1
|
Xu F, Yu D, Guo J, Hu J, Zhao Y, Jiang C, Meng X, Cai J, Zhao Y. From pathology to therapy: A comprehensive review of ATRX mutation related molecular functions and disorders. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108537. [PMID: 40250797 DOI: 10.1016/j.mrrev.2025.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
ATRX (alpha-thalassemia/mental retardation, X-linked), a chromatin remodeler, is one of the most commonly mutated genes in human cancer. The ATRX protein functions as a histone chaperone, facilitating the proper folding and assembly of histone proteins into nucleosome cores. Investigations into its molecular mechanisms have significantly advanced our understanding of its roles in diseases associated with chromosomal instability and defective DNA repair. In this comprehensive review, we delineate ATRX's critical function in maintaining heterochromatin integrity and genomic stability under physiological conditions. We further explore the pathogenesis of ATRX-deficient tumors and ATRX syndrome, systematically evaluate current therapeutic strategies for these conditions, and propose novel perspectives on potential targeted therapies for ATRX-mutated malignancies. This review provides useful resource for regarding the etiology and treatment of ATRX deficiency-related diseases.
Collapse
Affiliation(s)
- Fan Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Jiazheng Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Jingze Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Yunlei Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China; The Sixth Affiliated Hospital of Harbin Medical University, #998 AiYing Street, Harbin, Heilongjiang Province 150023, PR China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China.
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China.
| |
Collapse
|
2
|
Cohen LRZ, Meshorer E. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond. Trends Cell Biol 2024; 34:1044-1055. [PMID: 38614918 DOI: 10.1016/j.tcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Cao R, Gozlan O, Airich A, Tveriakhina L, Zhou H, Jiang H, Cole PA, Aster JC, Klein T, Sprinzak D, Blacklow SC. Structural requirements for activity of Mind bomb1 in Notch signaling. Structure 2024; 32:1667-1676.e5. [PMID: 39121852 DOI: 10.1016/j.str.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Mind bomb 1 (MIB1) is a RING E3 ligase that ubiquitinates Notch ligands, a necessary step for induction of Notch signaling. The structural basis for binding of the JAG1 ligand by the N-terminal region of MIB1 is known, yet how the ankyrin (ANK) and RING domains of MIB1 cooperate to catalyze ubiquitin transfer from E2∼Ub to Notch ligands remains unclear. Here, we show that the third RING domain and adjacent coiled coil region (ccRING3) drive MIB1 dimerization and that MIB1 ubiquitin transfer activity relies solely on ccRING3. We report X-ray crystal structures of a UbcH5B-ccRING3 complex and the ANK domain. Directly tethering the MIB1 N-terminal region to ccRING3 forms a minimal MIB1 protein sufficient to induce a Notch response in receiver cells and rescue mib knockout phenotypes in flies. Together, these studies define the functional elements of an E3 ligase needed for ligands to induce a Notch signaling response.
Collapse
Affiliation(s)
- Ruili Cao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Oren Gozlan
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alina Airich
- Institute of Genetics, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Lena Tveriakhina
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Haixia Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hanjie Jiang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Philip A Cole
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Jon C Aster
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Gourisankar S, Krokhotin A, Wenderski W, Crabtree GR. Context-specific functions of chromatin remodellers in development and disease. Nat Rev Genet 2024; 25:340-361. [PMID: 38001317 PMCID: PMC11867214 DOI: 10.1038/s41576-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/26/2023]
Abstract
Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Dochnal SA, Whitford AL, Francois AK, Krakowiak PA, Cuddy S, Cliffe AR. c-Jun signaling during initial HSV-1 infection modulates latency to enhance later reactivation in addition to directly promoting the progression to full reactivation. J Virol 2024; 98:e0176423. [PMID: 38193709 PMCID: PMC10878265 DOI: 10.1128/jvi.01764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and periodically reactivates to permit transmission, which can result in clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection, and therefore, HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. The activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required to transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during the HSV latent infection of neurons to promote reactivation but not during the initial JNK-dependent Phase I. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.IMPORTANCEThe molecular mechanisms that regulate the reactivation of herpes simplex virus-1 (HSV-1) from latent infection are unknown. The host transcription and pioneer factor c-Jun is the main target of the JNK cell stress pathway that is known to be important in exit of HSV from latency. Surprisingly, we found that c-Jun does not act with JNK during exit from latency but instead promotes the transition to full reactivation. Moreover, c-Jun and enhanced neuronal stress during initial neuronal infection promoted a more reactivation-competent form of HSV-1 latency. c-Jun, therefore, functions at multiple stages during HSV-1 latent infection of neurons to promote reactivation. Importantly, this study contributes to a growing body of evidence that de novo HSV-1 infection conditions can modulate latent infection and impact future reactivation events, raising important questions on the clinical impact of stress during initial HSV-1 acquisition on future reactivation events and consequences.
Collapse
Affiliation(s)
- Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sean Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
7
|
Dochnal SA, Whitford AL, Francois AK, Krakowiak PA, Cuddy S, Cliffe AR. c-Jun Signaling During Initial HSV-1 Infection Modulates Latency to Enhance Later Reactivation in addition to Directly Promoting the Progression to Full Reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566462. [PMID: 37986840 PMCID: PMC10659354 DOI: 10.1101/2023.11.10.566462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and can periodically reactivate to permit transmission and clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection and therefore HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. Activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full, Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required for the transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during HSV latent infection of neurons to promote reactivation. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.
Collapse
Affiliation(s)
- Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sean Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
8
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
9
|
Papamokos GV, Kaxiras E. How to evict HP1 from H3: Using a complex salt bridge. Biophys Chem 2023; 300:107062. [PMID: 37302360 DOI: 10.1016/j.bpc.2023.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
In an effort to unravel the unknown "binary switch" mechanisms underlying the "histone code" hypothesis of gene silencing and activation, we study the dynamics of Heterochromatin Protein 1 (HP1). We find in the literature that when HP1 is bound to tri-methylated Lysine9 (K9me3) of histone-H3 through an aromatic cage consisting of two tyrosines and one tryptophan, it is evicted upon phosphorylation of Serine10 (S10phos) during mitosis. In this work, the kick-off intermolecular interaction of the eviction process is proposed and described in detail on the basis of quantum mechanical calculations: specifically, an electrostatic interaction competes with the cation-π interaction and draws away K9me3 from the aromatic cage. An arginine, abundant in the histonic environment, can form an intermolecular "complex salt bridge" with S10phos and dislodge HP1. The study attempts to reveal the role of phosphorylation of Ser10 on the H3 tail in atomic detail.
Collapse
Affiliation(s)
- George V Papamokos
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA..
| | - Efthimios Kaxiras
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA..
| |
Collapse
|
10
|
Cuddy SR, Cliffe AR. The Intersection of Innate Immune Pathways with the Latent Herpes Simplex Virus Genome. J Virol 2023; 97:e0135222. [PMID: 37129520 PMCID: PMC10231182 DOI: 10.1128/jvi.01352-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Innate immune responses can impact different stages of viral life cycles. Herpes simplex virus latent infection of neurons and subsequent reactivation provide a unique context for immune responses to intersect with different stages of infection. Here, we discuss recent findings linking neuronal innate immune pathways with the modulation of latent infection, acting at the time of reactivation and during initial neuronal infection to have a long-term impact on the ability of the virus to reactivate.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Liu C, Kang N, Guo Y, Gong P. Advances in Chromodomain Helicase DNA-Binding (CHD) Proteins Regulating Stem Cell Differentiation and Human Diseases. Front Cell Dev Biol 2021; 9:710203. [PMID: 34616726 PMCID: PMC8488160 DOI: 10.3389/fcell.2021.710203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Regulation of gene expression is critical for stem cell differentiation, tissue development, and human health maintenance. Recently, epigenetic modifications of histone and chromatin remodeling have been verified as key controllers of gene expression and human diseases. Objective: In this study, we review the role of chromodomain helicase DNA-binding (CHD) proteins in stem cell differentiation, cell fate decision, and several known human developmental disorders and cancers. Conclusion: CHD proteins play a crucial role in stem cell differentiation and human diseases.
Collapse
Affiliation(s)
- Caojie Liu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ning Kang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Suzich JB, Cuddy SR, Baidas H, Dochnal S, Ke E, Schinlever AR, Babnis A, Boutell C, Cliffe AR. PML-NB-dependent type I interferon memory results in a restricted form of HSV latency. EMBO Rep 2021; 22:e52547. [PMID: 34197022 PMCID: PMC8419685 DOI: 10.15252/embr.202152547] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalize with PML-NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sean R Cuddy
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Hiam Baidas
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Eugene Ke
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Chris Boutell
- MRC‐University of Glasgow Centre for Virus Research (CVR)GlasgowUK
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
13
|
Papamokos GV, Tziatzos G, Papageorgiou DG, Georgatos S, Kaxiras E, Politou AS. Progressive Phosphorylation Modulates the Self-Association of a Variably Modified Histone H3 Peptide. Front Mol Biosci 2021; 8:698182. [PMID: 34179102 PMCID: PMC8226166 DOI: 10.3389/fmolb.2021.698182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
Protein phosphorylation is a key regulatory mechanism in eukaryotic cells. In the intrinsically disordered histone tails, phosphorylation is often a part of combinatorial post-translational modifications and an integral part of the “histone code” that regulates gene expression. Here, we study the association between two histone H3 tail peptides modified to different degrees, using fully atomistic molecular dynamics simulations. Assuming that the initial conformations are either α-helical or fully extended, we compare the propensity of the two peptides to associate with one another when both are unmodified, one modified and the other unmodified, or both modified. The simulations lead to the identification of distinct inter- and intramolecular interactions in the peptide dimer, highlighting a prominent role of a fine-tuned phosphorylation rheostat in peptide association. Progressive phosphorylation appears to modulate peptide charge, inducing strong and specific intermolecular interactions between the monomers, which do not result in the formation of amorphous or ordered aggregates, as documented by experimental evidence derived from Circular Dichroism and NMR spectroscopy. However, upon complete saturation of positive charges by phosphate groups, this effect is reversed: intramolecular interactions prevail and dimerization of zero-charge peptides is markedly reduced. These findings underscore the role of phosphorylation thresholds in the dynamics of intrinsically disordered proteins. Phosphorylation rheostats might account for the divergent effects of histone modifications on the modulation of chromatin structure.
Collapse
Affiliation(s)
- George V Papamokos
- Biomedical Division, The Institute of Molecular Biology and Biotechnology, FORTH-ITE, Ioannina, Greece.,Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States.,Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece
| | - George Tziatzos
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | | | - Spyros Georgatos
- Biomedical Division, The Institute of Molecular Biology and Biotechnology, FORTH-ITE, Ioannina, Greece.,Laboratory of Biology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Efthimios Kaxiras
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Anastasia S Politou
- Biomedical Division, The Institute of Molecular Biology and Biotechnology, FORTH-ITE, Ioannina, Greece.,Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
14
|
Collados Rodríguez M. The Fate of Speckled Protein 100 (Sp100) During Herpesviruses Infection. Front Cell Infect Microbiol 2021; 10:607526. [PMID: 33598438 PMCID: PMC7882683 DOI: 10.3389/fcimb.2020.607526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus infection can be further upregulated upon interferon (IFN) stimulation as a component of the innate immune response. In humans, Sp100 is encoded by a single gene locus, which can produce alternatively spliced isoforms. The widely studied Sp100A, Sp100B, Sp100C and Sp100HMG have functions associated with the transcriptional regulation of viral and cellular chromatin, either directly through their characteristic DNA-binding domains, or indirectly through post-translational modification (PTM) and associated protein interaction networks. Sp100 isoforms are resident component proteins of promyelocytic leukemia-nuclear bodies (PML-NBs), dynamic nuclear sub-structures which regulate host immune defenses against many pathogens. In the case of human herpesviruses, multiple protein antagonists are expressed to relieve viral DNA genome transcriptional silencing imposed by PML-NB and Sp100-derived proteinaceous structures, thereby stimulating viral propagation, pathogenesis, and transmission to new hosts. This review details how different Sp100 isoforms are manipulated during herpesviruses HSV1, VZV, HCMV, EBV, and KSHV infection, identifying gaps in our current knowledge, and highlighting future areas of research.
Collapse
|
15
|
Cuddy SR, Schinlever AR, Dochnal S, Seegren PV, Suzich J, Kundu P, Downs TK, Farah M, Desai BN, Boutell C, Cliffe AR. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. eLife 2020; 9:e58037. [PMID: 33350386 PMCID: PMC7773336 DOI: 10.7554/elife.58037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in neurons and periodically reactivates to cause disease. The stimuli that trigger HSV-1 reactivation have not been fully elucidated. We demonstrate HSV-1 reactivation from latently infected mouse neurons induced by forskolin requires neuronal excitation. Stimuli that directly induce neurons to become hyperexcitable also induced HSV-1 reactivation. Forskolin-induced reactivation was dependent on the neuronal pathway of DLK/JNK activation and included an initial wave of viral gene expression that was independent of histone demethylase activity and linked to histone phosphorylation. IL-1β is released under conditions of stress, fever and UV exposure of the epidermis; all known triggers of clinical HSV reactivation. We found that IL-1β induced histone phosphorylation and increased the excitation in sympathetic neurons. Importantly, IL-1β triggered HSV-1 reactivation, which was dependent on DLK and neuronal excitability. Thus, HSV-1 co-opts an innate immune pathway resulting from IL-1 stimulation of neurons to induce reactivation.
Collapse
Affiliation(s)
- Sean R Cuddy
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Philip V Seegren
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Jon Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Parijat Kundu
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Taylor K Downs
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Mina Farah
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Bimal N Desai
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube CampusGlasgowUnited Kingdom
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
16
|
Lagali PS, Zhao BYH, Yan K, Baker AN, Coupland SG, Tsilfidis C, Picketts DJ. Sensory Experience Modulates Atrx-mediated Neuronal Integrity in the Mouse Retina. Neuroscience 2020; 452:169-180. [PMID: 33197500 DOI: 10.1016/j.neuroscience.2020.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022]
Abstract
Mutation of the α-thalassemia/mental retardation syndrome X-linked protein, ATRX, causes intellectual disability and is associated with pleiotropic defects including ophthalmological abnormalities. We have previously demonstrated that Atrx deficiency in the mouse retina leads to the selective loss of inhibitory interneurons and inner retinal dysfunction. Onset of the amacrine cell neurodegenerative phenotype in Atrx-deficient retinas occurs postnatally after neuronal specification, and coincides with eye opening. Given this timing, we sought to interrogate the influence of light-dependent visual signaling on Atrx-mediated neuronal survival and function in the mouse retina. Retina-specific Atrx conditional knockout (cKO) mice were subjected to light deprivation using two different paradigms: (1) a dark-rearing regime, and (2) genetic deficiency of metabotropic glutamate receptor 6 (mGluR6) to block the ON retinal signaling pathway. Scotopic electroretinography was performed for adult dark-reared Atrx cKO mice and controls to measure retinal neuron function in vivo. Retinal immunohistochemistry and enumeration of amacrine cells were performed for both light deprivation paradigms. We observed milder normalized a-wave, b-wave and oscillatory potential (OP) deficits in electroretinograms of dark-reared Atrx cKO mice compared to light-exposed counterparts. In addition, amacrine cell loss was partially limited by genetic restriction of retinal signaling through the ON pathway. Our results suggest that the temporal features of the Atrx cKO phenotype are likely due to a combined effect of light exposure upon eye opening and coincident developmental processes impacting the retinal circuitry. In addition, this study reveals a novel activity-dependent role for Atrx in mediating post-replicative neuronal integrity in the CNS.
Collapse
Affiliation(s)
- Pamela S Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Brandon Y H Zhao
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Adam N Baker
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Stuart G Coupland
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Ophthalmology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Ophthalmology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
17
|
Timpano S, Picketts DJ. Neurodevelopmental Disorders Caused by Defective Chromatin Remodeling: Phenotypic Complexity Is Highlighted by a Review of ATRX Function. Front Genet 2020; 11:885. [PMID: 32849845 PMCID: PMC7432156 DOI: 10.3389/fgene.2020.00885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
The ability to determine the genetic etiology of intellectual disability (ID) and neurodevelopmental disorders (NDD) has improved immensely over the last decade. One prevailing metric from these studies is the large percentage of genes encoding epigenetic regulators, including many members of the ATP-dependent chromatin remodeling enzyme family. Chromatin remodeling proteins can be subdivided into five classes that include SWI/SNF, ISWI, CHD, INO80, and ATRX. These proteins utilize the energy from ATP hydrolysis to alter nucleosome positioning and are implicated in many cellular processes. As such, defining their precise roles and contributions to brain development and disease pathogenesis has proven to be complex. In this review, we illustrate that complexity by reviewing the roles of ATRX on genome stability, replication, and transcriptional regulation and how these mechanisms provide key insight into the phenotype of ATR-X patients.
Collapse
Affiliation(s)
- Sara Timpano
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
18
|
Disruption of ATRX-RNA interactions uncovers roles in ATRX localization and PRC2 function. Nat Commun 2020; 11:2219. [PMID: 32376827 PMCID: PMC7203109 DOI: 10.1038/s41467-020-15902-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Heterochromatin in the eukaryotic genome is rigorously controlled by the concerted action of protein factors and RNAs. Here, we investigate the RNA binding function of ATRX, a chromatin remodeler with roles in silencing of repetitive regions of the genome and in recruitment of the polycomb repressive complex 2 (PRC2). We identify ATRX RNA binding regions (RBRs) and discover that the major ATRX RBR lies within the N-terminal region of the protein, distinct from its PHD and helicase domains. Deletion of this ATRX RBR (ATRXΔRBR) compromises ATRX interactions with RNAs in vitro and in vivo and alters its chromatin binding properties. Genome-wide studies reveal that loss of RNA interactions results in a redistribution of ATRX on chromatin. Finally, our studies identify a role for ATRX-RNA interactions in regulating PRC2 localization to a subset of polycomb target genes. ATRX is an RNA binding protein that mediates targeting of polycomb repressive complex 2 (PRC2) to genomic sites. Here the authors identify the RNA binding region and show that the RNA binding is required for ATRX localization and for its recruitment of PRC2 to a subset of polycomb targets.
Collapse
|
19
|
Wenderski W, Wang L, Krokhotin A, Walsh JJ, Li H, Shoji H, Ghosh S, George RD, Miller EL, Elias L, Gillespie MA, Son EY, Staahl BT, Baek ST, Stanley V, Moncada C, Shipony Z, Linker SB, Marchetto MCN, Gage FH, Chen D, Sultan T, Zaki MS, Ranish JA, Miyakawa T, Luo L, Malenka RC, Crabtree GR, Gleeson JG. Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proc Natl Acad Sci U S A 2020; 117:10055-10066. [PMID: 32312822 PMCID: PMC7211998 DOI: 10.1073/pnas.1908238117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such "early activation" genes silent have been a mystery. In the course of investigating Mendelian recessive autism, we identified six families with segregating loss-of-function mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally named BAF53b). Accordingly, ACTL6B was the most significantly mutated gene in the Simons Recessive Autism Cohort. At least 14 subunits of the nBAF complex are mutated in autism, collectively making it a major contributor to autism spectrum disorder (ASD). Patient mutations destabilized ACTL6B protein in neurons and rerouted dendrites to the wrong glomerulus in the fly olfactory system. Humans and mice lacking ACTL6B showed corpus callosum hypoplasia, indicating a conserved role for ACTL6B in facilitating neural connectivity. Actl6b knockout mice on two genetic backgrounds exhibited ASD-related behaviors, including social and memory impairments, repetitive behaviors, and hyperactivity. Surprisingly, mutation of Actl6b relieved repression of early response genes including AP1 transcription factors (Fos, Fosl2, Fosb, and Junb), increased chromatin accessibility at AP1 binding sites, and transcriptional changes in late response genes associated with early response transcription factor activity. ACTL6B loss is thus an important cause of recessive ASD, with impaired neuron-specific chromatin repression indicated as a potential mechanism.
Collapse
Affiliation(s)
- Wendy Wenderski
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Lu Wang
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Andrey Krokhotin
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Jessica J Walsh
- Nancy Pritztker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford Medical School, Palo Alto, CA 94305
| | - Hongjie Li
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
- Department of Biology, Stanford University, Palo Alto, CA 94305
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 470-1192 Toyoake, Aichi, Japan
| | - Shereen Ghosh
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Renee D George
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Erik L Miller
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Laura Elias
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | | | - Esther Y Son
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Brett T Staahl
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Seung Tae Baek
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Valentina Stanley
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Cynthia Moncada
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Zohar Shipony
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Maria C N Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Dillon Chen
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, Children Hospital Lahore, 54000 Lahore, Pakistan
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, 12311 Cairo, Egypt
| | | | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 470-1192 Toyoake, Aichi, Japan
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
- Department of Biology, Stanford University, Palo Alto, CA 94305
| | - Robert C Malenka
- Nancy Pritztker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford Medical School, Palo Alto, CA 94305
| | - Gerald R Crabtree
- Department of Pathology, Stanford Medical School, Palo Alto, CA 94305;
- Department of Genetics, Stanford Medical School, Palo Alto, CA 94305
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA 94305
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305
| | - Joseph G Gleeson
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92037;
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92037
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
20
|
Pham V, Pitti R, Tindell CA, Cheung TK, Masselot A, Stephan JP, Guler GD, Wilson C, Lill J, Arnott D, Classon M. Proteomic Analyses Identify a Novel Role for EZH2 in the Initiation of Cancer Cell Drug Tolerance. J Proteome Res 2020; 19:1533-1547. [DOI: 10.1021/acs.jproteome.9b00773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Sun X, Wang Z, Hall JM, Perez-Cervantes C, Ruthenburg AJ, Moskowitz IP, Gribskov M, Yang XH. Chromatin-enriched RNAs mark active and repressive cis-regulation: An analysis of nuclear RNA-seq. PLoS Comput Biol 2020; 16:e1007119. [PMID: 32040509 PMCID: PMC7034927 DOI: 10.1371/journal.pcbi.1007119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/21/2020] [Accepted: 01/14/2020] [Indexed: 01/22/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) localize in the cell nucleus and influence gene expression through a variety of molecular mechanisms. Chromatin-enriched RNAs (cheRNAs) are a unique class of lncRNAs that are tightly bound to chromatin and putatively function to locally cis-activate gene transcription. CheRNAs can be identified by biochemical fractionation of nuclear RNA followed by RNA sequencing, but until now, a rigorous analytic pipeline for nuclear RNA-seq has been lacking. In this study, we survey four computational strategies for nuclear RNA-seq data analysis and develop a new pipeline, Tuxedo-ch, which outperforms other approaches. Tuxedo-ch assembles a more complete transcriptome and identifies cheRNA with higher accuracy than other approaches. We used Tuxedo-ch to analyze benchmark datasets of K562 cells and further characterize the genomic features of intergenic cheRNA (icheRNA) and their similarity to enhancer RNAs (eRNAs). We quantify the transcriptional correlation of icheRNA and adjacent genes and show that icheRNA is more positively associated with neighboring gene expression than eRNA or cap analysis of gene expression (CAGE) signals. We also explore two novel genomic associations of cheRNA, which indicate that cheRNAs may function to promote or repress gene expression in a context-dependent manner. IcheRNA loci with significant levels of H3K9me3 modifications are associated with active enhancers, consistent with the hypothesis that enhancers are derived from ancient mobile elements. In contrast, antisense cheRNA (as-cheRNA) may play a role in local gene repression, possibly through local RNA:DNA:DNA triple-helix formation. Nuclear RNA-seq provides a powerful way to profile the transcriptional landscape, especially the noncoding transcriptome. Through analyzing nuclear RNA-seq, the chromatin-enriched RNA (cheRNA) class of gene regulatory non-coding RNAs was identified. The computational framework presented here provides a reliable approach to identifying cheRNAs from nuclear RNA-seq, and for studying cell-type specific gene regulation. We find that intergenic cheRNA, including transcripts mapped to regions with high levels of classically repressive H3K9me3-marks, may act as a transcriptional activator. In contrast, antisense cheRNA, which originates from the DNA strand complementary to the candidate target protein-coding gene may interact with diverse chromatin modulators to repress local transcription. Our new pipeline allows the identification of a more complete set of cheRNAs than other approaches. A future challenge will be to refine the functional mechanisms of cheRNAs by exploring their regulatory roles, which are involved in diverse molecular and cellular processes in humans and other organisms.
Collapse
Affiliation(s)
- Xiangying Sun
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Zhezhen Wang
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
| | - Johnathon M Hall
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Carlos Perez-Cervantes
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Ivan P Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Computer Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Xinan H Yang
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
22
|
Marano D, Fioriniello S, Fiorillo F, Gibbons RJ, D'Esposito M, Della Ragione F. ATRX Contributes to MeCP2-Mediated Pericentric Heterochromatin Organization during Neural Differentiation. Int J Mol Sci 2019; 20:E5371. [PMID: 31671722 PMCID: PMC6862095 DOI: 10.3390/ijms20215371] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multi-function factor involved in locus-specific transcriptional modulation and the regulation of genome architecture, e.g., pericentric heterochromatin (PCH) organization. MECP2 mutations are responsible for Rett syndrome (RTT), a devastating postnatal neurodevelopmental disorder, the pathogenetic mechanisms of which are still unknown. MeCP2, together with Alpha-thalassemia/mental retardation syndrome X-linked protein (ATRX), accumulates at chromocenters, which are repressive PCH domains. As with MECP2, mutations in ATRX cause ATR-X syndrome which is associated with severe intellectual disability. We exploited two murine embryonic stem cell lines, in which the expression of MeCP2 or ATRX is abolished. Through immunostaining, chromatin immunoprecipitation and western blot, we show that MeCP2 and ATRX are reciprocally dependent both for their expression and targeting to chromocenters. Moreover, ATRX plays a role in the accumulation of members of the heterochromatin protein 1 (HP1) family at PCH and, as MeCP2, modulates their expression. Furthermore, ATRX and HP1 targeting to chromocenters depends on an RNA component. 3D-DNA fluorescence in situ hybridization (FISH) highlighted, for the first time, a contribution of ATRX in MeCP2-mediated chromocenter clustering during neural differentiation. Overall, we provide a detailed dissection of the functional interplay between MeCP2 and ATRX in higher-order PCH organization in neurons. Our findings suggest molecular defects common to RTT and ATR-X syndrome, including an alteration in PCH.
Collapse
Affiliation(s)
- Domenico Marano
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| | - Francesca Fiorillo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
23
|
Cabral JM, Oh HS, Knipe DM. ATRX promotes maintenance of herpes simplex virus heterochromatin during chromatin stress. eLife 2018; 7:40228. [PMID: 30465651 PMCID: PMC6307862 DOI: 10.7554/elife.40228] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms by which mammalian cells recognize and epigenetically restrict viral DNA are not well defined. We used herpes simplex virus with bioorthogonally labeled genomes to detect host factors recruited to viral DNA shortly after its nuclear entry and found that the cellular IFI16, PML, and ATRX proteins colocalized with viral DNA by 15 min post infection. HSV-1 infection of ATRX-depleted fibroblasts resulted in elevated viral mRNA and accelerated viral DNA accumulation. Despite the early association of ATRX with vDNA, we found that initial viral heterochromatin formation is ATRX-independent. However, viral heterochromatin stability required ATRX from 4 to 8 hr post infection. Inhibition of transcription blocked viral chromatin loss in ATRX-knockout cells; thus, ATRX is uniquely required for heterochromatin maintenance during chromatin stress. These results argue that the initial formation and the subsequent maintenance of viral heterochromatin are separable mechanisms, a concept that likely extrapolates to host cell chromatin and viral latency. Cells carefully package their DNA, tightly wrapping the long, stringy molecule around spool-like groups of proteins called histones. However, the genes that are draped around histones are effectively silenced, because they are ‘hidden’ from the molecular actors that read the genetic information to create proteins. A cell can control which of its genes are active by using proteins to move histones on or off specific portions of DNA. For example, a protein known as ATRX associates with a partner to load histones onto precise DNA regions and switch them off. Wrapping DNA around histones can also be a defense mechanism against viruses, which are tiny cellular parasites that hijack the molecular machinery of a cell to create more of themselves. For instance, the herpes simplex virus, which causes cold sores and genital herpes, injects its DNA into a cell where it is used as a template to create new viral particles. By packaging the DNA of the virus around histones, the cell ensures that this foreign genetic information cannot be used to make more invaders. However, the details of this process remain unknown. In particular, it is still unclear what happens immediately after the virus penetrates the nucleus, the compartment that shelters the DNA of the cell. Here, Cabral et al. explored this question by dissecting the role of ATRX in silencing the genetic information of the herpes simplex virus. The viral DNA was labeled while inside the virus itself, and then tracked using microscopy imaging techniques as it made its way into the cell and inside the nucleus. This revealed that, almost immediately after the viral DNA had entered the nucleus, ATRX came in contact with the foreign molecule. One possibility was that ATRX would be responsible for loading certain forms of histones onto the viral DNA. However, after Cabral et al. deleted ATRX from the cell, histones were still present on the genetic information of the virus, but this association was less stable. This indicated that ATRX was only required to keep histones latched onto the viral DNA, but not to load the proteins in the first place. Overall, these results show that using histones to silence viral DNA in done in several steps: first, the foreign genetic material needs to be recognized, then histones have to be attached, and finally molecular actors should be recruited to keep histones onto the DNA. Knowing how cells ward off the herpes simplex virus could help us find ways to ‘boost’ this defense mechanism. Armed with this knowledge, we could also begin to understand why certain people are more likely to be infected by this virus.
Collapse
Affiliation(s)
- Joseph M Cabral
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States.,Program in Virology, Harvard Medical School, Boston, United States
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States.,Program in Virology, Harvard Medical School, Boston, United States
| |
Collapse
|
24
|
Suzich JB, Cliffe AR. Strength in diversity: Understanding the pathways to herpes simplex virus reactivation. Virology 2018; 522:81-91. [PMID: 30014861 DOI: 10.1016/j.virol.2018.07.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023]
Abstract
Herpes simplex virus (HSV) establishes a latent infection in peripheral neurons and can periodically reactivate to cause disease. Reactivation can be triggered by a variety of stimuli that activate different cellular processes to result in increased HSV lytic gene expression and production of infectious virus. The use of model systems has contributed significantly to our understanding of how reactivation of the virus is triggered by different physiological stimuli that are correlated with recrudescence of human disease. Furthermore, these models have led to the identification of both common and distinct mechanisms of different HSV reactivation pathways. Here, we summarize how the use of these diverse model systems has led to a better understanding of the complexities of HSV reactivation, and we present potential models linking cellular signaling pathways to changes in viral gene expression.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, United States
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
25
|
Dash RC, Zaino AM, Hadden MK. A metadynamic approach to understand the recognition mechanism of the histone H3 tail with the ATRX ADD domain. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:594-602. [PMID: 29730439 DOI: 10.1016/j.bbagrm.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
The binding affinity between the histone 3 (H3) tail and the ADD domain of ATRX (ATRXADD) increases with the subsequent addition of methyl groups on lysine 9 on H3. To improve our understanding of how the difference in methylation state affects binding between H3 and the ATRXADD, we adopted a metadynamic approach to explore the recognition mechanism between the two proteins and identify the key intermolecular interactions that mediate this protein-peptide interaction (PPI). The non-methylated H3 peptide is recognized only by the PHD finger of ATRXADD while mono-, di-, and trimethylated H3 is recognized by both the PHD and GATA-like zinc finger of the domain. Furthermore, water molecules play an important role in orienting the lysine 9 anchor towards the GATA-like zinc finger, which results in stabilizing the lysine 9 binding pocket on ATRXADD. We compared our computational results against experimentally determined NMR and X-ray structures by demonstrating the RMSD, order parameter S2 and hydration number of the complex. The metadynamics data provide new insight into roles of water-bridges and the mechanisms through which K9 hydration stabilizes the H3K9me3:ATRXADD PPI, providing context for the high affinity demonstrated between this protein and peptide.
Collapse
Affiliation(s)
- Radha Charan Dash
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA
| | - Angela M Zaino
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA.
| |
Collapse
|
26
|
Jenness C, Giunta S, Müller MM, Kimura H, Muir TW, Funabiki H. HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome. Proc Natl Acad Sci U S A 2018; 115:E876-E885. [PMID: 29339483 PMCID: PMC5798369 DOI: 10.1073/pnas.1717509115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in CDCA7, the SNF2 family protein HELLS (LSH), or the DNA methyltransferase DNMT3b cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome. While it has been speculated that DNA methylation defects cause this disease, little is known about the molecular function of CDCA7 and its functional relationship to HELLS and DNMT3b. Systematic analysis of how the cell cycle, H3K9 methylation, and the mitotic kinase Aurora B affect proteomic profiles of chromatin in Xenopus egg extracts revealed that HELLS and CDCA7 form a stoichiometric complex on chromatin, in a manner sensitive to Aurora B. Although HELLS alone fails to remodel nucleosomes, we demonstrate that the HELLS-CDCA7 complex possesses nucleosome remodeling activity. Furthermore, CDCA7 is essential for loading HELLS onto chromatin, and CDCA7 harboring patient ICF mutations fails to recruit the complex to chromatin. Together, our study identifies a unique bipartite nucleosome remodeling complex where the functional remodeling activity is split between two proteins and thus delineates the defective pathway in ICF syndrome.
Collapse
Affiliation(s)
- Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Manuel M Müller
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 226-8503 Yokohama, Japan
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065;
| |
Collapse
|
27
|
Li Z, Zhao D, Xiang B, Li H. Structural and biochemical characterization of DAXX-ATRX interaction. Protein Cell 2018; 8:762-766. [PMID: 28875283 PMCID: PMC5636754 DOI: 10.1007/s13238-017-0463-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Zhuang Li
- College of Life Sciences, Peking University, Beijing, 100871, China.,MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dan Zhao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Bin Xiang
- College of Life Sciences, Peking University, Beijing, 100871, China.,MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
28
|
Epigenetic Etiology of Intellectual Disability. J Neurosci 2017; 37:10773-10782. [PMID: 29118205 DOI: 10.1523/jneurosci.1840-17.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.
Collapse
|
29
|
Nandakumar P, Mansouri A, Das S. The Role of ATRX in Glioma Biology. Front Oncol 2017; 7:236. [PMID: 29034211 PMCID: PMC5626857 DOI: 10.3389/fonc.2017.00236] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/14/2017] [Indexed: 02/03/2023] Open
Abstract
The current World Health Organization classification of CNS tumors has made a tremendous leap from past editions by incorporating molecular criteria in addition to the pre-existing histological parameters. The revised version has had a particular impact on the classification of diffuse low-grade gliomas and their high-grade variants. The ATRX status is one of the critical markers that define the molecular classification of gliomas. In this review, we will first provide an overview of the role of ATRX in regular cell biology. Furthermore, the role of ATRX in tumorigenesis, specifically gliomas, is comprehensively elucidated. The possible correlation of ATRX status with other genetic/epigenetic modifications is also presented. We conclude by discussing some of the challenges associated with incorporating ATRX status assessment into routine clinical practice while also exploring opportunities for future diagnostics/therapeutics in gliomas based on ATRX status.
Collapse
Affiliation(s)
- Pravanya Nandakumar
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Center for Cancer Research, Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,Division of Neuro-Oncology, Johns Hopkins University, Baltimore, MD, United States
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Centre, Hospital for Sick Kids, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
31
|
Chavez J, Murillo-Maldonado JM, Bahena V, Cruz AK, Castañeda-Sortibrán A, Rodriguez-Arnaiz R, Zurita M, Valadez-Graham V. dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres. Chromosoma 2017; 126:697-712. [PMID: 28688038 DOI: 10.1007/s00412-017-0634-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022]
Abstract
Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.
Collapse
Affiliation(s)
- Joselyn Chavez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Juan Manuel Murillo-Maldonado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Vanessa Bahena
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Ana Karina Cruz
- Laboratorio de Genética. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de México, Mexico
| | - América Castañeda-Sortibrán
- Laboratorio de Genética. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de México, Mexico
| | - Rosario Rodriguez-Arnaiz
- Laboratorio de Genética. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de México, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
32
|
Kulej K, Avgousti DC, Sidoli S, Herrmann C, Della Fera AN, Kim ET, Garcia BA, Weitzman MD. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection. Mol Cell Proteomics 2017; 16:S92-S107. [PMID: 28179408 DOI: 10.1074/mcp.m116.065987] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition.
Collapse
Affiliation(s)
- Katarzyna Kulej
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daphne C Avgousti
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Simone Sidoli
- ¶Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,‖Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christin Herrmann
- §Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,**Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashley N Della Fera
- §Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eui Tae Kim
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- ¶Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; .,‖Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Matthew D Weitzman
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; .,§Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Lagali PS, Medina CF, Zhao BYH, Yan K, Baker AN, Coupland SG, Tsilfidis C, Wallace VA, Picketts DJ. Retinal interneuron survival requires non-cell-autonomous Atrx activity. Hum Mol Genet 2016; 25:4787-4803. [PMID: 28173139 DOI: 10.1093/hmg/ddw306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/13/2023] Open
Abstract
ATRX is a chromatin remodeling protein that is mutated in several intellectual disability disorders including alpha-thalassemia/mental retardation, X-linked (ATR-X) syndrome. We previously reported the prevalence of ophthalmological defects in ATR-X syndrome patients, and accordingly we find morphological and functional visual abnormalities in a mouse model harboring a mutation occurring in ATR-X patients. The visual system abnormalities observed in these mice parallels the Atrx-null retinal phenotype characterized by interneuron defects and selective loss of amacrine and horizontal cells. The mechanisms that underlie selective neuronal vulnerability and neurodegeneration in the central nervous system upon Atrx mutation or deletion are unknown. To interrogate the cellular specificity of Atrx for its retinal neuroprotective functions, we employed a combination of temporal and lineage-restricted conditional ablation strategies to generate five different conditional knockout mouse models, and subsequently identified a non-cell-autonomous requirement for Atrx in bipolar cells for inhibitory interneuron survival in the retina. Atrx-deficient retinal bipolar cells exhibit functional, structural and molecular alterations consistent with impairments in neuronal activity and connectivity. Gene expression changes in the Atrx-null retina indicate defective synaptic structure and neuronal circuitry, suggest excitotoxic mechanisms of neurodegeneration, and demonstrate that common targets of ATRX in the forebrain and retina may contribute to similar neuropathological processes underlying cognitive impairment and visual dysfunction in ATR-X syndrome.
Collapse
Affiliation(s)
- Pamela S Lagali
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Chantal F Medina
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Brandon Y H Zhao
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Adam N Baker
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Stuart G Coupland
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Ophthalmology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Catherine Tsilfidis
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Ophthalmology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Valerie A Wallace
- Vision Research Division, Krembil Research Institute, Toronto, Ontario, Canada M5T 2S8,,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada,,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
34
|
Abstract
A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.
Collapse
|
35
|
Zhang X, Zhao D, Xiong X, He Z, Li H. Multifaceted Histone H3 Methylation and Phosphorylation Readout by the Plant Homeodomain Finger of Human Nuclear Antigen Sp100C. J Biol Chem 2016; 291:12786-12798. [PMID: 27129259 PMCID: PMC4933467 DOI: 10.1074/jbc.m116.721159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/06/2016] [Indexed: 02/05/2023] Open
Abstract
The decoding of histone post-translational modifications by chromatin-binding modules ("readers") constitutes one major mechanism of epigenetic regulation. Nuclear antigen Sp100 (SPECKLED, 100 kDa), a constitutive component of the promyelocytic leukemia nuclear bodies, plays key roles in intrinsic immunity and transcriptional repression. Sp100C, a splicing isoform specifically up-regulated upon interferon stimulation, harbors a unique tandem plant homeodomain (PHD) finger and bromodomain at its C terminus. Combining structural, quantitative binding, and cellular co-localization studies, we characterized Sp100C PHD finger as an unmethylated histone H3 Lys(4) (H3K4me0) reader that tolerates histone H3 Thr(3) phosphorylation (H3T3ph), histone H3 Lys(9) trimethylation (H3K9me3), and histone H3 Ser(10) phosphorylation (H3S10ph), hallmarks associated with the mitotic chromosome. In contrast, whereas H3K4me0 reader activity is conserved in Sp140, an Sp100C paralog, the multivalent tolerance of H3T3ph, H3K9me3, and H3S10ph was lost for Sp140. The complex structure determined at 2.1 Å revealed a highly coordinated lysine ϵ-amine recognition sphere formed by an extended N-terminal motif for H3K4me0 readout. Interestingly, reader pocket rigidification by disulfide bond formation enhanced H3K4me0 binding by Sp100C. An additional complex structure solved at 2.7 Å revealed that H3T3ph is recognized by the arginine residue, Arg(713), that is unique to the PHD finger of Sp100C. Consistent with a restrictive cellular role of Sp100C, these results establish a direct chromatin targeting function of Sp100C that may regulate transcriptional gene silencing and promyelocytic leukemia nuclear body-mediated intrinsic immunity in response to interferon stimulation.
Collapse
Affiliation(s)
- Xiaojie Zhang
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and
| | - Dan Zhao
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and
| | - Xiaozhe Xiong
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and
| | - Zhimin He
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and
| | - Haitao Li
- From the Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 and; the Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
Huh MS, Ivanochko D, Hashem LE, Curtin M, Delorme M, Goodall E, Yan K, Picketts DJ. Stalled replication forks within heterochromatin require ATRX for protection. Cell Death Dis 2016; 7:e2220. [PMID: 27171262 PMCID: PMC4917659 DOI: 10.1038/cddis.2016.121] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023]
Abstract
Expansive growth of neural progenitor cells (NPCs) is a prerequisite to the temporal waves of neuronal differentiation that generate the six-layered neocortex, while also placing a heavy burden on proteins that regulate chromatin packaging and genome integrity. This problem is further reflected by the growing number of developmental disorders caused by mutations in chromatin regulators. ATRX gene mutations cause a severe intellectual disability disorder (α-thalassemia mental retardation X-linked (ATRX) syndrome; OMIM no. 301040), characterized by microcephaly, urogenital abnormalities and α-thalassemia. Although the ATRX protein is required for the maintenance of repetitive DNA within heterochromatin, how this translates to disease pathogenesis remain poorly understood and was a focus of this study. We demonstrate that Atrx(FoxG1Cre) forebrain-specific conditional knockout mice display poly(ADP-ribose) polymerase-1 (Parp-1) hyperactivation during neurogenesis and generate fewer late-born Cux1- and Brn2-positive neurons that accounts for the reduced cortical size. Moreover, DNA damage, induced Parp-1 and Atm activation is elevated in progenitor cells and contributes to their increased level of cell death. ATRX-null HeLa cells are similarly sensitive to hydroxyurea-induced replication stress, accumulate DNA damage and proliferate poorly. Impaired BRCA1-RAD51 colocalization and PARP-1 hyperactivation indicated that stalled replication forks are not efficiently protected. DNA fiber assays confirmed that MRE11 degradation of stalled replication forks was rampant in the absence of ATRX or DAXX. Indeed, fork degradation in ATRX-null cells could be attenuated by treatment with the MRE11 inhibitor mirin, or exacerbated by inhibiting PARP-1 activity. Taken together, these results suggest that ATRX is required to limit replication stress during cellular proliferation, whereas upregulation of PARP-1 activity functions as a compensatory mechanism to protect stalled forks, limiting genomic damage, and facilitating late-born neuron production.
Collapse
Affiliation(s)
- M S Huh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - D Ivanochko
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - L E Hashem
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - M Curtin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - M Delorme
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - E Goodall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - K Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - D J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
37
|
Andrews FH, Gatchalian J, Krajewski K, Strahl BD, Kutateladze TG. Regulation of Methyllysine Readers through Phosphorylation. ACS Chem Biol 2016; 11:547-53. [PMID: 26726824 DOI: 10.1021/acschembio.5b00802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methyllysine post-translational modifications (PTMs) of histones create binding sites for evolutionarily conserved reader domains that link nuclear host proteins and chromatin-modifying complexes to specific genomic regions. In the context of these events, adjacent histone PTMs are capable of altering the binding activity of readers toward their target marks. This provides a mechanism of "combinatorial readout" of PTMs that can enhance, decrease, or eliminate the association of readers with chromatin. In this Perspective, we focus on recent studies describing the impact of dynamic phospho-serine/threonine/tyrosine marks on the interaction of methyllysine readers with histones, summarize mechanistic aspects of the phospho/methyl readout, and highlight the significance of crosstalk between these PTMs. We also demonstrate that in addition to inhibiting binding and serving as a true switch, promoting dissociation of the methyllysine readers from chromatin, the phospho/methyl combination can act together in a cooperative manner--thus adding a new layer of regulatory information that can be encoded in these dual histone PTMs.
Collapse
Affiliation(s)
- Forest H. Andrews
- Department
of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Jovylyn Gatchalian
- Department
of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Krzysztof Krajewski
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Brian D. Strahl
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Tatiana G. Kutateladze
- Department
of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
38
|
Noh KM, Allis CD, Li H. Reading between the Lines: "ADD"-ing Histone and DNA Methylation Marks toward a New Epigenetic "Sum". ACS Chem Biol 2016; 11:554-63. [PMID: 26596909 DOI: 10.1021/acschembio.5b00830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covalent modifications of both DNA and histones act in concert to define the landscape of our epigenome. In this review, we explore the interconnections between histone and DNA modifications by focusing on a conserved chromatin-binding regulatory domain, the ATRX-DNMT3-DNMT3L (ADD) domain. New studies show that the ADD domain is capable of sensing, and therefore integrating, the status of multiple histone modifications. This in turn dictates the in vivo localization or allosteric regulation of the full-length ADD-containing protein and its ability to function in downstream chromatin remodeling events. Strategies to re-engineer the ADD "reader pocket" in the de novo DNA methyltransferase DNMT3A such that it redirects this "writer" to new genomic loci proved useful in understanding important biological downstream consequences of mis-targeting of DNA methylation via altered reading of histone marks. Combined with genome-editing tools, this approach stands as a poof-of-principle and will be broadly applicable to the elucidation of epigenetic networks that have been altered by "reader" mutations, either artificially or as naturally occurs in some human diseases.
Collapse
Affiliation(s)
- Kyung-Min Noh
- European Molecular Biology Laboratory, Genome Biology
Unit, 69117 Heidelberg, Germany
| | - C. David Allis
- Laboratory
of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065, United States
| | - Haitao Li
- MOE
Key Laboratory of Protein Sciences, Center for Structural Biology,
Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
39
|
Abstract
Histones are subject to frequent combinatorial post-translational modifications (PTMs), forming a complex chemical "language" that is interpreted by PTM-specific histone-interacting protein modules (reader domains). These specific interactions are thought to instruct gene expression and downstream biological functions. While the majority of studies have focused on individual modifications, our current understanding of the combinatorial PTM patterns on histones is starting to emerge, benefiting from the convergence of multiple technologies. Here, we review the key technical advances and progress on discovery and characterization of combinatorial histone PTM patterns. We focus on the interactions between reader domains and combinatorial PTMs, which is essential for understanding the mechanism and biological meaning of establishing and interpreting information embedded in histone PTM patterns.
Collapse
Affiliation(s)
- Zhangli Su
- Department
of Biomolecular
Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin 53715, United States
| | - John M. Denu
- Department
of Biomolecular
Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
40
|
Wenderski W, Maze I. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease. Bioessays 2016; 38:410-9. [PMID: 26990528 DOI: 10.1002/bies.201500171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease.
Collapse
Affiliation(s)
- Wendy Wenderski
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Ian Maze
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Abstract
ATRX was identified over 20 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability. Similarities to the sucrose nonfermentable SNF2 type chromatin remodelers initially suggested a role in transcriptional regulation. However, over the last years, our knowledge of the epigenetic activities of ATRX has expanded steadily. Recent exciting discoveries have propelled ATRX into the limelight of chromatin and telomere biology, development and cancer research. This review summarizes recent breakthroughs in understanding ATRX function in heterochromatin structure, genome stability and its frequent dysregulation in a variety of cancers.
Collapse
Affiliation(s)
- L Ashley Watson
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Hannah Goldberg
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Nathalie G Bérubé
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| |
Collapse
|
42
|
Gaume X, Torres-Padilla ME. Regulation of Reprogramming and Cellular Plasticity through Histone Exchange and Histone Variant Incorporation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:165-175. [PMID: 26582788 DOI: 10.1101/sqb.2015.80.027458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Early embryonic cells are totipotent and can generate a complete organism including embryonic and extraembryonic tissues. After division, cells lose their potency as they move toward a pluripotent state characterized by decreased cellular plasticity. During this transition, drastic changes in transcriptional programs occur in parallel with global chromatin reorganization. The epigenetic mechanisms governing the changes in chromatin signatures during the transitions of cellular plasticity states are starting to be understood. Among these mechanisms, recent studies highlight the importance of histone variant incorporation and/or eviction from chromatin in the regulation of the chromatin state that is linked to cellular potential. In this review, we discuss the role of histone variants during in vivo and in vitro reprogramming events. These results sustain the hypothesis that histone variants and histone exchange are key actors in the establishment of cellular plasticity programs.
Collapse
Affiliation(s)
- Xavier Gaume
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 Illkirch, CU de Strasbourg, France
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 Illkirch, CU de Strasbourg, France
| |
Collapse
|
43
|
Epigenetic changes in the developing brain: Effects on behavior. Proc Natl Acad Sci U S A 2015; 112:6789-95. [PMID: 26034282 DOI: 10.1073/pnas.1501482112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Chakravarty S, Essel F, Lin T, Zeigler S. Histone Peptide Recognition by KDM5B-PHD1: A Case Study. Biochemistry 2015; 54:5766-80. [PMID: 26266342 DOI: 10.1021/acs.biochem.5b00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A detailed understanding of the energetic contributions to histone peptide recognition would be valuable for a better understanding of chromatin anchoring mechanisms and histone diagnostic design. Here, we probed the energetic contributions to recognize the same unmodified histone H3 by three different plant homeodomain (PHD) H3K4me0 readers: hKDM5B-PHD1 (first PHD finger of hKDM5B), hBAZ2A-PHD, and hAIRE-PHD1. The energetic contributions of residues differ significantly from one complex to the next. For example, H3K4A substitution completely aborts the formation of the hAIRE-histone peptide complex, while it has only a small destabilizing effect on binding of the other readers, even though H3K4 methylation disrupts all three complexes. Packing density suggests that methylation of more tightly packed Lys/Arg residues can disrupt binding, even if the energetic contribution is small. The binding behavior of hKDM5B-PHD1 and hBAZ2A-PHD is similar, and like PHD H3R2 readers, both possess a pair of Asp residues in the treble clef for interaction with H3R2. PHD subtype sequences, especially the tandem PHD-PHD fingers, show enrichment in the treble clef Asp residues, suggesting that it is a subtype-specific property. These Asp residues make significant energetic contributions to the formation of the hKDM5B-histone peptide complex, suggesting that there are interactions in addition to those reported in the recent NMR structure. However, the presence of the treble clef Asp in PHD sequences may not always be sufficient for histone peptide binding. This study showcases reader-histone peptide interactions in the context of residue conservation, energetic contributions, interfacial packing, and sequence-based reader subtype predictability.
Collapse
Affiliation(s)
- Suvobrata Chakravarty
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| | - Francisca Essel
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| | - Tao Lin
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| | - Stad Zeigler
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| |
Collapse
|
45
|
De La Fuente R, Baumann C, Viveiros MM. ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo. Development 2015; 142:1806-17. [PMID: 25926359 DOI: 10.1242/dev.118927] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/24/2015] [Indexed: 01/25/2023]
Abstract
A striking proportion of human cleavage-stage embryos exhibit chromosome instability (CIN). Notably, until now, no experimental model has been described to determine the origin and mechanisms of complex chromosomal rearrangements. Here, we examined mouse embryos deficient for the chromatin remodeling protein ATRX to determine the cellular mechanisms activated in response to CIN. We demonstrate that ATRX is required for silencing of major satellite transcripts in the maternal genome, where it confers epigenetic asymmetry to pericentric heterochromatin during the transition to the first mitosis. This stage is also characterized by a striking kinetochore size asymmetry established by differences in CENP-C protein between the parental genomes. Loss of ATRX results in increased centromeric mitotic recombination, a high frequency of sister chromatid exchanges and double strand DNA breaks, indicating the formation of mitotic recombination break points. ATRX-deficient embryos exhibit a twofold increase in transcripts for aurora kinase B, the centromeric cohesin ESCO2, DNMT1, the ubiquitin-ligase (DZIP3) and the histone methyl transferase (EHMT1). Thus, loss of ATRX activates a pathway that integrates epigenetic modifications and DNA repair in response to chromosome breaks. These results reveal the cellular response of the cleavage-stage embryo to CIN and uncover a mechanism by which centromeric fission induces the formation of large-scale chromosomal rearrangements. Our results have important implications to determine the epigenetic origins of CIN that lead to congenital birth defects and early pregnancy loss, as well as the mechanisms involved in the oocyte to embryo transition.
Collapse
Affiliation(s)
- Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|