1
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Jang K, Garraway SM. TrkB Agonist (7,8-DHF)-Induced Responses in Dorsal Root Ganglia Neurons Are Decreased after Spinal Cord Injury: Implication for Peripheral Pain Mechanisms. eNeuro 2025; 12:ENEURO.0219-24.2024. [PMID: 39753357 PMCID: PMC11728855 DOI: 10.1523/eneuro.0219-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkBF616A mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI. To examine potential neural mechanisms underlying the behavioral outcome, patch-clamp recording was performed in small-diameter dissociated thoracic (T) dorsal root ganglia (DRG) neurons to evaluate TrkB signaling in uninjured mice and after T10 contusion SCI. Bath-applied 7,8-dihydroxyflavone (7,8-DHF), a selective TrkB agonist, induced a robust inward current in neurons from uninjured mice, which was attenuated by 1NMP treatment. SCI also decreased 7,8-DHF-induced current while increasing the latency to its peak amplitude. Western blot revealed a concomitant decrease in TrkB expression in DRGs adjacent to the spinal lesion. Analyses of cellular and membrane properties showed that SCI increased neuronal excitability, evident by an increase in resting membrane potential and the number of spiking neurons. However, SCI did not increase spontaneous firing in DRG neurons. These results suggest that SCI induced changes in TrkB activation in DRG neurons even though these alterations are likely not contributing to pain hypersensitivity by nociceptor hyperexcitability. Overall, this reveals complex interactions involving TrkB signaling and provides an opportunity to investigate other, presumably peripheral, mechanisms by which TrkB contributes to pain hypersensitivity after SCI.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Sandra M Garraway
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
3
|
Zhao S, Wang F, Wang L, Xu Y, Lv L, Duan W, Bai R, Meng Z, Shao X. Involvement of the BDNF-TrkB-KCC2 pathway in neuropathic pain after brachial plexus avulsion. Brain Behav 2022; 12:e2464. [PMID: 35106976 PMCID: PMC8933754 DOI: 10.1002/brb3.2464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/07/2021] [Accepted: 11/21/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Brachial plexus avulsion significantly increased brain-derived neurotrophic factor (BDNF) release in the spinal cord. Here we investigated the involvement of the BDNF-TrkB-KCC2 pathway in neuropathic pain caused by BPA injury. We hypothesized that activation of BDNF-TrkB may inhibit neuronal excitability by downregulating KCC2 to maintain a high intracellular Cl-concentration. We established a neuropathic pain rat model by avulsion of the lower trunk brachial plexus, and investigated the effects of the TrkB-specific antibody K-252a on the expression of BDNF, TrkB, and KCC2. METHODS We randomly divided 40 male SD rats into four groups. In the brachial plexus avulsion group, C8-T1 roots were avulsed from the spinal cord at the lower trunk level. In the K252a group, 5uL K252a was applied intrathecally daily for three days after avulsion. In the sham surgery group, expose only and without damage. The control group did not undergo any treatment. Mechanical hyperalgesia and cold allodynia were analyzed by electronic pain measuring instrument and acetone spray method at different time points on days 1, 3, 7, 10, 14, and 21 after surgery. At 21 days after surgery, the expression of BDNF and TrkB in dorsal horn neurons and GFAP in astrocytes were detected by immunohistochemistry at the C5-T1 segment of the spinal cord. The expression levels of BDNF, TrkB, and KCC2 in the C5-T1 spinal cord were measured by Western Blot at 7 and 21 days. RESULTS Mechanical hyperalgesia and cold allodynia were significantly reduced in the K252a group compared with the brachial plexus avulsion group. Compared with the BPA group, BDNF, TrkB and GFAP were significantly decreased in the K252a group at 21 days after treatment by immunohistochemical test. In the WB test, the expressions of BDNF and TrkB in the K252a group were quantitatively detected to be decreased, while the expression of KCC2 was increased, which was obvious at 7 and 21 days. CONCLUSION BDNF-TrkB-KCC2 pathway can significantly relieve neuropathic pain after BPA, and is a potential target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Hand SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Orthopaedic DepartmentChildren's Hospital of Hebei ProvinceShijiazhuangChina
| | - Fengyu Wang
- Department of Hand SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Li Wang
- Department of Hand SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yali Xu
- Department of Hand SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Li Lv
- Department of Hand SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Wenxu Duan
- Department of Hand SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Runze Bai
- Department of Hand SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Zhao Meng
- Orthopaedic DepartmentChildren's Hospital of Hebei ProvinceShijiazhuangChina
| | - Xinzhong Shao
- Department of Hand SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
4
|
Sorkpor SK, Galle K, Teixeira AL, Colpo GD, Ahn B, Jackson N, Miao H, Ahn H. The Relationship Between Plasma BDNF and Pain in Older Adults With Knee Osteoarthritis. Biol Res Nurs 2021; 23:629-636. [PMID: 33910384 DOI: 10.1177/10998004211012479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osteoarthritis (OA) is the most prevalent cause of chronic pain and disability in people aged ≥45 years, with the knee being the most affected joint. Neurotrophic factors like brain-derived neurotrophic factor (BDNF), which promotes neurogenesis and neuroplasticity, have been shown to significantly affect chronic pain. This study aimed to investigate the relationship between resting plasma BDNF levels and clinical pain and quantitative sensory testing measures in older adults with knee OA pain. For this secondary analysis, a previously reported dataset was used comprised of older adults with knee OA who underwent quantitative sensory testing. A comprehensive generalized linear model (GLM) was built to understand the relationships between BDNF and important covariates, followed by the elastic net (EN) method for variable selection. GLM was then performed to regress BDNF levels against only the variables selected by EN. The mean age of the sample was 60.4 years (SD = 9.1). Approximately half of the participants were female (53%). Plasma BDNF levels were positively associated with heat pain threshold and the numeric rating scale of pain. Future mechanistic studies are needed to replicate and extend these findings to advance our knowledge of the underlying mechanisms of BDNF in knee OA and other chronic pain conditions.
Collapse
Affiliation(s)
- Setor K Sorkpor
- Department of Research, Cizik School of Nursing, 12340The University of Texas Health Science Center at Houston, TX, USA
| | - Kelli Galle
- Department of Research, Cizik School of Nursing, 12340The University of Texas Health Science Center at Houston, TX, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, 12340The University of Texas Health Science Center at Houston, TX, USA
| | - Gabriela D Colpo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, 12340The University of Texas Health Science Center at Houston, TX, USA
| | - Brian Ahn
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, 12340The University of Texas Health Science Center at Houston, TX, USA
| | - Natalie Jackson
- Department of Research, Cizik School of Nursing, 12340The University of Texas Health Science Center at Houston, TX, USA
| | - Hongyu Miao
- Department of Biostatistics and Data Science, School of Public Health, 12340The University of Texas Health Science Center at Houston, TX, USA
| | - Hyochol Ahn
- Department of Research, Cizik School of Nursing, 12340The University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
5
|
William D. Willis, Jr, MD, PhD Memorial Lecture: The evolutionary history of nerve growth factor and nociception. Pain 2020; 161 Suppl 1:S36-S47. [PMID: 33090738 PMCID: PMC7434219 DOI: 10.1097/j.pain.0000000000001889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Haploinsufficiency of the brain-derived neurotrophic factor gene is associated with reduced pain sensitivity. Pain 2019; 160:1070-1081. [PMID: 30855519 DOI: 10.1097/j.pain.0000000000001485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rare pain-insensitive individuals offer unique insights into how pain circuits function and have led to the development of new strategies for pain control. We investigated pain sensitivity in humans with WAGR (Wilms tumor, aniridia, genitourinary anomaly, and range of intellectual disabilities) syndrome, who have variably sized heterozygous deletion of the 11p13 region. The deletion region can be inclusive or exclusive of the brain-derived neurotrophic factor (BDNF) gene, a crucial trophic factor for nociceptive afferents. Nociceptive responses assessed by quantitative sensory testing demonstrated reduced pain sensitivity only in the WAGR subjects whose deletion boundaries included the BDNF gene. Corresponding behavioral assessments were made in heterozygous Bdnf knockout rats to examine the specific role of Bdnf. These analogous experiments revealed impairment of Aδ- and C-fiber-mediated heat nociception, determined by acute nociceptive thermal stimuli, and in aversive behaviors evoked when the rats were placed on a hot plate. Similar results were obtained for C-fiber-mediated cold responses and cold avoidance on a cold-plate device. Together, these results suggested a blunted responsiveness to aversive stimuli. Our parallel observations in humans and rats show that hemizygous deletion of the BDNF gene reduces pain sensitivity and establishes BDNF as a determinant of nociceptive sensitivity.
Collapse
|
7
|
Brietzke AP, Antunes LC, Carvalho F, Elkifury J, Gasparin A, Sanches PRS, da Silva Junior DP, Dussán-Sarria JA, Souza A, da Silva Torres IL, Fregni F, Md WC. Potency of descending pain modulatory system is linked with peripheral sensory dysfunction in fibromyalgia: An exploratory study. Medicine (Baltimore) 2019; 98:e13477. [PMID: 30653087 PMCID: PMC6370006 DOI: 10.1097/md.0000000000013477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fibromyalgia (FM) is characterized by chronic widespread pain whose pathophysiological mechanism is related to central and peripheral nervous system dysfunction. Neuropathy of small nerve fibers has been implicated due to related pain descriptors, psychophysical pain, and neurophysiological testing, as well as skin biopsy studies. Nevertheless, this alteration alone has not been previously associated to the dysfunction in the descending pain modulatory system (DPMS) that is observed in FM. We hypothesize that they associated, thus, we conducted a cross-sectional exploratory study.To explore small fiber dysfunction using quantitative sensory testing (QST) is associated with the DPMS and other surrogates of nociceptive pathways alterations in FM.We run a cross-sectional study and recruited 41 women with FM, and 28 healthy female volunteers. We used the QST to measure the thermal heat threshold (HTT), heat pain threshold (HPT), heat pain tolerance (HPT), heat pain tolerance (HPTo), and conditional pain modulation task (CPM-task). Algometry was used to determine the pain pressure threshold (PPT). Scales to assess catastrophizing, anxiety, depression, and sleep disturbances were also applied. Serum brain-derived neurotrophic factor (BDNF) was measured as a marker of neuroplasticity. We run multivariate linear regression models by group to study their relationships.Samples differed in their psychophysical profile, where FM presented lower sensitivity and pain thresholds. In FM but not in the healthy subjects, regression models revealed that serum BDNF was related to HTT and CPM-Task (Hotelling Trace = 1.80, P < .001, power = 0.94, R = 0.64). HTT was directly related to CPM-Task (B = 0.98, P = .004, partial-η = 0.25), and to HPT (B = 1.61, P = .008, partial η = 0.21), but not to PPT. Meanwhile, BDNF relationship to CPM-Task was inverse (B = -0.04, P = .043, partial-η = 0.12), and to HPT was direct (B = -0.08, P = .03, partial-η = 0.14).These findings high spot that in FM the disinhibition of the DPMS is positively correlated with the dysfunction in peripheral sensory neurons assessed by QST and conversely with serum BDNF.
Collapse
Affiliation(s)
- Aline Patrícia Brietzke
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Luciana Conceição Antunes
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Fabiana Carvalho
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Jessica Elkifury
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Assunta Gasparin
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | | | | | | | - Andressa Souza
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | | | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown
| | - Wolnei Caumo Md
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
- Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre, Porto Alegre
- Department of Surgery, School of Medicine, Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Primary Afferent-Derived BDNF Contributes Minimally to the Processing of Pain and Itch. eNeuro 2018; 5:eN-NWR-0402-18. [PMID: 30627644 PMCID: PMC6325548 DOI: 10.1523/eneuro.0402-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
BDNF is a critical contributor to neuronal growth, development, learning, and memory. Although extensively studied in the brain, BDNF is also expressed by primary afferent sensory neurons in the peripheral nervous system. Unfortunately, anatomical and functional studies of primary afferent-derived BDNF have been limited by the availability of appropriate molecular tools. Here, we used targeted, inducible molecular approaches to characterize the expression pattern of primary afferent BDNF and the extent to which it contributes to a variety of pain and itch behaviors. Using a BDNF-LacZ reporter mouse, we found that BDNF is expressed primarily by myelinated primary afferents and has limited overlap with the major peptidergic and non-peptidergic subclasses of nociceptors and pruritoceptors. We also observed extensive neuronal, but not glial, expression in the spinal cord dorsal horn. In addition, because BDNF null mice are not viable and even Cre-mediated deletion of BDNF from sensory neurons could have developmental consequences, here we deleted BDNF selectively from sensory neurons, in the adult, using an advillin-Cre-ER line crossed to floxed BDNF mice. We found that BDNF deletion in the adult altered few itch or acute and chronic pain behaviors, beyond sexually dimorphic phenotypes in the tail immersion, histamine, and formalin tests. Based on the anatomical distribution of sensory neuron-derived BDNF and its limited contribution to pain and itch processing, we suggest that future studies of primary afferent-derived BDNF should examine behaviors evoked by activation of myelinated primary afferents.
Collapse
|
9
|
Liu B, Liu Y, Li N, Zhang J, Zhang X. Oxycodone regulates incision-induced activation of neurotrophic factors and receptors in an acute post-surgery pain rat model. J Pain Res 2018; 11:2663-2674. [PMID: 30464584 PMCID: PMC6214342 DOI: 10.2147/jpr.s180396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Oxycodone, which is one of the most commonly used opiates in postoperative pain management, has a different affinity for μ-opioid receptors (MOR), κ-opioid receptors (KOR), and δ-opioid receptors (DOR). Accumulating research has suggested that neurotrophins (NTs) are involved in opioid analgesia. In the current exploratory study, we aimed to investigate the underlying mechanisms of the analgesic effects of oxycodone on post-surgery pain in rats and to determine whether neurotrophic factors and receptors were involved in these effects. Methods Mechanical and thermal sensitivity tests were used to evaluate the validity of the postoperative pain rat model and to determine the analgesic effect of oxycodone. Quantitative PCR and Western blot analysis were used to detect the changes in the expression of three types of opioid receptors and NTs and their high-affinity receptors in the spinal cord after surgery and oxycodone administration. Results Oxycodone showed an analgesic effect on plantar incision (PI)-induced hyperalgesia, especially thermal hyperalgesia. We detected an obvious increase in MOR expression levels but insignificant changes in KOR and DOR levels in the spinal cord after PI. Moreover, we found that oxycodone was able to reverse the increased expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor (TrK) A, and TrkB and the decreased expression of NT-3 and TrkC, after PI. Pretreatment with oxycodone also altered the expression of these mediators. Conclusion Based on the results, possible underlying mechanisms for the antinociceptive properties of oxycodone in acute postoperative pain include the activation of MOR downstream signaling and the regulation of NTs and receptor expression through attenuation of glial activation and fortification of antinociceptive mediators in the spinal cord. This study may provide new insights into the molecular mechanisms underlying the analgesic action of oxycodone.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Yi Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|
10
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
11
|
Zhang Y, Ji F, Wang G, He D, Yang L, Zhang M. BDNF Activates mTOR to Upregulate NR2B Expression in the Rostral Anterior Cingulate Cortex Required for Inflammatory Pain-Related Aversion in Rats. Neurochem Res 2018; 43:681-691. [PMID: 29353374 DOI: 10.1007/s11064-018-2470-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) has been demonstrated to mediate pain-related aversion induced by formalin in the rostral anterior cingulate cortex (rACC). However, it remains unclear the signaling pathways and regulatory proteins involved. In the rACC, brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator, has been shown to play a role in the development and persistence of chronic pain. In this study, we used a rat formalin-induced inflammatory pain model to demonstrate BDNF up-regulation in the rACC. Stimulation with exogenous BDNF up-regulated mTOR, whilst cyclotraxin B (CTX-B), a tropomyosin receptor kinase B (TrkB) antagonist, down-regulated mTOR. Our results suggest BDNF could activate an mTOR signaling pathway. Subsequently, we used formalin-induced conditioned place avoidance (F-CPA) training in rat models to investigate if mTOR activation was required for pain-related aversion. We demonstrated that BDNF/mTOR signaling could activate the NMDA receptor subunit episilon-2 (NR2B), which is required for F-CPA. Our results reveal that BDNF activates mTOR to up-regulate NR2B expression, which is required for inflammatory pain-related aversion in the rACC of rats.
Collapse
Affiliation(s)
- Yuangui Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Anesthesiology, Weifang People's Hospital, Weifang, China
| | - Fanceng Ji
- Department of Anesthesiology, Weifang People's Hospital, Weifang, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dong He
- Shandong University, Jinan, China
| | - Le Yang
- Shandong University, Jinan, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
12
|
Marcos J, Galleguillos D, Pelissier T, Hernández A, Velásquez L, Villanueva L, Constandil L. Role of the spinal TrkB-NMDA receptor link in the BDNF-induced long-lasting mechanical hyperalgesia in the rat: A behavioural study. Eur J Pain 2017; 21:1688-1696. [DOI: 10.1002/ejp.1075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2017] [Indexed: 11/05/2022]
Affiliation(s)
- J.L. Marcos
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
- Laboratory of Veterinary Pharmacology and Therapeutics; School of Veterinary Science; Viña del Mar University; Chile
| | - D. Galleguillos
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
| | - T. Pelissier
- Program of Molecular and Clinical Pharmacology; Institute of Biomedical Sciences (ICBM); Faculty of Medicine; University of Chile; Santiago Chile
| | - A. Hernández
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
| | - L. Velásquez
- Center for Integrative Medicine and Innovative Science (CIMIS); Faculty of Medicine; Andres Bello University; Santiago Chile
| | - L. Villanueva
- Centre de Psychiatrie et Neurosciences; INSERM UMR 894; Paris France
| | - L. Constandil
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA); University of Santiago of Chile; Chile
| |
Collapse
|
13
|
Kazemi A, Rahmati M, Eslami R, Sheibani V. Activation of neurotrophins in lumbar dorsal root probably contributes to neuropathic pain after spinal nerve ligation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:29-35. [PMID: 28133521 PMCID: PMC5243971 DOI: 10.22038/ijbms.2017.8089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 10/20/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Neurotrophins (NTs) exert various effects on neuronal system. Growing evidence indicates that NTs are involved in the pathophysiology of neuropathic pain. However, the exact role of these proteins in modulating nociceptive signaling requires being defined. Thus, the aim of this study was to evaluate the effects of spinal nerve ligation (SNL) on NTs activation in the lumbar dorsal root. MATERIALS AND METHODS Ten male Wistar rats were randomly assigned to two groups: tight ligation of the L5 spinal nerve (SNL: n=5) and Sham (n=5). In order to produce neuropathic pain, the L5 spinal nerve was tightly ligated (SNL). Then, allodynia and hyperalgesia tests were conducted weekly. After 4 weeks, tissue samples were taken from the two groups for laboratory evaluations. Here, Real-Time PCR quantity method was used for measuring NTs gene expression levels. RESULTS SNL resulted in a significant weight loss in the soleus muscle (P<0.05), mechanical allodynia and thermal hyperalgesia thresholds (respectively, P<0.05; P<0.05). Also, NGF, NT-4, NT-3, TrkA, TrkB and TrkC expression were up-regulated following spinal nerve ligation group (respectively, P=0.025, P=0.013, P=0.001, P=0.002, P<0.001, P=001) (respectively, 4.7, 5.2, 7.5, 5.1, 7.2, 6.2 folds). CONCLUSION The present study provides new evidence that neuropathic pain induced by spinal nerve ligation probably activates NTs and Trk receptors expression in DRG. However, further studies are needed to better elucidate the role of NTs in a neuropathic pain.
Collapse
Affiliation(s)
- Abdolreza Kazemi
- Department of Physical Education and Sports Sciences, Faculty of Humanity and Literature, Vali E Asr University of Rafsanjan, Rafsanjan, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rahmati
- Departments of Physical Education and Sports Sciences, Lorestan University, Khoram Abad, Iran
| | - Rasoul Eslami
- Department of corrective exercise and Sports injury, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Abstract
Neurotrophins (NTs) belong to a family of trophic factors that regulate the survival, growth and programmed cell death of neurons. In mammals, there are four structurally and functionally related NT proteins, viz. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 and neurotrophin 4. Most research on NTs to date has focussed on the effects of NGF and BDNF signalling via their respective cognate high affinity neurotrophic tyrosine kinase viz TrkA and TrkB receptors. Apart from the key physiologic roles of NGF and BDNF in peripheral and central nervous system function, NGF and BDNF signalling via TrkA and TrkB receptors respectively have been implicated in mechanisms underpinning neuropathic pain. Additionally, NGF and BDNF signalling via the low-affinity pan neurotrophin receptor at 75 kDa (p75NTR) may also contribute to the pathobiology of neuropathic pain. In this review, we critically assess the role of neurotrophins signalling via their cognate high affinity receptors as well as the low affinity p75NTR in the pathophysiology of peripheral neuropathic and central neuropathic pain. We also identify knowledge gaps to guide future research aimed at generating novel insight on how to optimally modulate NT signalling for discovery of novel therapeutics to improve neuropathic pain relief.
Collapse
|
15
|
Lewin GR, Nykjaer A. Pro-neurotrophins, sortilin, and nociception. Eur J Neurosci 2014; 39:363-74. [PMID: 24494677 PMCID: PMC4232910 DOI: 10.1111/ejn.12466] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/13/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
Nerve growth factor (NGF) signaling is important in the development and functional maintenance of nociceptors, but it also plays a central role in initiating and sustaining heat and mechanical hyperalgesia following inflammation. NGF signaling in pain has traditionally been thought of as primarily engaging the classic high-affinity receptor tyrosine kinase receptor TrkA to initiate sensitization events. However, the discovery that secreted proforms of nerve NGF have biological functions distinct from the processed mature factors raised the possibility that these proneurotrophins (proNTs) may have distinct function in painful conditions. ProNTs engage a novel receptor system that is distinct from that of mature neurotrophins, consisting of sortilin, a type I membrane protein belonging to the VPS10p family, and its co-receptor, the classic low-affinity neurotrophin receptor p75NTR. Here, we review how this new receptor system may itself function with or independently of the classic TrkA system in regulating inflammatory or neuropathic pain.
Collapse
Affiliation(s)
- Gary R Lewin
- Department of Neuroscience, Molecular Physiology of Somatic Sensation Group, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13122, Berlin, Germany
| | | |
Collapse
|
16
|
Lewin GR, Lechner SG, Smith ESJ. Nerve growth factor and nociception: from experimental embryology to new analgesic therapy. Handb Exp Pharmacol 2014; 220:251-282. [PMID: 24668476 DOI: 10.1007/978-3-642-45106-5_10] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nerve growth factor (NGF) is central to the development and functional regulation of sensory neurons that signal the first events that lead to pain. These sensory neurons, called nociceptors, require NGF in the early embryo to survive and also for their functional maturation. The long road from the discovery of NGF and its roles during development to the realization that NGF plays a major role in the pathophysiology of inflammatory pain will be reviewed. In particular, we will discuss the various signaling events initiated by NGF that lead to long-lasting thermal and mechanical hyperalgesia in animals and in man. It has been realized relatively recently that humanized function blocking antibodies directed against NGF show remarkably analgesic potency in human clinical trials for painful conditions as varied as osteoarthritis, lower back pain, and interstitial cystitis. Thus, anti-NGF medication has the potential to make a major impact on day-to-day chronic pain treatment in the near future. It is therefore all the more important to understand the precise pathways and mechanisms that are controlled by NGF to both initiate and sustain mechanical and thermal hyperalgesia. Recent work suggests that NGF-dependent regulation of the mechanosensory properties of sensory neurons that signal mechanical pain may open new mechanistic avenues to refine and exploit relevant molecular targets for novel analgesics.
Collapse
Affiliation(s)
- Gary R Lewin
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13122, Berlin, Germany,
| | | | | |
Collapse
|
17
|
Genome-wide expression analysis of Ptf1a- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive reflex plasticity. J Neurosci 2013; 33:7299-307. [PMID: 23616538 DOI: 10.1523/jneurosci.0491-13.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons of the spinal dorsal horn play critical roles in the processing of noxious and innocuous sensory information. They form a family of morphologically and functionally diverse neurons that likely fall into distinct subtypes. Traditional classifications rely mainly on differences in dendritic tree morphology and firing patterns. Although useful, these markers are not comprehensive and cannot be used to drive specific genetic manipulations targeted at defined subsets of neurons. Here, we have used genome-wide expression profiling of spinal dorsal horns of wild-type mice and of two strains of transcription factor-deficient mice (Ptf1a(-/-) and Ascl1/Mash1(-/-) mice) to identify new genetic markers for specific subsets of dorsal horn inhibitory interneurons. Ptf1a(-/-) mice lack all inhibitory interneurons in the dorsal horn, whereas only the late-born inhibitory interneurons are missing in Ascl1(-/-) mice. We found 30 genes that were significantly downregulated in the dorsal horn of Ptf1a(-/-) mice. Twenty-one of those also showed reduced expression in Ascl1(-/-) mice. In situ hybridization analyses of all 30 genes identified four genes with primarily non-overlapping expression patterns in the dorsal horn. Three genes, pDyn coding the neuropeptide dynorphin, Kcnip2 encoding a potassium channel associated protein, and the nuclear receptor encoding gene Rorb, were expressed in Ascl1-dependent subpopulations of the superficial dorsal horn. The fourth gene, Tfap2b, encoding a transcription factor, is expressed mainly in a Ascl1-independent subpopulation of the deep dorsal horn. Functional experiments in isolated spinal cords showed that the Ascl1-dependent inhibitory interneurons are key players of nociceptive reflex plasticity.
Collapse
|
18
|
Grau JW, Huie JR, Garraway SM, Hook MA, Crown ED, Baumbauer KM, Lee KH, Hoy KC, Ferguson AR. Impact of behavioral control on the processing of nociceptive stimulation. Front Physiol 2012; 3:262. [PMID: 22934018 PMCID: PMC3429038 DOI: 10.3389/fphys.2012.00262] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/23/2012] [Indexed: 12/24/2022] Open
Abstract
How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation), it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation). These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit). Uncontrollable stimulation also enhances mechanical reactivity. We review evidence that training with controllable stimulation engages a brain-derived neurotrophic factor (BDNF)-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin). A model is proposed that assumes nociceptive input is gated at an early sensory stage. This gate is sensitive to current environmental relations (between proprioceptive and nociceptive input), allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain.
Collapse
Affiliation(s)
- James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University College Station, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
PI3-kinase/Akt pathway-regulated membrane insertion of acid-sensing ion channel 1a underlies BDNF-induced pain hypersensitivity. J Neurosci 2012; 32:6351-63. [PMID: 22553040 DOI: 10.1523/jneurosci.4479-11.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Central neural plasticity plays a key role in pain hypersensitivity. This process is modulated by brain-derived neurotrophic factor (BDNF) and also involves the type 1a acid-sensing ion channel (ASIC1a). However, the interactions between the BDNF receptor, tropomyosin-related kinase B (TrkB), and ASIC1a are unclear. Here, we show that deletion of ASIC1 gene suppressed the sustained mechanical hyperalgesia induced by intrathecal BDNF application in mice. In both rat spinal dorsal horn neurons and heterologous cell cultures, the BDNF/TrkB pathway enhanced ASIC1a currents via phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB/Akt) cascade and phosphorylation of cytoplasmic residue Ser-25 of ASIC1a, resulting in enhanced forward trafficking and increased surface expression. Moreover, in both rats and mice, this enhanced ASIC1a activity was required for BDNF-mediated hypersensitivity of spinal dorsal horn nociceptive neurons and central mechanical hyperalgesia, a process that was abolished by intrathecal application of a peptide representing the N-terminal region of ASIC1a encompassing Ser-25. Thus, our results reveal a novel mechanism underlying central sensitization and pain hypersensitivity, and reinforce the critical role of ASIC1a channels in these processes.
Collapse
|
20
|
Abstract
Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization.
Collapse
|
21
|
Bretzner F, Plemel JR, Liu J, Richter M, Roskams AJ, Tetzlaff W. Combination of olfactory ensheathing cells with local versus systemic cAMP treatment after a cervical rubrospinal tract injury. J Neurosci Res 2010; 88:2833-46. [PMID: 20568293 DOI: 10.1002/jnr.22440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The failure of CNS axons to regenerate following traumatic injury is due in part to a growth-inhibitory environment in CNS as well as a weak intrinsic neuronal growth response. Olfactory ensheathing cell (OECs) transplants have been reported to create a favorable environment promoting axonal regeneration, remyelination, and functional recovery after spinal cord injury. However, in our previous experiments, OEC transplants failed to promote regeneration of rubrospinal axons through and beyond the site of a dorsolateral funiculus crush in rats. Rubrospinal neurons undergo massive cell atrophy and limited expression of regeneration-associated genes after axotomy. Using the same injury model, we tested the hypothesis that treatment of the red nucleus with cAMP, known to stimulate the intrinsic growth response in other neurons, will promote rubrospinal regeneration in combination with OEC transplants. In addition, we assessed a systemic increase of cAMP using the phosphodiesterase inhibitor rolipram. OECs prevented cavity formation, attenuated astrocytic hypertrophy and the retraction of the axotomized rubrospinal axons, and tended to reduce the overall lesion size. OEC transplantation lowered the thresholds for thermal sensitivity of both forepaws. None of our treatments, alone or in combination, promoted rubrospinal regeneration through the lesion site. However, the systemic elevation of cAMP with rolipram resulted in greater numbers of OECs and axonal density within the graft and improved motor performance in a cylinder test in conjunction with enhanced rubrospinal branching and attenuated astrocytic hypertrophy.
Collapse
Affiliation(s)
- Frederic Bretzner
- ICORD-International Collaboration On Repair Discoveries, Blusson Spinal Cord Centre, Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Vallejo R, Tilley DM, Vogel L, Benyamin R. The Role of Glia and the Immune System in the Development and Maintenance of Neuropathic Pain. Pain Pract 2010; 10:167-84. [DOI: 10.1111/j.1533-2500.2010.00367.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2402] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
|
24
|
Rodríguez Fermepin M, Trinchero M, Minetto J, Beltrán A, Fernández BE. Brain derived neurotrophic factor and neurotrophin-4 employ different intracellular pathways to modulate norepinephrine uptake and release in rat hypothalamus. Neuropeptides 2009; 43:275-82. [PMID: 19576631 DOI: 10.1016/j.npep.2009.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 01/19/2023]
Abstract
Classical actions of the neurotrophin family are related to cellular survival and differentiation. Moreover, acute effects of neurotrophins have been reported. Although neurotrophins effects on synaptic transmission at central nervous system level have been largely studied, acute effects of neurotrophins on hypothalamic noradrenergic transmission are still poorly understood. Thus, we have studied the effects of the neurotrophin family members nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) on norepinephrine (NE) neuronal uptake and its evoked release, as well as the receptor and the intracellular pathways involved in these processes in rat hypothalamus. Present results indicate that BDNF increased NE uptake and decreased its evoked release through a mechanism that involve Trk B receptor and phospholipase C. Moreover, NT-4, also through the Trk B receptor, decreased NE uptake and its evoked release by activating phosphatidylinositol 3-OH-kinase. These effects were observed in whole hypothalamus as well as in the anterior hypothalamic zone. On the other hand, NGF did not modify noradrenergic transmission. In conclusion, we showed for the first time that BDNF and NT-4 activate two different intracellular signalling pathways through a Trk B receptor dependent mechanism. Furthermore, present findings support the hypothesis that BDNF and NT-4 acutely applied, could be considered as modulators of noradrenergic transmission and thus may regulate hypothalamic physiological as well as pathophysiological responses.
Collapse
Affiliation(s)
- M Rodríguez Fermepin
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, INFIBIOC, Universidad de Buenos Aires, CONICET, C1113AAD Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
25
|
TrkB signaling is required for both the induction and maintenance of tissue and nerve injury-induced persistent pain. J Neurosci 2009; 29:5508-15. [PMID: 19403818 DOI: 10.1523/jneurosci.4288-08.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation of primary afferent nociceptors produces acute, short-lived pain, and tissue or nerve injury induces long-term enhancement of nociceptive processing, manifested as hypersensitivity to thermal and mechanical stimulation. Here we used a chemical-genetic and pharmacological approach to study the contribution of the receptor tyrosine kinase, type 2 (TrkB) to the generation and maintenance of injury-induced persistent pain. We performed the studies in wild-type mice and transgenic (TrkB(F616A)) mice that express mutant but fully functional TrkB receptors. By injecting a small molecule derivative of the protein kinase inhibitor protein phosphatase 1 (1NM-PP1), it is possible to produce highly selective inhibition of TrkB autophosphorylation in adult mice, without interfering with the activity of other protein kinases. We report that oral administration of 1NM-PP1, at doses that blocked phosphorylation of TrkB in the spinal cord, had no effect in behavioral tests of acute heat, mechanical, or chemical pain sensitivity. However, the same pretreatment with 1NM-PP1 prevented the development of tissue- or nerve injury-induced heat and mechanical hypersensitivity. Established hypersensitivity was transiently reversed by intraperitoneal injection of 1NM-PP1. Although interfering with TrkB signaling altered neither acute capsaicin nor formalin-induced pain behavior, the prolonged mechanical hypersensitivity produced by these chemical injuries was prevented by 1NM-PP1 inhibition of TrkB signaling. We conclude that TrkB signaling is not only an important contributor to the induction of heat and mechanical hypersensitivity produced by tissue or nerve injury but also to the persistence of the pain.
Collapse
|
26
|
Bretzner F, Liu J, Currie E, Roskams AJ, Tetzlaff W. Undesired effects of a combinatorial treatment for spinal cord injury--transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus. Eur J Neurosci 2009; 28:1795-807. [PMID: 18973595 DOI: 10.1111/j.1460-9568.2008.06462.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transplantations of olfactory ensheathing cells (OECs) have been reported to promote axonal regeneration and functional recovery after spinal cord injury, but have demonstrated limited growth promotion of rat rubrospinal axons after a cervical dorsolateral funiculus crush. Rubrospinal neurons undergo massive atrophy after cervical axotomy and show only transient expression of regeneration-associated genes. Cell body treatment with brain-derived neurotrophic factor (BDNF) prevents this atrophy, stimulates regeneration-associated gene expression and promotes regeneration of rubrospinal axons into peripheral nerve transplants. Here, we hypothesized that the failure of rubrospinal axons to regenerate through a bridge of OEC transplants was due to this weak intrinsic cell body response. Hence, we combined BDNF treatment of rubrospinal neurons with transplantation of highly enriched OECs derived from the nasal mucosa and assessed axonal regeneration as well as behavioral changes after a cervical dorsolateral funiculus crush. Each treatment alone as well as their combination prevented the dieback of the rubrospinal axons, but none of them promoted rubrospinal regeneration beyond the lesion/transplantation site. Motor performance in a food-pellet reaching test and forelimb usage during vertical exploration (cylinder test) were more impaired after combining transplantation of OECs with BDNF treatment. This impaired motor performance correlated with lowered sensory thresholds in animals receiving the combinatorial therapy - which were not seen with each treatment alone. Only this combinatorial treatment group showed enhanced sprouting of calcitonin gene-related peptide-positive axons rostral to the lesion site. Hence, some combinatorial treatments, such as OECs with BDNF, may have undesired effects in the injured spinal cord.
Collapse
Affiliation(s)
- Frederic Bretzner
- ICORD (International Collaboration On Repair Discoveries), Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
27
|
Abstract
The prevalence of people suffering from chronic pain is extremely high and pain affects millions of people worldwide. As such, persistent pain represents a major health problem and an unmet clinical need. The reason for the high incidence of chronic pain patients is in a large part due to a paucity of effective pain control. An important reason for poor pain control is undoubtedly a deficit in our understanding of the underlying causes of chronic pain and as a consequence our arsenal of analgesic therapies is limited. However, there is considerable hope for the development of new classes of analgesic drugs by targeting novel processes contributing to clinically relevant pain. In this chapter we highlight a number of molecular species which are potential therapeutic targets for future neuropathic pain treatments. In particular, the roles of voltage-gated ion channels, neuroinflammation, protein kinases and neurotrophins are discussed in relation to the generation of neuropathic pain and how by targeting these molecules it may be possible to provide better pain control than is currently available.
Collapse
Affiliation(s)
- Fabien Marchand
- King's College London, London, Neurorestoration, CARD Wolfson Wing, Hodgkin Building, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | | | | |
Collapse
|
28
|
Liu F, Sun WW, Wang Y, Hu LQ, Dai P, Tian CF, Wang TH. Effects of electro-acupuncture on NT-4 expression in spinal dorsal root ganglion and associated segments of the spinal dorsal horn in cats subjected to adjacent dorsal root ganglionectomy. Neurosci Lett 2008; 450:158-62. [PMID: 18838104 DOI: 10.1016/j.neulet.2008.09.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 11/17/2022]
Abstract
It is well known that neuroplasticity occurs in the central nervous system in response to injury. Electro-acupuncture (EA) may also promote neuroplasticity. But little is known about the underlying molecular mechanisms for the beneficial effects of EA. This study investigated the effects of EA on neurotrophin-4 (NT-4) expression in L(6) spinal dorsal root ganglion (DRG) and associated segments of the spinal dorsal horn in cats subjected to unilateral removal of L(1)-L(5) and L(7)-S(2) DRG. NT-4 protein was normally present in the cytoplasm of the L(6) DRG neurons and L(3) and L(6) spinal dorsal horn neurons and glia. Adjacent ganglionectomy leads to a significant decrease in NT-4 expression in the L(6) DRG, but no change in the spinal dorsal horn. Following EA treatment a significant increase occurred in the L(6) DRG at 14 days post-operation (dpo) as well as the L(6) cord segment at 7 and 14 dpo. These findings pointed to a possible association between NT-4 expression and EA promoted spinal cord plasticity in adult cats subjected to partial ganglionectomy.
Collapse
Affiliation(s)
- Fen Liu
- Institute of Neuroscience, Kunming Medical College, Ren Ming Western Road 191, Kunming, Yunnan 650031, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Soril LJ, Ramer LM, McPhail LT, Kaan TK, Ramer MS. Spinal brain-derived neurotrophic factor governs neuroplasticity and recovery from cold-hypersensitivity following dorsal rhizotomy. Pain 2008; 138:98-110. [DOI: 10.1016/j.pain.2007.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 11/07/2007] [Accepted: 11/19/2007] [Indexed: 12/22/2022]
|
30
|
Merighi A, Bardoni R, Salio C, Lossi L, Ferrini F, Prandini M, Zonta M, Gustincich S, Carmignoto G. Presynaptic functional trkB receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II (substantia gelatinosa) of postnatal rat spinal cord. Dev Neurobiol 2008; 68:457-75. [PMID: 18172890 DOI: 10.1002/dneu.20605] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A subset of primary sensory neurons produces BDNF, which is implicated in control of nociceptive neurotransmission. We previously localized full-length trkB receptors on their terminals within lamina II. To functionally study these receptors, we here employed patch-clamp recordings, calcium imaging and immunocytochemistry on slices from 8-12 days post-natal rats. In this preparation, BDNF (100-500 ng/mL) enhances the release of sensory neurotransmitters (glutamate, substance P, CGRP) in lamina II by acting on trkB receptors expressed by primary afferent fibers of the peptidergic nociceptive type (PN-PAFs). Effect was blocked by trk antagonist K252a or anti-trkB antibody clone 47. A pre-synaptic mechanism was demonstrated after (i) patch-clamp recordings where the neurotrophin induced a significant increase in frequency, but not amplitude, of AMPA-mediated mEPSCs, (ii) real time calcium imaging, where sustained application of BDNF evoked an intense response in up to 57% lamina II neurons with a significant frequency rise. Antagonists of ionotropic glutamate receptors and NK(1) receptors completely inhibited the calcium response to BDNF. Reduction of CGRP (a specific marker of PN-PAFs) and substance P content in dorsal horn following BDNF preincubation, and analysis of the calcium response after depletion with capsaicin, confirmed that the neurotrophin presynaptically enhanced neurotransmitter release from PN-PAFs. This is the first demonstration that trkB receptors expressed by PN-PAF terminals in lamina II are functional during postnatal development. Implications of this finding are discussed considering that BDNF can be released by these same terminals and microglia, a fraction of which (as shown here) contains BDNF also in unactivated state.
Collapse
Affiliation(s)
- Adalberto Merighi
- Dipartimento di Morfofisiologia Veterinaria, Università di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Park TJ, Lu Y, Jüttner R, Smith ESJ, Hu J, Brand A, Wetzel C, Milenkovic N, Erdmann B, Heppenstall PA, Laurito CE, Wilson SP, Lewin GR. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber). PLoS Biol 2008; 6:e13. [PMID: 18232734 PMCID: PMC2214810 DOI: 10.1371/journal.pbio.0060013] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 12/10/2007] [Indexed: 11/23/2022] Open
Abstract
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception. Chemicals such as capsaicin and acid are considered noxious because they cause irritation and pain when applied to the skin. Acid is, for example, a very noxious stimulus and can cause intense pain. Indeed, acid is both noxious and painful to all animals including amphibians and fish. Here we describe a member of the rodent family, the African naked mole-rat (Heterocephalus glaber), that is behaviorally completely oblivious to capsaicin and acid. Tissue injury and inflammation increase sensitivity to normally non painful stimuli, a phenomenon called hyperalgesia. Here we show that the naked mole-rat does not experience hyperalgesia to painful thermal stimuli after inflammation. To our knowledge, no other mammal has so far been described that is selectively insensitive to chemical pain or that lacks thermal hyperalgesia. Naked mole-rats live in very large subterranean social groups and are remarkably tolerant to low-oxygen and high–carbon dioxide conditions. We hypothesize that naked mole-rats are selectively pain insensitive partly because of selection pressure arising from the extremity of their normal habitat. Naked but far from vulnerable, the African naked mole-rat is an unusual mammal that is unique because it is impervious to painful chemicals that cause severe pain in all other species studied.
Collapse
Affiliation(s)
- Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail: (TJP); (GRL)
| | - Ying Lu
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - René Jüttner
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Jing Hu
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Antje Brand
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | | | | - Bettina Erdmann
- Department of Electron Microscopy, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Paul A Heppenstall
- Klinik für Anaesthesiologie und Operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Charles E Laurito
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Steven P Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Gary R Lewin
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- * To whom correspondence should be addressed. E-mail: (TJP); (GRL)
| |
Collapse
|
32
|
Ren K, Dubner R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF-TrkB signaling and NMDA receptors. Mol Neurobiol 2008; 35:224-35. [PMID: 17917111 DOI: 10.1007/s12035-007-0028-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/30/1999] [Accepted: 01/08/2007] [Indexed: 12/18/2022]
Abstract
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.
Collapse
Affiliation(s)
- Ke Ren
- Department of Biomedical Sciences, Dental School & Program in Neuroscience, University of Maryland, 650 W. Baltimore St., Baltimore, MD 21201-1586, USA.
| | | |
Collapse
|
33
|
Duric V, McCarson KE. Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Mol Pain 2007; 3:32. [PMID: 17974009 PMCID: PMC2174921 DOI: 10.1186/1744-8069-3-32] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 10/31/2007] [Indexed: 01/14/2023] Open
Abstract
Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS) through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1) receptors and brain-derived neurotrophic factor (BDNF), known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA) into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB), while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.
Collapse
Affiliation(s)
- Vanja Duric
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160 USA.
| | | |
Collapse
|
34
|
Inoue K, Tsuda M, Tozaki-Saitoh H. Modification of neuropathic pain sensation through microglial ATP receptors. Purinergic Signal 2007; 3:311-6. [PMID: 18404444 PMCID: PMC2072920 DOI: 10.1007/s11302-007-9071-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 08/02/2007] [Indexed: 03/21/2023] Open
Abstract
Neuropathic pain that typically develops when peripheral nerves are damaged through surgery, bone compression in cancer, diabetes, or infection is a major factor causing impaired quality of life in millions of people worldwide. Recently, there has been a rapidly growing body of evidence indicating that spinal glia play a critical role in the pathogenesis of neuropathic pain. Accumulating findings also indicate that nucleotides play an important role in neuron-glia communication through P2 purinoceptors. Damaged neurons release or leak nucleotides including ATP and UTP to stimulate microglia through P2 purinoceptors expressing on microglia. It was shown in an animal model of neuropathic pain that microglial P2X4 and P2X7 receptors are crucial in pain signaling after peripheral nerve lesion. In this review, we describe the modification of neuropathic pain sensation through microglial P2X4 and P2X7, with the possibility of P2Y6 and P2Y12 involvement.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan,
| | | | | |
Collapse
|
35
|
Ramer LM, McPhail LT, Borisoff JF, Soril LJJ, Kaan TKY, Lee JHT, Saunders JWT, Hwi LPR, Ramer MS. Endogenous TrkB ligands suppress functional mechanosensory plasticity in the deafferented spinal cord. J Neurosci 2007; 27:5812-22. [PMID: 17522325 PMCID: PMC6672770 DOI: 10.1523/jneurosci.0491-07.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dorsal root injury (DRI) disrupts the flow of sensory information to the spinal cord. Although primary afferents do not regenerate to their original targets, spontaneous recovery can, by unknown mechanisms, occur after DRI. Here, we show that brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), but not nerve growth factor or neurotrophin-4, are upregulated in the spinal gray matter after DRI. Because endogenous BDNF and NT-3 have well established roles in synaptic and axonal plasticity, we hypothesized that they contributed to spontaneous recovery after DRI. We first developed a model of DRI-induced mechanosensory dysfunction: rat C7/8 DRI produced a deficit in low-threshold cutaneous mechanosensation that spontaneously improved within 10 d but did not recover completely. To determine the effects of endogenous BDNF and NT-3, we administered TrkB-Fc or TrkC-Fc fusion proteins throughout the recovery period. To our surprise, TrkB-Fc stimulated complete recovery of mechanosensation by 6 d after DRI. It also stimulated mechanosensory axon sprouting but prevented deafferentation-induced serotonergic sprouting. TrkC-Fc had no effect on low-threshold mechanosensory behavior or axonal plasticity. There was no mechanosensory improvement with single-bolus TrkB-Fc infusions at 10 d after DRI (despite significantly reducing rhizotomy-induced cold pain), indicating that neuromodulatory effects of BDNF did not underlie mechanosensory recovery. Continuous infusion of the pan-neurotrophin antagonist K252a also stimulated behavioral and anatomical plasticity, indicating that these effects of TrkB-Fc treatment occurred independent of signaling by other neurotrophins. These results illustrate a novel, plasticity-suppressing effect of endogenous TrkB ligands on mechanosensation and mechanosensory primary afferent axons after spinal deafferentation.
Collapse
Affiliation(s)
- Leanne M. Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Lowell T. McPhail
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jaimie F. Borisoff
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Neil Squire Society, Vancouver, British Columbia, Canada V5M 4L9
| | - Lesley J. J. Soril
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy K. Y. Kaan
- Neurorestoration Group, King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, United Kingdom
| | - Jae H. T. Lee
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - James W. T. Saunders
- University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada V5Z 4E3, and
| | - Lucy P. R. Hwi
- University of Manitoba Faculty of Medicine, Undergraduate Medical Education, Winnipeg, Manitoba, Canada R3E 3P5
| | - Matt S. Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
36
|
Kaku R, Yokoyama M, Kobayashi H, Matsuoka Y, Sato T, Mizobuchi S, Itano Y, Morita K. Altered Response to Formalin by L5 Spinal Nerve Ligation in Rats: A Behavioral and Molecular Study. Anesth Analg 2007; 104:936-43. [PMID: 17377110 DOI: 10.1213/01.ane.0000258762.22607.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The status of neuropathic pain alters the responsiveness to formalin injection in rats. However, the mechanism by which this alteration occurs is unknown. METHODS We used immunocytochemistry to examine the expression of brain-derived neurotrophic factor (BDNF) and calcitonin gene-related peptide (CGRP) in the spinal cord of rats with L5 spinal nerve ligation (SNL)-induced neuropathy, and investigated the expression of c-Fos in the spinal cord after injection of formalin in the hindpaw of rats with SNL. RESULTS Four weeks after SNL, the withdrawal threshold was significantly lower in the SNL group than in the sham-operated (sham) group (n = 12 per group, P < 0.05). In the SNL group, expression of BDNF in the L4 (P < 0.05) and L5 (P < 0.01) superficial dorsal horn was significantly decreased compared to that in the sham group. CGRP protein in the L5 but not in the L4, dorsal horn was significantly decreased compared to that in the sham group (P < 0.01). After formalin injection, spontaneous pain responses in the SNL group were significantly decreased compared to those in the sham group (P < 0.05). Immunolabeling for c-Fos was significantly decreased in the L4 and L5 dorsal horn in the SNL group (P < 0.01). CONCLUSION Our examination of c-Fos distribution indicates that decreased neuronal activity in the spinal cord in response to inflammatory pain may be important for altering the perception of acute pain. Decreased BDNF expression in response to SNL-induced neuropathy may be involved in this alteration.
Collapse
Affiliation(s)
- Ryuji Kaku
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama City 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead to new strategies for the management of intractable chronic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan,
| |
Collapse
|
38
|
Abstract
The neurotrophin family of neurotrophic factors are well-known for their effects on neuronal survival and growth. Over the past decade, considerable evidence has accumulated from both humans and animals that one neurotrophin, nerve growth factor (NGF), is a peripheral pain mediator, particularly in inflammatory pain states. NGF is upregulated in a wide variety of inflammatory conditions, and NGF-neutralizing molecules are effective analgesic agents in many models of persistent pain. Such molecules are now being evaluated in clinical trials. NGF regulates the expression of a second neurotrophin, brain-derived neurotrophic factor (BDNF), in nociceptors. BDNF is released when nociceptors are activated, and it acts as a central modulator of pain. The chapter reviews the evidence for these roles (and briefly the effects of other neurotrophins), the range of conditions under which they act, and their mechanism of action.
Collapse
Affiliation(s)
- Sophie Pezet
- The London Pain Consortium, King's College London, The Wolfson Center for Age-Related Diseases, SE1 1UL London, United Kingdom.
| | | |
Collapse
|
39
|
Zhao J, Seereeram A, Nassar MA, Levato A, Pezet S, Hathaway G, Morenilla-Palao C, Stirling C, Fitzgerald M, McMahon SB, Rios M, Wood JN. Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Mol Cell Neurosci 2006; 31:539-48. [PMID: 16413788 DOI: 10.1016/j.mcn.2005.11.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/10/2005] [Accepted: 11/17/2005] [Indexed: 01/03/2023] Open
Abstract
Conditional mouse knock-outs provide an informative approach to drug target validation where no pharmacological blockers exist or global knock-outs are lethal. Here, we used the Cre-loxP system to delete BDNF in most nociceptive sensory neurons. Conditional null animals were healthy with no sensory neuron loss. However, pain-related behavior was substantially altered. Baseline thermal thresholds were reduced. Carrageenan-induced thermal hyperalgesia was inhibited. Formalin-induced pain behavior was attenuated in the second phase, and this correlated with abolition of NMDA receptor NR1 Ser896/897 phosphorylation and ERK1 and ERK2 activation in the dorsal horn; AMPA receptor phosphorylation (GluR1/Ser831) was unaffected. NGF-induced thermal hyperalgesia was halved, and mechanical secondary hyperalgesia caused by intramuscular NGF was abolished. By contrast, neuropathic pain behavior developed normally. Nociceptor-derived BDNF thus plays an important role in regulating inflammatory pain thresholds and secondary hyperalgesia, but BDNF released only from nociceptors plays no role in the development of neuropathic pain.
Collapse
Affiliation(s)
- Jing Zhao
- Molecular Nociception Group, Department of Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Coull JAM, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2006; 438:1017-21. [PMID: 16355225 DOI: 10.1038/nature04223] [Citation(s) in RCA: 1452] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 09/08/2005] [Indexed: 12/24/2022]
Abstract
Neuropathic pain that occurs after peripheral nerve injury depends on the hyperexcitability of neurons in the dorsal horn of the spinal cord. Spinal microglia stimulated by ATP contribute to tactile allodynia, a highly debilitating symptom of pain induced by nerve injury. Signalling between microglia and neurons is therefore an essential link in neuropathic pain transmission, but how this signalling occurs is unknown. Here we show that ATP-stimulated microglia cause a depolarizing shift in the anion reversal potential (E(anion)) in spinal lamina I neurons. This shift inverts the polarity of currents activated by GABA (gamma-amino butyric acid), as has been shown to occur after peripheral nerve injury. Applying brain-derived neurotrophic factor (BDNF) mimics the alteration in E(anion). Blocking signalling between BDNF and the receptor TrkB reverses the allodynia and the E(anion) shift that follows both nerve injury and administration of ATP-stimulated microglia. ATP stimulation evokes the release of BDNF from microglia. Preventing BDNF release from microglia by pretreating them with interfering RNA directed against BDNF before ATP stimulation also inhibits the effects of these cells on the withdrawal threshold and E(anion). Our results show that ATP-stimulated microglia signal to lamina I neurons, causing a collapse of their transmembrane anion gradient, and that BDNF is a crucial signalling molecule between microglia and neurons. Blocking this microglia-neuron signalling pathway may represent a therapeutic strategy for treating neuropathic pain.
Collapse
Affiliation(s)
- Jeffrey A M Coull
- Division de Neurobiologie Cellulaire, Centre de Recherche Université Laval Robert-Giffard, Québec, Québec G1J 2G3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Salio C, Lossi L, Ferrini F, Merighi A. Ultrastructural evidence for a pre- and postsynaptic localization of full-length trkB receptors in substantia gelatinosa (lamina II) of rat and mouse spinal cord. Eur J Neurosci 2005; 22:1951-66. [PMID: 16262634 DOI: 10.1111/j.1460-9568.2005.04392.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) exerts its trophic effects by acting on the high-affinity specific receptor trkB. BDNF also modulates synaptic transmission in several areas of the CNS, including the spinal cord dorsal horn, where it acts as a pain modulator by yet incompletely understood mechanisms. Spinal neurons are the main source of trkB in lamina II (substantia gelatinosa). Expression of this receptor in dorsal root ganglion (DRG) cells has been a matter of debate, whereas a subpopulation of DRG neurons bears trkA receptors and contains BDNF. By the use of two different trkB antibodies we observed that 7.7% and 10.8% of DRG neurons co-expressed BDNF + trkB but not trkA, respectively, in rat and mouse. Ultrastructurally, full-length trkB (fl-trkB) receptors were present at somato-dendritic membranes of lamina II neurons (rat: 66.8%; mouse: 73.8%) and at axon terminals (rat: 33.2%; mouse: 26.2%). In both species, about 90% of these terminals were identified as primary afferent fibres (PAFs) considering their morphology and/or neuropeptide content. All fl-trkB-immunopositive C boutons in type Ib glomeruli were immunoreactive for BDNF and, at individual glomeruli and axo-dendritic synapses, fl-trkB receptors were located in a mutually exclusive fashion at pre- or postsynaptic membranes. Thus, only a small fraction of fl-trkB-immunoreactive dendrites were postsynaptic to BDNF-immunopositive PAFs. This is the first ultrastructural description of fl-trkB localization at synapses between first- and second-order sensory neurons in lamina II, and suggests that BDNF may be released by fl-trkB-immunopositive PAFs to modulate nociceptive input in this lamina of dorsal horn.
Collapse
Affiliation(s)
- Chiara Salio
- Department of Veterinary Morphophysiology, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy
| | | | | | | |
Collapse
|
42
|
Slack SE, Grist J, Mac Q, McMahon SB, Pezet S. TrkB expression and phospho-ERK activation by brain-derived neurotrophic factor in rat spinothalamic tract neurons. J Comp Neurol 2005; 489:59-68. [PMID: 15977164 DOI: 10.1002/cne.20606] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin implicated in the phenomena of synaptic plasticity in the adult. It is found in terminals of nociceptive primary afferents. Following a pain-related stimulus, it is released in the spinal cord, where it activates its high-affinity receptor TrkB, leading to the phosphorylation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK). A large body of evidence suggests that BDNF has a positive neuromodulatory effect on glutamate transmission in the spinal cord. However, none of these studies examined anatomically whether projection neurons known to be involved in transmission of nociceptive inputs express BDNF's receptor. Because the spinothalamic tract (STT) is a well-characterized pathway for its role in the transfer and integration of sensory and nociceptive informations, this study in rats aimed to 1) determine whether neurons of the STT pathway express the TrkB receptor, 2) establish the rostrocaudal and laminar distribution of STT-TrkB neurons in the whole spinal cord, and 3) test the potential functionality of TrkB expression in these cells by investigating the ability of BDNF to activate the MAP kinase ERK. Using tract tracing coupled to immunofluorescent labeling for TrkB, we observed that in all levels of the spinal cord most STT neurons were immunoreactive for TrkB. Furthermore, microinjections of BDNF into the spinal cord or release of endogenous BDNF by intraplantar injection of capsaicin activated ERK phosphorylation in TrkB-containing STT neurons. These data suggest an important role for BDNF in nociception as an activator of spinothalamic projection neurons.
Collapse
Affiliation(s)
- Sarah E Slack
- The London Pain Consortium, King's College London, Neurorestoration, Center for Age Related Diseases, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Toth M. The epsilon theory: a novel synthesis of the underlying molecular and electrophysiological mechanisms of primary generalized epilepsy and the possible mechanism of action of valproate. Med Hypotheses 2005; 64:267-72. [PMID: 15607553 DOI: 10.1016/j.mehy.2004.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 07/05/2004] [Indexed: 12/29/2022]
Abstract
Primary generalized epilepsy may be the result of maldevelopment of central nervous system and each seizure may be the consequence of a neuronal maladaptation to an unknown stimulus using the paleospinothalamical tract due to an overexpression of brain-derived neurotrophic factor and neurotrophin-3. The subsequent protein kinase C epsilon (PKC-epsilon) activation and intracellular Ca(2+) release causes a nociceptive hypersensitization and an increased cortical hyperexcitability because of increased frequency of synchronous Ca(2+) oscillations, cortical maldevelopment at the level of synapses and an attenuation of GABA(A) receptor mediated responses in reticular thalamic nucleus. Valproate may exert its antiepileptic effect as a PKC-epsilon inhibitor, and using with a PKC-epsilon activator that cannot pass blood brain barrier, its side effects may become avoidable.
Collapse
Affiliation(s)
- Marton Toth
- Centre for Postgraduate Education, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| |
Collapse
|
44
|
McIlwrath SL, Hu J, Anirudhan G, Shin JB, Lewin GR. The sensory mechanotransduction ion channel ASIC2 (acid sensitive ion channel 2) is regulated by neurotrophin availability. Neuroscience 2005; 131:499-511. [PMID: 15708491 DOI: 10.1016/j.neuroscience.2004.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2004] [Indexed: 12/16/2022]
Abstract
Almost all sensory neurons of the dorsal root ganglia have a mechanosensitive receptive field in the periphery. We have shown that the sensitivity to mechanical stimuli of a subset of sensory neurons that are slowly adapting mechanoreceptors (SAM) is strongly dependent on the availability of brain-derived neurotrophic factor (BDNF). Here we have investigated whether the ASIC2 sodium channel, recently shown by us to be necessary for normal SAM sensitivity, might be regulated by BDNF and thus partially account for the down-regulation of SAM sensitivity seen in BDNF deficient mice. We show that the mRNA for ASIC2 channels is reduced in the DRG of BDNF deficient mice indicating that BDNF might maintain its expression in vivo. We also made short-term cultures of sensory neurons from adult BDNF deficient mice and used a specific antibody to detect the presence of ASIC2 channels in different classes of sensory neurons. We observed that the channel protein was dramatically down-regulated selectively in medium and large diameter neurons and this expression could be rescued in a dose and time dependent manner by addition of BDNF to the culture (10-100 ng/ml). Drugs that block new transcription or protein synthesis also prevented the rescue effects of BDNF. We observed that ASIC2 channels were down-regulated in sensory neurons taken from neurotrophin-4 and neurotrophin-3 deficient mice; these effects might be due to a selective loss of neurons that normally express large amounts of ASIC2 channels. In summary, our data identify the ASIC2 channel as a target of BDNF signaling in vivo and suggest that the functional down-regulation of sensory mechanotransduction in BDNF deficient mice is in part due to loss of ASIC2 expression.
Collapse
Affiliation(s)
- S L McIlwrath
- Growth Factors and Regeneration Group and Charité Universitätsmedizin Berlin, Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Buch D-13092 Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Slack SE, Pezet S, McMahon SB, Thompson SWN, Malcangio M. Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci 2004; 20:1769-78. [PMID: 15379998 DOI: 10.1111/j.1460-9568.2004.03656.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in the modulation of synaptic transmission in the spinal cord, and several circumstantial lines of evidence suggest that it has the ability to modulate the activity of the NMDA receptor. Here we dissect the signalling mechanisms by which BDNF exerts its neuromodulatory role on the NMDA receptor subunit 1 (NR1). Using a preparation of adult isolated dorsal horn with dorsal roots attached, we found that electrical stimulation of roots induced a concomitant release of BDNF and an increased phosphorylation of NR1, which was partly prevented by the BDNF sequestering molecule, TrkB-IgG. Using a second approach in vitro, we confirmed that both exogenous glutamate and BDNF (but not other neurotrophins) were able to induce NR1 phosphorylation, in particular at residue Ser-897. NR1 phosphorylation induced by BDNF was blocked by a TrkB inhibitor, an ERK inhibitor and a PKC inhibitor but not a PKA inhibitor. Activation of PKC using exogenous PMA also led to NR1 phosphorylation. Together these data suggest that BDNF modulates the activity of the receptor by phosphorylation via the kinases ERK and PKC.
Collapse
Affiliation(s)
- Sarah E Slack
- Sensory Function Group, Centre for Neuroscience, King's College London, London Bridge SE1 1UL, UK
| | | | | | | | | |
Collapse
|
46
|
Hartmann B, Ahmadi S, Heppenstall PA, Lewin GR, Schott C, Borchardt T, Seeburg PH, Zeilhofer HU, Sprengel R, Kuner R. The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain. Neuron 2004; 44:637-50. [PMID: 15541312 DOI: 10.1016/j.neuron.2004.10.029] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 10/13/2004] [Accepted: 10/14/2004] [Indexed: 11/25/2022]
Abstract
Ca(2+)-permeable AMPA receptors are densely expressed in the spinal dorsal horn, but their functional significance in pain processing is not understood. By disrupting the genes encoding GluR-A or GluR-B, we generated mice exhibiting increased or decreased numbers of Ca(2+)-permeable AMPA receptors, respectively. Here, we demonstrate that AMPA receptors are critical determinants of nociceptive plasticity and inflammatory pain. A reduction in the number of Ca(2+)-permeable AMPA receptors and density of AMPA channel currents in spinal neurons of GluR-A-deficient mice is accompanied by a loss of nociceptive plasticity in vitro and a reduction in acute inflammatory hyperalgesia in vivo. In contrast, an increase in spinal Ca(2+)-permeable AMPA receptors in GluR-B-deficient mice facilitated nociceptive plasticity and enhanced long-lasting inflammatory hyperalgesia. Thus, AMPA receptors are not mere determinants of fast synaptic transmission underlying basal pain sensitivity as previously thought, but are critically involved in activity-dependent changes in synaptic processing of nociceptive inputs.
Collapse
Affiliation(s)
- Bettina Hartmann
- Institute for Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
McMahon SB, Jones NG. Plasticity of pain signaling: Role of neurotrophic factors exemplified by acid-induced pain. ACTA ACUST UNITED AC 2004; 61:72-87. [PMID: 15362154 DOI: 10.1002/neu.20093] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute noxious stimuli activate a specialized neuronal detection system that generates sensations of pain and, generally, adaptive behavioral responses. More persistent noxious stimuli notably those associated with some chronic injuries and disease states not only activate the pain-signaling system but also dramatically alter its properties so that weak stimuli produce pain. These hyperalgesic states arise from at least two distinct broad classes of mechanisms. These are peripheral and central sensitization associated with increased responsiveness of peripheral nociceptor terminals and dorsal horn neurons, respectively. Here we review the key features of these sensitized states and discuss the role of one neurotrophic factor, nerve growth factor, as a peripheral mediator of sensitization and of another factor, brain-derived neurotrophic factor, as a mediator of central sensitization. We use as a specific example the pain induced by acid stimuli. We review the neurobiology of such pain states, and discuss how acid stimuli both initiate sensitization and how the neuronal processing of acid stimuli is subject to sensitization.
Collapse
Affiliation(s)
- Stephen B McMahon
- London Pain Consortium, Kings College London, Center for Neuroscience Research, Hodgkin Building, London Bridge, London SE1 1UL, UK.
| | | |
Collapse
|
48
|
Merighi A, Carmignoto G, Gobbo S, Lossi L, Salio C, Vergnano AM, Zonta M. Neurotrophins in spinal cord nociceptive pathways. PROGRESS IN BRAIN RESEARCH 2004; 146:291-321. [PMID: 14699971 DOI: 10.1016/s0079-6123(03)46019-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurotrophins are a well-known family of growth factors for the central and peripheral nervous systems. In the course of the last years, several lines of evidence converged to indicate that some members of the family, particularly NGF and BDNF, also participate in structural and functional plasticity of nociceptive pathways within the dorsal root ganglia and spinal cord. A subpopulation of small-sized dorsal root ganglion neurons is sensitive to NGF and responds to peripheral NGF stimulation with upregulation of BDNF synthesis and increased anterograde transport to the dorsal horn. In the latter, release of BDNF appears to modulate or even mediate nociceptive sensory inputs and pain hypersensitivity. We summarize here the status of the art on the role of neurotrophins in nociceptive pathways, with special emphasis on short-term synaptic and intracellular events that are mediated by this novel class of neuromessengers in the dorsal horn. Under this perspective we review the findings obtained through an array of techniques in naïve and transgenic animals that provide insight into the modulatory mechanisms of BDNF at central synapses. We also report on the results obtained after immunocytochemistry, in situ hybridization, and monitoring intracellular calcium levels by confocal microscopy, that led to hypothesize that also NGF might have a direct central effect in pain modulation. Although it is unclear whether or not NGF may be released at dorsal horn endings of certain nociceptors in vivo, we believe that these findings offer a clue for further studies aiming to elucidate the putative central effects of NGF and other neurotrophins in nociceptive pathways.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Morphophysiology, Rita Levi-Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095 Grugliasco, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Chai NL, Dong L, Li ZF, Du KX, Wang JH, Yan LK, Dong XL. Effects of neurotrophins on gastrointestinal myoelectric activities of rats. World J Gastroenterol 2003; 9:1874-7. [PMID: 12918143 PMCID: PMC4611566 DOI: 10.3748/wjg.v9.i8.1874] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effects of mouse nerve growth factor (NGF), rat recombinant brain derived neurotrophic factor (rm-BDNF) and recombinant human neurotrophin-3 (rh-NT-3) on the gastrointestinal motility and the migrating myoelectric complex (MMC) in rat.
METHODS: A randomized, double-blinded, placebo-controlled experiment was performed. 5-7 days after we chronically implanted four or five bipolar silver electrodes on the stomach, duodenum, jejunum and colon, 21 experimental rats were coded and divided into 3 groups and injected NGF, rm-BDNF, rh-NT-3 or placebo respectively via tail vein at a dose of 20 μg·kg- 1. The gastrointestinal myoelectrical activity was recorded 2 hours before and after the test substance infusions in these consciously fasting rats.
RESULTS: The neurotrophins-induced pattern of activity was characterized by enhanced spiking activity of different amplitudes at all recording sites, especially in the colon. In the gastric antrum and intestine, only rh-NT-3 had increased effects on the demographic characteristics of electrical activities (P < 0.05), but did not affect the intervals of MMCs. In the colon, all the three kinds of neurotrophins could significantly increase the frequency, amplitude and duration levels of spike bursts, and also rh-NT-3 could prolong the intervals of MMC in the transverse colon (25 ± 11 min vs 19 ± 6 min, P < 0.05). In the distal colon rh-NT-3 could evoke phase III-like activity and disrupt the MMC pattern, which was replaced by a continuously long spike bursts (LSB) and irregular spike activity (ISA) for 48 ± 6 min.
CONCLUSION: Exogenous neurotrophic factors can stimulate gut myoelectric activities in rats.
Collapse
Affiliation(s)
- Ning-Li Chai
- Department of Digestion, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Mcdonald JW, Stefovska VG, Liu XZ, Shin H, Liu S, Choi DW. Neurotrophin potentiation of iron-induced spinal cord injury. Neuroscience 2003; 115:931-9. [PMID: 12435430 DOI: 10.1016/s0306-4522(02)00342-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that pretreatment with neurotrophins can potentiate the vulnerability of cultured neurons to excitotoxic and free radical-induced necrosis, in contrast to their well known neuroprotective effects against apoptosis. Here we tested the hypothesis that this unexpected injury-potentiating effect of neurotrophins would also take place in the adult rat spinal cord. Fe(3+)-citrate was injected stereotaxically into spinal cord gray matter in adult rats in amounts sufficient to produce minimal tissue injury 24 h later. Twenty-four-hour pretreatment with brain-derived neurotrophic factor, neurotrophin-3, or neurotrophin-4/5, but not nerve growth factor, markedly enhanced tissue injury in the gray matter as evidenced by an increase in the damaged area, as well as the loss of neurons and oligodendrocytes. Consistent with maintained free radical mediation, the neurotrophin-potentiated iron-induced spinal cord damage was blocked by co-application of the antioxidant N-tert-butyl-(2-sulfophenyl)-nitrone. These data support the hypothesis that the overall neuroprotective properties of neurotrophins in models of acute injury to the spinal cord may be limited by an underlying potentiation of free radical-mediated necrosis.
Collapse
Affiliation(s)
- J W Mcdonald
- Department of Neurology, Washington University School of Medicine, PO Box 8111, 660 S Euclid Avenue, St Louis, MO 63110-1093, , USA
| | | | | | | | | | | |
Collapse
|