1
|
Gehman ALM, Pontier O, Froese T, VanMaanen D, Blaine T, Sadlier-Brown G, Olson AM, Monteith ZL, Bachen K, Prentice C, Hessing-Lewis M, Jackson JM. Fjord oceanographic dynamics provide refuge for critically endangered Pycnopodia helianthoides. Proc Biol Sci 2025; 292:20242770. [PMID: 40169020 PMCID: PMC11961252 DOI: 10.1098/rspb.2024.2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Disease outbreaks as a driver of wildlife mass mortality events have increased in magnitude and frequency since the 1940s. Remnant populations, composed of individuals that survived mass mortality events, could provide insight into disease dynamics and species recovery. The sea star wasting disease (SSWD) epidemic led to the rapid >90% decline of the sunflower star Pycnopodia helianthoides. We surveyed the biomass density of P. helianthoides on the central British Columbia coast before, during and after the arrival of SSWD by conducting expert diver surveys in shallow subtidal habitats from 2013 to 2023. We found a rapid decline in biomass density following the onset of SSWD in 2015. Despite consistent recruitment post-outbreak to sites associated with outer islands, we found repeated loss of large adult individuals over multiple years. Within nearby fjord habitats, we found remnant populations composed of large adult P. helianthoides. The interaction of temperature and salinity with the biomass density of P. helianthoides varied by location, with high biomass density associated with higher temperatures in the outer islands and with lower temperatures and higher salinity in the fjords. These patterns suggest that fjords provide refuge from consequences of SSWD and protecting these populations could be imperative for the species.
Collapse
Affiliation(s)
- Alyssa-Lois Madden Gehman
- Hakai Institute, Calvert Island, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ondine Pontier
- Hakai Institute, Calvert Island, British Columbia, Canada
| | - Tyrel Froese
- Hakai Institute, Calvert Island, British Columbia, Canada
| | | | - Tristan Blaine
- Central Coast Indigenous Resource Alliance, Campbell River, British Columbia, Canada
| | | | | | | | - Krystal Bachen
- Hakai Institute, Calvert Island, British Columbia, Canada
| | | | - Margot Hessing-Lewis
- Hakai Institute, Calvert Island, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer M. Jackson
- Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, British Columbia, Canada
| |
Collapse
|
2
|
Knapp RA, Wilber MQ, Joseph MB, Smith TC, Grasso RL. Reintroduction of resistant frogs facilitates landscape-scale recovery in the presence of a lethal fungal disease. Nat Commun 2024; 15:9436. [PMID: 39543126 PMCID: PMC11564713 DOI: 10.1038/s41467-024-53608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Vast alteration of the biosphere by humans is causing a sixth mass extinction, driven in part by an increase in infectious diseases. The emergence of the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) has devastated global amphibian biodiversity. Given the lack of any broadly applicable methods to reverse these impacts, the future of many amphibians appears grim. The Sierra Nevada yellow-legged frog (Rana sierrae) is highly susceptible to Bd infection and most R. sierrae populations are extirpated following disease outbreaks. However, some populations persist and eventually recover, and frogs in these recovering populations have increased resistance against infection. Here, we conduct a 15-year reintroduction study and show that frogs collected from recovering populations and reintroduced to vacant habitats can reestablish populations despite the presence of Bd. In addition, the likelihood of establishment is influenced by site, cohort, and frog attributes. Results from viability modeling suggest that many reintroduced populations have a low probability of extinction over 50 years. These results provide a rare example of how reintroduction of resistant individuals can allow the landscape-scale recovery of disease-impacted species, and have broad implications for amphibians and other taxa that are threatened with extinction by novel pathogens.
Collapse
Affiliation(s)
- Roland A Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, 93546, USA.
- Earth Research Institute, University of California, Santa Barbara, CA, 93106-3060, USA.
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Maxwell B Joseph
- Earth Lab, University of Colorado, Boulder, CO, 80303, USA
- Planet, San Francisco, CA, 94107, USA
| | - Thomas C Smith
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, 93546, USA
- Earth Research Institute, University of California, Santa Barbara, CA, 93106-3060, USA
| | - Robert L Grasso
- Resources Management and Science Division, Yosemite National Park, El Portal, CA, 95318, USA
| |
Collapse
|
3
|
Kibenge F, Kibenge M, Montes de Oca M, Godoy M. Parvoviruses of Aquatic Animals. Pathogens 2024; 13:625. [PMID: 39204226 PMCID: PMC11357303 DOI: 10.3390/pathogens13080625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Family Parvoviridae consists of small, non-enveloped viruses with linear, single-stranded DNA genomes of approximately 4-6 kilobases, subdivided into three subfamilies, Parvovirinae, Densovirinae, and Hamaparvovirinae, and unassigned genus Metalloincertoparvovirus. Parvoviruses of aquatic animals infect crustaceans, mollusks, and finfish. This review describes these parvoviruses, which are highly host-specific and associated with mass morbidity and mortality in both farmed and wild aquatic animals. They include Cherax quadricarinatus densovirus (CqDV) in freshwater crayfish in Queensland, Australia; sea star-associated densovirus (SSaDV) in sunflower sea star on the Northeastern Pacific Coast; Clinch densovirus 1 in freshwater mussels in the Clinch River, Virginia, and Tennessee, USA, in subfamily Densovirinae; hepatopancreatic parvovirus (HPV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) in farmed shrimp worldwide; Syngnathid ichthamaparvovirus 1 in gulf pipefish in the Gulf of Mexico and parts of South America; tilapia parvovirus (TiPV) in farmed tilapia in China, Thailand, and India, in the subfamily Hamaparvovirinae; and Penaeus monodon metallodensovirus (PmMDV) in Vietnamese P. monodon, in unassigned genus Metalloincertoparvovirus. Also included in the family Parvoviridae are novel parvoviruses detected in both diseased and healthy animals using metagenomic sequencing, such as zander parvovirus from zander in Hungary and salmon parvovirus from sockeye salmon smolts in British Columbia, Canada.
Collapse
Affiliation(s)
- Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Molly Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
- Laboratorio de Biotecnología Aplicada, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Sede de la Patagonia, Universidad San Sebastián, Puerto Montt 5480000, Chile
| |
Collapse
|
4
|
Calvo-Monge J, Arroyo-Esquivel J, Gehman A, Sanchez F. Source-Sink Dynamics in a Two-Patch SI Epidemic Model with Life Stages and No Recovery from Infection. Bull Math Biol 2024; 86:102. [PMID: 38976154 DOI: 10.1007/s11538-024-01328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.
Collapse
Affiliation(s)
- Jimmy Calvo-Monge
- Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
| | - Jorge Arroyo-Esquivel
- Department of Global Ecology, Carnegie Institution for Science, Washington, DC, 20015, USA.
| | | | - Fabio Sanchez
- Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
- Centro de Investigación en Matemática Pura y Aplicada, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
| |
Collapse
|
5
|
Swaminathan SD, Lafferty KD, Knight NS, Altieri AH. Stony coral tissue loss disease indirectly alters reef communities. SCIENCE ADVANCES 2024; 10:eadk6808. [PMID: 38701216 PMCID: PMC11068009 DOI: 10.1126/sciadv.adk6808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Many Caribbean coral reefs are near collapse due to various threats. An emerging threat, stony coral tissue loss disease (SCTLD), is spreading across the Western Atlantic and Caribbean. Data from the U.S. Virgin Islands reveal how SCTLD spread has reduced the abundance of susceptible coral and crustose coralline algae and increased cyanobacteria, fire coral, and macroalgae. A Caribbean-wide structural equation model demonstrates versatility in reef fish and associations with rugosity independent of live coral. Model projections suggest that some reef fishes will decline due to SCTLD, with the largest changes on reefs that lose the most susceptible corals and rugosity. Mapping these projected declines in space indicates how the indirect effects of SCTLD range from undetectable to devastating.
Collapse
Affiliation(s)
- Sara D. Swaminathan
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kevin D. Lafferty
- Western Ecological Research Center, US Geological Survey, Santa Barbara, CA 93455, USA
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Nicole S. Knight
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Andrew H. Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
- Smithsonian Tropical Research Center, Ancon 0843-03092, Republic of Panama
| |
Collapse
|
6
|
Hildebrand L, Derville S, Hildebrand I, Torres LG. Exploring indirect effects of a classic trophic cascade between urchins and kelp on zooplankton and whales. Sci Rep 2024; 14:9815. [PMID: 38684814 PMCID: PMC11059377 DOI: 10.1038/s41598-024-59964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Kelp forest trophic cascades have been extensively researched, yet indirect effects to the zooplankton prey base and gray whales have not been explored. We investigate the correlative patterns of a trophic cascade between bull kelp and purple sea urchins on gray whales and zooplankton in Oregon, USA. Using generalized additive models (GAMs), we assess (1) temporal dynamics of the four species across 8 years, and (2) possible trophic paths from urchins to kelp, kelp as habitat to zooplankton, and kelp and zooplankton to gray whales. Temporal GAMs revealed an increase in urchin coverage, with simultaneous decline in kelp condition, zooplankton abundance and gray whale foraging time. Trophic path GAMs, which tested for correlations between species, demonstrated that urchins and kelp were negatively correlated, while kelp and zooplankton were positively correlated. Gray whales showed nuanced and site-specific correlations with zooplankton in one site, and positive correlations with kelp condition in both sites. The negative correlation between the kelp-urchin trophic cascade and zooplankton resulted in a reduced prey base for gray whales. This research provides a new perspective on the vital role kelp forests may play across multiple trophic levels and interspecies linkages.
Collapse
Affiliation(s)
- Lisa Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA.
| | - Solène Derville
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS-Laboratoire d'excellence LabEx-CORAIL), Nouméa, New Caledonia
| | - Ines Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - Leigh G Torres
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| |
Collapse
|
7
|
Salazar-Hamm P, Torres-Cruz TJ. The Impact of Climate Change on Human Fungal Pathogen Distribution and Disease Incidence. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:140-152. [DOI: 10.1007/s40588-024-00224-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
|
8
|
Schiebelhut LM, DeBiasse MB, Gabriel L, Hoff KJ, Dawson MN. A reference genome for ecological restoration of the sunflower sea star, Pycnopodia helianthoides. J Hered 2024; 115:86-93. [PMID: 37738158 PMCID: PMC10838127 DOI: 10.1093/jhered/esad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/29/2023] [Accepted: 09/29/2023] [Indexed: 09/24/2023] Open
Abstract
Wildlife diseases, such as the sea star wasting (SSW) epizootic that outbroke in the mid-2010s, appear to be associated with acute and/or chronic abiotic environmental change; dissociating the effects of different drivers can be difficult. The sunflower sea star, Pycnopodia helianthoides, was the species most severely impacted during the SSW outbreak, which overlapped with periods of anomalous atmospheric and oceanographic conditions, and there is not yet a consensus on the cause(s). Genomic data may reveal underlying molecular signatures that implicate a subset of factors and, thus, clarify past events while also setting the scene for effective restoration efforts. To advance this goal, we used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly that was then annotated using RNA-seq-informed gene prediction. The genome assembly is 484 Mb long, with contig N50 of 1.9 Mb, scaffold N50 of 21.8 Mb, BUSCO completeness score of 96.1%, and 22 major scaffolds consistent with prior evidence that sea star genomes comprise 22 autosomes. These statistics generally fall between those of other recently assembled chromosome-scale assemblies for two species in the distantly related asteroid genus Pisaster. These novel genomic resources for P. helianthoides will underwrite population genomic, comparative genomic, and phylogenomic analyses-as well as their integration across scales-of SSW and environmental stressors.
Collapse
Affiliation(s)
- Lauren M Schiebelhut
- Life & Environmental Sciences, University of California, Merced, CA, United States
| | - Melissa B DeBiasse
- Life & Environmental Sciences, University of California, Merced, CA, United States
- Department of Biology, Radford University, Radford, VA, United States
| | - Lars Gabriel
- Institute for Mathematics and Computer Science & Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Katharina J Hoff
- Institute for Mathematics and Computer Science & Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Michael N Dawson
- Life & Environmental Sciences, University of California, Merced, CA, United States
| |
Collapse
|
9
|
Penczykowski RM, Fearon ML, Hite JL, Shocket MS, Hall SR, Duffy MA. Pathways linking nutrient enrichment, habitat structure, and parasitism to host-resource interactions. Oecologia 2024; 204:439-449. [PMID: 37951848 DOI: 10.1007/s00442-023-05469-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Human activities simultaneously alter nutrient levels, habitat structure, and levels of parasitism. These activities likely have individual and joint impacts on food webs. Furthermore, there is particular concern that nutrient additions and changes to habitat structure might exacerbate the size of epidemics and impacts on host density. We used a well-studied zooplankton-fungus host-parasite system and experimental whole water column enclosures to factorially manipulate nutrient levels, habitat structure (specifically: mixing), and presence of parasites. Nutrient addition increased infection prevalence, density of infected hosts, and total host density. We hypothesized that nutrients, mixing, and parasitism were linked in multiple ways, including via their combined effects on phytoplankton (resource) abundance, and we used structural equation modeling to disentangle these pathways. In the absence of the parasite, both nutrients and mixing increased abundance of phytoplankton, whereas host density was negatively related to phytoplankton abundance, suggesting a mixture of bottom-up and top-down control of phytoplankton. In the presence of the parasite, nutrients still increased phytoplankton abundance but mixing no longer did, and there was no longer a significant relationship between host density and phytoplankton. This decoupling of host-resource dynamics may have resulted from reduced grazing due to illness-mediated changes in feeding behavior. Overall, our results show that the impact of one human activity (e.g., altered habitat structure) might depend on other human impacts (e.g., parasite introduction). Fortunately, carefully designed experiments and analyses can help tease apart these multifaceted relationships, allowing us to understand how human activities alter food webs, including interactions between hosts and their parasites and resources.
Collapse
Affiliation(s)
- Rachel M Penczykowski
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Michelle L Fearon
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Geography, University of Florida, Gainesville, FL, 32611, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Meghan A Duffy
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
10
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Shum P, Wäge-Recchioni J, Sellers GS, Johnson ML, Joyce DA. DNA metabarcoding reveals the dietary profiles of a benthic marine crustacean, Nephrops norvegicus. PLoS One 2023; 18:e0289221. [PMID: 37910458 PMCID: PMC10619785 DOI: 10.1371/journal.pone.0289221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/13/2023] [Indexed: 11/03/2023] Open
Abstract
Norwegian lobster, Nephrops norvegicus, are a generalist scavenger and predator capable of short foraging excursions but can also suspension feed. Existing knowledge about their diet relies on a combination of methods including morphology-based stomach content analysis and stable isotopes, which often lack the resolution to distinguish prey items to species level particularly in species that thoroughly masticate their prey. DNA metabarcoding overcomes many of the challenges associated with traditional methods and it is an attractive approach to study the dietary profiles of animals. Here, we present the diet of the commercially valuable Nephrops norvegicus using DNA metabarcoding of gut contents. Despite difficulties associated with host amplification, our cytochrome oxidase I (COI) molecular assay successfully achieves higher resolution information than traditional approaches. We detected taxa that were likely consumed during different feeding strategies. Dinoflagellata, Chlorophyta and Bacillariophyta accounted for almost 50% of the prey items consumed, and are associated with suspension feeding, while fish with high fisheries discard rates were detected which are linked to active foraging. In addition, we were able to characterise biodiversity patterns by considering Nephrops as natural samplers, as well as detecting parasitic dinoflagellates (e.g., Hematodinium sp.), which are known to influence burrow related behaviour in infected individuals in over 50% of the samples. The metabarcoding data presented here greatly enhances a better understanding of a species' ecological role and could be applied as a routine procedure in future studies for proper consideration in the management and decision-making of fisheries.
Collapse
Affiliation(s)
- Peter Shum
- Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
- School of Natural Sciences, University of Hull, Hull, United Kingdom
| | - Janine Wäge-Recchioni
- School of Natural Sciences, University of Hull, Hull, United Kingdom
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Graham S. Sellers
- School of Natural Sciences, University of Hull, Hull, United Kingdom
| | - Magnus L. Johnson
- School of Environmental Sciences, University of Hull, Hull, United Kingdom
| | - Domino A. Joyce
- School of Natural Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
12
|
Vigil K, Aw TG. Comparison of de novo assembly using long-read shotgun metagenomic sequencing of viruses in fecal and serum samples from marine mammals. Front Microbiol 2023; 14:1248323. [PMID: 37808316 PMCID: PMC10556685 DOI: 10.3389/fmicb.2023.1248323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Viral diseases of marine mammals are difficult to study, and this has led to a limited knowledge on emerging known and unknown viruses which are ongoing threats to animal health. Viruses are the leading cause of infectious disease-induced mass mortality events among marine mammals. Methods In this study, we performed viral metagenomics in stool and serum samples from California sea lions (Zalophus californianus) and bottlenose dolphins (Tursiops truncates) using long-read nanopore sequencing. Two widely used long-read de novo assemblers, Canu and Metaflye, were evaluated to assemble viral metagenomic sequencing reads from marine mammals. Results Both Metaflye and Canu assembled similar viral contigs of vertebrates, such as Parvoviridae, and Poxviridae. Metaflye assembled viral contigs that aligned with one viral family that was not reproduced by Canu, while Canu assembled viral contigs that aligned with seven viral families that was not reproduced by Metaflye. Only Canu assembled viral contigs from dolphin and sea lion fecal samples that matched both protein and nucleotide RefSeq viral databases using BLASTx and BLASTn for Anelloviridae, Parvoviridae and Circoviridae families. Viral contigs assembled with Canu aligned with torque teno viruses and anelloviruses from vertebrate hosts. Viruses associated with invertebrate hosts including densoviruses, Ambidensovirus, and various Circoviridae isolates were also aligned. Some of the invertebrate and vertebrate viruses reported here are known to potentially cause mortality events and/or disease in different seals, sea stars, fish, and bivalve species. Discussion Canu performed better by producing the most viral contigs as compared to Metaflye with assemblies aligning to both protein and nucleotide databases. This study suggests that marine mammals can be used as important sentinels to surveil marine viruses that can potentially cause diseases in vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
13
|
Wahltinez SJ, Byrne M, Stacy NI. Coelomic fluid of asteroid echinoderms: Current knowledge and future perspectives on its utility for disease and mortality investigations. Vet Pathol 2023; 60:547-559. [PMID: 37264636 DOI: 10.1177/03009858231176563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Coelomic fluid surrounds the internal organs of asteroid echinoderms (asteroids, otherwise known as sea stars or starfish) and plays an essential role in the immune system, as well as in the transport of respiratory gases, nutrients, waste products, and reproductive mediators. Due to its importance in physiology and accessibility for nonlethal diagnostic sampling, coelomic fluid of asteroids provides an excellent sample matrix for health evaluations and can be particularly useful in disease and mortality investigations. This is especially important in light of recent increases in the number of affected individuals and species, larger geographic scope, and increased observed frequency of sea star wasting events compared with historic accounts of wasting. This review summarizes the current knowledge about coelomocytes, the effector cell of the asteroid immune system; coelomic fluid electrolytes, osmolality, acid-base status and respiratory gases, and microbiota; and genomic, transcriptomic, and proteomic investigations of coelomic fluid. The utility of coelomic fluid analysis for assessing stressor responses, diseases, and mortality investigations is considered with knowledge gaps and future directions identified. This complex body fluid provides an exciting opportunity to increase our understanding of this unique and ecologically important group of animals.
Collapse
Affiliation(s)
| | - Maria Byrne
- The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
14
|
Vahedi SM, Salek Ardetani S, Brito LF, Karimi K, Pahlavan Afshari K, Banabazi MH. Expanding the application of haplotype-based genomic predictions to the wild: A case of antibody response against Teladorsagia circumcincta in Soay sheep. BMC Genomics 2023; 24:335. [PMID: 37330501 PMCID: PMC10276919 DOI: 10.1186/s12864-023-09407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Genomic prediction of breeding values (GP) has been adopted in evolutionary genomic studies to uncover microevolutionary processes of wild populations or improve captive breeding strategies. While recent evolutionary studies applied GP with individual single nucleotide polymorphism (SNP), haplotype-based GP could outperform individual SNP predictions through better capturing the linkage disequilibrium (LD) between the SNP and quantitative trait loci (QTL). This study aimed to evaluate the accuracy and bias of haplotype-based GP of immunoglobulin (Ig) A (IgA), IgE, and IgG against Teladorsagia circumcincta in lambs of an unmanaged sheep population (Soay breed) based on Genomic Best Linear Unbiased Prediction (GBLUP) and five Bayesian [BayesA, BayesB, BayesCπ, Bayesian Lasso (BayesL), and BayesR] methods. RESULTS The accuracy and bias of GPs using SNP, haplotypic pseudo-SNP from blocks with different LD thresholds (0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.00), or the combinations of pseudo-SNPs and non-LD clustered SNPs were obtained. Across methods and marker sets, higher ranges of genomic estimated breeding values (GEBV) accuracies were observed for IgA (0.20 to 0.49), followed by IgE (0.08 to 0.20) and IgG (0.05 to 0.14). Considering the methods evaluated, up to 8% gains in GP accuracy of IgG were achieved using pseudo-SNPs compared to SNPs. Up to 3% gain in GP accuracy for IgA was also obtained using the combinations of the pseudo-SNPs with non-clustered SNPs in comparison to fitting individual SNP. No improvement in GP accuracy of IgE was observed using haplotypic pseudo-SNPs or their combination with non-clustered SNPs compared to individual SNP. Bayesian methods outperformed GBLUP for all traits. Most scenarios yielded lower accuracies for all traits with an increased LD threshold. GP models using haplotypic pseudo-SNPs predicted less-biased GEBVs mainly for IgG. For this trait, lower bias was observed with higher LD thresholds, whereas no distinct trend was observed for other traits with changes in LD. CONCLUSIONS Haplotype information improves GP performance of anti-helminthic antibody traits of IgA and IgG compared to fitting individual SNP. The observed gains in the predictive performances indicate that haplotype-based methods could benefit GP of some traits in wild animal populations.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, B2N5E3, Canada
| | | | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Karim Karimi
- Molecular Diagnostics Program, Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Kian Pahlavan Afshari
- Department of Animal Sciences, Islamic Azad University, Varamin, Varamin-Pishva Branch3381774895, Iran
| | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden.
- Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI), Agricultural Research, Education & Extension Organization (AREEO), Karaj, 3146618361, Iran.
| |
Collapse
|
15
|
Casendino HR, McElroy KN, Sorel MH, Quinn TP, Wood CL. Two decades of change in sea star abundance at a subtidal site in Puget Sound, Washington. PLoS One 2023; 18:e0286384. [PMID: 37294819 PMCID: PMC10256211 DOI: 10.1371/journal.pone.0286384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/15/2023] [Indexed: 06/11/2023] Open
Abstract
Long-term datasets can reveal otherwise undetectable ecological trends, illuminating the historical context of contemporary ecosystem states. We used two decades (1997-2019) of scientific trawling data from a subtidal, benthic site in Puget Sound, Washington, USA to test for gradual trends and sudden shifts in total sea star abundance across 11 species. We specifically assessed whether this community responded to the sea star wasting disease (SSWD) epizootic, which began in 2013. We sampled at depths of 10, 25, 50 and 70 m near Port Madison, WA, and obtained long-term water temperature data. To account for species-level differences in SSWD susceptibility, we divided our sea star abundance data into two categories, depending on the extent to which the species is susceptible to SSWD, then conducted parallel analyses for high-susceptibility and moderate-susceptibility species. The abundance of high-susceptibility sea stars declined in 2014 across depths. In contrast, the abundance of moderate-susceptibility species trended downward throughout the years at the deepest depths- 50 and 70 m-and suddenly declined in 2006 across depths. Water temperature was positively correlated with the abundance of moderate-susceptibility species, and uncorrelated with high-susceptibility sea star abundance. The reported emergence of SSWD in Washington State in the summer of 2014 provides a plausible explanation for the subsequent decline in abundance of high-susceptibility species. However, no long-term stressors or mortality events affecting sea stars were reported in Washington State prior to these years, leaving the declines we observed in moderate-susceptibility species preceding the 2013-2015 SSWD epizootic unexplained. These results suggest that the subtidal sea star community in Port Madison is dynamic, and emphasizes the value of long-term datasets for evaluating patterns of change.
Collapse
Affiliation(s)
- Helen R. Casendino
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Katherine N. McElroy
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Mark H. Sorel
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Thomas P. Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Dawson MN, Duffin PJ, Giakoumis M, Schiebelhut LM, Beas-Luna R, Bosley KL, Castilho R, Ewers-Saucedo C, Gavenus KA, Keller A, Konar B, Largier JL, Lorda J, Miner CM, Moritsch MM, Navarrete SA, Traiger SB, Turner MS, Wares JP. A Decade of Death and Other Dynamics: Deepening Perspectives on the Diversity and Distribution of Sea Stars and Wasting. THE BIOLOGICAL BULLETIN 2023; 244:143-163. [PMID: 38457680 DOI: 10.1086/727969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species. We evaluated the impacts of abiotic characteristics hypothetically associated with sea star wasting (sea surface temperature, pelagic primary productivity, upwelling wind forcing, wave exposure, freshwater runoff) and species characteristics (depth distribution, developmental mode, diet, habitat, reproductive period). We find that the 2010s sea star wasting outbreak clearly affected a little over a dozen species, primarily intertidal and shallow subtidal taxa, causing instantaneous wasting prevalence rates of 5%-80%. Despite the collapse of some populations within weeks, environmental and species variation protracted the outbreak, which lasted 2-3 years from onset until declining to chronic background rates of ∼2% sea star wasting prevalence. Recruitment began immediately in many species, and in general, sea star assemblages trended toward recovery; however, recovery was heterogeneous, and a marine heatwave in 2019 raised concerns of a second decline. The abiotic stressors most associated with the 2010s sea star wasting outbreak were elevated sea surface temperature and low wave exposure, as well as freshwater discharge in the north. However, detailed data speaking directly to the biological, ecological, and environmental cause(s) and consequences of the sea star wasting outbreak remain limited in scope, unavoidably retrospective, and perhaps always indeterminate. Redressing this shortfall for the future will require a broad spectrum of monitoring studies not less than the taxonomically broad cross-scale framework we have modeled in this synthesis.
Collapse
|
17
|
Tassia MG, Hallowell HA, Waits DS, Range RC, Lowe CJ, Graze RM, Schwartz EH, Halanych KM. Induced Immune Reaction in the Acorn Worm, Saccoglossus kowalevskii, Informs the Evolution of Antiviral Immunity. Mol Biol Evol 2023; 40:msad097. [PMID: 37116212 PMCID: PMC10210618 DOI: 10.1093/molbev/msad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Evolutionary perspectives on the deployment of immune factors following infection have been shaped by studies on a limited number of biomedical model systems with a heavy emphasis on vertebrate species. Although their contributions to contemporary immunology cannot be understated, a broader phylogenetic perspective is needed to understand the evolution of immune systems across Metazoa. In our study, we leverage differential gene expression analyses to identify genes implicated in the antiviral immune response of the acorn worm hemichordate, Saccoglossus kowalevskii, and place them in the context of immunity evolution within deuterostomes-the animal clade composed of chordates, hemichordates, and echinoderms. Following acute exposure to the synthetic viral double-stranded RNA analog, poly(I:C), we show that S. kowalevskii responds by regulating the transcription of genes associated with canonical innate immunity signaling pathways (e.g., nuclear factor κB and interferon regulatory factor signaling) and metabolic processes (e.g., lipid metabolism), as well as many genes without clear evidence of orthology with those of model species. Aggregated across all experimental time point contrasts, we identify 423 genes that are differentially expressed in response to poly(I:C). We also identify 147 genes with altered temporal patterns of expression in response to immune challenge. By characterizing the molecular toolkit involved in hemichordate antiviral immunity, our findings provide vital evolutionary context for understanding the origins of immune systems within Deuterostomia.
Collapse
Affiliation(s)
- Michael G Tassia
- Department of Biological Sciences, Auburn University, Auburn, AL
- Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Haley A Hallowell
- Department of Biological Sciences, Auburn University, Auburn, AL
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Damien S Waits
- Department of Biological Sciences, Auburn University, Auburn, AL
- Center for Marine Science, University of North Carolina Wilmington, Wlimington, NC
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL
| | | | - Rita M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL
| | | | - Kenneth M Halanych
- Department of Biological Sciences, Auburn University, Auburn, AL
- Center for Marine Science, University of North Carolina Wilmington, Wlimington, NC
| |
Collapse
|
18
|
Currie-Olsen D, Hesketh AV, Grimm J, Kennedy J, Marshall KE, Harley CDG. Lethal and sublethal implications of low temperature exposure for three intertidal predators. J Therm Biol 2023; 114:103549. [PMID: 37244058 DOI: 10.1016/j.jtherbio.2023.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/29/2023]
Abstract
Benthic invertebrate predators play a key role in top-down trophic regulation in intertidal ecosystems. While the physiological and ecological consequences of predator exposure to high temperatures during summer low tides are increasingly well-studied, the effects of cold exposure during winter low tides remain poorly understood. To address this knowledge gap, we measured the supercooling points, survival, and feeding rates of three intertidal predator species in British Columbia, Canada - the sea stars Pisaster ochraceus and Evasterias troschelii and the dogwhelk Nucella lamellosa - in response to exposure to sub-zero air temperatures. Overall, we found that all three predators exhibited evidence of internal freezing at relatively mild sub-zero temperatures, with sea stars exhibiting an average supercooling point of -2.50 °C, and the dogwhelk averaging approximately -3.99 °C. None of the tested species are strongly freeze tolerant, as evidenced by moderate-to-low survival rates after exposure to -8 °C air. All three predators exhibited significantly reduced feeding rates over a two-week period following a single 3-h sublethal (-0.5 °C) exposure event. We also quantified variation in predator body temperature among thermal microhabitats during winter low tides. Predators that were found at the base of large boulders, on the sediment, and within crevices had higher body temperatures during winter low tides, as compared to those situated in other microhabitats. However, we did not find evidence of behavioural thermoregulation via selective microhabitat use during cold weather. Since these intertidal predators are less freeze tolerant than their preferred prey, winter low temperature exposures can have important implications for organism survival and predator-prey dynamics across thermal gradients at both local (habitat-driven) and geographic (climate-driven) scales.
Collapse
Affiliation(s)
- Danja Currie-Olsen
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Amelia V Hesketh
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jaime Grimm
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jessica Kennedy
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher D G Harley
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
19
|
Loudon AH, Park J, Parfrey LW. Identifying the core microbiome of the sea star Pisaster ochraceus in the context of sea star wasting disease. FEMS Microbiol Ecol 2023; 99:6998556. [PMID: 36690340 DOI: 10.1093/femsec/fiad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Sea stars are keystone species and their mass die-offs due to sea star wasting disease (SSWD) impact marine communities and have fueled recent interest in the microbiome of sea stars. We assessed the host specificity of the microbiome associated with three body regions of the sea star Pisaster ochraceus using 16S rRNA gene amplicon surveys of the bacterial communities living on and in Pisaster, their environment, and sympatric marine hosts across three populations in British Columbia, Canada. Overall, the bacterial communities on Pisaster are distinct from their environment and differ by both body region and geography. We identified core bacteria specifically associated with Pisaster across populations and nearly absent in other hosts and the environment. We then investigated the distribution of these core bacteria on SSWD-affected Pisaster from one BC site and by reanalyzing a study of SSWD on Pisaster from California. We find no differences in the distribution of core bacteria in early disease at either site and two core taxa differ in relative abundance in advanced disease in California. Using phylogenetic analyses, we find that most core bacteria have close relatives on other sea stars and marine animals, suggesting these clades have evolutionary adaptions to an animal-associated lifestyle.
Collapse
Affiliation(s)
- Andrew H Loudon
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jungsoo Park
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Hakai Institute, PO Box 25039, Campbell River, BC V9W 0B7, Canada
| |
Collapse
|
20
|
Dawson Taylor D, Farr JJ, Lim EG, Fleet JL, Smith Wuitchik SJ, Wuitchik DM. Heat stress does not induce wasting symptoms in the giant California sea cucumber ( Apostichopus californicus). PeerJ 2023; 11:e14548. [PMID: 36778149 PMCID: PMC9912942 DOI: 10.7717/peerj.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/20/2022] [Indexed: 02/10/2023] Open
Abstract
Oceanic heatwaves have significant impacts on disease dynamics in marine ecosystems. Following an extreme heatwave in Nanoose Bay, British Columbia, Canada, a severe sea cucumber wasting event occurred that resulted in the mass mortality of Apostichopus californicus. Here, we sought to determine if heat stress in isolation could trigger wasting symptoms in A. californicus. We exposed sea cucumbers to (i) a simulated marine heatwave (22 °C), (ii) an elevated temperature treatment (17 °C), or (iii) control conditions (12 °C). We measured the presence of skin lesions, mortality, posture maintenance, antipredator defences, spawning, and organ evisceration during the 79-hour thermal exposure, as well as 7-days post-exposure. Both the 22 °C and 17 °C treatments elicited stress responses where individuals exhibited a reduced ability to maintain posture and an increase in stress spawning. The 22 °C heatwave was particularly stressful, as it was the only treatment where mortality was observed. However, none of the treatments induced wasting symptoms as observed in the Nanoose Bay event. This study provides evidence that sea cucumber wasting may not be triggered by heat stress in isolation, leaving the cause of the mass mortality event observed in Nanoose unknown.
Collapse
Affiliation(s)
- Declan Dawson Taylor
- Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada,Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada
| | - Jonathan J. Farr
- Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada,Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Em G. Lim
- Biological Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Jenna L. Fleet
- Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada,Biological Sciences, University of Winnipeg, Winnipeg, MB, Canada
| | - Sara J. Smith Wuitchik
- Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada,Biological Sciences, Boston University, Boston, MA, United States of America,Informatics Group, Harvard University, Cambridge, MA, United States of America,Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Daniel M. Wuitchik
- Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada,Biological Sciences, Boston University, Boston, MA, United States of America
| |
Collapse
|
21
|
Schiebelhut LM, Giakoumis M, Castilho R, Duffin PJ, Puritz JB, Wares JP, Wessel GM, Dawson MN. Minor Genetic Consequences of a Major Mass Mortality: Short-Term Effects in Pisaster ochraceus. THE BIOLOGICAL BULLETIN 2022; 243:328-338. [PMID: 36716481 PMCID: PMC10668074 DOI: 10.1086/722284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AbstractMass mortality events are increasing globally in frequency and magnitude, largely as a result of human-induced change. The effects of these mass mortality events, in both the long and short term, are of imminent concern because of their ecosystem impacts. Genomic data can be used to reveal some of the population-level changes associated with mass mortality events. Here, we use reduced-representation sequencing to identify potential short-term genetic impacts of a mass mortality event associated with a sea star wasting outbreak. We tested for changes in the population for genetic differentiation, diversity, and effective population size between pre-sea star wasting and post-sea star wasting populations of Pisaster ochraceus-a species that suffered high sea star wasting-associated mortality (75%-100% at 80% of sites). We detected no significant population-based genetic differentiation over the spatial scale sampled; however, the post-sea star wasting population tended toward more differentiation across sites than the pre-sea star wasting population. Genetic estimates of effective population size did not detectably change, consistent with theoretical expectations; however, rare alleles were lost. While we were unable to detect significant population-based genetic differentiation or changes in effective population size over this short time period, the genetic burden of this mass mortality event may be borne by future generations, unless widespread recruitment mitigates the population decline. Prior results from P. ochraceus indicated that natural selection played a role in altering allele frequencies following this mass mortality event. In addition to the role of selection found in a previous study on the genomic impacts of sea star wasting on P. ochraceus, our current study highlights the potential role the stochastic loss of many individuals plays in altering how genetic variation is structured across the landscape. Future genetic monitoring is needed to determine long-term genetic impacts in this long-lived species. Given the increased frequency of mass mortality events, it is important to implement demographic and genetic monitoring strategies that capture baselines and background dynamics to better contextualize species' responses to large perturbations.
Collapse
Affiliation(s)
- Lauren M. Schiebelhut
- Life and Environmental Sciences, University of California, Merced, 5200 N. Lake Road, Merced, California 95343
| | - Melina Giakoumis
- Graduate Center, City University of New York, 365 5th Avenue, New York, New York 10016
- Department of Biology, City College of New York, 160 Convent Avenue, New York, New York 10031
| | - Rita Castilho
- University of Algarve, Campus de Gambelas, Faro, Portugal
- Center of Marine Sciences (CCMAR), Campus de Gambelas, Faro, Portugal
| | - Paige J. Duffin
- Odum School of Ecology and Department of Genetics, University of Georgia, 120 Green Street, Athens, Georgia 30602
| | - Jonathan B. Puritz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881
| | - John P. Wares
- Odum School of Ecology and Department of Genetics, University of Georgia, 120 Green Street, Athens, Georgia 30602
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Michael N Dawson
- Life and Environmental Sciences, University of California, Merced, 5200 N. Lake Road, Merced, California 95343
| |
Collapse
|
22
|
Schiebelhut LM, Giakoumis M, Castilho R, Garcia VE, Wares JP, Wessel GM, Dawson MN. Is It in the Stars? Exploring the Relationships between Species' Traits and Sea Star Wasting Disease. THE BIOLOGICAL BULLETIN 2022; 243:315-327. [PMID: 36716486 DOI: 10.1086/722800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AbstractAn explanation for variation in impacts of sea star wasting disease across asteroid species remains elusive. Although various traits have been suggested to play a potential role in sea star wasting susceptibility, currently we lack a thorough comparison that explores how life-history and natural history traits shape responses to mass mortality across diverse asteroid taxa. To explore how asteroid traits may relate to sea star wasting, using available data and recognizing the potential for biological correlations to be driven by phylogeny, we generated a supertree, tested traits for phylogenetic association, and evaluated associations between traits and sea star wasting impact. Our analyses show no evidence for a phylogenetic association with sea star wasting impact, but there does appear to be phylogenetic association for a subset of asteroid life-history traits, including diet, substrate, and reproductive season. We found no relationship between sea star wasting and developmental mode, diet, pelagic larval duration, or substrate but did find a relationship with minimum depth, reproductive season, and rugosity (or surface complexity). Species with the greatest sea star wasting impacts tend to have shallower minimum depth distributions, they tend to have their median reproductive period 1.5 months earlier, and they tend to have higher rugosities relative to species less affected by sea star wasting. Fully understanding sea star wasting remains challenging, in part because dramatic gaps still exist in our understanding of the basic biology and phylogeny of asteroids. Future studies would benefit from a more robust phylogenetic understanding of sea stars, as well as leveraging intra- and interspecific comparative transcriptomics and genomics to elucidate the molecular pathways responding to sea star wasting.
Collapse
|
23
|
MacKnight NJ, Dimos BA, Beavers KM, Muller EM, Brandt ME, Mydlarz LD. Disease resistance in coral is mediated by distinct adaptive and plastic gene expression profiles. SCIENCE ADVANCES 2022; 8:eabo6153. [PMID: 36179017 PMCID: PMC9524840 DOI: 10.1126/sciadv.abo6153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infectious diseases are an increasing threat to coral reefs, resulting in altered community structure and hindering the functional contributions of disease-susceptible species. We exposed seven reef-building coral species from the Caribbean to white plague disease and determined processes involved in (i) lesion progression, (ii) within-species gene expression plasticity, and (iii) expression-level adaptation among species that lead to differences in disease risk. Gene expression networks enriched in immune genes and cytoskeletal arrangement processes were correlated to lesion progression rates. Whether or not a coral developed a lesion was mediated by plasticity in genes involved in extracellular matrix maintenance, autophagy, and apoptosis, while resistant coral species had constitutively higher expression of intracellular protein trafficking. This study offers insight into the process involved in lesion progression and within- and between-species dynamics that lead to differences in disease risk that is evident on current Caribbean reefs.
Collapse
Affiliation(s)
- Nicholas J. MacKnight
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Bradford A. Dimos
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Kelsey M. Beavers
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Erinn M. Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Marilyn E. Brandt
- University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Laura D. Mydlarz
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
- Corresponding author.
| |
Collapse
|
24
|
Hofmeister E, Ruhs EC, Fortini LB, Hopkins MC, Jones L, Lafferty KD, Sleeman J, LeDee O. Future Directions to Manage Wildlife Health in a Changing Climate. ECOHEALTH 2022; 19:329-334. [PMID: 35759113 DOI: 10.1007/s10393-022-01604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Erik Hofmeister
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA.
| | | | - Lucas Berio Fortini
- U.S. Geological Survey Pacific Islands Ecological Research Center, Inouye Regional Center, 1845 Wasp Blvd., Bldg. 176, Honolulu, HI, 96818, USA
| | - M Camille Hopkins
- U.S. Geological Survey Ecosystems Mission Area, 12201 Sunrise Valley Drive, Reston, VA, 20192, USA
| | - Lee Jones
- USFWS-Natural Resource Program Center, 10 E. Babcock, Rm 105, Bozeman, MT, 59715, USA
| | - Kevin D Lafferty
- Marine Science Institute, U.S. Geological Survey Western Ecological Research Center, University of California, 805, Santa Barbara, CA, 93106, USA
| | - Jonathan Sleeman
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | - Olivia LeDee
- U.S. Geological Survey, Climate Adaptation Science Centers, 1956 Buford Ave. St, Paul, MN, 55108, USA
| |
Collapse
|
25
|
Wang J, Xiao J, Zhu Z, Wang S, Zhang L, Fan Z, Deng Y, Hu Z, Peng F, Shen S, Deng F. Diverse viromes in polar regions: A retrospective study of metagenomic data from Antarctic animal feces and Arctic frozen soil in 2012-2014. Virol Sin 2022; 37:883-893. [PMID: 36028202 PMCID: PMC9797369 DOI: 10.1016/j.virs.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Antarctica and the Arctic are the coldest places, containing a high diversity of microorganisms, including viruses, which are important components of polar ecosystems. However, owing to the difficulties in obtaining access to animal and environmental samples, the current knowledge of viromes in polar regions is still limited. To better understand polar viromes, this study performed a retrospective analysis using metagenomic sequencing data of animal feces from Antarctica and frozen soil from the Arctic collected during 2012-2014. The results reveal diverse communities of DNA and RNA viruses from at least 23 families from Antarctic animal feces and 16 families from Arctic soils. Although the viral communities from Antarctica and the Arctic show a large diversity, they have genetic similarities with known viruses from different ecosystems and organisms with similar viral proteins. Phylogenetic analysis of Microviridae, Parvoviridae, and Larvidaviridae was further performed, and complete genomic sequences of two novel circular replication-associated protein (rep)-encoding single-stranded (CRESS) DNA viruses closely related to Circoviridae were identified. These results reveal the high diversity, complexity, and novelty of viral communities from polar regions, and suggested the genetic similarity and functional correlations of viromes between the Antarctica and Arctic. Variations in viral families in Arctic soils, Arctic freshwater, and Antarctic soils are discussed. These findings improve our understanding of polar viromes and suggest the importance of performing follow-up in-depth investigations of animal and environmental samples from Antarctica and the Arctic, which would reveal the substantial role of these viruses in the global viral community.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian Xiao
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zheng Zhu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Siyuan Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Lei Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhaojun Fan
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yali Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China,Corresponding authors.
| | - Shu Shen
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Corresponding authors.
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Corresponding authors.
| |
Collapse
|
26
|
Oulhen N, Byrne M, Duffin P, Gomez-Chiarri M, Hewson I, Hodin J, Konar B, Lipp EK, Miner BG, Newton AL, Schiebelhut LM, Smolowitz R, Wahltinez SJ, Wessel GM, Work TM, Zaki HA, Wares JP. A Review of Asteroid Biology in the Context of Sea Star Wasting: Possible Causes and Consequences. THE BIOLOGICAL BULLETIN 2022; 243:50-75. [PMID: 36108034 PMCID: PMC10642522 DOI: 10.1086/719928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Paige Duffin
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, Rhode Island
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York
| | - Jason Hodin
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington
| | - Brenda Konar
- College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Alaska
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, Georgia
| | - Benjamin G. Miner
- Department of Biology, Western Washington University, Bellingham, Washington
| | | | - Lauren M. Schiebelhut
- Department of Life and Environmental Sciences, University of California, Merced, California
| | - Roxanna Smolowitz
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island
| | - Sarah J. Wahltinez
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Gary M. Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Thierry M. Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii
| | - Hossam A. Zaki
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - John P. Wares
- Department of Genetics, University of Georgia, Athens, Georgia
- Odum School of Ecology, University of Georgia, Athens, Georgia
| |
Collapse
|
27
|
Pagenkopp Lohan KM, Darling JA, Ruiz GM. International shipping as a potent vector for spreading marine parasites. DIVERS DISTRIB 2022; 28:1922-1933. [PMID: 38269301 PMCID: PMC10807284 DOI: 10.1111/ddi.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Aim The global shipping fleet, the primary means of transporting goods among countries, also serves as a major dispersal mechanism for marine invasive species. To date, researchers have primarily focussed on the role of ships in transferring marine macrofauna, often overlooking transfers of associated parasites, which can have larger impacts on naïve host individuals and populations. Here, we re-examine three previously published metabarcode datasets targeting zooplankton and protists in ships' ballast water to assess the diversity of parasites across life stages arriving to three major US ports. Location Port of Hampton Roads in the Chesapeake Bay, Virginia; Ports of Texas City, Houston and Bayport in Galveston Bay, Texas; and Port of Valdez in Prince William Sound, Alaska. Methods We selected all known parasitic taxa, using sequences generated from the small subunit gene (SSU) from ribosomal RNA (rRNA) amplified from (1) zooplankton collected from plankton tows (35 and 80 μm datasets) and (2) eukaryotes collected from samples of ships' ballast water (3 μm dataset). Results In all three datasets, we found a broad range of parasitic taxa, including many protistan and metazoan parasites, that infect a wide range of hosts, from teleost fish to dinoflagellates. Parasite richness was highest in the 3 μm dataset and relatively uniform across arrival regions. Several parasite taxa were found in high relative abundance (based on number of sequences recovered) either in ships entering a single or across multiple regions. Main Conclusions The ubiquity, diversity and relative abundance of parasites detected demonstrate ships are a potent vector for spreading marine parasites across the world's oceans, potentially contributing to reported increases in outbreaks of marine diseases. Future research is urgently needed to evaluate the fate of parasites upon arrival and the efficacy of ballast water treatment systems to reduce future transfers and colonization.
Collapse
Affiliation(s)
| | - John A. Darling
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Durham, North Carolina, USA
| | - Gregory M. Ruiz
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| |
Collapse
|
28
|
Smith S, Hewson I, Collins P. The first records of sea star wasting disease in Crossaster papposus in Europe. Biol Lett 2022; 18:20220197. [PMID: 35892208 PMCID: PMC9326281 DOI: 10.1098/rsbl.2022.0197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sea star wasting disease (SSWD) refers to a suite of gross pathological signs observed in Asteroidea species. It presents to varying degrees as abnormal posture, epidermal ulceration, arm autotomy and eversion of viscera. We report observations of SSWD in the sunstar Crossaster papposus, the first observations of its kind in Europe. While the exact cause of SSWD remains unknown, studies have proposed pathogenic and environmental-stress pathways for disease outbreaks. Although the present observations do not support a precise aetiology, the presence of SSWD in a keystone predator may have wide reaching ecological and management implications.
Collapse
Affiliation(s)
- Samuel Smith
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Ian Hewson
- Department of Microbiology, Cornell University, Wing Hall 403, Ithaca, NY 14850, USA
| | - Patrick Collins
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
29
|
Abstract
Echinoderms are a phylum of marine invertebrates that include model organisms, keystone species, and animals commercially harvested for seafood. Despite their scientific, ecological, and economic importance, there is little known about the diversity of RNA viruses that infect echinoderms compared to other invertebrates. We screened over 900 transcriptomes and viral metagenomes to characterize the RNA virome of 38 echinoderm species from all five classes (Crinoidea, Holothuroidea, Asteroidea, Ophiuroidea and Echinoidea). We identified 347 viral genome fragments that were classified to genera and families within nine viral orders - Picornavirales, Durnavirales, Martellivirales, Nodamuvirales, Reovirales, Amarillovirales, Ghabrivirales, Mononegavirales, and Hepelivirales. We compared the relative viral representation across three life stages (embryo, larvae, adult) and characterized the gene content of contigs which encoded complete or near-complete genomes. The proportion of viral reads in a given transcriptome was not found to significantly differ between life stages though the majority of viral contigs were discovered from transcriptomes of adult tissue. This study illuminates the biodiversity of RNA viruses from echinoderms, revealing the occurrence of viral groups in natural populations.
Collapse
Affiliation(s)
- Elliot W Jackson
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla CA, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| | - Daniel H Buckley
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Meyer A, Hinman V. The arm of the starfish: The far-reaching applications of Patiria miniata as a model system in evolutionary, developmental, and regenerative biology. Curr Top Dev Biol 2022; 147:523-543. [PMID: 35337461 DOI: 10.1016/bs.ctdb.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many species of echinoderms have long been considered model research organisms in biology. Historically, much of this research has focused on the embryology of sea urchins and the use of their extensive gene regulatory networks as a tool to understand how the genome controls cell state specification and patterning. The establishment of Patiria miniata, the bat sea star, as a research organism has allowed us to expand on the concepts explored with sea urchins, viewing these genetic networks through a comparative lens, gaining great insight into the evolutionary mechanisms that shape developmental diversity. Extensive molecular tools have been developed in P. miniata, designed to explore gene expression dynamics and build gene regulatory networks. Echinoderms also have a robust set of bioinformatic and computational resources, centered around echinobase.org, an extensive database containing multiomic, developmental, and experimental resources for researchers. In addition to comparative evolutionary development, P. miniata is a promising system in its own right for studying whole body regeneration, metamorphosis and body plan development, as well as marine disease.
Collapse
Affiliation(s)
- Anne Meyer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Veronica Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
31
|
Barclay KM, Leighton LR. Predation Scars Reveal Declines in Crab Populations Since the Pleistocene. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.810069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite growing concerns over global fisheries, the stock status of most commercially exploited species are poorly understood. Fossil data provide pre-anthropogenic baselines for data-poor fisheries, yet are underutilized in fisheries management. Here, we provide the first use of predation traces to assess the status of fisheries (crab). We compared crab predation traces on living individuals of the crab prey gastropod, Tegula funebralis, to Pleistocene individuals from the same regions in southern California. There were fewer crab predation traces on modern gastropods than their Pleistocene counterparts, revealing reductions in crab abundances today compared to the Pleistocene. We conclude that: (1) regardless of the cause, immediate actions are required to avoid further population reductions of commercially exploited crabs in southern California, (2) predation traces are a rapid, cost-effective method to assess otherwise data-poor fisheries, and (3) the inclusion of fossil data provides key new insights for modern resource and fisheries management.
Collapse
|
32
|
Gorra TR, Garcia SCR, Langhans MR, Hoshijima U, Estes JA, Raimondi PT, Tinker MT, Kenner MC, Kroeker KJ. Southeast Alaskan kelp forests: inferences of process from large-scale patterns of variation in space and time. Proc Biol Sci 2022; 289:20211697. [PMID: 35042419 PMCID: PMC8767212 DOI: 10.1098/rspb.2021.1697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022] Open
Abstract
Humans were considered external drivers in much foundational ecological research. A recognition that humans are embedded in the complex interaction networks we study can provide new insight into our ecological paradigms. Here, we use time-series data spanning three decades to explore the effects of human harvesting on otter-urchin-kelp trophic cascades in southeast Alaska. These effects were inferred from variation in sea urchin and kelp abundance following the post fur trade repatriation of otters and a subsequent localized reduction of otters by human harvest in one location. In an example of a classic trophic cascade, otter repatriation was followed by a 99% reduction in urchin biomass density and a greater than 99% increase in kelp density region wide. Recent spatially concentrated harvesting of otters was associated with a localized 70% decline in otter abundance in one location, with urchins increasing and kelps declining in accordance with the spatial pattern of otter occupancy within that region. While the otter-urchin-kelp trophic cascade has been associated with alternative community states at the regional scale, this research highlights how small-scale variability in otter occupancy, ostensibly due to spatial variability in harvesting or the risk landscape for otters, can result in within-region patchiness in these community states.
Collapse
Affiliation(s)
- Torrey R. Gorra
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sabrina C. R. Garcia
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Michael R. Langhans
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Umihiko Hoshijima
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - James A. Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Pete T. Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - M. Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Michael C. Kenner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Kristy J. Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
33
|
Abstract
Climate change threatens to destabilize ecological communities, potentially moving them from persistently occupied "basins of attraction" to different states. Increasing variation in key ecological processes can signal impending state shifts in ecosystems. In a rocky intertidal meta-ecosystem consisting of three distinct regions spread across 260 km of the Oregon coast, we show that annually cleared sites are characterized by communities that exhibit signs of increasing destabilization (loss of resilience) over the past decade despite persistent community states. In all cases, recovery rates slowed and became more variable over time. The conditions underlying these shifts appear to be external to the system, with thermal disruptions (e.g., marine heat waves, El Niño-Southern Oscillation) and shifts in ocean currents (e.g., upwelling) being the likely proximate drivers. Although this iconic ecosystem has long appeared resistant to stress, the evidence suggests that subtle destabilization has occurred over at least the last decade.
Collapse
|
34
|
McGowan VC, Bell P. “I now deeply care about the effects humans are having on the world”: cultivating ecological care and responsibility through complex systems modelling and investigations. EDUCATIONAL AND DEVELOPMENTAL PSYCHOLOGIST 2022. [DOI: 10.1080/20590776.2022.2027212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Philip Bell
- Learning Sciences and Human Development, University of Washington, College of Education, Seattle, WA, USA
| |
Collapse
|
35
|
Hollarsmith JA, Andrews K, Naar N, Starko S, Calloway M, Obaza A, Buckner E, Tonnes D, Selleck J, Therriault TW. Toward a conceptual framework for managing and conserving marine habitats: A case study of kelp forests in the Salish Sea. Ecol Evol 2022; 12:e8510. [PMID: 35136559 PMCID: PMC8809449 DOI: 10.1002/ece3.8510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Kelp forests are in decline across much of their range due to place-specific combinations of local and global stressors. Declines in kelp abundance can lead to cascading losses of biodiversity and productivity with far-reaching ecological and socioeconomic consequences. The Salish Sea is a hotspot of kelp diversity where many species of kelp provide critical habitat and food for commercially, ecologically, and culturally important fish and invertebrate species. However, like other regions, kelp forests in much of the Salish Sea are in rapid decline. Data gaps and limited long-term monitoring have hampered attempts to identify and manage for specific drivers of decline, despite the documented urgency to protect these important habitats. To address these knowledge gaps, we gathered a focus group of experts on kelp in the Salish Sea to identify perceived direct and indirect stressors facing kelp forests. We then conducted a comprehensive literature review of peer-reviewed studies from the Salish Sea and temperate coastal ecosystems worldwide to assess the level of support for the pathways identified by the experts, and we identified knowledge gaps to prioritize future research. Our results revealed major research gaps within the Salish Sea and highlighted the potential to use expert knowledge for making informed decisions in the region. We found high support for the pathways in the global literature, with variable consensus on the relationship between stressors and responses across studies, confirming the influence of local ecological, oceanographic, and anthropogenic contexts and threshold effects on stressor-response relationships. Finally, we prioritized areas for future research in the Salish Sea. This study demonstrates the value expert opinion has to inform management decisions. These methods are readily adaptable to other ecosystem management contexts, and the results of this case study can be immediately applied to kelp management.
Collapse
Affiliation(s)
- Jordan A. Hollarsmith
- Alaska Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
| | - Kelly Andrews
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | - Nicole Naar
- Washington Sea GrantCollege of the EnvironmentUniversity of WashingtonSeattleWashingtonUSA
| | - Samuel Starko
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Max Calloway
- Aquatic Resources DivisionWashington Department of Natural ResourcesNearshore Habitat ProgramOlympiaWashingtonUSA
| | - Adam Obaza
- Paua Marine Research GroupSan DiegoCaliforniaUSA
| | - Emily Buckner
- Washington Sea GrantCollege of the EnvironmentUniversity of WashingtonSeattleWashingtonUSA
- Puget Sound Restoration FundBainbridge IslandWashingtonUSA
| | - Daniel Tonnes
- West Coast RegionNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | - James Selleck
- West Coast RegionNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | - Thomas W. Therriault
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
| |
Collapse
|
36
|
Solomon C, Hewson I. Putative Invertebrate, Plant, and Wastewater Derived ssRNA Viruses in Plankton of the Anthropogenically Impacted Anacostia River, District of Columbia, USA. Microbes Environ 2022; 37:ME21070. [PMID: 35264468 PMCID: PMC9763036 DOI: 10.1264/jsme2.me21070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Anacostia River is a highly impacted watershed in the Northeastern United States which experiences combined sewage outfall in downstream waters. We examined the composition of RNA viruses at three sites in the river using viral metagenomics. Viromes had well represented Picornaviruses, Tombusviruses, Wolframviruses, Nodaviruses, with fewer Tobamoviruses, Sobemoviruses, and Densoviruses (ssDNA). Phylogenetic ana-lyses of detected viruses provide evidence for putatively autochthonous and allochthonous invertebrate, plant, and vertebrate host origin. The number of viral genomes matching Ribovaria increased downstream, and assemblages were most disparate between distant sites, suggesting impacts of the combined sewage overflows at these sites. Additionally, we recovered a densovirus genome fragment which was highly similar to the Clinch ambidensovirus 1, which has been attributed to mass mortality of freshwater mussels in Northeastern America. Taken together, these data suggest that RNA viromes of the Anacostia River reflect autochthonous production of virus particles by benthic metazoan and plants, and inputs from terrestrial habitats including sewage.
Collapse
Affiliation(s)
- Caroline Solomon
- School of Science, Technology, Accessibility, Mathematics and Public Health, Gallaudet University, 800 Florida Ave NE, Washington, DC 20002 USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Wing Hall 403, Ithaca NY 14853 USA, Corresponding author. E-mail: ; Tel: +1–607–255–0151; Fax: +1–607–255–3904
| |
Collapse
|
37
|
Hart MW, Guerra VI, Allen JD, Byrne M. Cloning and Selfing Affect Population Genetic Variation in Simulations of Outcrossing, Sexual Sea Stars. THE BIOLOGICAL BULLETIN 2021; 241:286-302. [PMID: 35015625 DOI: 10.1086/717293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractMany sea stars are well known for facultative or obligate asexual reproduction in both the adult and larval life-cycle stages. Some species and lineages are also capable of facultative or obligate hermaphroditic reproduction with self-fertilization. However, models of population genetic variation and empirical analyses of genetic data typically assume only sexual reproduction and outcrossing. A recent reanalysis of previously published empirical data (microsatellite genotypes) from two studies of one of the most well-known sea star species (the crown-of-thorns sea star; Acanthaster sp.) concluded that cloning and self-fertilization in that species are rare and contribute little to patterns of population genetic variation. Here we reconsider that conclusion by simulating the contribution of cloning and selfing to genetic variation in a series of models of sea star demography. Simulated variation in two simple models (analogous to previous analyses of empirical data) was consistent with high rates of cloning or selfing or both. More realistic scenarios that characterize population flux in sea stars of ecological significance, including outbreaks of crown-of-thorns sea stars that devastate coral reefs, invasions by Asterias amurensis, and epizootics of sea star wasting disease that kill Pisaster ochraceus, also showed significant but smaller effects of cloning and selfing on variation within subpopulations and differentiation between subpopulations. Future models or analyses of genetic variation in similar study systems might benefit from simulation modeling to characterize possible contributions of cloning or selfing to genetic variation in population samples or to understand the limits on inferring the effects of cloning or selfing in nature.
Collapse
|
38
|
Ricciardi A, Cassey P, Leuko S, Woolnough AP. Planetary Biosecurity: Applying Invasion Science to Prevent Biological Contamination from Space Travel. Bioscience 2021. [DOI: 10.1093/biosci/biab115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
As plans for space exploration and commercial use expand rapidly, biosecurity measures and risk assessments that inform them must adapt. Sophisticated protocols are required to prevent biological contamination of extraterrestrial environments from Earth and vice versa. Such protocols should be informed by research on biological invasions—human-assisted spread of organisms into novel environments—which has revealed, inter alia, that (1) invasion risk is driven by the timing and frequency of introduction events, whose control requires addressing the least secure human activities associated with organismal transport; (2) invasions and their impacts are difficult to predict, because these phenomena are governed by context dependencies involving traits of the organism and the receiving environment; and (3) early detection and rapid response are crucial for prevention but undermined by taxonomic methods that fail to recognize what is “alien” versus what is native. Collaboration among astrobiologists, invasion biologists, and policymakers could greatly enhance planetary biosecurity protocols.
Collapse
Affiliation(s)
| | | | | | - Andrew P Woolnough
- University of Melbourne, Melbourne, and the University of Adelaide, Adelaide, both in Australia
| |
Collapse
|
39
|
Occurrence of Ulcerative Lesions in Sea Stars (Asteroidea) of the Northern Gulf of California, USA. J Wildl Dis 2021; 58:215-221. [PMID: 34700341 DOI: 10.7589/jwd-d-21-00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
To assess the variation of sea star (Asteroidea) populations in the Northern Gulf of California and look for evidence of sea star ulcerative lesions, counts of sea star species were recorded in 2019 using a standard belt-transect technique of 30 m2. During surveys, scuba divers also measured sea stars' diameter and examined them for ulcerative lesions. Ulcerative lesions were noted on Phataria unifascialis only. To verify changes in abundance and size of the two most abundant species, P. unifascialis and Pharia pyramidata, historical data from 2009, 2010, and 2016 were used as comparison and using the same methodology. To evaluate differences in abundance or diameter in sea star species over time, analysis of variance tests (ANOVA) were used. We found a significant reduction in diameter for the species P. unifascialis and P. pyramidata over time (<0.0001), but only P. unifascialis also showed a significant decrease in abundance (P=0.018). The decrease in diameter recorded for these two species, along with the signs of ulcerative lesions found on one of them in 2019, suggest that a potential mortality event occurred and, as a result, new younger (i.e., smaller) recruits could be recovering the population. These results highlight the importance of population monitoring to understand complex reef community dynamics.
Collapse
|
40
|
Burton AR, Gravem SA, Barreto FS. Little evidence for genetic variation associated with susceptibility to sea star wasting syndrome in the keystone species Pisaster ochraceus. Mol Ecol 2021; 31:197-205. [PMID: 34626020 DOI: 10.1111/mec.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
The keystone species Pisaster ochraceus suffered mass mortalities along the northeast Pacific Ocean from Sea Star Wasting Syndrome (SSWS) outbreaks in 2013-2016. SSWS causation remains of debate, leading to concerns as to whether outbreaks will continue to impact this species. Considering the apparent link between ocean temperature and SSWS, the future of this species and intertidal communities remains uncertain. Surveys of co-occurring apparently normal and wasting P. ochraceus along the central Oregon coast in 2016 allowed us to address whether variation in disease status showed genetic variation that may be associated with differences in susceptibility to SSWS. We performed restriction site-associated DNA sequencing (2bRAD-seq) to genotype ~72,000 single nucleotide polymorphism (SNP) loci across apparently normal and wasting sea stars. Locus-specific analyses of differentiation (FST ) between disease-status groups revealed no signal of genetic differences separating the two groups. Using a multivariate approach, we observed weak separation between the groups, but identified 18 SNP loci showing highest discriminatory power between the groups and scanned the genome annotation for linked genes. A total of 34 protein-coding genes were found to be located within 15 kb (measured by linkage disequilibrium decay) of at least one of the 18 SNPs, and 30 of these genes had homologies to annotated protein databases. Our results suggest that the likelihood of developing SSWS symptoms does not have a strong genetic basis. The few genomic regions highlighted had only modest levels of differentiation, but the genes associated with these regions may form the basis for functional studies aiming to understand disease progression.
Collapse
Affiliation(s)
- Andrea R Burton
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Sarah A Gravem
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
41
|
Bennion M, Ross P, Howells J, McDonald IR, Lane H. Characterisation and distribution of the bacterial genus Endozoicomonas in a threatened surf clam. DISEASES OF AQUATIC ORGANISMS 2021; 146:91-105. [PMID: 34617515 DOI: 10.3354/dao03626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The toheroa Paphies ventricosa is a large Aotearoa New Zealand (ANZ) endemic surf clam of cultural importance to many Māori, the Indigenous people of ANZ. Extensive commercial and recreational harvesting in the 20th century dramatically reduced populations, leading to the collapse and closure of the fishery. Despite being protected for >40 yr, toheroa have inexplicably failed to recover. In 2017, intracellular microcolonies (IMCs) of bacteria were detected in 'sick' toheroa in northern ANZ. Numerous mass mortality events (MMEs) have recently been recorded in ANZ shellfish, with many events linked by the presence of IMCs resembling Rickettsia-like organisms (RLOs). While similar IMCs have been implicated in MMEs in surf clams elsewhere, the impact of these IMCs on the health or recovery of toheroa is unknown. A critical first step towards understanding the significance of a pathogen in a host population is pathogen identification and characterisation. To begin this process, we examined 16S rRNA gene sequences of the putative IMCs from 4 toheroa populations that showed 97% homology to Endozoicomonas spp. sequences held in GenBank. Phylogenetic analysis identified closely related Endozoicomonas strains from the North and South Island, ANZ, and in situ hybridization, using 16S rRNA gene probes, confirmed the presence of the sequenced IMC gene in the gill and digestive gland tissues of toheroa. Quantitative PCR revealed site-specific and seasonal abundance patterns of Endozoicomonas spp. in toheroa populations. Although implicated in disease outbreaks elsewhere, the role of Endozoicomonas spp. within the ANZ shellfish mortality landscape remains uncertain.
Collapse
Affiliation(s)
- Matthew Bennion
- Environmental Research Institute, University of Waikato, Tauranga 3110, New Zealand
| | | | | | | | | |
Collapse
|
42
|
Social group size influences pathogen transmission in salamanders. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Hamilton SL, Saccomanno VR, Heady WN, Gehman AL, Lonhart SI, Beas-Luna R, Francis FT, Lee L, Rogers-Bennett L, Salomon AK, Gravem SA. Disease-driven mass mortality event leads to widespread extirpation and variable recovery potential of a marine predator across the eastern Pacific. Proc Biol Sci 2021; 288:20211195. [PMID: 34428964 PMCID: PMC8385337 DOI: 10.1098/rspb.2021.1195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
The prevalence of disease-driven mass mortality events is increasing, but our understanding of spatial variation in their magnitude, timing and triggers are often poorly resolved. Here, we use a novel range-wide dataset comprised 48 810 surveys to quantify how sea star wasting disease affected Pycnopodia helianthoides, the sunflower sea star, across its range from Baja California, Mexico to the Aleutian Islands, USA. We found that the outbreak occurred more rapidly, killed a greater percentage of the population and left fewer survivors in the southern half of the species's range. Pycnopodia now appears to be functionally extinct (greater than 99.2% declines) from Baja California, Mexico to Cape Flattery, Washington, USA and exhibited severe declines (greater than 87.8%) from the Salish Sea to the Gulf of Alaska. The importance of temperature in predicting Pycnopodia distribution rose more than fourfold after the outbreak, suggesting latitudinal variation in outbreak severity may stem from an interaction between disease severity and warmer waters. We found no evidence of population recovery in the years since the outbreak. Natural recovery in the southern half of the range is unlikely over the short term. Thus, assisted recovery will probably be required to restore the functional role of this predator on ecologically relevant time scales.
Collapse
Affiliation(s)
- S. L. Hamilton
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331-4501, USA
| | | | - W. N. Heady
- The Nature Conservancy, San Francisco, CA, USA
| | - A. L. Gehman
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- The Hakai Institute, Campbell River, British Columbia, Canada
| | - S. I. Lonhart
- NOAA's Monterey Bay National Marine Sanctuary, Monterey, CA, USA
| | - R. Beas-Luna
- Universidad Autónoma de Baja California, Mexicali, Baja CA, Mexico
| | - F. T. Francis
- Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - L. Lee
- Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site, Parks Canada, British Columbia, Canada
- University of Victoria, Victoria, British Columbia, Canada
| | - L. Rogers-Bennett
- Bodega Marine Laboratory, University of California Davis, Davis, CA, USA
- California Department of Fish and Wildlife, CA, USA
| | | | - S. A. Gravem
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331-4501, USA
| |
Collapse
|
44
|
McGaugh SE, Lorenz AJ, Flagel LE. The utility of genomic prediction models in evolutionary genetics. Proc Biol Sci 2021; 288:20210693. [PMID: 34344180 PMCID: PMC8334854 DOI: 10.1098/rspb.2021.0693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
Variation in complex traits is the result of contributions from many loci of small effect. Based on this principle, genomic prediction methods are used to make predictions of breeding value for an individual using genome-wide molecular markers. In breeding, genomic prediction models have been used in plant and animal breeding for almost two decades to increase rates of genetic improvement and reduce the length of artificial selection experiments. However, evolutionary genomics studies have been slow to incorporate this technique to select individuals for breeding in a conservation context or to learn more about the genetic architecture of traits, the genetic value of missing individuals or microevolution of breeding values. Here, we outline the utility of genomic prediction and provide an overview of the methodology. We highlight opportunities to apply genomic prediction in evolutionary genetics of wild populations and the best practices when using these methods on field-collected phenotypes.
Collapse
Affiliation(s)
- Suzanne E. McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Lab, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Aaron J. Lorenz
- Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Lex E. Flagel
- Plant and Microbial Biology, University of Minnesota, 140 Gortner Lab, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
- Bayer Crop Science, 700 W Chesterfield Parkway, Chesterfield, MO 63017, USA
| |
Collapse
|
45
|
George SB, Navarro E, Kawano D. Infrequent Fluctuations in Temperature and Salinity May Enhance Feeding in Pisaster ochraceus (Asteroidea) but Not in Dendraster excentricus (Echinoidea) Larvae. THE BIOLOGICAL BULLETIN 2021; 241:77-91. [PMID: 34436965 DOI: 10.1086/716054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractIn recent years, low-salinity events characterized by high temperatures (18-23 °C) and low-salinity waters (20‰-22‰) have increased during late spring and summer, when many marine invertebrate larvae are developing. The present study examines the effects of low-salinity events on particle ingestion for larvae of two echinoderm species, the sea star Pisaster ochraceus and the sand dollar Dendraster excentricus. Larvae were exposed to high temperatures and low salinities for 24 hours, followed by feeding on the alga Isochrysis galbana in high or low salinity for another 10 minutes. Exposing Pisaster larvae to high temperatures and low salinities, followed by feeding in low salinity, did not impair ingestion rates. In fact, these larvae ingested particles at similar and sometimes higher rates than those in the controls. In sharp contrast, a 24-hour exposure to a high temperature and low salinity, followed by continued exposure to low salinity to feed, led to a decrease in the number of particles ingested by 8-arm Dendraster larvae. Larvae of both species captured very few particles when returned to 30‰ after a low-salinity event, indicating that continuous interruption of larval feeding by low-salinity events during development could be deleterious. Sand dollar larvae may have responded negatively to low-salinity events in our experiments because they are found in protected bays, where they may seldom experience these events.
Collapse
|
46
|
Uthicke S, Patel F, Petrik C, Watson SA, Karelitz SE, Lamare MD. Cross-generational response of a tropical sea urchin to global change and a selection event in a 43-month mesocosm study. GLOBAL CHANGE BIOLOGY 2021; 27:3448-3462. [PMID: 33901341 DOI: 10.1111/gcb.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Long-term experimental investigations of transgenerational plasticity (TGP) and transgenerational acclimatization to global change are sparse in marine invertebrates. Here, we test the effect of ocean warming and acidification over a 25-month period of Echinometra sp. A sea urchins whose parents were acclimatized at ambient or one of two near-future (projected mid and end of the 21st century) climate scenarios for 18 months. Several parameters linked to performance exhibited strong effects of future ocean conditions at 9 months of age. The Ambient-Ambient group (A-A, both F0 and F1 at ambient conditions) was significantly larger (21%) and faster in righting response (31%) compared to other groups. A second set of contrasts revealed near-future scenarios caused significant negative parental carryover effects. Respiration at 9 months was depressed by 59% when parents were from near-future climate conditions, and righting response was slowed by 28%. At 10 months, a selective pathogenic mortality event led to significantly higher survival rates of A-A urchins. Differences in size and respiration measured prior to the mortality were absent after the event, while a negative parental effect on righting (29% reduction) remained. The capacity to spawn at the end of the experiment was higher in individuals with ambient parents (50%) compared to other groups (21%) suggesting persistent parental effects. Obtaining different results at different points in time illustrates the importance of longer term and multigeneration studies to investigate effects of climate change. Given some animals in all groups survived the pathogenic event and that effects on physiology (but not behavior) among groups were eliminated after the mortality, we suggest that similar events could constitute selective sweeps, allowing genetic adaptation. However, given the observed negative parental effects and reduced potential for population replenishment, it remains to be determined if selection would be sufficiently rapid to rescue this species from climate change effects.
Collapse
Affiliation(s)
- Sven Uthicke
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Frances Patel
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Chelsea Petrik
- Australian Institute of Marine Science, Townsville, Qld, Australia
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research and Restoration, Sarasota, FL, USA
| | - Sue-Ann Watson
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Sam E Karelitz
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Miles D Lamare
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
47
|
Variation in Immune-Related Gene Expression Provides Evidence of Local Adaptation in Porites astreoides (Lamarck, 1816) between Inshore and Offshore Meta-Populations Inhabiting the Lower Florida Reef Tract, USA. WATER 2021. [DOI: 10.3390/w13152107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Coral communities of the Florida Reef Tract (FRT) have changed dramatically over the past 30 years. Coral cover throughout the FRT is disproportionately distributed; >70% of total coral cover is found within the inshore patch reef zone (<2 km from shore) compared to 30% found within the offshore bank reef zone (>5 km from shore). Coral mortality from disease has been differentially observed between inshore and offshore reefs along the FRT. Therefore, differences between the response of inshore and offshore coral populations to bacterial challenge may contribute to differences in coral cover. We examined immune system activation in Porites astreoides (Lamarck, 1816), a species common in both inshore and offshore reef environments in the FRT. Colonies from a representative inshore and offshore site were reciprocally transplanted and the expression of three genes monitored biannually for two years (two summer and two winter periods). Variation in the expression of eukaryotic translation initiation factor 3, subunit H (eIF3H), an indicator of cellular stress in Porites astreoides, did not follow annual patterns of seawater temperatures (SWT) indicating the contribution of other stressors (e.g., irradiance). Greater expression of tumor necrosis factor (TNF) receptor associated factor 3 (TRAF3), a signaling protein of the inflammatory response, was observed among corals transplanted to, or located within the offshore environment indicating that an increased immune response is associated with offshore coral more so than the inshore coral (p < 0.001). Corals collected from the offshore site also upregulated the expression of adenylyl cyclase associated protein 2 (ACAP2), increases which are associated with decreasing innate immune system inflammatory responses, indicating a counteractive response to increased stimulation of the innate immune system. Activation of the innate immune system is a metabolically costly survival strategy. Among the two reefs studied, the offshore population had a smaller mean colony size and decreased colony abundance compared to the inshore site. This correlation suggests that tradeoffs may exist between the activation of the innate immune system and survival and growth. Consequently, immune system activation may contribute to coral community dynamics and declines along the FRT.
Collapse
|
48
|
Moritsch MM. Expansion of intertidal mussel beds following disease-driven reduction of a keystone predator. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105363. [PMID: 34030089 DOI: 10.1016/j.marenvres.2021.105363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Disease shapes community composition by removing species with strong interactions. To test whether the absence of keystone predation due to disease produced changes to the species composition of rocky intertidal communities, we leverage a natural experiment involving mass mortality of the keystone predator Pisaster ochraceus from Sea Star Wasting Syndrome. Over four years, we measured dimensions of mussel beds, sizes of Mytilus californianus, mussel recruitment, and species composition on vertical rock walls at six rocky intertidal sites on the central California coast. We also assessed the relationship between changes in mussel cover and changes in sea star density across 33 sites along the North American Pacific coast using data from long-term monitoring. After four years, the lower boundary of the central California mussel beds shifted downward toward the water 18.7 ± 15.8 cm (SD) on the rock and 11.7 ± 11.0 cm in elevation, while the upper boundary remained unchanged. In central California, downward expansion and total area of the mussel bed were positively correlated with mussel recruitment but were not correlated with pre-disease sea star density or biomass. At a multi-region scale, changes in mussel percent cover were positively correlated with pre-disease sea star densities but not change in densities. Species composition of primary substrate holders and epibionts below the mussel bed remained similar across years. Extirpation of the community below the bed did not occur. Instead, this community became limited to a smaller spatial extent while the mussel bed expanded.
Collapse
Affiliation(s)
- Monica M Moritsch
- U.S. Geological Survey, Western Geographic Science Center, 350 N. Akron Road, Moffett Field, CA, 94035, USA; University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 115 McAllister Way, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
49
|
Work TM, Weatherby TM, DeRito CM, Besemer RM, Hewson I. Sea star wasting disease pathology in Pisaster ochraceus shows a basal-to-surface process affecting color phenotypes differently. DISEASES OF AQUATIC ORGANISMS 2021; 145:21-33. [PMID: 34080580 DOI: 10.3354/dao03598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sea star wasting disease (SSWD) refers to a suite of poorly described non-specific clinical signs including abnormal posture, epidermal ulceration, and limb autotomy (sloughing) causing mortalities of over 20 species of sea stars and subsequent ecological shifts throughout the northeastern Pacific. While SSWD is widely assumed to be infectious, with environmental conditions facilitating disease progression, few data exist on cellular changes associated with the disease. This is unfortunate, because such observations could inform mechanisms of disease pathogenesis and host susceptibility. Here, we replicated SSWD by exposing captive Pisaster ochraceus to a suite of non-infectious organic substances and show that development of gross lesions is a basal-to-surface process involving inflammation (e.g. infiltration of coelomocytes) of ossicles and mutable collagenous tissue, leading to epidermal ulceration. Affected sea stars also manifest increases in a heretofore undocumented coelomocyte type, spindle cells, that might be a useful marker of inflammation in this species. Finally, compared to purple morphs, orange P. ochraceus developed more severe lesions but survived longer. Longer-lived, and presumably more visible, severely-lesioned orange sea stars could have important demographic implications in terms of detectability of lesioned animals in the wild and measures of apparent prevalence of disease.
Collapse
Affiliation(s)
- Thierry M Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI 96850, USA
| | | | | | | | | |
Collapse
|
50
|
Hewson I, Sewell MA. Surveillance of densoviruses and mesomycetozoans inhabiting grossly normal tissues of three Aotearoa New Zealand asteroid species. PLoS One 2021; 16:e0241026. [PMID: 33886557 PMCID: PMC8061988 DOI: 10.1371/journal.pone.0241026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
Asteroid wasting events and mass mortality have occurred for over a century. We currently lack a fundamental understanding of the microbial ecology of asteroid disease, with disease investigations hindered by sparse information about the microorganisms associated with grossly normal specimens. We surveilled viruses and protists associated with grossly normal specimens of three asteroid species (Patiriella regularis, Stichaster australis, Coscinasterias muricata) on the North Island / Te Ika-a-Māui, Aotearoa New Zealand, using metagenomes prepared from virus and ribosome-sized material. We discovered several densovirus-like genome fragments in our RNA and DNA metagenomic libraries. Subsequent survey of their prevalence within populations by quantitative PCR (qPCR) demonstrated their occurrence in only a few (13%) specimens (n = 36). Survey of large and small subunit rRNAs in metagenomes revealed the presence of a mesomycete (most closely matching Ichthyosporea sp.). Survey of large subunit prevalence and load by qPCR revealed that it is widely detectable (80%) and present predominately in body wall tissues across all 3 species of asteroid. Our results raise interesting questions about the roles of these microbiome constituents in host ecology and pathogenesis under changing ocean conditions.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Mary A. Sewell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|