1
|
Beaven R, Denholm B. The cryptonephridial/rectal complex: an evolutionary adaptation for water and ion conservation. Biol Rev Camb Philos Soc 2025; 100:647-671. [PMID: 39438273 PMCID: PMC11885702 DOI: 10.1111/brv.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Arthropods have integrated digestive and renal systems, which function to acquire and maintain homeostatically the substances they require for survival. The cryptonephridial complex (CNC) is an evolutionary novelty in which the renal organs and gut have been dramatically reorganised. Parts of the renal or Malpighian tubules (MpTs) form a close association with the surface of the rectum, and are surrounded by a novel tissue, the perinephric membrane, which acts to insulate the system from the haemolymph and thus allows tight regulation of ions and water into and out of the CNC. The CNC can reclaim water and solutes from the rectal contents and recycle these back into the haemolymph. Fluid flow in the MpTs runs counter to flow within the rectum. It is this countercurrent arrangement that underpins its powerful recycling capabilities, and represents one of the most efficient water conservation mechanisms in nature. CNCs appear to have evolved multiple times, and are present in some of the largest and most evolutionarily successful insect groups including the larvae of most Lepidoptera and in a major beetle lineage (Cucujiformia + Bostrichoidea), suggesting that the CNC is an important adaptation. Here we review the knowledge of this remarkable organ system gained over the past 200 years. We first focus on the CNCs of tenebrionid beetles, for which we have an in-depth understanding from physiological, structural and ultrastructural studies (primarily in Tenebrio molitor), which are now being extended by studies in Tribolium castaneum enabled by advances in molecular and microscopy approaches established for this species. These recent studies are beginning to illuminate CNC development, physiology and endocrine control. We then take a broader view of arthropod CNCs, phylogenetically mapping their reported occurrence to assess their distribution and likely evolutionary origins. We explore CNCs from an ecological viewpoint, put forward evidence that CNCs may primarily be adaptations for facing the challenges of larval life, and argue that their loss in many aquatic species could point to a primary function in conserving water in terrestrial species. Finally, by considering the functions of renal and digestive epithelia in insects lacking CNCs, as well as the typical architecture of these organs in relation to one another, we propose that ancestral features of these organs predispose them for the evolution of CNCs.
Collapse
Affiliation(s)
- Robin Beaven
- Hugh Robson Building, George Square, Deanery of Biomedical SciencesThe University of EdinburghEdinburghEH8 9XDUK
| | - Barry Denholm
- Hugh Robson Building, George Square, Deanery of Biomedical SciencesThe University of EdinburghEdinburghEH8 9XDUK
| |
Collapse
|
2
|
Beaven R, Koyama T, Naseem MT, Halberg KV, Denholm B. Something old, something new: the origins of an unusual renal cell underpinning a beetle water-conserving mechanism. Development 2024; 151:dev202994. [PMID: 39387206 DOI: 10.1242/dev.202994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Tenebrionid beetles have been highly successful in colonising environments where water is scarce, underpinned by their unique osmoregulatory adaptations. These include a cryptonephridial arrangement of their organs, in which part of their renal/Malpighian tubules are bound to the surface of the rectum. Within the cryptonephridial tubules, an unusual cell type, the leptophragmata, plays a key physiological role underpinning water conservation. Nothing was known about the developmental mechanisms or evolution of these unusual renal cells. Here, we investigate mechanisms underpinning leptophragmata development in Tribolium castaneum. We find that leptophragmata express and require the Tiptop transcription factor, similar to secondary renal cells in Drosophila melanogaster, which express Teashirt and Tiptop, despite Drosophila lacking a crypronephridial arrangement. An additional transcription factor, Dachshund, is required to establish leptophragmata identity and to distinguish them from the secondary cells in the non-cryptonephridial region of renal tubule of Tribolium. Dachshund is also expressed in a sub-population of secondary cells in Drosophila. Leptophragmata, which are unique to the beetle lineage, appear to have originated from a specific renal cell type present ancestrally and to be specified by a conserved repertoire of transcription factors.
Collapse
Affiliation(s)
- Robin Beaven
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Takashi Koyama
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Muhammad T Naseem
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Kenneth V Halberg
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Barry Denholm
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
3
|
Agard MA, Zandawala M, Paluzzi JPV. Another fly diuretic hormone: tachykinins increase fluid and ion transport by adult Drosophila melanogaster Malpighian 'renal' tubules. J Exp Biol 2024; 227:jeb247668. [PMID: 39319454 DOI: 10.1242/jeb.247668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Insects such as the model organism Drosophila melanogaster must modulate their internal physiology to withstand changes in temperature and availability of water and food. Regulation of the excretory system by peptidergic hormones is one mechanism by which insects maintain their internal homeostasis. Tachykinins are a family of neuropeptides that have been shown to stimulate fluid secretion from the Malpighian 'renal' tubules (MTs) in some insect species, but it is unclear if that is the case in the fruit fly, D. melanogaster. A central objective of the current study was to examine the physiological role of tachykinin signaling in the MTs of adult D. melanogaster. Using the genetic toolbox available in this model organism along with in vitro and whole-animal bioassays, our results indicate that Drosophila tachykinins (DTKs) function as diuretic hormones by binding to the DTK receptor (DTKR) localized in stellate cells of the MTs. Specifically, DTK activates cation and anion transport across the stimulated MTs, which impairs their survival in response to desiccation because of their inability to conserve water. Thus, besides their previously described roles in neuromodulation of pathways controlling locomotion and food search, olfactory processing, aggression, lipid metabolism and metabolic stress, processing of noxious stimuli and hormone release, DTKs also appear to function as bona fide endocrine factors regulating the excretory system and appear essential for the maintenance of hydromineral balance.
Collapse
Affiliation(s)
- Marishia A Agard
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Meet Zandawala
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno 89557, NV, USA
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Rodan AR. With No Lysine (K) Kinases and Sodium Transporter Function in Solute Exchange with Implications for BP Regulation as Elucidated through Drosophila. KIDNEY360 2024; 5:1553-1562. [PMID: 39186374 PMCID: PMC11556937 DOI: 10.34067/kid.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Like other multicellular organisms, the fruit fly Drosophila melanogaster must maintain homeostasis of the internal milieu, including the maintenance of constant ion and water concentrations. In mammals, the with no lysine (K) (WNK)-Ste20-proline/alanine rich kinase/oxidative stress response 1 kinase cascade is an important regulator of epithelial ion transport in the kidney. This pathway regulates SLC12 family cotransporters, including sodium-potassium-2-chloride, sodium chloride, and potassium chloride cotransporters. The WNK-Ste20-proline/alanine rich kinase/oxidative stress response 1 kinase cascade also regulates epithelial ion transport via regulation of the Drosophila sodium-potassium-2-chloride cotransporter in the Malpighian tubule, the renal epithelium of the fly. Studies in Drosophila have contributed to the understanding of multiple regulators of WNK pathway signaling, including intracellular chloride and potassium, the scaffold protein Mo25, hypertonic stress, hydrostatic pressure, and macromolecular crowding. These will be discussed together, with implications for mammalian kidney function and BP control.
Collapse
Affiliation(s)
- Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah; Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Department of Human Genetics, University of Utah, Salt Lake City, Utah; and Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
5
|
Reynolds CJ, Gillen CM, Burke R, Tsering Y, Loucks E, Judd-Mole S, Dow JA, Romero MF. Drosophila ClC-c Is a Homolog of Human CLC-5 and a New Model for Dent Disease Type 1. KIDNEY360 2024; 5:414-426. [PMID: 38233994 PMCID: PMC11000744 DOI: 10.34067/kid.0000000000000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Key Points Drosophila can be a model for Dent Disease type 1. Drosophila Clc-C mutations function similar to human CLC-5 Dent 1 mutations. Background Drosophila serve as exceptional alternative models for in vivo and ex vivo research and may provide an avenue for in-depth investigation for human ClC-5 and Dent disease type 1 (DD1). The Drosophila ClC-c (CG5284) has sequence homology with human ClC-5 and is hypothesized to encompass similar functional and phenotypical roles with ClC-5 and variants that cause DD1. Methods Ion transport function and activity of Drosophila ClC-c and homologous DD1 variants were assessed by voltage clamp electrophysiology. Membrane localization was demonstrated in Drosophila expressing a GFP-labeled construct of ClC-c. Genetic expression of an RNAi against ClC-c mRNA was used to generate a knockdown fly that serves as a DD1 disease model. Tubule secretion of cations and protein were assessed, as well as the crystal formation in the Malpighian tubules. Results Voltage clamp experiments demonstrate that ClC-c is voltage-gated with Cl−-dependent and pH-sensitive currents. Inclusion of homologous DD1 mutations pathogenic variants (S393L, R494W, and Q777X) impairs ClC-c ion transport activity. In vivo expression of ClC-c-eGFP in Malpighian tubules reveals that the membrane transporter localizes to the apical membrane and nearby cytosolic regions. RNAi knockdown of ClC-c (48% decreased mRNA expression) causes increased secretion of both urinary protein and Ca2+ and increased occurrence of spontaneous tubule crystals. Conclusions Drosophila ClC-c shows orthologous function and localization to human ClC-5. Thus, Drosophila and ClC-c regulation may be useful for future investigations of Cl− transport, Ca2+ homeostasis, and urinary protein loss in DD1.
Collapse
Affiliation(s)
- Carmen J. Reynolds
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, Minnesota
| | | | - Richard Burke
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Yula Tsering
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, Minnesota
- University of Minnesota-Rochester, Rochester, Minnesota
| | - Emi Loucks
- Department of Biology, Kenyon College, Gambier, Ohio
| | - Sebastian Judd-Mole
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Julian A.T. Dow
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael F. Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, Minnesota
- Nephrology and Hypertension, Mayo Clinic College of Medicine & Science, Rochester, Minnesota
| |
Collapse
|
6
|
Halberg KV, Denholm B. Mechanisms of Systemic Osmoregulation in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:415-438. [PMID: 37758224 DOI: 10.1146/annurev-ento-040323-021222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Water is essential to life. Terrestrial insects lose water by evaporation from the body surface and respiratory surfaces, as well as in the excretory products, posing a challenge made more acute by their high surface-to-volume ratio. These losses must be kept to a minimum and be offset by water gained from other sources. By contrast, insects such as the blood-sucking bug Rhodnius prolixus consume up to 10 times their body weight in a single blood meal, necessitating rapid expulsion of excess water and ions. How do insects manage their ion and water budgets? A century of study has revealed a great deal about the organ systems that insects use to maintain their ion and water balance and their regulation. Traditionally, a taxonomically wide range of species were studied, whereas more recent research has focused on model organisms to leverage the power of the molecular genetic approach. Key advances in new technologies have become available for a wider range of species in the past decade. We document how these approaches have already begun to inform our understanding of the diversity and conservation of insect systemic osmoregulation. We advocate that these technologies be combined with traditional approaches to study a broader range of nonmodel species to gain a comprehensive overview of the mechanism underpinning systemic osmoregulation in the most species-rich group of animals on earth, the insects.
Collapse
Affiliation(s)
- Kenneth Veland Halberg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark;
| | - Barry Denholm
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Xu W, Li G, Chen Y, Ye X, Song W. A novel antidiuretic hormone governs tumour-induced renal dysfunction. Nature 2023; 624:425-432. [PMID: 38057665 DOI: 10.1038/s41586-023-06833-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Maintenance of renal function and fluid transport are essential for vertebrates and invertebrates to adapt to physiological and pathological challenges. Human patients with malignant tumours frequently develop detrimental renal dysfunction and oliguria, and previous studies suggest the involvement of chemotherapeutic toxicity and tumour-associated inflammation1,2. However, how tumours might directly modulate renal functions remains largely unclear. Here, using conserved tumour models in Drosophila melanogaster3, we characterized isoform F of ion transport peptide (ITPF) as a fly antidiuretic hormone that is secreted by a subset of yki3SA gut tumour cells, impairs renal function and causes severe abdomen bloating and fluid accumulation. Mechanistically, tumour-derived ITPF targets the G-protein-coupled receptor TkR99D in stellate cells of Malpighian tubules-an excretory organ that is equivalent to renal tubules4-to activate nitric oxide synthase-cGMP signalling and inhibit fluid excretion. We further uncovered antidiuretic functions of mammalian neurokinin 3 receptor (NK3R), the homologue of fly TkR99D, as pharmaceutical blockade of NK3R efficiently alleviates renal tubular dysfunction in mice bearing different malignant tumours. Together, our results demonstrate a novel antidiuretic pathway mediating tumour-renal crosstalk across species and offer therapeutic opportunities for the treatment of cancer-associated renal dysfunction.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gerui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
| | - Wei Song
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Dornan AJ, Halberg KV, Beuter LK, Davies SA, Dow JAT. Compromised junctional integrity phenocopies age-dependent renal dysfunction in Drosophila Snakeskin mutants. J Cell Sci 2023; 136:jcs261118. [PMID: 37694602 PMCID: PMC10565245 DOI: 10.1242/jcs.261118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Transporting epithelia provide a protective barrier against pathogenic insults while allowing the controlled exchange of ions, solutes and water with the external environment. In invertebrates, these functions depend on formation and maintenance of 'tight' septate junctions (SJs). However, the mechanism by which SJs affect transport competence and tissue homeostasis, and how these are modulated by ageing, remain incompletely understood. Here, we demonstrate that the Drosophila renal (Malpighian) tubules undergo an age-dependent decline in secretory capacity, which correlates with mislocalisation of SJ proteins and progressive degeneration in cellular morphology and tissue homeostasis. Acute loss of the SJ protein Snakeskin in adult tubules induced progressive changes in cellular and tissue architecture, including altered expression and localisation of junctional proteins with concomitant loss of cell polarity and barrier integrity, demonstrating that compromised junctional integrity is sufficient to replicate these ageing-related phenotypes. Taken together, our work demonstrates a crucial link between epithelial barrier integrity, tubule transport competence, renal homeostasis and organismal viability, as well as providing novel insights into the mechanisms underpinning ageing and renal disease.
Collapse
Affiliation(s)
- Anthony J. Dornan
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kenneth V. Halberg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Liesa-Kristin Beuter
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Animal Ecology and Systematics, Justus-Liebig-University Giessen, Giessen D-35392, Germany
| | - Shireen-Anne Davies
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A. T. Dow
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Koyama T, Rana DW, Halberg KV. Managing fuels and fluids: Network integration of osmoregulatory and metabolic hormonal circuits in the polymodal control of homeostasis in insects. Bioessays 2023; 45:e2300011. [PMID: 37327252 DOI: 10.1002/bies.202300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks. Here, we review our current knowledge on the network mechanisms that underpin systemic osmoregulation and discuss the remarkable parallels between the hormonal networks that regulate body fluid balance and those involved in energy homeostasis to provide a framework for understanding the polymodal optimization of homeostasis in insects.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Danial Wasim Rana
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
11
|
Xu J, Liu Y, Li H, Tarashansky AJ, Kalicki CH, Hung RJ, Hu Y, Comjean A, Kolluru SS, Wang B, Quake SR, Luo L, McMahon AP, Dow JAT, Perrimon N. Transcriptional and functional motifs defining renal function revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2022; 119:e2203179119. [PMID: 35696569 PMCID: PMC9231607 DOI: 10.1073/pnas.2203179119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/11/2022] [Indexed: 01/09/2023] Open
Abstract
Recent advances in single-cell sequencing provide a unique opportunity to gain novel insights into the diversity, lineage, and functions of cell types constituting a tissue/organ. Here, we performed a single-nucleus study of the adult Drosophila renal system, consisting of Malpighian tubules and nephrocytes, which shares similarities with the mammalian kidney. We identified 11 distinct clusters representing renal stem cells, stellate cells, regionally specific principal cells, garland nephrocyte cells, and pericardial nephrocytes. Characterization of the transcription factors specific to each cluster identified fruitless (fru) as playing a role in stem cell regeneration and Hepatocyte nuclear factor 4 (Hnf4) in regulating glycogen and triglyceride metabolism. In addition, we identified a number of genes, including Rho guanine nucleotide exchange factor at 64C (RhoGEF64c), Frequenin 2 (Frq2), Prip, and CG1093 that are involved in regulating the unusual star shape of stellate cells. Importantly, the single-nucleus dataset allows visualization of the expression at the organ level of genes involved in ion transport and junctional permeability, providing a systems-level view of the organization and physiological roles of the tubules. Finally, a cross-species analysis allowed us to match the fly kidney cell types to mouse kidney cell types and planarian protonephridia, knowledge that will help the generation of kidney disease models. Altogether, our study provides a comprehensive resource for studying the fly kidney.
Collapse
Affiliation(s)
- Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Hongjie Li
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Alexander J. Tarashansky
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Colin H. Kalicki
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Sai Saroja Kolluru
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Julian A. T. Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
- HHMI, Harvard University, Boston, MA 02115
| |
Collapse
|
12
|
Wang S, Ju Y, Gao L, Miao Y, Qiao H, Wang Y. The fruit fly kidney stone models and their application in drug development. Heliyon 2022; 8:e09232. [PMID: 35399385 PMCID: PMC8987614 DOI: 10.1016/j.heliyon.2022.e09232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney stone disease is a global problem affecting about 12% of the world population. Novel treatments to control this disease have a huge demand. Here we argue that the fruit fly, as an emerging kidney stone model, can provide a platform for the discovery of new drugs. The renal system of fruit fly (Malpighian tubules) is similar to the mammalian renal tubules in both function and structure. Different fruit fly models for different types of kidney stones including calcium oxalate (CaOx) stones, xanthine stones, uric acid stone, and calcium phosphate (CaP) stones have been successfully established through dietary or genetic approaches in the last ten years, notably improved our understanding of the formation mechanisms of kidney stone diseases. The fruit fly CaOx stones model, which is mediated by treatment with dietary lithogenic agents, is also one of the most potential models for drug development. Various potential antilithogenic agents have been identified using this model, including new chemical compounds and medicinal plants. The fruit fly kidney stone models also afford opportunities to study the therapeutic mechanism of these drugs in deeper.
Collapse
Affiliation(s)
- Shiyao Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yingjie Ju
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Lujuan Gao
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Huanhuan Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yiwen Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| |
Collapse
|
13
|
Kolosov D, O'Donnell MJ. Blending physiology and RNAseq to provide new insights into regulation of epithelial transport: switching between ion secretion and reabsorption. J Exp Biol 2022; 225:274251. [PMID: 35119072 DOI: 10.1242/jeb.243293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This Review addresses the means by which epithelia change the direction of vectorial ion transport. Recent studies have revealed that insect Malpighian (renal) tubules can switch from secreting to reabsorbing K+. When the gut of larval lepidopterans is empty (during the moult cycle) or when the larvae are reared on K+-deficient diet, the distal ileac plexus segment of the tubule secretes K+ from the haemolymph into the tubule lumen. By contrast, in larvae reared on K+-rich diet, ions and fluid are reabsorbed from the rectal lumen into the perinephric space surrounding the cryptonephridial tubules of the rectal complex. Ions and fluid are then transported from the perinephric space into the lumen of the cryptonephridial tubules, thus supplying the free segments of the tubule downstream. Under these conditions, some of the K+ and water in the tubule lumen is reabsorbed across the cells of the distal ileac plexus, allowing for expansion of haemolymph volume in the rapidly growing larvae, as well as recycling of K+ and base equivalents. RNA sequencing data reveal large-scale changes in gene transcription that are associated with the switch between ion secretion and ion reabsorption by the distal ileac plexus. An unexpected finding is the presence of voltage-gated, ligand-gated and mechanosensitive ion channels, normally seen in excitable cells, in Malpighian tubules. Transcriptomic surveys indicate that these types of channels are also present in multiple other types of vertebrate and invertebrate epithelia, suggesting that they may play novel roles in epithelial cell signalling and regulation of epithelial ion transport.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
14
|
Bilder D, Ong K, Hsi TC, Adiga K, Kim J. Tumour-host interactions through the lens of Drosophila. Nat Rev Cancer 2021; 21:687-700. [PMID: 34389815 PMCID: PMC8669834 DOI: 10.1038/s41568-021-00387-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
There is a large gap between the deep understanding of mechanisms driving tumour growth and the reasons why patients ultimately die of cancer. It is now appreciated that interactions between the tumour and surrounding non-tumour (sometimes referred to as host) cells play critical roles in mortality as well as tumour progression, but much remains unknown about the underlying molecular mechanisms, especially those that act beyond the tumour microenvironment. Drosophila has a track record of high-impact discoveries about cell-autonomous growth regulation, and is well suited to now probe mysteries of tumour - host interactions. Here, we review current knowledge about how fly tumours interact with microenvironmental stroma, circulating innate immune cells and distant organs to influence disease progression. We also discuss reciprocal regulation between tumours and host physiology, with a particular focus on paraneoplasias. The fly's simplicity along with the ability to study lethality directly provide an opportunity to shed new light on how cancer actually kills.
Collapse
Affiliation(s)
- David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Katy Ong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Tsai-Ching Hsi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kavya Adiga
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jung Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
15
|
Dow JAT, Krause SA, Herzyk P. Updates on ion and water transport by the Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:31-37. [PMID: 33705976 PMCID: PMC9586879 DOI: 10.1016/j.cois.2021.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 05/29/2023]
Abstract
The Malpighian (renal) tubule is capable of transporting fluid at remarkable rates. This review will focus on recent insights into the mechanisms by which these high rates are achieved and controlled, with particular reference to the tubules of Drosophila melanogaster, in which the combination of physiology and genetics has led to particularly rapid progress. Like many vertebrate epithelia, the Drosophila tubule has specialized cell types, with active cation transport confined to a large, metabolically active principal cell; whereas the smaller intercalated stellate cell controls chloride and water shunts to achieve net fluid secretion. Recently, the genes underlying many of these processes have been identified, functionally validated and localized within the tubule. The imminent arrival of new types of post-genomic data (notably single cell sequencing) will herald an exciting era of new discovery.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Sue Ann Krause
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pawel Herzyk
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
16
|
Jonusaite S, Rodan AR. Molecular basis for epithelial morphogenesis and ion transport in the Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:7-11. [PMID: 33581351 PMCID: PMC8353009 DOI: 10.1016/j.cois.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 05/04/2023]
Abstract
During development, the insect Malpighian tubule undergoes several programmed morphogenetic events that give rise to the tubule's ability to transport ions and water at unparalleled speed. Studies in Diptera, in particular, have greatly increased our understanding of the molecular pathways underlying embryonic tubule development. In this review, we discuss recent work that has revealed new insights into the molecular players required for the development and maintenance of structurally and functionally intact adult Malpighian tubules. We highlight the contribution of the smooth septate junction (sSJ) proteins to the morphogenesis and transport function of the epithelial cells of the Drosophila melanogaster Malpighian tubule and also discuss new findings on the role of the GATAe transcription factor. We also consider the roles of sSJ proteins in the fly midgut, as compared to the Malpighian tubule, and the importance of cellular context for the functions of these proteins.
Collapse
Affiliation(s)
- Sima Jonusaite
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Integrative Biology, University of Guelph, Guelph, Ontario NIG 2W1, Canada
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Reynolds CJ, Turin DR, Romero MF. Transporters and tubule crystals in the insect Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:82-89. [PMID: 34044181 PMCID: PMC8487917 DOI: 10.1016/j.cois.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 05/16/2023]
Abstract
The insect renal (Malpighian) tubules are functionally homologous to the mammalian kidney. Accumulating evidence indicates that renal tubule crystals form in a manner similar to mammalian kidney stones. In Drosophila melanogaster, crystals can be induced by diet, toxic substances, or genetic mutations that reflect circumstances influencing or eliciting kidney stones in mammals. Incredibly, many mammalian proteins have distinct homologs in Drosophila, and the function of most homologs have been demonstrated to recapitulate their mammalian and human counterparts. Here, we discuss the present literature establishing Drosophila as a nephrolithiasis model. This insect model may be used to investigate and understand the etiology of kidney stone diseases, especially with regard to calcium oxalate, calcium phosphate and xanthine or urate crystallization.
Collapse
Affiliation(s)
- Carmen J Reynolds
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel R Turin
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; University of Minnesota-Rochester, 111 South Broadway, Suite 300, Rochester, MN 55904, USA
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
A unique Malpighian tubule architecture in Tribolium castaneum informs the evolutionary origins of systemic osmoregulation in beetles. Proc Natl Acad Sci U S A 2021; 118:2023314118. [PMID: 33785598 PMCID: PMC8040626 DOI: 10.1073/pnas.2023314118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Maintaining internal salt and water balance in response to fluctuating external conditions is essential for animal survival. This is particularly true for insects as their high surface-to-volume ratio makes them highly susceptible to osmotic stress. However, the cellular and hormonal mechanisms that mediate the systemic control of osmotic homeostasis in beetles (Coleoptera), the largest group of insects, remain largely unidentified. Here, we demonstrate that eight neurons in the brain of the red flour beetle Tribolium castaneum respond to internal changes in osmolality by releasing diuretic hormone (DH) 37 and DH47-homologs of vertebrate corticotropin-releasing factor (CRF) hormones-to control systemic water balance. Knockdown of the gene encoding the two hormones (Urinate, Urn8) reduces Malpighian tubule secretion and restricts organismal fluid loss, whereas injection of DH37 or DH47 reverses these phenotypes. We further identify a CRF-like receptor, Urinate receptor (Urn8R), which is exclusively expressed in a functionally unique secondary cell in the beetle tubules, as underlying this response. Activation of Urn8R increases K+ secretion, creating a lumen-positive transepithelial potential that drives fluid secretion. Together, these data show that beetle Malpighian tubules operate by a fundamentally different mechanism than those of other insects. Finally, we adopt a fluorescent labeling strategy to identify the evolutionary origin of this unusual tubule architecture, revealing that it evolved in the last common ancestor of the higher beetle families. Our work thus uncovers an important homeostatic program that is key to maintaining osmotic control in beetles, which evolved parallel to the radiation of the "advanced" beetle lineages.
Collapse
|
19
|
Nässel DR. Leucokinin and Associated Neuropeptides Regulate Multiple Aspects of Physiology and Behavior in Drosophila. Int J Mol Sci 2021; 22:1940. [PMID: 33669286 PMCID: PMC7920058 DOI: 10.3390/ijms22041940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leucokinins (LKs) constitute a family of neuropeptides identified in numerous insects and many other invertebrates. LKs act on G-protein-coupled receptors that display only distant relations to other known receptors. In adult Drosophila, 26 neurons/neurosecretory cells of three main types express LK. The four brain interneurons are of two types, and these are implicated in several important functions in the fly's behavior and physiology, including feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. The 22 neurosecretory cells (abdominal LK neurons, ABLKs) of the abdominal neuromeres co-express LK and a diuretic hormone (DH44), and together, these regulate water and ion homeostasis and associated stress as well as food intake. In Drosophila larvae, LK neurons modulate locomotion, escape responses and aspects of ecdysis behavior. A set of lateral neurosecretory cells, ALKs (anterior LK neurons), in the brain express LK in larvae, but inconsistently so in adults. These ALKs co-express three other neuropeptides and regulate water and ion homeostasis, feeding, and drinking, but the specific role of LK is not yet known. This review summarizes Drosophila data on embryonic lineages of LK neurons, functional roles of individual LK neuron types, interactions with other peptidergic systems, and orchestrating functions of LK.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
20
|
Nässel DR, Wu SF. Leucokinins: Multifunctional Neuropeptides and Hormones in Insects and Other Invertebrates. Int J Mol Sci 2021; 22:1531. [PMID: 33546414 PMCID: PMC7913504 DOI: 10.3390/ijms22041531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Leucokinins (LKs) constitute a neuropeptide family first discovered in a cockroach and later identified in numerous insects and several other invertebrates. The LK receptors are only distantly related to other known receptors. Among insects, there are many examples of species where genes encoding LKs and their receptors are absent. Furthermore, genomics has revealed that LK signaling is lacking in several of the invertebrate phyla and in vertebrates. In insects, the number and complexity of LK-expressing neurons vary, from the simple pattern in the Drosophila larva where the entire CNS has 20 neurons of 3 main types, to cockroaches with about 250 neurons of many different types. Common to all studied insects is the presence or 1-3 pairs of LK-expressing neurosecretory cells in each abdominal neuromere of the ventral nerve cord, that, at least in some insects, regulate secretion in Malpighian tubules. This review summarizes the diverse functional roles of LK signaling in insects, as well as other arthropods and mollusks. These functions include regulation of ion and water homeostasis, feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. Other functions are implied by the neuronal distribution of LK, but remain to be investigated.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Studies of the genetic model organism, Drosophila melanogaster, have unraveled molecular pathways relevant to human physiology and disease. The Malpighian tubule, the Drosophila renal epithelium, is described here, including tools available to study transport; conserved transporters, channels, and the signaling pathways regulating them; and fly models of kidney stone disease. RECENT FINDINGS Tools to measure Malpighian tubule transport continue to advance, including use of a transgenic sensor to quantify intracellular pH and proton fluxes. A recent study generated an RNA-sequencing-based atlas of tissue-specific gene expression, with resulting insights into Malpighian tubule gene expression of transporters and channels. Advances have been made in understanding the molecular physiology of the With No Lysine kinase-Ste20-related proline/alanine rich kinase/oxidative stress response kinase cascade that regulates epithelial ion transport in flies and mammals. New studies in Drosophila kidney stone models have characterized zinc transporters and used Malpighian tubules to study the efficacy of a plant metabolite in decreasing stone burden. SUMMARY Study of the Drosophila Malpighian tubule affords opportunities to better characterize the molecular physiology of epithelial transport mechanisms relevant to mammalian renal physiology.
Collapse
|
22
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
23
|
Jonusaite S, Beyenbach KW, Meyer H, Paululat A, Izumi Y, Furuse M, Rodan AR. The septate junction protein Mesh is required for epithelial morphogenesis, ion transport, and paracellular permeability in the Drosophila Malpighian tubule. Am J Physiol Cell Physiol 2020; 318:C675-C694. [PMID: 31913700 DOI: 10.1152/ajpcell.00492.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Septate junctions (SJs) are occluding cell-cell junctions that have roles in paracellular permeability and barrier function in the epithelia of invertebrates. Arthropods have two types of SJs, pleated SJs and smooth SJs (sSJs). In Drosophila melanogaster, sSJs are found in the midgut and Malpighian tubules, but the functions of sSJs and their protein components in the tubule epithelium are unknown. Here we examined the role of the previously identified integral sSJ component, Mesh, in the Malpighian tubule. We genetically manipulated mesh specifically in the principal cells of the tubule at different life stages. Tubules of flies with developmental mesh knockdown revealed defects in epithelial architecture, sSJ molecular and structural organization, and lack of urine production in basal and kinin-stimulated conditions, resulting in edema and early adult lethality. Knockdown of mesh during adulthood did not disrupt tubule epithelial and sSJ integrity but decreased the transepithelial potential, diminished transepithelial fluid and ion transport, and decreased paracellular permeability to 4-kDa dextran. Drosophila kinin decreased transepithelial potential and increased chloride permeability, and it stimulated fluid secretion in both control and adult mesh knockdown tubules but had no effect on 4-kDa dextran flux. Together, these data indicate roles for Mesh in the developmental maturation of the Drosophila Malpighian tubule and in ion and macromolecular transport in the adult tubule.
Collapse
Affiliation(s)
- Sima Jonusaite
- Division of Nephrology and Hypertension, Department of Internal Medicine, and Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Klaus W Beyenbach
- Division of Animal Physiology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Heiko Meyer
- Division of Zoology and Developmental Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Achim Paululat
- Division of Zoology and Developmental Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
| | - Aylin R Rodan
- Division of Nephrology and Hypertension, Department of Internal Medicine, and Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
24
|
Specialized stellate cells offer a privileged route for rapid water flux in Drosophila renal tubule. Proc Natl Acad Sci U S A 2020; 117:1779-1787. [PMID: 31907321 PMCID: PMC6983416 DOI: 10.1073/pnas.1915943117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insects are highly successful, in part through an excellent ability to osmoregulate. The renal (Malpighian) tubules can secrete fluid faster on a per-cell basis than any other epithelium, but the route for these remarkable water fluxes has not been established. In Drosophila melanogaster, we show that 4 genes of the major intrinsic protein family are expressed at a very high level in the fly renal tissue: the aquaporins (AQPs) Drip and Prip and the aquaglyceroporins Eglp2 and Eglp4 As predicted from their structure, and by their transport function by expressing these proteins in Xenopus oocytes, Drip, Prip, and Eglp2 show significant and specific water permeability, whereas Eglp2 and Eglp4 show very high permeability to glycerol and urea. Knockdowns of any of these genes result in impaired hormone-induced fluid secretion. The Drosophila tubule has 2 main secretory cell types: active cation-transporting principal cells, wherein the aquaglyceroporins localize to opposite plasma membranes, and small stellate cells, the site of the chloride shunt conductance, with these AQPs localizing to opposite plasma membranes. This suggests a model in which osmotically obliged water flows through the stellate cells. Consistent with this model, fluorescently labeled dextran, an in vivo marker of membrane water permeability, is trapped in the basal infoldings of the stellate cells after kinin diuretic peptide stimulation, confirming that these cells provide the major route for transepithelial water flux. The spatial segregation of these components of epithelial water transport may help to explain the unique success of the higher insects in regulating their internal environments.
Collapse
|
25
|
Kolosov D, O'Donnell MJ. Mechanisms and regulation of chloride transport in the Malpighian tubules of the larval cabbage looper Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103263. [PMID: 31682921 DOI: 10.1016/j.ibmb.2019.103263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Malpighian tubules (MTs) and the hindgut together constitute the excretory system of insects. Larvae of lepidopterans (butterflies and moths) demonstrate the so-called cryptonephric arrangement, where the distal blind end of each MT is embedded into the rectal complex. The rest of the free tubule is modified into several distinct regions that differ greatly in the transport of cations and water. However, relatively little is known about the transport of counter-anions (e.g., Cl- and HCO3-) by the MTs of lepidopteran larvae. In the current study we used ion-selective microelectrodes to characterize Cl- transport in the distinct regions of the free MT of the larval Trichoplusia ni. Firstly, we note that Cl- transport in the MTs is sensitive to the Cl- concentration of the bathing saline, and several regions of the MTs are capable of either secreting or reabsorbing Cl-. In the distal ileac plexus (DIP), a region previously characterized by cellular heterogeneity and its ability to switch between cation secretion and reabsorption, principal cells (PCs) toggled between Cl- reabsorption (in high-Cl- saline) and Cl- secretion (in low-Cl- saline). In contrast, secondary cells (SCs) in the DIP secreted Cl- regardless of saline Cl- concentration. Mechanistically, we have detected a number of 'leak' and ligand-gated Cl- channels (ClC) and demonstrated that Cl- channels are involved in Cl- secretion. Additionally, we demonstrated that the lumen-positive transepithelial potential increased in response to glycine. Using the scanning ion-selective electrode technique we demonstrated that glycine stimulated Cl- secretion by SCs, but not by PCs. In contrast, when MTs were deprived of glycine, a decrease in Cl- secretion, coupled with a decrease in the TEP, was observed. In contrast to the effects of glycine, an active dose of helicokinin reduced Cl- secretion by PCs, but not by SCs. Lastly, we detected expression of chloride-bicarbonate exchangers (CBE) in all regions of the free tubule. Scans of H+ transport across the tubule indicated that base equivalents are likely reabsorbed across the ileac plexus. Blocking ClC or CBE led to secretion of a more basic fluid, indicating lack of base reabsorption. We suggest that the transport of Cl- in the MTs of larval lepidopterans (i) may be correlated with the reabsorption of base, (ii) may be sensitive to Cl- concentration in the haemolymph, and (iii) could be regulated by helicokinin and glycine.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, L8S4K1, Canada.
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, L8S4K1, Canada
| |
Collapse
|
26
|
Li H, Russo A, DiAntonio A. SIK3 suppresses neuronal hyperexcitability by regulating the glial capacity to buffer K + and water. J Cell Biol 2019; 218:4017-4029. [PMID: 31645458 PMCID: PMC6891094 DOI: 10.1083/jcb.201907138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023] Open
Abstract
Glial regulation of extracellular potassium (K+) helps to maintain appropriate levels of neuronal excitability. While channels and transporters mediating K+ and water transport are known, little is understood about upstream regulatory mechanisms controlling the glial capacity to buffer K+ and osmotically obliged water. Here we identify salt-inducible kinase 3 (SIK3) as the central node in a signal transduction pathway controlling glial K+ and water homeostasis in Drosophila Loss of SIK3 leads to dramatic extracellular fluid accumulation in nerves, neuronal hyperexcitability, and seizures. SIK3-dependent phenotypes are exacerbated by K+ stress. SIK3 promotes the cytosolic localization of HDAC4, thereby relieving inhibition of Mef2-dependent transcription of K+ and water transport molecules. This transcriptional program controls the glial capacity to regulate K+ and water homeostasis and modulate neuronal excitability. We identify HDAC4 as a candidate therapeutic target in this pathway, whose inhibition can enhance the K+ buffering capacity of glia, which may be useful in diseases of dysregulated K+ homeostasis and hyperexcitability.
Collapse
Affiliation(s)
- Hailun Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Alexandra Russo
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
27
|
Plazaola-Sasieta H, Zhu Q, Gaitán-Peñas H, Rios M, Estévez R, Morey M. Drosophila ClC-a is required in glia of the stem cell niche for proper neurogenesis and wiring of neural circuits. Glia 2019; 67:2374-2398. [PMID: 31479171 PMCID: PMC6851788 DOI: 10.1002/glia.23691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023]
Abstract
Glial cells form part of the neural stem cell niche and express a wide variety of ion channels; however, the contribution of these channels to nervous system development is poorly understood. We explored the function of the Drosophila ClC‐a chloride channel, since its mammalian ortholog CLCN2 is expressed in glial cells, and defective channel function results in leukodystrophies, which in humans are accompanied by cognitive impairment. We found that ClC‐a was expressed in the niche in cortex glia, which are closely associated with neurogenic tissues. Characterization of loss‐of‐function ClC‐a mutants revealed that these animals had smaller brains and widespread wiring defects. We showed that ClC‐a is required in cortex glia for neurogenesis in neuroepithelia and neuroblasts, and identified defects in a neuroblast lineage that generates guidepost glial cells essential for photoreceptor axon guidance. We propose that glia‐mediated ionic homeostasis could nonautonomously affect neurogenesis, and consequently, the correct assembly of neural circuits.
Collapse
Affiliation(s)
- Haritz Plazaola-Sasieta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Qi Zhu
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Gaitán-Peñas
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Martín Rios
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Raúl Estévez
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morey
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Programa de Biologia Integrativa, Barcelona, Spain
| |
Collapse
|
28
|
Ghimire S, Terhzaz S, Cabrero P, Romero MF, Davies SA, Dow JAT. Targeted renal knockdown of Na +/H + exchanger regulatory factor Sip1 produces uric acid nephrolithiasis in Drosophila. Am J Physiol Renal Physiol 2019; 317:F930-F940. [PMID: 31364377 DOI: 10.1152/ajprenal.00551.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nephrolithiasis is one of the most common kidney diseases, with poorly understood pathophysiology, but experimental study has been hindered by lack of experimentally tractable models. Drosophila melanogaster is a useful model organism for renal diseases because of genetic and functional similarities of Malpighian (renal) tubules with the human kidney. Here, we demonstrated function of the sex-determining region Y protein-interacting protein-1 (Sip1) gene, an ortholog of human Na+/H+ exchanger regulatory factor (NHERF1), in Drosophila Malpighian tubules and its impact on nephrolithiasis. Abundant birefringent calculi were observed in Sip1 mutant flies, and the phenotype was also observed in renal stellate cell-specific RNA interference Sip1 knockdown in otherwise normal flies, confirming a renal etiology. This phenotype was abolished in rosy mutant flies (which model human xanthinuria) and by the xanthine oxidase inhibitor allopurinol, suggesting that the calculi were of uric acid. This was confirmed by direct biochemical assay for urate. Stones rapidly dissolved when the tubule was bathed in alkaline media, suggesting that Sip1 knockdown was acidifying the tubule. SIP1 was shown to collocate with Na+/H+ exchanger isoform 2 (NHE2) and with moesin in stellate cells. Knockdown of NHE2 specifically to the stellate cells also increased renal uric acid stone formation, and so a model was developed in which SIP1 normally regulates NHE2 activity and luminal pH, ultimately leading to uric acid stone formation. Drosophila renal tubules may thus offer a useful model for urate nephrolithiasis.
Collapse
Affiliation(s)
- Saurav Ghimire
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
29
|
Kolosov D, O'Donnell MJ. Helicokinin alters ion transport in the secondary cell-containing region of the Malpighian tubule of the larval cabbage looper Trichoplusia ni. Gen Comp Endocrinol 2019; 278:12-24. [PMID: 30012538 DOI: 10.1016/j.ygcen.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/26/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022]
Abstract
Excretion in insects is accomplished by the combined actions of the Malpighian tubules (MTs) and hindgut, which together form the functional kidney. MTs of many insect groups consist of principal cells (PC) and secondary cells (SC). In most insect groups SCs are reported to secrete ions from haemolymph into the tubule lumen. Paradoxically, SCs in the MTs of the lepidopteran cabbage looper T. ni are used to reabsorb Na+ and K+ back into haemolymph. The current study was designed to investigate the effects and mode of action of the lepidopteran kinin, Helicokinin (HK), on ion transport in the SC-containing region of MT of T. ni. We identified a HK receptor (HK-R) homologue in T. ni and detected its expression in the SC-containing region of the MTs. The mRNA abundance of hk-r altered in response to changes in dietary K+ and Na+ content. HK-R immunolocalized to both PCs and SCs. Ramsay assays of preparations of the isolated distal ileac plexus (DIP) indicated that [HK] = 10-8 M: (i) decreased fluid secretion rate in unstimulated and serotonin-stimulated preparations, and (ii) increased [Na+]/[K+] ratio in the secreted fluid. Scanning ion-selective electrode technique measurements revealed that HK reduced: (i) K+ secretion by the PCs, and (ii) Na+ reabsorption by the SCs in intact tubules. In vitro incubation of the DIP with HK resulted in reduced mRNA abundance of hk-r as well as Na+/K+-ATPase subunit α (NKAα), Na+/K+/Cl- co-transporter (nkcc), Na+/H+ exchangers (nhe) 7 and 8, and aquaporin (aqp) 1. Taken together, results of the current study suggest that HK is capable of altering fluid secretion rate and [Na+]/[K+] ratio of the fluid, and that HK targets both PCs and SCs in the DIP of T. ni.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada.
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
30
|
Beyenbach KW. Voltages and resistances of the anterior Malpighian tubule of Drosophila melanogaster. ACTA ACUST UNITED AC 2019; 222:jeb.201574. [PMID: 31043456 DOI: 10.1242/jeb.201574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
The small size of Malpighian tubules in the fruit fly Drosophila melanogaster has discouraged measurements of the transepithelial electrical resistance. The present study introduces two methods for measuring the transepithelial resistance in isolated D . melanogaster Malpighian tubules using conventional microelectrodes and PClamp hardware and software. The first method uses three microelectrodes to measure the specific transepithelial resistance normalized to tubule length or luminal surface area for comparison with resistances of other epithelia. The second method uses only two microelectrodes to measure the relative resistance for comparing before and after effects in a single Malpighian tubule. Knowledge of the specific transepithelial resistance allows the first electrical model of electrolyte secretion by the main segment of the anterior Malpighian tubule of D . melanogaster The electrical model is remarkably similar to that of the distal Malpighian tubule of Aedes aegypti when tubules of Drosophila and Aedes are studied in vitro under the same experimental conditions. Thus, despite 189 millions of years of evolution separating these two genera, the electrophysiological properties of their Malpighian tubules remains remarkably conserved.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, Barbarastrasse 11, Osnabrück 49076, Germany
| |
Collapse
|
31
|
Feingold D, Knogler L, Starc T, Drapeau P, O'Donnell MJ, Nilson LA, Dent JA. secCl is a cys-loop ion channel necessary for the chloride conductance that mediates hormone-induced fluid secretion in Drosophila. Sci Rep 2019; 9:7464. [PMID: 31097722 PMCID: PMC6522505 DOI: 10.1038/s41598-019-42849-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Organisms use circulating diuretic hormones to control water balance (osmolarity), thereby avoiding dehydration and managing excretion of waste products. The hormones act through G-protein-coupled receptors to activate second messenger systems that in turn control the permeability of secretory epithelia to ions like chloride. In insects, the chloride channel mediating the effects of diuretic hormones was unknown. Surprisingly, we find a pentameric, cys-loop chloride channel, a type of channel normally associated with neurotransmission, mediating hormone-induced transepithelial chloride conductance. This discovery is important because: 1) it describes an unexpected role for pentameric receptors in the membrane permeability of secretory epithelial cells, and 2) it suggests that neurotransmitter-gated ion channels may have evolved from channels involved in secretion.
Collapse
Affiliation(s)
- Daniel Feingold
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada
| | - Laura Knogler
- Department of Neurosciences, Research Centre of the University of Montréal Hospital Centre, Montréal, Québec, Canada
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Tanja Starc
- Institute of Neuroscience, Technische Universität München, Biedersteiner Str. 29, München, Bau 601D-80802, Germany
| | - Pierre Drapeau
- Department of Neurosciences, Research Centre of the University of Montréal Hospital Centre, Montréal, Québec, Canada
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Laura A Nilson
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada
| | - Joseph A Dent
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada.
| |
Collapse
|
32
|
Martínez-Corrales G, Cabrero P, Dow JAT, Terhzaz S, Davies SA. Novel roles for GATAe in growth, maintenance and proliferation of cell populations in the Drosophila renal tubule. Development 2019; 146:dev.178087. [PMID: 31036543 DOI: 10.1242/dev.178087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
The GATA family of transcription factors is implicated in numerous developmental and physiological processes in metazoans. In Drosophila melanogaster, five different GATA factor genes (pannier, serpent, grain, GATAd and GATAe) have been reported as essential in the development and identity of multiple tissues, including the midgut, heart and brain. Here, we present a novel role for GATAe in the function and homeostasis of the Drosophila renal (Malpighian) tubule. We demonstrate that reduced levels of GATAe gene expression in tubule principal cells induce uncontrolled cell proliferation, resulting in tumorous growth with associated altered expression of apoptotic and carcinogenic key genes. Furthermore, we uncover the involvement of GATAe in the maintenance of stellate cells and migration of renal and nephritic stem cells into the tubule. Our findings of GATAe as a potential master regulator in the events of growth control and cell survival required for the maintenance of the Drosophila renal tubule could provide new insights into the molecular pathways involved in the formation and maintenance of a functional tissue and kidney disease.
Collapse
Affiliation(s)
- Guillermo Martínez-Corrales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
33
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
34
|
Davies SA, Cabrero P, Marley R, Corrales GM, Ghimire S, Dornan AJ, Dow JAT. Epithelial Function in the Drosophila Malpighian Tubule: An In Vivo Renal Model. Methods Mol Biol 2019; 1926:203-221. [PMID: 30742274 DOI: 10.1007/978-1-4939-9021-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The insect renal (Malpighian) tubule has long been a model system for the study of fluid secretion and its neurohormonal control, as well as studies on ion transport mechanisms. To extend these studies beyond the boundaries of classical physiology, a molecular genetic approach together with the 'omics technologies is required. To achieve this in any vertebrate transporting epithelium remains a daunting task, as the genetic tools available are still relatively unsophisticated. Drosophila melanogaster, however, is an outstanding model organism for molecular genetics. Here we describe a technique for fluid secretion assays in the D. melanogaster equivalent of the kidney nephron. The development of this first physiological assay for a Drosophila epithelium, allowing combined approaches of integrative physiology and functional genomics, has now provided biologists with an entirely new model system, the Drosophila Malpighian tubule, which is utilized in multiple fields as diverse as kidney disease research and development of new modes of pest insect control.
Collapse
Affiliation(s)
- Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Guillermo Martinez Corrales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Saurav Ghimire
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
35
|
Kolosov D, Donly C, MacMillan H, O'Donnell MJ. Transcriptomic analysis of the Malpighian tubules of Trichoplusia ni: Clues to mechanisms for switching from ion secretion to ion reabsorption in the distal ileac plexus. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:73-89. [PMID: 30562492 DOI: 10.1016/j.jinsphys.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Excretion of metabolic wastes and toxins in insect Malpighian tubules (MTs) is coupled to secretion of ions and fluid. Larval lepidopterans demonstrate a complex and regionalized MT morphology, and recent studies of larvae of the cabbage looper, Trichoplusia ni, have revealed several unusual aspects of ion transport in the MTs. Firstly, cations are reabsorbed via secondary cells (SCs) in T. ni, whereas in most insects SCs secrete ions. Secondly, SCs are coupled to neighbouring principal cells (PCs) via gap junctions to enable such ion reabsorption. Thirdly, PCs in the SC-containing distal ileac plexus (DIP) region of the tubule reverse from cation secretion to reabsorption in response to dietary ion loading. Lastly, antidiuresis is observed in response to a kinin neuropeptide, which targets both PCs and SCs, whereas in most insects kinins are diuretics that act exclusively via SCs. Recent studies have generated a basic model of ion transport in the DIP of the larval T. ni. RNAseq was used to elucidate previously uncharacterised aspects of ion transport and endocrine regulation in the DIP, with the aim of painting a composite picture of ion transport and identifying putative regulatory mechanisms of ion transport reversal in this tissue. Results indicated an overall expression of 9103 transcripts in the DIP, 993 and 382 of which were differentially expressed in the DIP of larvae fed high-K+ and high-Na+ diets respectively. Differentially expressed transcripts include ion-motive ATPases, ion channels and co-transporters, aquaporins, nutrient and xenobiotic transporters, cell adhesion and junction components, and endocrine receptors. Notably, several transcripts for voltage-gated ion channels and cell volume regulation-associated products were detected in the DIP and differentially expressed in larvae fed ion-rich diet. The study provides insights into the transport of solutes (sugars, amino acids, xenobiotics, phosphate and inorganic ions) by the DIP of lepidopterans. Our data suggest that this region of the MT in lepidopterans (as previously reported) transports cations, fluid, and xenobiotics/toxic metals. Besides this, the DIP expresses genes coding for the machinery involved in Na+- and H+-dependent reabsorption of solutes, chloride transport, and base recovery. Additionally, many of the transcripts expressed by the DIP a capacity of this region to respond to, process, and sometimes produce, neuropeptides, steroid hormones and neurotransmitters. Lastly, the DIP appears to possess an arsenal of septate junction components, differential expression of which may indicate junctional restructuring in the DIP of ion-loaded larvae.
Collapse
Affiliation(s)
| | - Cam Donly
- Department of Biology, University of Western Ontario, Canada; London Research and Development Centre, Agriculture and Agri-Food Canada, Canada
| | | | | |
Collapse
|
36
|
Kolosov D, Jonusaite S, Donini A, Kelly SP, O'Donnell MJ. Septate junction in the distal ileac plexus of larval lepidopteran Trichoplusia ni: alterations in paracellular permeability during ion transport reversal. J Exp Biol 2019; 222:jeb.204750. [DOI: 10.1242/jeb.204750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/01/2019] [Indexed: 01/18/2023]
Abstract
The Malpighian tubules (MTs) and hindgut together act as the functional kidney in insects. MTs of caterpillars are notably complex and consist of several regions that display prominent differences in ion transport. The distal ileac plexus (DIP) is a region of Malpighian tubule that is of particular interest because it switches from ion secretion to ion reabsorption in larvae fed on ion-rich diets. The pathways of solute transport in the DIP are not well understood, but one potential route is the paracellular pathway between epithelial cells. This pathway is regulated by the septate junctions (SJs) in invertebrates, and in this study, we found regional and cellular heterogeneity in expression of several integral SJ proteins. DIP of larvae fed ion-rich diets demonstrated a reduction in paracellular permeability, coupled with alterations in both SJ morphology and the abundance of its molecular components. Similarly, treatment in vitro with helicokinin (HK), an antidiuretic hormone identified by previous studies, altered mRNA abundance of many SJ proteins and reduced paracellular permeability. HK was also shown to target a secondary cell-specific SJ protein Tsp2A. Taken together, our data suggest that dietary ion loading, known to cause ion transport reversal in the DIP of larval T. ni, leads to alterations in the paracellular permeability, SJ morphology and its molecular component abundance. The results suggest that HK is an important endocrine factor that co-regulates ion transport, water transport and paracellular permeability in MTs of larval lepidopterans. We propose that co-regulation of all three components of the MT function in larval lepidopterans allows for safe toggling between ion secretion and reabsorption in the DIP in response to variations in dietary ion availability.
Collapse
Affiliation(s)
- Dennis Kolosov
- McMaster University, Department of Biology, Hamilton, L8S 4K1, Canada
| | - Sima Jonusaite
- University of Utah, Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, Salt Lake City, 84132, USA
| | - Andrew Donini
- York University, Department of Biology, M3J 1P3, Canada
| | | | | |
Collapse
|
37
|
Rodan AR. WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium. Am J Physiol Renal Physiol 2018; 315:F903-F907. [PMID: 29923766 DOI: 10.1152/ajprenal.00176.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
WNK [with no lysine (K)] kinases regulate renal epithelial ion transport to maintain homeostasis of electrolyte concentrations, extracellular volume, and blood pressure. The SLC12 cation-chloride cotransporters, including the sodium-potassium-2-chloride (NKCC) and sodium chloride cotransporters (NCC), are targets of WNK regulation via the intermediary kinases SPAK (Ste20-related proline/alanine-rich kinase) and OSR1 (oxidative stress response). The pathway is activated by low dietary potassium intake, resulting in increased phosphorylation and activity of NCC. Chloride regulates WNK kinases in vitro by binding to the active site and inhibiting autophosphorylation and has been proposed to modulate WNK activity in the distal convoluted tubule in response to low dietary potassium. WNK-SPAK/OSR1 regulation of NKCC-dependent ion transport is evolutionarily ancient, and it occurs in the Drosophila Malpighian (renal) tubule. Here, we review recent studies from the Drosophila tubule demonstrating cooperative roles for chloride and the scaffold protein Mo25 (mouse protein-25, also known as calcium-binding protein-39) in the regulation of WNK-SPAK/OSR1 signaling in a transporting renal epithelium. Insights gained from this genetically manipulable and physiologically accessible epithelium shed light on molecular mechanisms of regulation of the WNK-SPAK/OSR1 pathway, which is important in human health and disease.
Collapse
Affiliation(s)
- Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension, Molecular Medicine Program, University of Utah , Salt Lake City, Utah
| |
Collapse
|
38
|
Terhzaz S, Alford L, Yeoh JGC, Marley R, Dornan AJ, Dow JAT, Davies SA. Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii. PEST MANAGEMENT SCIENCE 2018; 74:800-810. [PMID: 28714258 PMCID: PMC5888198 DOI: 10.1002/ps.4663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Neuropeptides are central to the regulation of physiological and behavioural processes in insects, directly impacting cold and desiccation survival. However, little is known about the control mechanisms governing these responses in Drosophila suzukii. The close phylogenetic relationship of D. suzukii with Drosophila melanogaster allows, through genomic and functional studies, an insight into the mechanisms directing stress tolerance in D. suzukii. RESULTS Capability (Capa), leucokinin (LK), diuretic hormone 44 (DH44 ) and DH31 neuropeptides demonstrated a high level of conservation between D. suzukii and D. melanogaster with respect to peptide sequences, neuronal expression, receptor localisation, and diuretic function in the Malpighian tubules. Despite D. suzukii's ability to populate cold environments, it proved sensitive to both cold and desiccation. Furthermore, in D. suzukii, Capa acts as a desiccation- and cold stress-responsive gene, while DH44 gene expression is increased only after desiccation exposure, and the LK gene after nonlethal cold stress recovery. CONCLUSION This study provides a comparative investigation into stress tolerance mediation by neuroendocrine signalling in two Drosophila species, providing evidence that similar signalling pathways control fluid secretion in the Malpighian tubules. Identifying processes governing specific environmental stresses affecting D. suzukii could lead to the development of targeted integrated management strategies to control insect pest populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Lucy Alford
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Joseph GC Yeoh
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Julian AT Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
39
|
Sun Q, Wu Y, Jonusaite S, Pleinis JM, Humphreys JM, He H, Schellinger JN, Akella R, Stenesen D, Krämer H, Goldsmith EJ, Rodan AR. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule. J Am Soc Nephrol 2018; 29:1449-1461. [PMID: 29602832 DOI: 10.1681/asn.2017101091] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/07/2018] [Indexed: 12/17/2022] Open
Abstract
Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule.Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux.ResultsIn vitro, autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK, with or without Drosophila Mo25, did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux.Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium.
Collapse
Affiliation(s)
- Qifei Sun
- Division of Nephrology, Department of Internal Medicine and
| | - Yipin Wu
- Division of Nephrology, Department of Internal Medicine and
| | - Sima Jonusaite
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - John M Pleinis
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | | | | | | | | | - Drew Stenesen
- Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Helmut Krämer
- Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | - Aylin R Rodan
- Division of Nephrology, Department of Internal Medicine and .,Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
40
|
Nässel DR. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila. Front Cell Neurosci 2018; 12:83. [PMID: 29651236 PMCID: PMC5885757 DOI: 10.3389/fncel.2018.00083] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 01/11/2023] Open
Abstract
It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for colocalized neuroactive compounds in further neurons in anatomically defined circuits is of interest for the near future.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
41
|
Zandawala M, Marley R, Davies SA, Nässel DR. Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila. Cell Mol Life Sci 2018; 75:1099-1115. [PMID: 29043393 PMCID: PMC5814475 DOI: 10.1007/s00018-017-2682-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022]
Abstract
Multiple neuropeptides are known to regulate water and ion balance in Drosophila melanogaster. Several of these peptides also have other functions in physiology and behavior. Examples are corticotropin-releasing factor-like diuretic hormone (diuretic hormone 44; DH44) and leucokinin (LK), both of which induce fluid secretion by Malpighian tubules (MTs), but also regulate stress responses, feeding, circadian activity and other behaviors. Here, we investigated the functional relations between the LK and DH44 signaling systems. DH44 and LK peptides are only colocalized in a set of abdominal neurosecretory cells (ABLKs). Targeted knockdown of each of these peptides in ABLKs leads to increased resistance to desiccation, starvation and ionic stress. Food ingestion is diminished by knockdown of DH44, but not LK, and water retention is increased by LK knockdown only. Thus, the two colocalized peptides display similar systemic actions, but differ with respect to regulation of feeding and body water retention. We also demonstrated that DH44 and LK have additive effects on fluid secretion by MTs. It is likely that the colocalized peptides are coreleased from ABLKs into the circulation and act on the tubules where they target different cell types and signaling systems to regulate diuresis and stress tolerance. Additional targets seem to be specific for each of the two peptides and subserve regulation of feeding and water retention. Our data suggest that the ABLKs and hormonal actions are sufficient for many of the known DH44 and LK functions, and that the remaining neurons in the CNS play other functional roles.
Collapse
Affiliation(s)
- Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
42
|
Abstract
Fluid clearance from the respiratory system during developmental transitions is critically important for achieving optimal gas exchange in animals. During insect development from embryo to adult, airway clearance occurs episodically each time the molt is completed by performance of the ecdysis sequence, coordinated by a peptide-signaling cascade initiated by ecdysis-triggering hormone (ETH). We find that the neuropeptide Kinin (also known as Drosokinin or Leukokinin) is required for normal respiratory fluid clearance or "tracheal air-filling" in Drosophila larvae. Disruption of Kinin signaling leads to defective air-filling during all larval stages. Such defects are observed upon ablation or electrical silencing of Kinin neurons, as well as RNA silencing of the Kinin gene or the ETH receptor in Kinin neurons, indicating that ETH targets Kinin neurons to promote tracheal air-filling. A Kinin receptor mutant fly line (Lkrf02594 ) also exhibits tracheal air-filling defects in all larval stages. Targeted Kinin receptor silencing in tracheal epithelial cells using breathless or pickpocket (ppk) drivers compromises tracheal air-filling. On the other hand, promotion of Kinin signaling in vivo through peptide injection or Kinin neuron activation through Drosophila TrpA1 (dTrpA1) expression induces premature tracheal collapse and air-filling. Moreover, direct exposure of tracheal epithelial cells in vitro to Kinin leads to calcium mobilization in tracheal epithelial cells. Our findings strongly implicate the neuropeptide Kinin as an important regulator of airway clearance via intracellular calcium mobilization in tracheal epithelial cells of Drosophila.
Collapse
|
43
|
Rossano AJ, Romero MF. Optical Quantification of Intracellular pH in Drosophila melanogaster Malpighian Tubule Epithelia with a Fluorescent Genetically-encoded pH Indicator. J Vis Exp 2017. [PMID: 28829430 DOI: 10.3791/55698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epithelial ion transport is vital to systemic ion homeostasis as well as maintenance of essential cellular electrochemical gradients. Intracellular pH (pHi) is influenced by many ion transporters and thus monitoring pHi is a useful tool for assessing transporter activity. Modern Genetically Encoded pH-Indicators (GEpHIs) provide optical quantification of pHi in intact cells on a cellular and subcellular scale. This protocol describes real-time quantification of cellular pHi regulation in Malpighian Tubules (MTs) of Drosophila melanogaster through ex vivo live-imaging of pHerry, a pseudo-ratiometric GEpHI with a pKa well-suited to track pH changes in the cytosol. Extracted adult fly MTs are composed of morphologically and functionally distinct sections of single-cell layer epithelia, and can serve as an accessible and genetically tractable model for investigation of epithelial transport. GEpHIs offer several advantages over conventional pH-sensitive fluorescent dyes and ion-selective electrodes. GEpHIs can label distinct cell populations provided appropriate promoter elements are available. This labeling is particularly useful in ex vivo, in vivo, and in situ preparations, which are inherently heterogeneous. GEpHIs also permit quantification of pHi in intact tissues over time without need for repeated dye treatment or tissue externalization. The primary drawback of current GEpHIs is the tendency to aggregate in cytosolic inclusions in response to tissue damage and construct over-expression. These shortcomings, their solutions, and the inherent advantages of GEpHIs are demonstrated in this protocol through assessment of basolateral proton (H+) transport in functionally distinct principal and stellate cells of extracted fly MTs. The techniques and analysis described are readily adaptable to a wide variety of vertebrate and invertebrate preparations, and the sophistication of the assay can be scaled from teaching labs to intricate determination of ion flux via specific transporters.
Collapse
Affiliation(s)
- Adam J Rossano
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine;
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine; Department of Nephrology and Hypertension, Mayo Clinic College of Medicine;
| |
Collapse
|
44
|
Wong CO, Gregory S, Hu H, Chao Y, Sepúlveda VE, He Y, Li-Kroeger D, Goldman WE, Bellen HJ, Venkatachalam K. Lysosomal Degradation Is Required for Sustained Phagocytosis of Bacteria by Macrophages. Cell Host Microbe 2017; 21:719-730.e6. [PMID: 28579255 DOI: 10.1016/j.chom.2017.05.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 01/28/2023]
Abstract
Clearance of bacteria by macrophages involves internalization of the microorganisms into phagosomes, which are then delivered to endolysosomes for enzymatic degradation. These spatiotemporally segregated processes are not known to be functionally coupled. Here, we show that lysosomal degradation of bacteria sustains phagocytic uptake. In Drosophila and mammalian macrophages, lysosomal dysfunction due to loss of the endolysosomal Cl- transporter ClC-b/CLCN7 delayed degradation of internalized bacteria. Unexpectedly, defective lysosomal degradation of bacteria also attenuated further phagocytosis, resulting in elevated bacterial load. Exogenous application of bacterial peptidoglycans restored phagocytic uptake in the lysosomal degradation-defective mutants via a pathway requiring cytosolic pattern recognition receptors and NF-κB. Mammalian macrophages that are unable to degrade internalized bacteria also exhibit compromised NF-κB activation. Our findings reveal a role for phagolysosomal degradation in activating an evolutionarily conserved signaling cascade, which ensures that continuous uptake of bacteria is preceded by lysosomal degradation of microbes.
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA.
| | - Steven Gregory
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Graduate Program in Cell and Regulatory Biology, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hongxiang Hu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Victoria E Sepúlveda
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yuchun He
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Li-Kroeger
- Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - William E Goldman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Cell and Regulatory Biology, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Graduate Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Li Y, Piermarini PM, Esquivel CJ, Drumm HE, Schilkey FD, Hansen IA. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function. Front Physiol 2017; 8:283. [PMID: 28536536 PMCID: PMC5422481 DOI: 10.3389/fphys.2017.00283] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
Abstract
Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti, the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae. Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Biology, New Mexico State UniversityLas Cruces, NM, USA
- Department of Computer Science, New Mexico State UniversityLas Cruces, NM, USA
| | - Peter M. Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State UniversityWooster, OH, USA
| | - Carlos J. Esquivel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State UniversityWooster, OH, USA
| | - Hannah E. Drumm
- Department of Biology, New Mexico State UniversityLas Cruces, NM, USA
| | | | - Immo A. Hansen
- Department of Biology, New Mexico State UniversityLas Cruces, NM, USA
- Department of Computer Science, New Mexico State UniversityLas Cruces, NM, USA
- Institute of Applied Biosciences, New Mexico State UniversityLas Cruces, NM, USA
| |
Collapse
|
46
|
Identification of multiple functional receptors for tyramine on an insect secretory epithelium. Sci Rep 2017; 7:168. [PMID: 28279025 PMCID: PMC5427925 DOI: 10.1038/s41598-017-00120-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
The biogenic amine tyramine (TA) regulates many aspects of invertebrate physiology and development. Although three TA receptor subtypes have been identified (TAR1-3), specific receptors have not been linked to physiological responses in native tissue. In the Malpighian (renal) tubule of Drosophila melanogaster, TA activates a transepithelial chloride conductance, resulting in diuresis and depolarization of the transepithelial potential. In the current work, mutation or RNAi-mediated knockdown in the stellate cells of the tubule of TAR2 (tyrR, CG7431) resulted in a dramatic reduction, but not elimination, of the TA-mediated depolarization. Mutation or knockdown of TAR3 (tyrRII, CG16766) had no effect. However, deletion of both genes, or knockdown of TAR3 on a TAR2 mutant background, eliminated the TA responses. Thus while TAR2 is responsible for the majority of the TA sensitivity of the tubule, TAR3 also contributes to the response. Knockdown or mutation of TAR2 also eliminated the response of tubules to the related amine octopamine (OA), indicating that OA can activate TAR2. This finding contrasts to reports that heterologously expressed TAR2 is highly selective for TA over OA. This is the first report of TA receptor function in a native tissue and indicates unexpected complexity in the physiology of the Malpighian tubule.
Collapse
|
47
|
Abstract
WNK (With-No-Lysine (K)) kinases are serine-threonine kinases characterized by an atypical placement of a catalytic lysine within the kinase domain. Mutations in human WNK1 or WNK4 cause an autosomal dominant syndrome of hypertension and hyperkalemia, reflecting the fact that WNK kinases are critical regulators of renal ion transport processes. Here, the role of WNKs in the regulation of ion transport processes in vertebrate and invertebrate renal function, cellular and organismal osmoregulation, and cell migration and cerebral edema will be reviewed, along with emerging literature demonstrating roles for WNKs in cardiovascular and neural development, Wnt signaling, and cancer. Conserved roles for these kinases across phyla are emphasized.
Collapse
Affiliation(s)
| | - Andreas Jenny
- Albert Einstein College of Medicine, New York, NY, United States.
| |
Collapse
|
48
|
Wilson C, Leiblich A, Goberdhan DCI, Hamdy F. The Drosophila Accessory Gland as a Model for Prostate Cancer and Other Pathologies. Curr Top Dev Biol 2016; 121:339-375. [PMID: 28057306 PMCID: PMC5224695 DOI: 10.1016/bs.ctdb.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human prostate is a gland of the male reproductive tract, which together with the seminal vesicles, is responsible for most seminal fluid production. It is a common site of cancer, and unlike other glands, it typically enlarges in aging men. In flies, the male accessory glands make many major seminal fluid components. Like their human equivalents, they secrete proteins from several conserved families, including proteases, lectins, and cysteine-rich secretory proteins, some of which interact with sperm and affect fertility. A key protein, sex peptide, is not conserved in vertebrates but plays a central role in mediating long-term effects on females after mating. Although postmitotic, one epithelial cell type in the accessory glands, the secondary cell, continues to grow in adults. It secretes microvesicles called exosomes from the endosomal multivesicular body, which, after mating, fuse with sperm. They also appear to affect female postmating behavior. Remarkably, the human prostate epithelium also secretes exosomes, which fuse to sperm in vitro to modulate their activity. Exosomes from prostate and other cancer cells are increasingly proposed to play fundamental roles in modulating the tumor microenvironment and in metastasis. Here we review a diverse accessory gland literature, which highlights functional analogies between the male reproductive glands of flies and humans, and a critical role for extracellular vesicles in allowing seminal fluid to promote male interests within the female. We postulate that secondary cells and prostate epithelial cells use common mechanisms to control growth, secretion, and signaling, which are relevant to prostate and other cancers, and can be genetically dissected in the uniquely tractable fly model.
Collapse
Affiliation(s)
- C Wilson
- University of Oxford, Oxford, United Kingdom.
| | - A Leiblich
- University of Oxford, Oxford, United Kingdom; University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - F Hamdy
- University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
49
|
Feingold D, Starc T, O'Donnell MJ, Nilson L, Dent JA. The orphan pentameric ligand-gated ion channel pHCl-2 is gated by pH and regulates fluid secretion in Drosophila Malpighian tubules. ACTA ACUST UNITED AC 2016; 219:2629-38. [PMID: 27358471 DOI: 10.1242/jeb.141069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) constitute a large protein superfamily in metazoa whose role as neurotransmitter receptors mediating rapid, ionotropic synaptic transmission has been extensively studied. Although the vast majority of pLGICs appear to be neurotransmitter receptors, the identification of pLGICs in non-neuronal tissues and homologous pLGIC-like proteins in prokaryotes points to biological functions, possibly ancestral, that are independent of neuronal signalling. Here, we report the molecular and physiological characterization of a highly divergent, orphan pLGIC subunit encoded by the pHCl-2 (CG11340) gene, in Drosophila melanogaster We show that pHCl-2 forms a channel that is insensitive to a wide array of neurotransmitters, but is instead gated by changes in extracellular pH. pHCl-2 is expressed in the Malpighian tubules, which are non-innervated renal-type secretory tissues. We demonstrate that pHCl-2 is localized to the apical membrane of the epithelial principal cells of the tubules and that loss of pHCl-2 reduces urine production during diuresis. Our data implicate pHCl-2 as an important source of chloride conductance required for proper urine production, highlighting a novel role for pLGICs in epithelial tissues regulating fluid secretion and osmotic homeostasis.
Collapse
Affiliation(s)
- Daniel Feingold
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, QC, Canada H3A 1B1
| | - Tanja Starc
- Institute of Neuroscience, Technische Universität München, Biedersteiner Strasse 29, München Bau 601D-80802, Germany
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Laura Nilson
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, QC, Canada H3A 1B1
| | - Joseph A Dent
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, QC, Canada H3A 1B1
| |
Collapse
|
50
|
Cannell E, Dornan AJ, Halberg KA, Terhzaz S, Dow JAT, Davies SA. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides 2016; 80:96-107. [PMID: 26896569 PMCID: PMC4889782 DOI: 10.1016/j.peptides.2016.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
Abstract
Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress.
Collapse
Affiliation(s)
- Elizabeth Cannell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Kenneth A Halberg
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK; Section of Cell- and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| |
Collapse
|