of the mitochondrial complex I, does not cause dopaminergic neuron death or motor impairment. Here, we investigated the effect of reduced complex I activity on non-motor symptoms associated with Parkinson’s disease using conditional knockout (cKO) mice in which Ndufs4 was selectively deleted in dopaminergic neurons (Ndufs4 cKO). This conditional deletion of Ndufs4, which reduces complex I activity in dopamine neurons, did not cause a significant loss of dopaminergic neurons in substantia nigra pars compacta (SNpc), and there was no loss of dopaminergic neurites in striatum or amygdala. However, Ndufs4 cKO mice had a reduced amount of dopamine in the brain compared to control mice. Furthermore, even though motor behavior were not affected, Ndufs4 cKO mice showed non-motor symptoms experienced by many Parkinson’s disease patients including impaired cognitive function and increased anxiety-like behavior. These data suggest that mitochondrial complex I dysfunction in dopaminergic neurons promotes non-motor symptoms of Parkinson’s disease and reduces dopamine content in the absence of dopamine neuron loss.
Collapse
Affiliation(s)
- Won-Seok Choi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.,School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Hyung-Wook Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.,College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - François Tronche
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_CR18, Neuroscience, Paris-Seine, F-75005, Paris
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Storm
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
50
|
Tekko T, Lakspere T, Allikalt A, End J, Kõlvart KR, Jagomäe T, Terasmaa A, Philips MA, Visnapuu T, Väärtnõu F, Gilbert SF, Rinken A, Vasar E, Lilleväli K. Wfs1 is expressed in dopaminoceptive regions of the amniote brain and modulates levels of D1-like receptors. PLoS One 2017; 12:e0172825. [PMID: 28267787 PMCID: PMC5436468 DOI: 10.1371/journal.pone.0172825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/10/2017] [Indexed: 11/27/2022] Open
Abstract
During amniote evolution, the construction of the forebrain has diverged across
different lineages, and accompanying the structural changes, functional
diversification of the homologous brain regions has occurred. This can be
assessed by studying the expression patterns of marker genes that are relevant
in particular functional circuits. In all vertebrates, the dopaminergic system
is responsible for the behavioral responses to environmental stimuli. Here we
show that the brain regions that receive dopaminergic input through dopamine
receptor D1 are relatively conserved, but with some important
variations between three evolutionarily distant vertebrate lines–house mouse
(Mus musculus), domestic chick (Gallus gallus
domesticus) / common quail (Coturnix coturnix) and
red-eared slider turtle (Trachemys scripta). Moreover, we find
that in almost all instances, those brain regions expressing D1-like dopamine
receptor genes also express Wfs1. Wfs1 has been studied
primarily in the pancreas, where it regulates the endoplasmic reticulum (ER)
stress response, cellular Ca2+ homeostasis, and insulin production
and secretion. Using radioligand binding assays in wild type and
Wfs1-/- mouse brains, we show that the number of
binding sites of D1-like dopamine receptors is increased in the hippocampus of
the mutant mice. We propose that the functional link between Wfs1 and D1-like
dopamine receptors is evolutionarily conserved and plays an important role in
adjusting behavioral reactions to environmental stimuli.
Collapse
Affiliation(s)
- Triin Tekko
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Triin Lakspere
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Anni Allikalt
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Jaanus End
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | | | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Anton Terasmaa
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Fred Väärtnõu
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
of America
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|