1
|
Yu F, Zhao X, Jiang T, Ouyang N, Li P, Yang W, Zhao Z. Enhancing Osteogenesis through Bio-Inspired Recombinant Coral Protein Galaxin by Targeting Mitochondrial Metabolism and ATP Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412867. [PMID: 40056046 PMCID: PMC12061279 DOI: 10.1002/advs.202412867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Indexed: 03/17/2025]
Abstract
Bio-inspired coral-derived scaffolds have been adopted for bone regeneration. However, these confront challenges such as the limited osteoinductive properties, environmental concerns, and ambiguous calcification mechanisms in coral proteins. In this study, the role of the recombinant coral protein galaxin in promoting osteogenesis is investigated. The observations reveal that recombinant galaxin regulates the mitochondrial metabolism in mouse pre-osteoblasts by interacting with the β subunit of ATP synthase. This ultimately promotes osteogenesis of pre-osteoblasts. Furthermore, galaxin is integrated with gelatin methacryloyl (GelMA) and assess the osteogenic potential of the resulting galaxin-GelMA composites in mouse mandibular defects. The observations emphasize the distinctive role of galaxin in regulating mitochondrial functionality and osteogenesis. Additionally, these provide prospective insights for further applications of bio-inspired recombinant coral proteins in regenerative medicine.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xing Zhao
- Department of NephrologyKidney Research InstituteWest China Hospital of Sichuan UniversityChengdu610041China
- Institute of Biomedical EngineeringCollege of MedicineSouthwest Jiaotong UniversityChengdu610031China
| | - Ting Jiang
- Department of Pediatric DentistryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Ningjuan Ouyang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Peilin Li
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Wei Yang
- College of Polymer Science and EngineeringMed‐X Center for MaterialsSichuan UniversityChengdu610065China
| | - Zhihe Zhao
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
2
|
Foster B, Hugosson F, Scucchia F, Enjolras C, Babonis LS, Hoaen W, Martindale MQ. A novel in vivo system to study coral biomineralization in the starlet sea anemone, Nematostella vectensis. iScience 2024; 27:109131. [PMID: 38384856 PMCID: PMC10879693 DOI: 10.1016/j.isci.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Coral conservation requires a mechanistic understanding of how environmental stresses disrupt biomineralization, but progress has been slow, primarily because corals are not easily amenable to laboratory research. Here, we highlight how the starlet sea anemone, Nematostella vectensis, can serve as a model to interrogate the cellular mechanisms of coral biomineralization. We have developed transgenic constructs using biomineralizing genes that can be injected into Nematostella zygotes and designed such that translated proteins may be purified for physicochemical characterization. Using fluorescent tags, we confirm the ectopic expression of the coral biomineralizing protein, SpCARP1, in Nematostella. We demonstrate via calcein staining that SpCARP1 concentrates calcium ions in Nematostella, likely initiating the formation of mineral precursors, consistent with its suspected role in corals. These results lay a fundamental groundwork for establishing Nematostella as an in vivo system to explore the evolutionary and cellular mechanisms of coral biomineralization, improve coral conservation efforts, and even develop novel biomaterials.
Collapse
Affiliation(s)
- Brent Foster
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Fredrik Hugosson
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Federica Scucchia
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Camille Enjolras
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
- Institute of Human Genetics, CNRS, Montpellier 34090, France
| | - Leslie S. Babonis
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - William Hoaen
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Mark Q. Martindale
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| |
Collapse
|
3
|
Tan CD, Hähner G, Fitzer S, Cole C, Finch AA, Hintz C, Hintz K, Allison N. The response of coral skeletal nano structure and hardness to ocean acidification conditions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230248. [PMID: 37538739 PMCID: PMC10394408 DOI: 10.1098/rsos.230248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Ocean acidification typically reduces coral calcification rates and can fundamentally alter skeletal morphology. We use atomic force microscopy (AFM) and microindentation to determine how seawater pCO2 affects skeletal structure and Vickers hardness in a Porites lutea coral. At 400 µatm, the skeletal fasciculi are composed of tightly packed bundles of acicular crystals composed of quadrilateral nanograins, approximately 80-300 nm in dimensions. We interpret high adhesion at the nanograin edges as an organic coating. At 750 µatm the crystals are less regular in width and orientation and composed of either smaller/more rounded nanograins than observed at 400 µatm or of larger areas with little variation in adhesion. Coral aragonite may form via ion-by-ion attachment to the existing skeleton or via conversion of amorphous calcium carbonate precursors. Changes in nanoparticle morphology could reflect variations in the sizes of nanoparticles produced by each crystallization pathway or in the contributions of each pathway to biomineralization. We observe no significant variation in Vickers hardness between skeletons cultured at different seawater pCO2. Either the nanograin size does not affect skeletal hardness or the effect is offset by other changes in the skeleton, e.g. increases in skeletal organic material as reported in previous studies.
Collapse
Affiliation(s)
- Chao Dun Tan
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Georg Hähner
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Susan Fitzer
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Catherine Cole
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Adrian A. Finch
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Chris Hintz
- Department of Marine and Environmental Sciences, Savannah State University, Savannah, GA USA
| | - Ken Hintz
- Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA
| | - Nicola Allison
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| |
Collapse
|
4
|
Fang Y, Lee S, Xu H, Farfan GA. Organic Controls over Biomineral Ca-Mg Carbonate Compositions and Morphologies. CRYSTAL GROWTH & DESIGN 2023; 23:4872-4882. [PMID: 37426546 PMCID: PMC10326858 DOI: 10.1021/acs.cgd.3c00102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Indexed: 07/11/2023]
Abstract
Calcium carbonate minerals, such as aragonite and calcite, are widespread in biomineral skeletons, shells, exoskeletons, and more. With rapidly increasing pCO2 levels linked to anthropogenic climate change, carbonate minerals face the threat of dissolution, especially in an acidifying ocean. Given the right conditions, Ca-Mg carbonates (especially disordered dolomite and dolomite) are alternative minerals for organisms to utilize, with the added benefit of being harder and more resistant to dissolution. Ca-Mg carbonate also holds greater potential for carbon sequestration due to both Ca and Mg cations being available to bond with the carbonate group (CO32-). However, Mg-bearing carbonates are relatively rare biominerals because the high kinetic energy barrier for the dehydration of the Mg2+-water complex severely restricts Mg incorporation in carbonates at Earth surface conditions. This work presents the first overview of the effects of the physiochemical properties of amino acids and chitins on the mineralogy, composition, and morphology of Ca-Mg carbonates in solutions and on solid surfaces. We discovered that acidic, negatively charged, hydrophilic amino acids (aspartic and glutamic) and chitins could induce the precipitation of high-magnesium calcite (HMC) and disordered dolomite in solution and on solid surfaces with these adsorbed biosubstrates via in vitro experiments. Thus, we expect that acidic amino acids and chitins are among the controlling factors in biomineralization used in different combinations to control the mineral phases, compositions, and morphologies of Ca-Mg carbonate biomineral crystals.
Collapse
Affiliation(s)
- Yihang Fang
- Department
of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Mineral Sciences, National Museum of
Natural History, Smithsonian Institution, Washington, District of Columbia 20560, United States
- Department
of Earth and Planetary Sciences, Washington
University in St. Louis, St. Louis, Missouri 63130, United States
| | - Seungyeol Lee
- USRA
Lunar and Planetary Institute, Houston, Texas 77058, United States
- ARES,
NASA Johnson Space Center, Houston, Texas 77058, United States
- Department
of Earth and Environmental Sciences, Chungbuk
National University, Cheongju 28644, Republic
of Korea
| | - Huifang Xu
- Department
of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gabriela A. Farfan
- Department
of Mineral Sciences, National Museum of
Natural History, Smithsonian Institution, Washington, District of Columbia 20560, United States
| |
Collapse
|
5
|
Different skeletal protein toolkits achieve similar structure and performance in the tropical coral Stylophora pistillata and the temperate Oculina patagonica. Sci Rep 2022; 12:16575. [PMID: 36195656 PMCID: PMC9532382 DOI: 10.1038/s41598-022-20744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
Stony corals (order: Scleractinia) differ in growth form and structure. While stony corals have gained the ability to form their aragonite skeleton once in their evolution, the suite of proteins involved in skeletogenesis is different for different coral species. This led to the conclusion that the organic portion of their skeleton can undergo rapid evolutionary changes by independently evolving new biomineralization-related proteins. Here, we used liquid chromatography-tandem mass spectrometry to sequence skeletogenic proteins extracted from the encrusting temperate coral Oculina patagonica. We compare it to the previously published skeletal proteome of the branching subtropical corals Stylophora pistillata as both are regarded as highly resilient to environmental changes. We further characterized the skeletal organic matrix (OM) composition of both taxa and tested their effects on the mineral formation using a series of overgrowth experiments on calcite seeds. We found that each species utilizes a different set of proteins containing different amino acid compositions and achieve a different morphology modification capacity on calcite overgrowth. Our results further support the hypothesis that the different coral taxa utilize a species-specific protein set comprised of independent gene co-option to construct their own unique organic matrix framework. While the protein set differs between species, the specific predicted roles of the whole set appear to underline similar functional roles. They include assisting in forming the extracellular matrix, nucleation of the mineral and cell signaling. Nevertheless, the different composition might be the reason for the varying organization of the mineral growth in the presence of a particular skeletal OM, ultimately forming their distinct morphologies.
Collapse
|
6
|
Brown KT, Mello-Athayde MA, Sampayo EM, Chai A, Dove S, Barott KL. Environmental memory gained from exposure to extreme pCO 2 variability promotes coral cellular acid-base homeostasis. Proc Biol Sci 2022; 289:20220941. [PMID: 36100023 PMCID: PMC9470260 DOI: 10.1098/rspb.2022.0941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.
Collapse
Affiliation(s)
- Kristen T Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matheus A Mello-Athayde
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aaron Chai
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sophie Dove
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Capasso L, Aranda M, Cui G, Pousse M, Tambutté S, Zoccola D. Investigating calcification-related candidates in a non-symbiotic scleractinian coral, Tubastraea spp. Sci Rep 2022; 12:13515. [PMID: 35933557 PMCID: PMC9357087 DOI: 10.1038/s41598-022-17022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
In hermatypic scleractinian corals, photosynthetic fixation of CO2 and the production of CaCO3 are intimately linked due to their symbiotic relationship with dinoflagellates of the Symbiodiniaceae family. This makes it difficult to study ion transport mechanisms involved in the different pathways. In contrast, most ahermatypic scleractinian corals do not share this symbiotic relationship and thus offer an advantage when studying the ion transport mechanisms involved in the calcification process. Despite this advantage, non-symbiotic scleractinian corals have been systematically neglected in calcification studies, resulting in a lack of data especially at the molecular level. Here, we combined a tissue micro-dissection technique and RNA-sequencing to identify calcification-related ion transporters, and other candidates, in the ahermatypic non-symbiotic scleractinian coral Tubastraea spp. Our results show that Tubastraea spp. possesses several calcification-related candidates previously identified in symbiotic scleractinian corals (such as SLC4-γ, AMT-1like, CARP, etc.). Furthermore, we identify and describe a role in scleractinian calcification for several ion transporter candidates (such as SLC13, -16, -23, etc.) identified for the first time in this study. Taken together, our results provide not only insights about the molecular mechanisms underlying non-symbiotic scleractinian calcification, but also valuable tools for the development of biotechnological solutions to better control the extreme invasiveness of corals belonging to this particular genus.
Collapse
Affiliation(s)
- Laura Capasso
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco
- Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Melanie Pousse
- Université Côte d'Azur, CNRS, Inserm, Institut for Research On Cancer and Aging, Nice (IRCAN), Medical School of Nice, Nice, France
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco.
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco.
| |
Collapse
|
8
|
Wolfram U, Peña Fernández M, McPhee S, Smith E, Beck RJ, Shephard JD, Ozel A, Erskine CS, Büscher J, Titschack J, Roberts JM, Hennige SJ. Multiscale mechanical consequences of ocean acidification for cold-water corals. Sci Rep 2022; 12:8052. [PMID: 35577824 PMCID: PMC9110400 DOI: 10.1038/s41598-022-11266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Ocean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45-67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.
Collapse
Affiliation(s)
- Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK.
| | - Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Ewan Smith
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Rainer J Beck
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Jonathan D Shephard
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Ali Ozel
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Craig S Erskine
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Janina Büscher
- Biological Oceanography Research Group, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jürgen Titschack
- Marum Center for Marine Sciences, University of Bremen, Bremen, Germany
- Marine Research Department, Senckenberg am Meer, Wilhelmshaven, Germany
| | - J Murray Roberts
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Sebastian J Hennige
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Artificial Intelligence as a Tool to Study the 3D Skeletal Architecture in Newly Settled Coral Recruits: Insights into the Effects of Ocean Acidification on Coral Biomineralization. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the formation of the coral skeleton has been a common subject uniting various marine and materials study fields. Two main regions dominate coral skeleton growth: Rapid Accretion Deposits (RADs) and Thickening Deposits (TDs). These have been extensively characterized at the 2D level, but their 3D characteristics are still poorly described. Here, we present an innovative approach to combine synchrotron phase contrast-enhanced microCT (PCE-CT) with artificial intelligence (AI) to explore the 3D architecture of RADs and TDs within the coral skeleton. As a reference study system, we used recruits of the stony coral Stylophora pistillata from the Red Sea, grown under both natural and simulated ocean acidification conditions. We thus studied the recruit’s skeleton under both regular and morphologically-altered acidic conditions. By imaging the corals with PCE-CT, we revealed the interwoven morphologies of RADs and TDs. Deep-learning neural networks were invoked to explore AI segmentation of these regions, to overcome limitations of common segmentation techniques. This analysis yielded highly-detailed 3D information about the RAD’s and TD’s architecture. Our results demonstrate how AI can be used as a powerful tool to obtain 3D data essential for studying coral biomineralization and for exploring the effects of environmental change on coral growth.
Collapse
|
10
|
Drake JL, Benayahu Y, Polishchuk I, Pokroy B, Pinkas I, Mass T. Sclerites of the soft coral Ovabunda macrospiculata (Xeniidae) are predominantly the metastable CaCO 3 polymorph vaterite. Acta Biomater 2021; 135:663-670. [PMID: 34492373 DOI: 10.1016/j.actbio.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
Soft corals (Cnidaria, Anthozoa, Octocorallia, Alcyonacea) produce internal sclerites of calcium carbonate previously shown to be composed of calcite, the most stable calcium carbonate polymorph. Here we apply multiple imaging and physical chemistry analyses to extracted and in-vivo sclerites of the abundant Red Sea soft coral, Ovabunda macrospiculata, to detail their mineralogy. We show that this species' sclerites are comprised predominantly of the less stable calcium carbonate polymorph vaterite (> 95%), with much smaller components of aragonite and calcite. Use of this mineral, which is typically considered to be metastable, by these soft corals has implications for how it is formed as well as how it will persist during the anticipated anthropogenic climate change in the coming decades. This first documentation of vaterite dominating the mineral composition of O. macrospiculata sclerites is likely just the beginning of establishing its presence in other soft corals. STATEMENT OF SIGNIFICANCE: Vaterite is typically considered to be a metastable polymorph of calcium carbonate. While calcium carbonate structures formed within the tissues of octocorals (phylum Cnidaria), have previously been reported to be composed of the more stable polymorphs aragonite and calcite, we observed that vaterite dominates the mineralogy of sclerites of Ovabunda macrospiculata from the Red Sea. Based on electron microscopy, Raman spectroscopy, and X-ray diffraction analysis, vaterite appears to be the dominant polymorph in sclerites both in the tissue and after extraction and preservation. Although this is the first documentation of vaterite in soft coral sclerites, it likely will be found in sclerites of other related taxa as well.
Collapse
|
11
|
Wang X, Zoccola D, Liew YJ, Tambutte E, Cui G, Allemand D, Tambutte S, Aranda M. The Evolution of Calcification in Reef-Building Corals. Mol Biol Evol 2021; 38:3543-3555. [PMID: 33871620 PMCID: PMC8382919 DOI: 10.1093/molbev/msab103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Corals build the structural foundation of coral reefs, one of the most diverse and productive ecosystems on our planet. Although the process of coral calcification that allows corals to build these immense structures has been extensively investigated, we still know little about the evolutionary processes that allowed the soft-bodied ancestor of corals to become the ecosystem builders they are today. Using a combination of phylogenomics, proteomics, and immunohistochemistry, we show that scleractinian corals likely acquired the ability to calcify sometime between ∼308 and ∼265 Ma through a combination of lineage-specific gene duplications and the co-option of existing genes to the calcification process. Our results suggest that coral calcification did not require extensive evolutionary changes, but rather few coral-specific gene duplications and a series of small, gradual optimizations of ancestral proteins and their co-option to the calcification process.
Collapse
Affiliation(s)
- Xin Wang
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Yi Jin Liew
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Eric Tambutte
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Guoxin Cui
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvie Tambutte
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Manuel Aranda
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| |
Collapse
|
12
|
Gránásy L, Rátkai L, Tóth GI, Gilbert PUPA, Zlotnikov I, Pusztai T. Phase-Field Modeling of Biomineralization in Mollusks and Corals: Microstructure vs Formation Mechanism. JACS AU 2021; 1:1014-1033. [PMID: 34337606 PMCID: PMC8317440 DOI: 10.1021/jacsau.1c00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 05/10/2023]
Abstract
While biological crystallization processes have been studied on the microscale extensively, there is a general lack of models addressing the mesoscale aspects of such phenomena. In this work, we investigate whether the phase-field theory developed in materials' science for describing complex polycrystalline structures on the mesoscale can be meaningfully adapted to model crystallization in biological systems. We demonstrate the abilities of the phase-field technique by modeling a range of microstructures observed in mollusk shells and coral skeletons, including granular, prismatic, sheet/columnar nacre, and sprinkled spherulitic structures. We also compare two possible micromechanisms of calcification: the classical route, via ion-by-ion addition from a fluid state, and a nonclassical route, crystallization of an amorphous precursor deposited at the solidification front. We show that with an appropriate choice of the model parameters, microstructures similar to those found in biomineralized systems can be obtained along both routes, though the time-scale of the nonclassical route appears to be more realistic. The resemblance of the simulated and natural biominerals suggests that, underneath the immense biological complexity observed in living organisms, the underlying design principles for biological structures may be understood with simple math and simulated by phase-field theory.
Collapse
Affiliation(s)
- László Gránásy
- Laboratory
of Advanced Structural Studies, Institute for Solid State Physics
and Optics, Wigner Research Centre for Physics, P.O. Box 49, H−1525 Budapest, Hungary
- Brunel
Centre of Advanced Solidification Technology, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.
| | - László Rátkai
- Laboratory
of Advanced Structural Studies, Institute for Solid State Physics
and Optics, Wigner Research Centre for Physics, P.O. Box 49, H−1525 Budapest, Hungary
| | - Gyula I. Tóth
- Department
of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Pupa U. P. A. Gilbert
- Departments
of Physics, Chemistry, Geoscience, Materials Science, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Lawrence
Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, United States
| | - Igor Zlotnikov
- B
CUBE−Center
for Molecular Bioengineering, Technische
Universität Dresden, 01307 Dresden, Germany
| | - Tamás Pusztai
- Laboratory
of Advanced Structural Studies, Institute for Solid State Physics
and Optics, Wigner Research Centre for Physics, P.O. Box 49, H−1525 Budapest, Hungary
| |
Collapse
|
13
|
Scucchia F, Malik A, Zaslansky P, Putnam HM, Mass T. Combined responses of primary coral polyps and their algal endosymbionts to decreasing seawater pH. Proc Biol Sci 2021; 288:20210328. [PMID: 34157872 PMCID: PMC8220278 DOI: 10.1098/rspb.2021.0328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
With coral reefs declining globally, resilience of these ecosystems hinges on successful coral recruitment. However, knowledge of the acclimatory and/or adaptive potential in response to environmental challenges such as ocean acidification (OA) in earliest life stages is limited. Our combination of physiological measurements, microscopy, computed tomography techniques and gene expression analysis allowed us to thoroughly elucidate the mechanisms underlying the response of early-life stages of corals, together with their algal partners, to the projected decline in oceanic pH. We observed extensive physiological, morphological and transcriptional changes in surviving recruits, and the transition to a less-skeleton/more-tissue phenotype. We found that decreased pH conditions stimulate photosynthesis and endosymbiont growth, and gene expression potentially linked to photosynthates translocation. Our unique holistic study discloses the previously unseen intricate net of interacting mechanisms that regulate the performance of these organisms in response to OA.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.,The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | - Assaf Malik
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Paul Zaslansky
- Department for Operative and Preventive Dentistry, Charité-Center for Dental and Craniofacial Sciences, Universitätsmedizin Berlin, Berlin 14197, Germany
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.,Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
| |
Collapse
|
14
|
Wong YH, Zhang Y, Lun JCY, Qiu JW. A proteomic analysis of skeletal tissue anomaly in the brain coral Platygyra carnosa. MARINE POLLUTION BULLETIN 2021; 164:111982. [PMID: 33517085 DOI: 10.1016/j.marpolbul.2021.111982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Coral skeletal growth anomaly (GA) is a common coral disease. It has been considered as a pathological condition comparable to abnormal tissue growth in mammals, but little is known about the molecular changes underlying coral GA. To investigate the molecular pathology of GA, we compared the proteome between normal and GA-affected tissues of the brain coral Platygyra carnosa using iTRAQ-labeling and LC-MS/MS, which quantified 818 proteins and identified 117 differentially expressed proteins (DEPs). GO analyses revealed DEPs that might be related to GA included "translational elongation", "proteasome core complex", "amine metabolic processes" and "lysosome". Several proteins implicated in calcification and fluorescence were differentially expressed at both protein and mRNA level. Protein-protein interaction network suggested possible involvement of TNF receptor signaling in GA. Overall, our results provided novel insights into the molecular pathology of coral GA, which will pave the way for determination of the causative agent(s) of this coral disease.
Collapse
Affiliation(s)
- Yue-Him Wong
- Institute for Advance Study, Shenzhen University, Shenzhen, China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Janice C Y Lun
- Agriculture, Fishery and Conservation Department, The Government of the Hong Kong Special Administrative Region, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
15
|
Mummadisetti MP, Drake JL, Falkowski PG. The spatial network of skeletal proteins in a stony coral. J R Soc Interface 2021; 18:20200859. [PMID: 33622149 PMCID: PMC8086859 DOI: 10.1098/rsif.2020.0859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coral skeletons are materials composed of inorganic aragonitic fibres and organic molecules including proteins, sugars and lipids that are highly organized to form a solid biomaterial upon which the animals live. The skeleton contains tens of proteins, all of which are encoded in the animal genome and secreted during the biomineralization process. While recent advances are revealing the functions and evolutionary history of some of these proteins, how they are spatially arranged in the skeleton is unknown. Using a combination of chemical cross-linking and high-resolution tandem mass spectrometry, we identify, for the first time, the spatial interactions of the proteins embedded within the skeleton of the stony coral Stylophora pistillata. Our subsequent network analysis revealed that several coral acid-rich proteins are invariably associated with carbonic anhydrase(s), alpha-collagen, cadherins and other calcium-binding proteins. These spatial arrangements clearly show that protein-protein interactions in coral skeletons are highly coordinated and are key to understanding the formation and persistence of coral skeletons through time.
Collapse
Affiliation(s)
- Manjula P Mummadisetti
- Environmental Biophysics and Molecular Biology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Jeana L Drake
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles E. Young Drive East, Los Angeles, CA 90095, USA.,Department of Marine Biology, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 2498838, Israel
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Biology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Rd, New Brunswick, NJ 08901, USA.,Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomater 2021; 120:263-276. [PMID: 31954936 DOI: 10.1016/j.actbio.2020.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022]
Abstract
Reef-building corals, the major producers of biogenic calcium carbonate, form skeletons in a plethora of morphological forms. Here we studied skeletal modifications of Stylophora pistillata (clade 4) colonies that adapt to increasing depths with decreasing ambient light. The coral show characteristic transitions from spherical morphologies (shallow depths, 5 m deep) to flat and branching geometries (mesophotic depths, 60 m deep). Such changes are typically ascribed to the algal photosymbiont physiological feedback with the coral that host them. We find specific fine-scale skeletal variability in accretion of structure at shallow- and mesophotic depth morphotypes that suggest underlying genomic regulation of biomineralization pathways of the coral host. To explain this, we conducted comparative morphology-based analyses, including optical and electron microscopy, tomography and X-ray diffraction analysis coupled with a comprehensive transcriptomic analysis of S. pistillata. The samples originated from Gulf of Eilat in the Red Sea collected along a depth gradient from shallow to mesophotic depths (5 to 60 m). Additional samples were experimentally transplanted from 5 m to 60 m and from 60 m to 5 m. Interestingly, both morphologically and functionally, transplanted corals partly adapt by exhibiting typical depth-specific properties. In mesophotic depths, we find that the organic matrix fraction is enriched in the coralla, well matching the overrepresentation of transcripts encoding biomineralization "tool-kit" structural extracellularproteins that was observed. These results provide insights into the molecular mechanisms of calcification and skeletal adaptation that repeatedly allowed this coral group to adapt to a range of environments presumably with a rich geological past. STATEMENT OF SIGNIFICANCE: Understanding the reef coral physiological plasticity under a rapidly changing climate is of crucial importance for the protection of coral reef ecosystems. Most of the reef corals operate near their upper limit of heat tolerance. A possible rescue for some coral species is migration to deeper, cooler mesophotic depths. However, gradually changing environmental parameters (especially light) along the depth gradient pose new adaptative stress on corals with largely unknown influences on the various biological molecular pathways. This work provides a first comprehensive analysis of changes in gene expression, including biomineralization "tool kit" genes, and reports the fine-scale microstructural and crystallographic skeletal details in S. pistillata collected in the Red Sea along a depth gradient spannign 5 to 60 m.
Collapse
|
17
|
Sun CY, Gránásy L, Stifler CA, Zaquin T, Chopdekar RV, Tamura N, Weaver JC, Zhang JAY, Goffredo S, Falini G, Marcus MA, Pusztai T, Schoeppler V, Mass T, Gilbert PUPA. Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations. Acta Biomater 2021; 120:277-292. [PMID: 32590171 PMCID: PMC7116570 DOI: 10.1016/j.actbio.2020.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 01/07/2023]
Abstract
Spherulites are radial distributions of acicular crystals, common in biogenic, geologic, and synthetic systems, yet exactly how spherulitic crystals nucleate and grow is still poorly understood. To investigate these processes in more detail, we chose scleractinian corals as a model system, because they are well known to form their skeletons from aragonite (CaCO3) spherulites, and because a comparative study of crystal structures across coral species has not been performed previously. We observed that all 12 diverse coral species analyzed here exhibit plumose spherulites in their skeletons, with well-defined centers of calcification (CoCs), and crystalline fibers radiating from them. In 7 of the 12 species, we observed a skeletal structural motif not observed previously: randomly oriented, equant crystals, which we termed "sprinkles". In Acropora pharaonis, these sprinkles are localized at the CoCs, while in 6 other species, sprinkles are either layered at the growth front (GF) of the spherulites, or randomly distributed. At the nano- and micro-scale, coral skeletons fill space as much as single crystals of aragonite. Based on these observations, we tentatively propose a spherulite formation mechanism in which growth front nucleation (GFN) of randomly oriented sprinkles, competition for space, and coarsening produce spherulites, rather than the previously assumed slightly misoriented nucleations termed "non-crystallographic branching". Phase-field simulations support this mechanism, and, using a minimal set of thermodynamic parameters, are able to reproduce all of the microstructural variation observed experimentally in all of the investigated coral skeletons. Beyond coral skeletons, other spherulitic systems, from aspirin to semicrystalline polymers and chocolate, may also form according to the mechanism for spherulite formation proposed here. STATEMENT OF SIGNIFICANCE: Understanding the fundamental mechanisms of spherulite nucleation and growth has broad ranging applications in the fields of metallurgy, polymers, food science, and pharmaceutical production. Using the skeletons of reef-building corals as a model system for investigating these processes, we propose a new spherulite growth mechanism that can not only explain the micro-structural diversity observed in distantly related coral species, but may point to a universal growth mechanism in a wide range of biologically and technologically relevant spherulitic materials systems.
Collapse
Affiliation(s)
- Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA; Materials Science Program, University of Wisconsin, Madison, WI 53706, USA
| | - László Gránásy
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, PO Box 49, 1525 Budapest, Hungary
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Tal Zaquin
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nobumichi Tamura
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jun A Y Zhang
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, I-40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Pesaro Urbino, Italy
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tamás Pusztai
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, PO Box 49, 1525 Budapest, Hungary
| | - Vanessa Schoeppler
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA; Departments of Chemistry, Geoscience, Materials Science, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
18
|
Drake JL, Whitelegge JP, Jacobs DK. First sequencing of ancient coral skeletal proteins. Sci Rep 2020; 10:19407. [PMID: 33173075 PMCID: PMC7655939 DOI: 10.1038/s41598-020-75846-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene fossil invertebrate, the stony coral Orbicella annularis. This fossil retains total hydrolysable amino acids of a roughly similar composition to extracts from modern O. annularis skeletons, with the amino acid data rich in Asx (Asp + Asn) and Glx (Glu + Gln) typical of invertebrate skeletal proteins. It also retains several proteins, including a highly acidic protein, also known from modern coral skeletal proteomes that we sequenced by LC-MS/MS over multiple trials in the best-preserved fossil coral specimen. A combination of degradation or amino acid racemization inhibition of trypsin digestion appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic molecules in fossil invertebrate biominerals provides an ancient record of composition, potentially clarifying evolutionary changes and biotic responses to paleoenvironments.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA.
- Department of Marine Biology, University of Haifa, Haifa, Israel.
| | | | - David K Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA.
| |
Collapse
|
19
|
Illumination enhances the protein abundance of sarcoplasmic reticulum Ca 2+-ATPases-like transporter in the ctenidium and whitish inner mantle of the giant clam, Tridacna squamosa, to augment exogenous Ca 2+ uptake and shell formation, respectively. Comp Biochem Physiol A Mol Integr Physiol 2020; 251:110811. [PMID: 33011226 DOI: 10.1016/j.cbpa.2020.110811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023]
Abstract
The fluted giant clam, Tridacna squamosa, can perform light-enhanced shell formation, aided by its symbiotic dinoflagellates (Symbiodinium, Cladocopium, Durusdinium), which are able to donate organic nutrients to the host. During light-enhanced shell formation, increased Ca2+ transport from the hemolymph through the shell-facing epithelium of the inner mantle to the extrapallial fluid, where calcification occurs, is necessary. Additionally, there must be increased absorption of exogenous Ca2+ from the surrounding seawater, across the epithelial cells of the ctenidium (gill) into the hemolymph, to supply sufficient Ca2+ for light-enhanced shell formation. When Ca2+ moves across these epithelial cells, the low intracellular Ca2+ concentration must be maintained. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) regulates the intracellular Ca2+ concentration by pumping Ca2+ into the sarcoplasmic/endoplasmic reticulum (SR/ER) and Golgi apparatus. Indeed, the ctenidium and inner mantle of T. squamosa, expressed a homolog of SERCA (SERCA-like transporter) that consists of 3009 bp, encoding 1002 amino acids of 110.6 kDa. SERCA-like-immunolabeling was non-uniform in the cytoplasm of epithelial cells of ctenidial filaments, and that of the shell-facing epithelial cells of the inner mantle. Importantly, the protein abundance of SERCA-like increased significantly in the ctenidium and the inner mantle of T. squamosa after 12 h and 6 h, respectively, of light exposure. This would increase the capacity of pumping Ca2+ into the endoplasmic reticulum and avert a possible surge in the cytosolic Ca2+ concentration in epithelial cells of the ctenidial filaments during light-enhanced Ca2+ absorption, and in cells of the shell-facing epithelium of the inner mantle during light-enhanced shell formation.
Collapse
|
20
|
The role of aspartic acid in reducing coral calcification under ocean acidification conditions. Sci Rep 2020; 10:12797. [PMID: 32733044 PMCID: PMC7393068 DOI: 10.1038/s41598-020-69556-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Biomolecules play key roles in regulating the precipitation of CaCO3 biominerals but their response to ocean acidification is poorly understood. We analysed the skeletal intracrystalline amino acids of massive, tropical Porites spp. corals cultured over different seawater pCO2. We find that concentrations of total amino acids, aspartic acid/asparagine (Asx), glutamic acid/glutamine and alanine are positively correlated with seawater pCO2 and inversely correlated with seawater pH. Almost all variance in calcification rates between corals can be explained by changes in the skeletal total amino acid, Asx, serine and alanine concentrations combined with the calcification media pH (a likely indicator of the dissolved inorganic carbon available to support calcification). We show that aspartic acid inhibits aragonite precipitation from seawater in vitro, at the pH, saturation state and approximate aspartic acid concentrations inferred to occur at the coral calcification site. Reducing seawater saturation state and increasing [aspartic acid], as occurs in some corals at high pCO2, both serve to increase the degree of inhibition, indicating that biomolecules may contribute to reduced coral calcification rates under ocean acidification.
Collapse
|
21
|
Jiang W, Griffanti G, Tamimi F, McKee MD, Nazhat SN. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J Struct Biol 2020; 212:107592. [PMID: 32736073 DOI: 10.1016/j.jsb.2020.107592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023]
Abstract
The mineralized extracellular matrix of bone is an organic-inorganic nanocomposite consisting primarily of carbonated hydroxyapatite, fibrous type I collagen, noncollagenous proteins, proteoglycans, and diverse biomolecules such as pyrophosphate and citrate. While much is now known about the mineralization-regulating role of pyrophosphate, less is known about the function of citrate. In order to assess the effect of negatively charged citrate on collagen mineralization, citrate-functionalized, bone osteoid-mimicking dense collagen gels were exposed to simulated body fluid for up to 7 days to examine the multiscale evolution of intra- and interfibrillar collagen mineralization. Here, we show by increases in methylene blue staining that the net negative charge of collagen can be substantially augmented through citrate functionalization. Structural and compositional analyses by transmission and scanning electron microscopy (including X-ray microanalysis and electron diffraction), and atomic force microscopy, all demonstrated that citrate-functionalized collagen fibrils underwent extensive intrafibrillar mineralization within 12 h in simulated body fluid. Time-resolved, high-resolution transmission electron microscopy confirmed the temporal evolution of intrafibrillar mineralization of single collagen fibrils. Longer exposure to simulated body fluid resulted in additional interfibrillar mineralization, all through an amorphous-to-crystalline transformation towards apatite (assessed by X-ray diffraction and attenuated total reflection-Fourier-transform infrared spectroscopy). Calcium deposition assays indicated a citrate concentration-dependent temporal increase in mineralization, and micro-computed tomography confirmed that >80 vol% of the collagen in the gels was mineralized by day 7. In conclusion, citrate effectively induces mesoscale intra- and interfibrillar collagen mineralization, a finding that advances our understanding of the role of citrate in mineralized tissues.
Collapse
Affiliation(s)
- Wenge Jiang
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry McGill University, Montreal, Quebec, Canada; Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Faleh Tamimi
- Faculty of Dentistry McGill University, Montreal, Quebec, Canada
| | - Marc D McKee
- Faculty of Dentistry McGill University, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Peled Y, Drake JL, Malik A, Almuly R, Lalzar M, Morgenstern D, Mass T. Optimization of skeletal protein preparation for LC-MS/MS sequencing yields additional coral skeletal proteins in Stylophora pistillata. ACTA ACUST UNITED AC 2020; 2:8. [PMID: 32724895 PMCID: PMC7115838 DOI: 10.1186/s42833-020-00014-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stony corals generate their calcium carbonate exoskeleton in a highly controlled biomineralization process mediated by a variety of macromolecules including proteins. Fully identifying and classifying these proteins is crucial to understanding their role in exoskeleton formation, yet no optimal method to purify and characterize the full suite of extracted coral skeletal proteins has been established and hence their complete composition remains obscure. Here, we tested four skeletal protein purification protocols using acetone precipitation and ultrafiltration dialysis filters to present a comprehensive scleractinian coral skeletal proteome. We identified a total of 60 proteins in the coral skeleton, 44 of which were not present in previously published stony coral skeletal proteomes. Extracted protein purification protocols carried out in this study revealed that no one method captures all proteins and each protocol revealed a unique set of method-exclusive proteins. To better understand the general mechanism of skeletal protein transportation, we further examined the proteins’ gene ontology, transmembrane domains, and signal peptides. We found that transmembrane domain proteins and signal peptide secretion pathways, by themselves, could not explain the transportation of proteins to the skeleton. We therefore propose that some proteins are transported to the skeleton via non-traditional secretion pathways.
Collapse
Affiliation(s)
- Yanai Peled
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Jeana L Drake
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Ricardo Almuly
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel
| | - David Morgenstern
- De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Mass
- Marine Biology Department, University of Haifa, Haifa, Israel
| |
Collapse
|
23
|
Athanasiadou D, Jiang W, Reznikov N, Rodríguez-Navarro AB, Kröger R, Bilton M, González-Segura A, Hu Y, Nelea V, McKee MD. Nanostructure of mouse otoconia. J Struct Biol 2020; 210:107489. [PMID: 32142754 DOI: 10.1016/j.jsb.2020.107489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 11/19/2022]
Abstract
Mammalian otoconia of the inner ear vestibular apparatus are calcium carbonate-containing mineralized structures critical for maintaining balance and detecting linear acceleration. The mineral phase of otoconia is calcite, which coherently diffracts X-rays much like a single-crystal. Otoconia contain osteopontin (OPN), a mineral-binding protein influencing mineralization processes in bones, teeth and avian eggshells, for example, and in pathologic mineral deposits. Here we describe mineral nanostructure and the distribution of OPN in mouse otoconia. Scanning electron microscopy and atomic force microscopy of intact and cleaved mouse otoconia revealed an internal nanostructure (~50 nm). Transmission electron microscopy and electron tomography of focused ion beam-prepared sections of otoconia confirmed this mineral nanostructure, and identified even smaller (~10 nm) nanograin dimensions. X-ray diffraction of mature otoconia (8-day-old mice) showed crystallite size in a similar range (73 nm and smaller). Raman and X-ray absorption spectroscopy - both methods being sensitive to the detection of crystalline and amorphous forms in the sample - showed no evidence of amorphous calcium carbonate in these mature otoconia. Scanning and transmission electron microscopy combined with colloidal-gold immunolabeling for OPN revealed that this protein was located at the surface of the otoconia, correlating with a site where surface nanostructure was observed. OPN addition to calcite growing in vitro produced similar surface nanostructure. These findings provide details on the composition and nanostructure of mammalian otoconia, and suggest that while OPN may influence surface rounding and surface nanostructure in otoconia, other incorporated proteins (also possibly including OPN) likely participate in creating internal nanostructure.
Collapse
Affiliation(s)
| | - Wenge Jiang
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | | | | | - Roland Kröger
- Department of Physics, University of York, York YO10 5DD, UK
| | - Matthew Bilton
- Imaging Centre at Liverpool, University of Liverpool, Liverpool L69 3GL, UK
| | | | - Yongfeng Hu
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Valentin Nelea
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada.
| |
Collapse
|
24
|
Thomas ORB, Richards KL, Petrou S, Roberts BR, Swearer SE. In situ 3D visualization of biomineralization matrix proteins. J Struct Biol 2020; 209:107448. [PMID: 31926272 DOI: 10.1016/j.jsb.2020.107448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Calcium biominerals occur in all major animal phyla, and through biomolecular control, exhibit such diverse structures as exoskeletons, shells, bones, teeth and earstones (otoliths). Determining the three-dimensional expression of key biomineral proteins, however, has proven challenging as typical protein identification methods either lose spatial resolution during dissolution of the mineral phase or are costly and limited to two-dimensional expression of high abundance proteins. Here we present a modification of the CLARITY and ACT-PRESTO protocols to visualize and confirm, for the first time, the timing of expression and function of two key regulators of biomineralization.
Collapse
Affiliation(s)
- Oliver R B Thomas
- School of BioSciences, The University of Melbourne, Parkville Campus, Victoria 3010, Australia.
| | - Kay L Richards
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville Campus, Victoria 3010, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville Campus, Victoria 3010, Australia
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen E Swearer
- School of BioSciences, The University of Melbourne, Parkville Campus, Victoria 3010, Australia
| |
Collapse
|
25
|
Gignoux-Wolfsohn SA, Precht WF, Peters EC, Gintert BE, Kaufman LS. Ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral Acropora cervicornis. DISEASES OF AQUATIC ORGANISMS 2020; 137:217-237. [PMID: 32132275 DOI: 10.3354/dao03441] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study is a multi-pronged description of a temperature-induced outbreak of white-band disease (WBD) that occurred in Acropora cervicornis off northern Miami Beach, Florida (USA), from July to October 2014. We describe the ecology of the disease and examine diseased corals using both histopathology and next-generation bacterial 16S gene sequencing, making it possible to better understand the effect this disease has on the coral holobiont, and to address some of the seeming contradictions among previous studies of WBD that employed either a purely histological or molecular approach. The outbreak began in July 2014, as sea surface temperatures reached 29°C, and peaked in mid-September, a month after the sea surface temperature maximum. The microscopic anatomy of apparently healthy portions of colonies displaying active disease signs appeared normal except for some tissue atrophy and dissociation of mesenterial filaments deep within the branch. Structural changes were more pronounced in visibly diseased fragments, with atrophy, necrosis, and lysing of surface and basal body wall and polyp structures at the tissue-loss margin. The only bacteria evident microscopically in both diseased and apparently healthy tissues with Giemsa staining was a Rickettsiales-like organism (RLO) occupying mucocytes. Sequencing also identified bacteria belonging to the order Rickettsiales in all fragments. When compared to apparently healthy fragments, diseased fragments had more diverse bacterial communities made up of many previously suggested potential primary pathogens and secondary (opportunistic) colonizers. Interactions between elevated seawater temperatures, the coral host, and pathogenic members of the diseased microbiome all contribute to the coral displaying signs of WBD.
Collapse
|
26
|
Martínez-Dios A, Pelejero C, López-Sanz À, Sherrell RM, Ko S, Häussermann V, Försterra G, Calvo E. Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus. PeerJ 2020; 8:e8236. [PMID: 31915573 PMCID: PMC6942680 DOI: 10.7717/peerj.8236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022] Open
Abstract
Cold-Water Corals (CWCs), and most marine calcifiers, are especially threatened by ocean acidification (OA) and the decrease in the carbonate saturation state of seawater. The vulnerability of these organisms, however, also involves other global stressors like warming, deoxygenation or changes in sea surface productivity and, hence, food supply via the downward transport of organic matter to the deep ocean. This study examined the response of the CWC Desmophyllum dianthus to low pH under different feeding regimes through a long-term incubation experiment. For this experiment, 152 polyps were incubated at pH 8.1, 7.8, 7.5 and 7.2 and two feeding regimes for 14 months. Mean calcification rates over the entire duration of the experiment ranged between −0.3 and 0.3 mg CaCO3 g−1d−1. Polyps incubated at pH 7.2 were the most affected and 30% mortality was observed in this treatment. In addition, many of the surviving polyps at pH 7.2 showed negative calcification rates indicating that, in the long term, CWCs may have difficulty thriving in such aragonite undersaturated waters. The feeding regime had a significant effect on skeletal growth of corals, with high feeding frequency resulting in more positive and variable calcification rates. This was especially evident in corals reared at pH 7.5 (ΩA = 0.8) compared to the low frequency feeding treatment. Early life-stages, which are essential for the recruitment and maintenance of coral communities and their associated biodiversity, were revealed to be at highest risk. Overall, this study demonstrates the vulnerability of D. dianthus corals to low pH and low food availability. Future projected pH decreases and related changes in zooplankton communities may potentially compromise the viability of CWC populations.
Collapse
Affiliation(s)
| | - Carles Pelejero
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Espanya.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Espanya
| | - Àngel López-Sanz
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Espanya
| | - Robert M Sherrell
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Stanley Ko
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Verena Häussermann
- Escuela de Ciencias del Mar/Facultad de Recursos Naturales, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Huinay Scientific Field Station, Huinay, Chile
| | - Günter Försterra
- Escuela de Ciencias del Mar/Facultad de Recursos Naturales, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Huinay Scientific Field Station, Huinay, Chile
| | - Eva Calvo
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Espanya
| |
Collapse
|
27
|
Drake JL, Mass T, Stolarski J, Von Euw S, van de Schootbrugge B, Falkowski PG. How corals made rocks through the ages. GLOBAL CHANGE BIOLOGY 2020; 26:31-53. [PMID: 31696576 PMCID: PMC6942544 DOI: 10.1111/gcb.14912] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/03/2023]
Abstract
Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef-building corals retain information about the marine environment in their skeletons, which is an organic-inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue-skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Stanislas Von Euw
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Paul G Falkowski
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
28
|
Laipnik R, Bissi V, Sun CY, Falini G, Gilbert PUPA, Mass T. Coral acid rich protein selects vaterite polymorph in vitro. J Struct Biol 2019; 209:107431. [PMID: 31811894 PMCID: PMC7058422 DOI: 10.1016/j.jsb.2019.107431] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
Corals and other biomineralizing organisms use proteins and other molecules to form different crystalline polymorphs and biomineral structures. In corals, it’s been suggested that proteins such as Coral Acid Rich Proteins (CARPs) play a major role in the polymorph selection of their calcium carbonate (CaCO3) aragonite exoskeleton. To date, four CARPs (1–4) have been characterized: each with a different amino acid composition and different temporal and spatial expression patterns during coral developmental stages. Interestingly, CARP3 is able to alter crystallization pathways in vitro, yet its function in this process remains enigmatic. To better understand the CARP3 function, we performed two independent in vitro CaCO3 polymorph selection experiments using purified recombinant CARP3 at different concentrations and at low or zero Mg2+ concentration. Our results show that, in the absence of Mg2+, CARP3 selects for the vaterite polymorph and inhibits calcite. However, in the presence of a low concentration of Mg2+ and CARP3 both Mg-calcite and vaterite are formed, with the relative amount of Mg-calcite increasing with CARP3 concentration. In all conditions, CARP3 did not select for the aragonite polymorph, which is the polymorph associated to CARP3 in vivo, even in the presence of Mg2+ (Mg:Ca molar ratio equal to 1). These results further emphasize the importance of Mg:Ca molar ratios similar to that in seawater (Mg:Ca equal to 5) and the activity of the biological system in a aragonite polymorph selection in coral skeleton formation.
Collapse
Affiliation(s)
- Ra'anan Laipnik
- Marine Biology Department, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Veronica Bissi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Italy
| | - Chang-Yu Sun
- Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Giuseppe Falini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Italy
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA; Departments of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, University of Haifa, Israel.
| |
Collapse
|
29
|
Guzman C, Atrigenio M, Shinzato C, Aliño P, Conaco C. Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea. PeerJ 2019; 7:e7785. [PMID: 31579631 PMCID: PMC6768060 DOI: 10.7717/peerj.7785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Background Heliopora coerulea, the blue coral, is a reef building octocoral that is reported to have a higher optimum temperature for growth compared to most scleractinian corals. This octocoral has been observed to grow over both live and dead scleractinians and to dominate certain reefs in the Indo-Pacific region. The molecular mechanisms underlying the ability of H. coerulea to tolerate warmer seawater temperatures and to effectively compete for space on the substrate remain to be elucidated. Methods In this study, we subjected H. coerulea colonies to various temperatures for up to 3 weeks. The growth and photosynthetic efficiency rates of the coral colonies were measured. We then conducted pairwise comparisons of gene expression among the different coral tissue regions to identify genes and pathways that are expressed under different temperature conditions. Results A horizontal growth rate of 1.13 ± 0.25 mm per week was observed for corals subjected to 28 or 31 °C. This growth rate was significantly higher compared to corals exposed at 26 °C. This new growth was characterized by the extension of whitish tissue at the edges of the colony and was enriched for a matrix metallopeptidase, a calcium and integrin binding protein, and other transcripts with unknown function. Tissues at the growth margin and the adjacent calcified encrusting region were enriched for transcripts related to proline and riboflavin metabolism, nitrogen utilization, and organic cation transport. The calcified digitate regions, on the other hand, were enriched for transcripts encoding proteins involved in cell-matrix adhesion, translation, receptor-mediated endocytosis, photosynthesis, and ion transport. Functions related to lipid biosynthesis, extracellular matrix formation, cell migration, and oxidation-reduction processes were enriched at the growth margin in corals subjected for 3 weeks to 28 or 31 °C relative to corals at 26 °C. In the digitate region of the coral, transcripts encoding proteins that protect against oxidative stress, modify cell membrane composition, and mediate intercellular signaling pathways were enriched after just 24 h of exposure to 31 °C compared to corals at 28 °C. The overall downregulation of gene expression observed after 3 weeks of sustained exposure to 31 °C is likely compensated by symbiont metabolism. Discussion These findings reveal that the different regions of H. coerulea have variable gene expression profiles and responses to temperature variation. Under warmer conditions, the blue coral invests cellular resources toward extracellular matrix formation and cellular migration at the colony margins, which may promote rapid tissue growth and extension. This mechanism enables the coral to colonize adjacent reef substrates and successfully overgrow slower growing scleractinian corals that may already be more vulnerable to warming ocean waters.
Collapse
Affiliation(s)
- Christine Guzman
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Michael Atrigenio
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Chuya Shinzato
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Porfirio Aliño
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
30
|
Neder M, Laissue PP, Akiva A, Akkaynak D, Albéric M, Spaeker O, Politi Y, Pinkas I, Mass T. Mineral formation in the primary polyps of pocilloporoid corals. Acta Biomater 2019; 96:631-645. [PMID: 31302296 DOI: 10.1016/j.actbio.2019.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
In reef-building corals, larval settlement and its rapid calcification provides a unique opportunity to study the bio-calcium carbonate formation mechanism involving skeleton morphological changes. Here we investigate the mineral formation of primary polyps, just after settlement, in two species of the pocilloporoid corals: Stylophora pistillata (Esper, 1797) and Pocillopora acuta (Lamarck, 1816). We show that the initial mineral phase is nascent Mg-Calcite, with rod-like morphology in P. acuta, and dumbbell morphology in S. pistillata. These structures constitute the first layer of the basal plate which is comparable to Rapid Accretion Deposits (Centers of Calcification, CoC) in adult coral skeleton. We found also that the rod-like/dumbbell Mg-Calcite structures in subsequent growth step will merge into larger aggregates by deposition of aragonite needles. Our results suggest that a biologically controlled mineralization of initial skeletal deposits occurs in three steps: first, vesicles filled with divalent ions are formed intracellularly. These vesicles are then transferred to the calcification site, forming nascent Mg-Calcite rod/pristine dumbbell structures. During the third step, aragonite crystals develop between these structures forming spherulite-like aggregates. STATEMENT OF SIGNIFICANCE: Coral settlement and recruitment periods are highly sensitive to environmental conditions. Successful mineralization during these periods is vital and influences the coral's chances of survival. Therefore, understanding the exact mechanism underlying carbonate precipitation is highly important. Here, we used in vivo microscopy, spectroscopy and molecular methods to provide new insights into mineral development. We show that the primary polyp's mineral arsenal consists of two types of minerals: Mg-Calcite and aragonite. In addition, we provide new insights into the ion pathway by showing that divalent ions are concentrated in intracellular vesicles and are eventually deposited at the calcification site.
Collapse
Affiliation(s)
- Maayan Neder
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | | | - Anat Akiva
- Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Derya Akkaynak
- The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel; Department of Marine Technologies, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Marie Albéric
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Oliver Spaeker
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Yael Politi
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.
| |
Collapse
|
31
|
Coronado I, Fine M, Bosellini FR, Stolarski J. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nat Commun 2019; 10:2896. [PMID: 31263108 PMCID: PMC6603003 DOI: 10.1038/s41467-019-10833-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
Distinguishing between environmental and species-specific physiological signals, recorded in coral skeletons, is one of the fundamental challenges in their reliable use as (paleo)climate proxies. To date, characteristic biological bias in skeleton-recorded environmental signatures (vital effect) was shown in shifts in geochemical signatures. Herein, for the first time, we have assessed crystallographic parameters of bio-aragonite to study the response of the reef-building coral Stylophora pistillata to experimental seawater acidification (pH 8.2, 7.6 and 7.3). Skeletons formed under high pCO2 conditions show systematic crystallographic changes such as better constrained crystal orientation and anisotropic distortions of bio-aragonite lattice parameters due to increased amount of intracrystalline organic matrix and water content. These variations in crystallographic features that seem to reflect physiological adjustments of biomineralizing organisms to environmental change, are herein called crystallographic vital effect (CVE). CVE may register those changes in the biomineralization process that may not yet be perceived at the macromorphological skeletal level. Coral fossils can record climatic history, but teasing apart environmental signals remains a challenge. Here the authors show that crystallographic changes in coral skeletons grown under high CO2 conditions could be used as a sensitive pH proxy, enabling measurement of ocean acidification back in time.
Collapse
Affiliation(s)
- Ismael Coronado
- Institute of Paleobiology, Twarda 51/55, PL-00-818, Warsaw, Poland.
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences, P.O. Box 469, 88103, Eilat, Israel
| | - Francesca R Bosellini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | | |
Collapse
|
32
|
Rani RS, Saharay M. Molecular dynamics simulation of protein-mediated biomineralization of amorphous calcium carbonate. RSC Adv 2019; 9:1653-1663. [PMID: 35518017 PMCID: PMC9059667 DOI: 10.1039/c8ra08459a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
The protein-mediated biomineralization of calcium carbonate (CaCO3) in living organisms is primarily governed by critical interactions between the charged amino acids of the protein, solvent, calcium (Ca2+) and carbonate (CO32−) ions. The present article investigates the molecular mechanism of lysozyme-mediated nucleation of amorphous calcium carbonate (ACC) using molecular dynamics and metadynamics simulations. The results reveal that, by acting as nucleation sites, the positively charged side chains of surface-exposed arginine residues form hydrogen bonds with carbonates and promote aggregation of ions around them leading to the formation and growth of ACC on the protein surface. The newly formed ACC patches were found to be less hydrated due to ion aggregation-induced expulsion of water from the nucleation sites. Despite favorable electrostatic interactions of the negatively charged side chains of aspartate and glutamate with calcium ions, these residues contribute minimally to the growth of ACC on protein surface. The activation barrier for the growth of partially hydrated ACC patches on lysozymes was determined from the free energy profiles obtained from metadynamics simulations. The protein-mediated biomineralization of calcium carbonate (CaCO3) in living organisms is primarily governed by critical interactions between the charged amino acids of the protein, solvent, calcium (Ca2+) and carbonate (CO32−) ions.![]()
Collapse
Affiliation(s)
- R Sandya Rani
- Department of Physics, Osmania University Hyderabad India
| | | |
Collapse
|
33
|
Barron ME, Thies AB, Espinoza JA, Barott KL, Hamdoun A, Tresguerres M. A vesicular Na+/Ca2+ exchanger in coral calcifying cells. PLoS One 2018; 13:e0205367. [PMID: 30379874 PMCID: PMC6209159 DOI: 10.1371/journal.pone.0205367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
The calcium carbonate skeletons of corals provide the underlying structure of coral reefs; however, the cellular mechanisms responsible for coral calcification remain poorly understood. In osteoblasts from vertebrate animals, a Na+/Ca2+ exchanger (NCX) present in the plasma membrane transports Ca2+ to the site of bone formation. The aims of this study were to establish whether NCX exists in corals and its localization within coral cells, which are essential first steps to investigate its potential involvement in calcification. Data mining identified genes encoding for NCX proteins in multiple coral species, a subset of which were more closely related to NCXs from vertebrates (NCXA). We cloned NCXA from Acropora yongei (AyNCXA), which, unexpectedly, contained a peptide signal that targets proteins to vesicles from the secretory pathway. AyNCXA subcellular localization was confirmed by heterologous expression of fluorescently tagged AyNCXA protein in sea urchin embryos, which localized together with known markers of intracellular vesicles. Finally, immunolabeling of coral tissues with specific antibodies revealed AyNCXA was present throughout coral tissue. AyNCXA was especially abundant in calcifying cells, where it exhibited a subcellular localization pattern consistent with intracellular vesicles. Altogether, our results demonstrate AyNCXA is present in vesicles in coral calcifying cells, where potential functions include intracellular Ca2+ homeostasis and Ca2+ transport to the growing skeleton as part of an intracellular calcification mechanism.
Collapse
Affiliation(s)
- Megan E. Barron
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Angus B. Thies
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Jose A. Espinoza
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
34
|
Li S, Chen W, Zhan A, Liang J. Identification and characterization of microRNAs involved in scale biomineralization in the naked carp Gymnocypris przewalskii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:196-203. [PMID: 30317123 DOI: 10.1016/j.cbd.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022]
Abstract
The mineralized scale derived from skin plays a protective role for the fish body and also possesses important application values in the biomaterial field. However, little is known about fish scale biomineralization and related molecular regulatory mechanisms. Here, we used a comparative microRNA sequencing approach to identify and characterize differentially expressed microRNAs (DEMs) involved in scale biomineralization in the naked carp Gymnocypris przewalskii. A total of 18, 43, and 66 DEMs were obtained from skin tissues covered with initial, developing, and mature scales (IS, DS, and MS) compared with scale-uncovered skin. The target genes of these DEMs were significantly enriched in a sole biomineralization-related sphingolipid signaling pathway. Seven DEMs (dre-miR-124-3p, dre-miR-133a-2-5p, dre-miR-184, dre-miR-206-3p, novel_33, novel_56 and novel_75) were common in IS, DS, and MS. Dre-miR-124-3p, dre-miR-206-3p, and novel_33 were predicted to be able to target biomineralization-related genes. Stem-loop real-time quantitative PCR further confirmed that the common DEMs had higher expression levels in scale-covered skin tissues than that in the gill, intestine, and brain, except for dre-miR-133a-2-5p. Our results suggest that these identified microRNAs may play a role in scale biomineralization in G. przewalskii, and the obtained microRNAs are expected to be candidates in understanding the molecular mechanism of scale biomineralization in fish species.
Collapse
Affiliation(s)
- Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|
35
|
Natural forcing of the North Atlantic nitrogen cycle in the Anthropocene. Proc Natl Acad Sci U S A 2018; 115:10606-10611. [PMID: 30275314 DOI: 10.1073/pnas.1801049115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human alteration of the global nitrogen cycle intensified over the 1900s. Model simulations suggest that large swaths of the open ocean, including the North Atlantic and the western Pacific, have already been affected by anthropogenic nitrogen through atmospheric transport and deposition. Here we report an ∼130-year-long record of the 15N/14N of skeleton-bound organic matter in a coral from the outer reef of Bermuda, which provides a test of the hypothesis that anthropogenic atmospheric nitrogen has significantly augmented the nitrogen supply to the open North Atlantic surface ocean. The Bermuda 15N/14N record does not show a long-term decline in the Anthropocene of the amplitude predicted by model simulations or observed in a western Pacific coral 15N/14N record. Rather, the decadal variations in the Bermuda 15N/14N record appear to be driven by the North Atlantic Oscillation, most likely through changes in the formation rate of Subtropical Mode Water. Given that anthropogenic nitrogen emissions have been decreasing in North America since the 1990s, this study suggests that in the coming decades, the open North Atlantic will remain minimally affected by anthropogenic nitrogen deposition.
Collapse
|
36
|
Mass T, Drake JL, Heddleston JM, Falkowski PG. Nanoscale Visualization of Biomineral Formation in Coral Proto-Polyps. Curr Biol 2017; 27:3191-3196.e3. [PMID: 29033329 DOI: 10.1016/j.cub.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/11/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022]
Abstract
Calcium carbonate platforms produced by reef-building stony corals over geologic time are pervasive features around the world [1]; however, the mechanism by which these organisms produce the mineral is poorly understood (see review by [2]). It is generally assumed that stony corals precipitate calcium carbonate extracellularly as aragonite in a calcifying medium between the calicoblastic ectoderm and pre-existing skeleton, separated from the overlying seawater [2]. The calicoblastic ectoderm produces extracellular matrix (ECM) proteins, secreted to the calcifying medium [3-6], which appear to provide the nucleation, alteration, elongation, and inhibition mechanisms of the biomineral [7] and remain occluded and preserved in the skeleton [8-10]. Here we show in cell cultures of the stony coral Stylophora pistillata that calcium is concentrated in intracellular pockets that are subsequently exported from the cell where a nucleation process leads to the formation of extracellular aragonite crystals. Analysis of the growing crystals by lattice light-sheet microscopy suggests that the crystals elongate from the cells' surfaces outward.
Collapse
Affiliation(s)
- Tali Mass
- University of Haifa, Department of Marine Biology, The Leon H. Charney School of Marine Sciences, Multi Purpose Boulevard, Mt. Carmel, Haifa 3498838, Israel.
| | - Jeana L Drake
- Rutgers University, Department of Marine and Coastal Sciences, Dudley Road, New Brunswick, NJ 08901, USA
| | - John M Heddleston
- Howard Hughes Medical Institute Janelia Research Campus, Advanced Imaging Center, Helix Drive, Ashburn, VA 20147, USA
| | - Paul G Falkowski
- Rutgers University, Department of Marine and Coastal Sciences, Dudley Road, New Brunswick, NJ 08901, USA; Rutgers University, Department of Earth and Planetary Sciences, Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
37
|
Perfetto R, Del Prete S, Vullo D, Carginale V, Sansone G, Barone CMA, Rossi M, Alasmary FAS, Osman SM, AlOthman Z, Supuran CT, Capasso C. Cloning, expression and purification of the α-carbonic anhydrase from the mantle of the Mediterranean mussel, Mytilus galloprovincialis. J Enzyme Inhib Med Chem 2017; 32:1029-1035. [PMID: 28741386 PMCID: PMC6010101 DOI: 10.1080/14756366.2017.1353502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We cloned, expressed, purified, and determined the kinetic constants of the recombinant α-carbonic anhydrase (rec-MgaCA) identified in the mantle tissue of the bivalve Mediterranean mussel, Mytilus galloprovincialis. In metazoans, the α-CA family is largely represented and plays a pivotal role in the deposition of calcium carbonate biominerals. Our results demonstrated that rec-MgaCA was a monomer with an apparent molecular weight of about 32 kDa. Moreover, the determined kinetic parameters for the CO2 hydration reaction were kcat = 4.2 × 105 s−1 and kcat/Km of 3.5 × 107 M−1 ×s−1. Curiously, the rec-MgaCA showed a very similar kinetic and acetazolamide inhibition features when compared to those of the native enzyme (MgaCA), which has a molecular weight of 50 kDa. Analysing the SDS-PAGE, the protonography, and the kinetic analysis performed on the native and recombinant enzyme, we hypothesised that probably the native MgaCA is a multidomain protein with a single CA domain at the N-terminus of the protein. This hypothesis is corroborated by the existence in mollusks of multidomain proteins with a hydratase activity. Among these proteins, nacrein is an example of α-CA multidomain proteins characterised by a single CA domain at the N-terminus part of the entire protein.
Collapse
Affiliation(s)
- Rosa Perfetto
- a Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Sonia Del Prete
- a Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy.,b Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | - Daniela Vullo
- b Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | | | - Giovanni Sansone
- c Dipartimento di Biologia , Università degli Studi di Napoli, Federico II , Napoli , Italy
| | - Carmela M A Barone
- d Dipartimento di Agraria , Università degli Studi di Napoli, Federico II , Portici, Napoli , Italy
| | - Mosè Rossi
- a Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Fatmah A S Alasmary
- e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Sameh M Osman
- e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Zeid AlOthman
- e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Claudiu T Supuran
- b Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy.,e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy.,f Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | | |
Collapse
|
38
|
Rosental B, Kozhekbaeva Z, Fernhoff N, Tsai JM, Traylor-Knowles N. Coral cell separation and isolation by fluorescence-activated cell sorting (FACS). BMC Cell Biol 2017; 18:30. [PMID: 28851289 PMCID: PMC5575905 DOI: 10.1186/s12860-017-0146-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 08/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Generalized methods for understanding the cell biology of non-model species are quite rare, yet very much needed. In order to address this issue, we have modified a technique traditionally used in the biomedical field for ecological and evolutionary research. Fluorescent activated cell sorting (FACS) is often used for sorting and identifying cell populations. In this study, we developed a method to identify and isolate different cell populations in corals and other cnidarians. METHODS Using fluorescence-activated cell sorting (FACS), coral cell suspension were sorted into different cellular populations using fluorescent cell markers that are non-species specific. Over 30 different cell markers were tested. Additionally, cell suspension from Aiptasia pallida was also tested, and a phagocytosis test was done as a downstream functional assay. RESULTS We found that 24 of the screened markers positively labeled coral cells and 16 differentiated cell sub-populations. We identified 12 different cellular sub-populations using three markers, and found that each sub-population is primarily homogeneous. Lastly, we verified this technique in a sea anemone, Aiptasia pallida, and found that with minor modifications, a similar gating strategy can be successfully applied. Additionally, within A. pallida, we show elevated phagocytosis of sorted cells based on an immune associated marker. CONCLUSIONS In this study, we successfully adapted FACS for isolating coral cell populations and conclude that this technique is translatable for future use in other species. This technique has the potential to be used for different types of studies on the cellular stress response and other immunological studies.
Collapse
Affiliation(s)
- Benyamin Rosental
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pathology, Hopkins Marine Station, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA, 93950, USA.
| | - Zhanna Kozhekbaeva
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Florida, 33149, USA
| | - Nathaniel Fernhoff
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jonathan M Tsai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nikki Traylor-Knowles
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Florida, 33149, USA.
| |
Collapse
|
39
|
Sequence Analysis, Kinetic Constants, and Anion Inhibition Profile of the Nacrein-Like Protein (CgiNAP2X1) from the Pacific Oyster Magallana gigas (Ex-Crassostrea gigas). Mar Drugs 2017; 15:md15090270. [PMID: 28846630 PMCID: PMC5618409 DOI: 10.3390/md15090270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
The carbonic anhydrase (CA, EC 4.2.1.1) superfamily of metalloenzymes catalyzes the hydration of carbon dioxide to bicarbonate and protons. The catalytically active form of these enzymes incorporates a metal hydroxide derivative, the formation of which is the rate-determining step of catalytic reaction, being affected by the transfer of a proton from a metal-coordinated water molecule to the environment. Here, we report the cloning, expression, and purification of a particular CA, i.e., nacrein-like protein encoded in the genome of the Pacific oyster Magallana gigas (previously known as Crassostrea gigas). Furthermore, the amino acid sequence, kinetic constants, and anion inhibition profile of the recombinant enzyme were investigated for the first time. The new protein, CgiNAP2X1, is highly effective as catalyst for the CO2 hydration reaction, based on the measured kinetic parameters, i.e., kcat = 1.0 × 106 s−1 and kcat/KM = 1.2 × 108 M−1·s−1. CgiNAP2X1 has a putative signal peptide, which probably allows an extracellular localization of the protein. The inhibition data demonstrated that the best anion inhibitors of CgiNAP2X1 were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed a micromolar affinity for this enzyme, with KIs in the range of 76–87 μM. These studies may add new information on the physiological role of the molluskan CAs in the biocalcification processes.
Collapse
|
40
|
Abstract
Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.
Collapse
|
41
|
Smolyakov G, Dague E, Roux C, Seguelas MH, Galés C, Senard JM, Arvanitis DN. Nanoscale structural mapping as a measure of maturation in the murine frontal cortex. Brain Struct Funct 2017; 223:255-265. [PMID: 28779306 DOI: 10.1007/s00429-017-1486-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023]
Abstract
Atomic force microscopy (AFM) is emerging as an innovative tool to phenotype the brain. This study demonstrates the utility of AFM to determine nanomechanical and nanostructural features of the murine dorsolateral frontal cortex from weaning to adulthood. We found an increase in tissue stiffness of the primary somatosensory cortex with age, along with an increased cortical mechanical heterogeneity. To characterize the features potentially responsible for this heterogeneity, we applied AFM scan mode to directly image the topography of thin sections of the primary somatosensory cortical layers II/III, IV and V/VI. Topographical mapping of the cortical layers at successive ages showed progressive smoothing of the surface. Topographical images were also compared with histochemically derived morphological information, which demonstrated the deposition of perineuronal nets, important extracellular components and markers of maturity. Our work demonstrates that high-resolution AFM images can be used to determine the nanostructural properties of cortical maturation, well beyond embryonic and postnatal development. Furthermore, it may offer a new method for brain phenotyping and screening to uncover topographical changes in early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- G Smolyakov
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
- ITAV-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - E Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
- ITAV-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - C Roux
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
- ITAV-CNRS, Université de Toulouse, CNRS, Toulouse, France
- Laboratoire Des IMRCP, Université de Toulouse, CNRS UMR 5623, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - M H Seguelas
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - C Galés
- ITAV-CNRS, Université de Toulouse, CNRS, Toulouse, France
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - J M Senard
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - D N Arvanitis
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France.
| |
Collapse
|
42
|
Sun CY, Marcus MA, Frazier MJ, Giuffre AJ, Mass T, Gilbert PUPA. Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature's Three-Dimensional Printing. ACS NANO 2017; 11:6612-6622. [PMID: 28564539 DOI: 10.1021/acsnano.7b00127] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. Here we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or "plumose" spherulites. Furthermore, we find that in both synthetic and coral aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton's supporting function and therefore to its evolutionary success. In this sense, spherulitic growth is Nature's 3D printing.
Collapse
Affiliation(s)
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | | | | | - Tali Mass
- Marine Biology Department, University of Haifa , Mt. Carmel, Haifa 31905, Israel
| | | |
Collapse
|
43
|
Von Euw S, Zhang Q, Manichev V, Murali N, Gross J, Feldman LC, Gustafsson T, Flach C, Mendelsohn R, Falkowski PG. Biological control of aragonite formation in stony corals. Science 2017; 356:933-938. [DOI: 10.1126/science.aam6371] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/10/2017] [Indexed: 02/06/2023]
|
44
|
Kinetic properties and affinities for sulfonamide inhibitors of an α-carbonic anhydrase (CruCA4) involved in coral biomineralization in the Mediterranean red coral Corallium rubrum. Bioorg Med Chem 2017; 25:3525-3530. [PMID: 28501430 DOI: 10.1016/j.bmc.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022]
Abstract
We report the kinetic properties and sulfonamide inhibition profile of an α-carbonic anhydrase (CA, EC 4.2.1.1), named CruCA4, identified in the red coral Corallium rubrum. This isoform is involved in the biomineralization process leading to the formation of a calcium carbonate skeleton. Experiments performed on the recombinant protein show that the enzyme has a "moderate activity" level. Our results are discussed compared to values obtained for other CA isoforms involved in biomineralization. This is the first study describing the biochemical characterization of an octocoral CA.
Collapse
|
45
|
Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat Commun 2017; 8:15066. [PMID: 28406143 PMCID: PMC5399303 DOI: 10.1038/ncomms15066] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/24/2017] [Indexed: 11/30/2022] Open
Abstract
Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a ‘right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas ‘left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a ‘mother' subunit nanoparticle spawns a slightly tilted, consequential ‘daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures. Chiral structures are formed in numerous processes including biomineralization of calcium carbonate. Here, the authors demonstrate that the chiral, hierarchically-organized architecture of the calcium carbonate mineral, vaterite, can be controlled simply by the addition of chiral acidic amino acids.
Collapse
|
46
|
Mass T, Putnam HM, Drake JL, Zelzion E, Gates RD, Bhattacharya D, Falkowski PG. Temporal and spatial expression patterns of biomineralization proteins during early development in the stony coral Pocillopora damicornis. Proc Biol Sci 2017; 283:rspb.2016.0322. [PMID: 27122561 DOI: 10.1098/rspb.2016.0322] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
Reef-building corals begin as non-calcifying larvae that, upon settling, rapidly begin to accrete skeleton and a protein-rich skeletal organic matrix that attach them to the reef. Here, we characterized the temporal and spatial expression pattern of a suite of biomineralization genes during three stages of larval development in the reef-building coral Pocillopora damicornis: stage I, newly released; stage II, oral-aborally compressed and stage III, settled and calcifying spat. Transcriptome analysis revealed 3882 differentially expressed genes that clustered into four distinctly different patterns of expression change across the three developmental stages. Immunolocalization analysis further reveals the spatial arrangement of coral acid-rich proteins (CARPs) in the overall architecture of the emerging skeleton. These results provide the first analysis of the timing of the biomineralization 'toolkit' in the early life history of a stony coral.
Collapse
Affiliation(s)
- Tali Mass
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Kaneohe, HI 96744, USA
| | | | - Jeana L Drake
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Kaneohe, HI 96744, USA
| | - Ehud Zelzion
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ruth D Gates
- Hawaii Institute of Marine Biology, Kaneohe, HI 96744, USA
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Kaneohe, HI 96744, USA Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
47
|
Ohno Y, Iguchi A, Shinzato C, Inoue M, Suzuki A, Sakai K, Nakamura T. An aposymbiotic primary coral polyp counteracts acidification by active pH regulation. Sci Rep 2017; 7:40324. [PMID: 28098180 PMCID: PMC5241827 DOI: 10.1038/srep40324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023] Open
Abstract
Corals build their skeletons using extracellular calcifying fluid located in the tissue-skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater. Active alkalization was observed in all individuals using vital staining method while the movement of HPTS and Alexa Fluor to SCM suggests that certain ions such as H+ could diffuse via a paracellular pathway to SCM. Among them, we discovered acid-induced oscillations in the pH of SCM (pHSCM), observed in 24% of polyps examined. In addition, we discovered acid-induced pH up-regulation waves in 21% of polyps examined, which propagated among SCMs after exposure to acidified seawater. Our results showed that corals can regulate pHSCM more dynamically than was previously believed. These observations will have important implications for determining how corals regulate pHSCM during calcification. We propose that corals can sense ambient seawater pH via their innate pH-sensitive systems and regulate pHSCM using several unknown pH-regulating ion transporters that coordinate with multicellular signaling occurring in coral tissue.
Collapse
Affiliation(s)
- Yoshikazu Ohno
- Marine and Environmental Sciences Course, Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Akira Iguchi
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago, Okinawa 905-2192, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Mayuri Inoue
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kazuhiko Sakai
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Takashi Nakamura
- Marine and Environmental Sciences Course, Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
- Japan Science and Technology Agency (JST)/Japan International Cooperation Agency (JICA) SATREPS, Tokyo, Japan
| |
Collapse
|
48
|
Schauer KL, LeMoine CMR, Pelin A, Corradi N, Warren WC, Grosell M, McDonald MD. A proteinaceous organic matrix regulates carbonate mineral production in the marine teleost intestine. Sci Rep 2016; 6:34494. [PMID: 27694946 PMCID: PMC5046086 DOI: 10.1038/srep34494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022] Open
Abstract
Marine teleost fish produce CaCO3 in their intestine as part of their osmoregulatory strategy. This precipitation is critical for rehydration and survival of the largest vertebrate group on earth, yet the molecular mechanisms that regulate this reaction are unknown. Here, we isolate and characterize an organic matrix associated with the intestinal precipitates produced by Gulf toadfish (Opsanus beta). Toadfish precipitates were purified using two different methods, and the associated organic matrix was extracted. Greater than 150 proteins were identified in the isolated matrix by mass spectrometry and subsequent database searching using an O. beta transcriptomic sequence library produced here. Many of the identified proteins were enriched in the matrix compared to the intestinal fluid, and three showed no substantial homology to any previously characterized protein in the NCBI database. To test the functionality of the isolated matrix, a micro-modified in vitro calcification assay was designed, which revealed that low concentrations of isolated matrix substantially promoted CaCO3 production, where high concentrations showed an inhibitory effect. High concentrations of matrix also decreased the incorporation of magnesium into the forming mineral, potentially providing an explanation for the variability in magnesium content observed in precipitates produced by different fish species.
Collapse
Affiliation(s)
- Kevin L Schauer
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| | - Christophe M R LeMoine
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada.,Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Adrian Pelin
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Martin Grosell
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| | | |
Collapse
|
49
|
Saha N, Webb GE, Zhao JX. Coral skeletal geochemistry as a monitor of inshore water quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:652-684. [PMID: 27239711 DOI: 10.1016/j.scitotenv.2016.05.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current 'state of the art' in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input.
Collapse
Affiliation(s)
- Narottam Saha
- School of Earth Sciences, The University of Queensland, QLD 4072, Australia.
| | - Gregory E Webb
- School of Earth Sciences, The University of Queensland, QLD 4072, Australia
| | - Jian-Xin Zhao
- School of Earth Sciences, The University of Queensland, QLD 4072, Australia
| |
Collapse
|
50
|
Le Goff C, Ganot P, Zoccola D, Caminiti-Segonds N, Allemand D, Tambutté S. Carbonic Anhydrases in Cnidarians: Novel Perspectives from the Octocorallian Corallium rubrum. PLoS One 2016; 11:e0160368. [PMID: 27513959 PMCID: PMC4981384 DOI: 10.1371/journal.pone.0160368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Although the ability to elaborate calcium carbonate biominerals was apparently gained independently during animal evolution, members of the alpha carbonic anhydrases (α-CAs) family, which catalyze the interconversion of CO2 into HCO3-, are involved in the biomineralization process across metazoans. In the Mediterranean red coral Corallium rubrum, inhibition studies suggest an essential role of CAs in the synthesis of two biominerals produced in this octocoral, the axial skeleton and the sclerites. Hitherto no molecular characterization of these enzymes was available. In the present study we determined the complete set of α-CAs in C. rubrum by data mining the genome and transcriptome, and measured their differential gene expression between calcifying and non-calcifying tissues. We identified six isozymes (CruCA1-6), one cytosolic and five secreted/membrane-bound among which one lacked two of the three zinc-binding histidines and was so referred to as a carbonic anhydrase related protein (CARP). One secreted isozyme (CruCA4) showed specific expression both by qPCR and western-blot in the calcifying tissues, suggesting its involvement in biomineralization. Moreover, phylogenetic analyses of α-CAs, identified in six representative cnidarians with complete genome, support an independent recruitment of α-CAs for biomineralization within anthozoans. Finally, characterization of cnidarian CARPs highlighted two families: the monophyletic cytosolic CARPs, and the polyphyletic secreted CARPs harboring a cnidarian specific cysteine disulfide bridge. Alignment of the cytosolic CARPs revealed an evolutionary conserved R-H-Q motif in place of the characteristic zinc-binding H-H-H necessary for the catalytic function of α-CAs.
Collapse
|