1
|
Ranjitkar S, Tan J, Hamad L, Edwards S, Mian M, Constantine S, Dreyer C, Anderson PJ. Computed tomographic assessment of orbital and maxillary dysmorphology in craniofacial microsomia. Am J Orthod Dentofacial Orthop 2025:S0889-5406(25)00057-5. [PMID: 40088245 DOI: 10.1016/j.ajodo.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/17/2025]
Abstract
INTRODUCTION Mandibular dysmorphology is well-documented in craniofacial microsomia (CFM), but data on midface abnormalities remain limited. This study aimed to compare orbital and maxillary dimensions between the affected and unaffected sides in patients with CFM. METHODS The retrospective cross-sectional study conducted in South Australia comprised 31 patients with CFM and 31 age- and sex-matched control patients (median age 13.2 years; range 0.3-48.4 years; 80.6% children and 19.4% adults; 51.6% males and 48.4% females). Computed tomography reconstructions were assessed bilaterally for 4 orbital and 6 maxillary dimensions in mild, moderate, and severe subgroups, as well as in the control group. Linear mixed-effects models, adjusted for age and sex, were performed to assess whether there were significant differences in the measured dimensions between the sides and groups. RESULTS Midface asymmetries in patients with CFM were generally commensurate with their severity. In moderate CFM, the affected side showed hypoplastic orbits and maxillae compared with the unaffected side (orbital height: -4.9%; P = 0.018; maxillary middle height: -10.3%; P <0.001). In severe CFM, the reduced maxillary middle height on the affected side (-18.5%; P <0.001) was compensated by increases in the orbital height (+7.0%) and maxillary depth (+6.8%; P = 0.014) (all data adjusted for covariates). CONCLUSIONS CFM is a bilateral condition characterized by orbital and maxillary asymmetries, primarily because of hypoplasia but occasionally involving hyperplasia on the affected side. In severe CFM, compensatory increases in maxillary depth and orbital height often offset midmaxillary height deficiencies.
Collapse
Affiliation(s)
- Sarbin Ranjitkar
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Jenny Tan
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Livana Hamad
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Suzanne Edwards
- School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mustafa Mian
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia; The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Sarah Constantine
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia; Cleft and Craniofacial SA, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Craig Dreyer
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Anderson
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia; Cleft and Craniofacial SA, Women's and Children's Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Petrin AL, Machado-Paula LA, Hinkle A, Hovey L, Awotoye W, Chimenti M, Darbro B, Ribeiro-Bicudo LA, Dabdoub SM, Peter T, Breheny P, Murray JC, Van Otterloo E, Rengasamy Venugopalan S, Moreno-Uribe LM. Familial Oculoauriculovertebral Spectrum: A Genomic Investigation of Autosomal Dominant Inheritance. Cleft Palate Craniofac J 2025:10556656241306202. [PMID: 39819101 DOI: 10.1177/10556656241306202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
OBJECTIVE Oculoauriculovertebral spectrum (OAVS) encompasses abnormalities on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular, and vertebral anomalies. We present genetic findings on a 3-generation family affected with macrostomia, preauricular tags and ptosis following an autosomal dominant pattern. DESIGN We generated whole-genome sequencing data for the proband, affected father, and unaffected paternal grandmother followed by Sanger sequencing on 23 family members for the top candidate gene mutations. We performed parent and sibling-based transmission disequilibrium tests (TDTs) and burden analysis via a penalized linear mixed model, for segregation and mutation burden, respectively. Next, via bioinformatic tools we predicted protein function, mutation pathogenicity, and pathway enrichment to investigate the biological relevance of mutations identified. RESULTS Rare missense mutations in SIX1, KDR/VEGFR2, and PDGFRA showed the best segregation with the OAVS phenotypes in this family. When considering any of the 3 OAVS phenotypes as an outcome, SIX1 had the strongest associations in parent-TDTs and sib-TDTs (P = 0.025, P = 0.052) (unadjusted P-values). Burden analysis identified SIX1 (RC = 0.87) and PDGFRA (RC = 0.98) strongly associated with OAVS severity. Using phenotype-specific outcomes, sib-TDTs identified SIX1 with uni- or bilateral ptosis (P = 0.049) and ear tags (P = 0.01), and PDGFRA and KDR/VEGFR2 with ear tags (both P < 0.01). CONCLUSION SIX1, PDGFRA, and KDR/VEGFR2 are strongly associated to OAVS phenotypes. SIX1 has been previously associated with OAVS ear malformations and is co-expressed with EYA1 during ear development. Efforts to strengthen the genotype-phenotype co-relation underlying the OAVS are key to discover etiology, family counseling, and prevention.
Collapse
Affiliation(s)
- Aline L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Austin Hinkle
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Luke Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Waheed Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Michael Chimenti
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Benjamin Darbro
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Shareef M Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Tabitha Peter
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Patrick Breheny
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Jeffrey C Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric Van Otterloo
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Lina M Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Dai Y, Itai T, Pei G, Yan F, Chu Y, Jiang X, Weinberg SM, Mukhopadhyay N, Marazita ML, Simon LM, Jia P, Zhao Z. DeepFace: Deep-learning-based framework to contextualize orofacial-cleft-related variants during human embryonic craniofacial development. HGG ADVANCES 2024; 5:100312. [PMID: 38796699 PMCID: PMC11193024 DOI: 10.1016/j.xhgg.2024.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Orofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes have been highlighted, the "casual" variants are largely unknown. Here, we developed DeepFace, a convolutional neural network model, to assess the functional impact of variants by SNP activity difference (SAD) scores. The DeepFace model is trained with 204 epigenomic assays from crucial human embryonic craniofacial developmental stages of post-conception week (pcw) 4 to pcw 10. The Pearson correlation coefficient between the predicted and actual values for 12 epigenetic features achieved a median range of 0.50-0.83. Specifically, our model revealed that SNPs significantly associated with OFCs tended to exhibit higher SAD scores across various variant categories compared to less related groups, indicating a context-specific impact of OFC-related SNPs. Notably, we identified six SNPs with a significant linear relationship to SAD scores throughout developmental progression, suggesting that these SNPs could play a temporal regulatory role. Furthermore, our cell-type specificity analysis pinpointed the trophoblast cell as having the highest enrichment of risk signals associated with OFCs. Overall, DeepFace can harness distal regulatory signals from extensive epigenomic assays, offering new perspectives for prioritizing OFC variants using contextualized functional genomic features. We expect DeepFace to be instrumental in accessing and predicting the regulatory roles of variants associated with OFCs, and the model can be extended to study other complex diseases or traits.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Toshiyuki Itai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fangfang Yan
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yan Chu
- Center for Secure Artificial Intelligence for Healthcare, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seth M Weinberg
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nandita Mukhopadhyay
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Petrin AL, Machado-Paula LA, Hinkle A, Hovey L, Awotoye W, Chimenti M, Darbro B, Ribeiro-Bicudo LA, Dabdoub SM, Peter T, Breheny P, Murray J, Van Otterloo E, Rengasamy Venugopalan S, Moreno-Uribe LM. Whole genome sequencing of a family with autosomal dominant features within the oculoauriculovertebral spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24301824. [PMID: 38370836 PMCID: PMC10871465 DOI: 10.1101/2024.02.07.24301824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background Oculoauriculovertebral Spectrum (OAVS) encompasses abnormalities on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular and vertebral anomalies. We present genetic findings on a three-generation family affected with macrostomia, preauricular tags and uni- or bilateral ptosis following an autosomal dominant pattern. Methods We generated whole genome sequencing data for the proband, affected parent and unaffected paternal grandparent followed by Sanger sequencing on 23 family members for the top 10 candidate genes: KCND2, PDGFRA, CASP9, NCOA3, WNT10A, SIX1, MTF1, KDR/VEGFR2, LRRK1, and TRIM2 We performed parent and sibling-based transmission disequilibrium tests and burden analysis via a penalized linear mixed model, for segregation and mutation burden respectively. Next, via bioinformatic tools we predicted protein function, mutation pathogenicity and pathway enrichment to investigate the biological relevance of mutations identified. Results Rare missense mutations in SIX1, KDR/VEGFR2, and PDGFRA showed the best segregation with the OAV phenotypes in this family. When considering any of the 3 OAVS phenotypes as an outcome, SIX1 had the strongest associations in parent-TDTs and sib-TDTs (p=0.025, p=0.052) (unadjusted p-values). Burden analysis identified SIX1 (RC=0.87) and PDGFRA (RC=0.98) strongly associated with OAVS severity. Using phenotype-specific outcomes, sib-TDTs identified SIX1 with uni- or bilateral ptosis (p=0.049) and ear tags (p=0.01), and PDGFRA and KDR/VEGFR2 with ear tags (both p<0.01). Conclusion SIX1, PDGFRA, and KDR/VEGFR2 are strongly associated to OAVS phenotypes. SIX1 has been previously associated with OAVS ear malformations and is co-expressed with EYA1 during ear development. Efforts to strengthen the genotype-phenotype co-relation underlying the OAVS are key to discover etiology, family counseling and prevention.
Collapse
Affiliation(s)
- A L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - L A Machado-Paula
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - A Hinkle
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - L Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - W Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - M Chimenti
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B Darbro
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - S M Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - T Peter
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - P Breheny
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - J Murray
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - E Van Otterloo
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - L M Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
She Y, Ren R, Jiang N. Mechanical stress can regulate temporomandibular joint cavitation via signalling pathways. Dev Biol 2024; 507:1-8. [PMID: 38114053 DOI: 10.1016/j.ydbio.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
The temporomandibular joint (TMJ), composed of temporal fossa, mandibular condyle and a fibrocartilage disc with upper and lower cavities, is the biggest synovial joint and biomechanical hinge of the craniomaxillofacial musculoskeletal system. The initial events that give rise to TMJ cavities across diverse species are not fully understood. Most studies focus on the pivotal role of molecules such as Indian hedgehog (Ihh) and hyaluronic acid (HA) in TMJ cavitation. Although biologists have observed that mechanical stress plays an irreplaceable role in the development of biological tissues and organs, few studies have been concerned with how mechanical stress regulates TMJ cavitation. Based on the evidence from human or other animal embryos today, it is implicated that mechanical stress plays an essential role in TMJ cavitation. In this review, we discuss the relationship between mechanical stress and TMJ cavitation from evo-devo perspectives and review the clinical features and potential pathogenesis of TMJ dysplasia.
Collapse
Affiliation(s)
- Yilin She
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Quilez S, Dumontier E, Baim C, Kam J, Cloutier JF. Loss of Neogenin alters branchial arch development and leads to craniofacial skeletal defects. Front Cell Dev Biol 2024; 12:1256465. [PMID: 38404688 PMCID: PMC10884240 DOI: 10.3389/fcell.2024.1256465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
The formation of complex structures, such as the craniofacial skeleton, requires precise and intricate two-way signalling between populations of cells of different embryonic origins. For example, the lower jaw, or mandible, arises from cranial neural crest cells (CNCCs) in the mandibular portion of the first branchial arch (mdBA1) of the embryo, and its development is regulated by signals from the ectoderm and cranial mesoderm (CM) within this structure. The molecular mechanisms underlying CM cell influence on CNCC development in the mdBA1 remain poorly defined. Herein we identified the receptor Neogenin as a key regulator of craniofacial development. We found that ablation of Neogenin expression via gene-targeting resulted in several craniofacial skeletal defects, including reduced size of the CNCC-derived mandible. Loss of Neogenin did not affect the formation of the mdBA1 CM core but resulted in altered Bmp4 and Fgf8 expression, increased apoptosis, and reduced osteoblast differentiation in the mdBA1 mesenchyme. Reduced BMP signalling in the mdBA1 of Neogenin mutant embryos was associated with alterations in the gene regulatory network, including decreased expression of transcription factors of the Hand, Msx, and Alx families, which play key roles in the patterning and outgrowth of the mdBA1. Tissue-specific Neogenin loss-of-function studies revealed that Neogenin expression in mesodermal cells contributes to mandible formation. Thus, our results identify Neogenin as a novel regulator of craniofacial skeletal formation and demonstrates it impinges on CNCC development via a non-cell autonomous mechanism.
Collapse
Affiliation(s)
- Sabrina Quilez
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Emilie Dumontier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
| | - Christopher Baim
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Joseph Kam
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jean-François Cloutier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Yang R, Fu Y, Li C, Chen Y, He A, Jiang X, Ma J, Zhang T. Profiling of Long Non-Coding RNAs in Auricular Cartilage of Patients with Isolated Microtia. Genet Test Mol Biomarkers 2024; 28:50-58. [PMID: 38416666 DOI: 10.1089/gtmb.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Introduction: Microtia is the second most common maxillofacial birth defect worldwide. However, the involvement of long non-coding RNAs (lncRNAs) in isolated microtia is not well understood. This study aimed at identifying lncRNAs that regulate the expression of genes associated with isolated microtia. Methods: We used our microarray data to analyze the expression pattern of lncRNA in the auricular cartilage tissues from 10 patients diagnosed with isolated microtia, alongside 15 control subjects. Five lncRNAs were chosen for validation using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: We identified 4651 differentially expressed lncRNAs in the auricular cartilage from patients with isolated microtia. By Gene Ontology/Kyoto Encyclopedia of Genes and Genomes pathway (GO/KEGG) analysis, we identified 27 differentially expressed genes enriched in pathways associated with microtia. In addition, we predicted 9 differentially expressed genes as potential cis-acting targets of 12 differentially expressed lncRNAs. Our findings by qRT-PCR demonstrate significantly elevated expression levels of ZFAS1 and DAB1-AS1, whereas ADIRF-AS1, HOTAIRM1, and EPB41L4A-AS1 exhibited significantly reduced expression levels in the auricular cartilage tissues of patients with isolated microtia. Conclusions: Our study sheds light on the potential involvement of lncRNAs in microtia and provides a basis for further investigation into their functional roles and underlying mechanisms.
Collapse
Affiliation(s)
- Run Yang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yaoyao Fu
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yin Chen
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Aijuan He
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Jiang
- Medical Laboratory of Nantong Zhongke, Department of Bioinformatics, Nantong, Jiangsu, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Molecular landscapes of glioblastoma cell lines revealed a group of patients that do not benefit from WWOX tumor suppressor expression. Front Neurosci 2023; 17:1260409. [PMID: 37781246 PMCID: PMC10540236 DOI: 10.3389/fnins.2023.1260409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is notorious for its clinical and molecular heterogeneity, contributing to therapeutic failure and a grim prognosis. WWOX is one of the tumor suppressor genes important in nervous tissue or related pathologies, which was scarcely investigated in GBM for reliable associations with prognosis or disease progression despite known alterations. Recently, we observed a phenotypic heterogeneity between GBM cell lines (U87MG, T98G, U251MG, DBTRG-05MG), among which the anti-GBM activity of WWOX was generally corresponding, but colony growth and formation were inconsistent in DBTRG-05MG. This prompted us to investigate the molecular landscapes of these cell lines, intending to translate them into the clinical context. METHODS U87MG/T98G/U251MG/DBTRG-05MG were subjected to high-throughput sequencing, and obtained data were explored via weighted gene co-expression network analysis, differential expression analysis, functional annotation, and network building. Following the identification of the most relevant DBTRG-distinguishing driver genes, data from GBM patients were employed for, e.g., differential expression analysis, survival analysis, and principal component analysis. RESULTS Although most driver genes were unique for each cell line, some were inversely regulated in DBTRG-05MG. Alongside driver genes, the differentially-expressed genes were used to build a WWOX-related network depicting protein-protein interactions in U87MG/T98G/U251MG/DBTRG-05MG. This network revealed processes distinctly regulated in DBTRG-05MG, e.g., microglia proliferation or neurofibrillary tangle assembly. POLE4 and HSF2BP were selected as DBTRG-discriminating driver genes based on the gene significance, module membership, and fold-change. Alongside WWOX, POLE4 and HSF2BP expression was used to stratify patients into cell lines-resembling groups that differed in, e.g., prognosis and treatment response. Some differences from a WWOX-related network were certified in patients, revealing genes that clarify clinical outcomes. Presumably, WWOX overexpression in DBTRG-05MG resulted in expression profile change resembling that of patients with inferior prognosis and drug response. Among these patients, WWOX may be inaccessible for its partners and does not manifest its anti-cancer activity, which was proposed in the literature but not regarding glioblastoma or concerning POLE4 and HSF2BP. CONCLUSION Cell lines data enabled the identification of patients among which, despite high expression of WWOX tumor suppressor, no advantageous outcomes were noted due to the cancer-promoting profile ensured by other genes.
Collapse
Affiliation(s)
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Luo S, Sun H, Bian Q, Liu Z, Wang X. The etiology, clinical features, and treatment options of hemifacial microsomia. Oral Dis 2023; 29:2449-2462. [PMID: 36648381 DOI: 10.1111/odi.14508] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
The second most frequent craniomaxillofacial congenital deformity is hemifacial microsomia (HFM). Patients often accompany short mandible, ear dysplasia, facial nerve, and soft tissue dysplasia. The etiology of HFM is not fully understood. To organize the possible up-to-date information on the etiology, craniofacial phenotypes, and therapeutic alternatives in order to fully comprehend the HFM. Reviewing the potential causes, exploring the clinical features of HFM and summarizing the available treatment options. Vascular malformation, Meckel's cartilage abnormalities, and cranial neural crest cells (CNCCs) abnormalities are three potential etiology hypotheses. The commonly used clinical classification for HFM is OMENS, OMENS-plus, and SAT. Other craniofacial anomalies, like dental defects, and zygomatic deformities, are still not precisely documented in the classification. Patients with moderate phenotypes may not need any treatment from infancy through adulthood. However, patients with severe HFM require to undergo multiple surgeries to address facial asymmetries, such as mandibular distraction osteogenesis (MDO), autologous costochondral rib graft (CCG), orthodontic and orthognathic treatment, and facial soft tissue reconstruction. It is anticipated that etiology research will examine the pathogenic mechanism of HFM. A precise treatment for HFM may be possible with thoroughly documented phenotypes and a pathogenic diagnosis.
Collapse
Affiliation(s)
- Songyuan Luo
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hao Sun
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Zhixu Liu
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
11
|
Chen Q, Dai J, Bian Q. Integration of 3D genome topology and local chromatin features uncovers enhancers underlying craniofacial-specific cartilage defects. SCIENCE ADVANCES 2022; 8:eabo3648. [PMID: 36417512 PMCID: PMC9683718 DOI: 10.1126/sciadv.abo3648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aberrations in tissue-specific enhancers underlie many developmental defects. Disrupting a noncoding region distal from the human SOX9 gene causes the Pierre Robin sequence (PRS) characterized by the undersized lower jaw. Such a craniofacial-specific defect has been previously linked to enhancers transiently active in cranial neural crest cells (CNCCs). We demonstrate that the PRS region also strongly regulates Sox9 in CNCC-derived Meckel's cartilage (MC), but not in limb cartilages, even after decommissioning of CNCC enhancers. Such an MC-specific regulatory effect correlates with the MC-specific chromatin contacts between the PRS region and Sox9, highlighting the importance of lineage-dependent chromatin topology in instructing enhancer usage. By integrating the enhancer signatures and chromatin topology, we uncovered >10,000 enhancers that function differentially between MC and limb cartilages and demonstrated their association with human diseases. Our findings provide critical insights for understanding the choreography of gene regulation during development and interpreting the genetic basis of craniofacial pathologies.
Collapse
Affiliation(s)
- Qiming Chen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Jiewen Dai
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Corresponding author. (J.D.); (Q.B.)
| | - Qian Bian
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Institute of Precision Medicine, Shanghai, 200125, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding author. (J.D.); (Q.B.)
| |
Collapse
|
12
|
Liu P, Lavine JA, Fawzi A, Quaggin SE, Thomson BR. Angiopoietin-1 Is Required for Vortex Vein and Choriocapillaris Development in Mice. Arterioscler Thromb Vasc Biol 2022; 42:1413-1427. [PMID: 36172864 PMCID: PMC9613622 DOI: 10.1161/atvbaha.122.318151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The choroidal vasculature, including the choriocapillaris and vortex veins, is essential for providing nutrients to the metabolically demanding photoreceptors and retinal pigment epithelium. Choroidal vascular dysfunction leads to vision loss and is associated with age-related macular degeneration and the poorly understood pachychoroid diseases including central serous chorioretinopathy and polypoidal choroidal vasculopathy that are characterized by formation of dilated pachyvessels throughout the choroid. METHODS Using neural crest-specific Angpt1 knockout mice, we show that Angiopoietin 1, a ligand of the endothelial receptor TEK (also known as Tie2) is essential for choriocapillaris development and vortex vein patterning. RESULTS Lacking choroidal ANGPT1, neural crest-specific Angpt1 knockout eyes exhibited marked choriocapillaris attenuation and 50% reduction in number of vortex veins, with only 2 vortex veins present in the majority of eyes. Shortly after birth, dilated choroidal vessels resembling human pachyvessels were observed extending from the remaining vortex veins and displacing the choriocapillaris, leading to retinal pigment epithelium dysfunction and subretinal neovascularization similar to that seen in pachychoroid disease. CONCLUSIONS Together, these findings identify a new role for ANGPT1 in ocular vascular development and demonstrate a clear link between vortex vein dysfunction, pachyvessel formation, and disease.
Collapse
Affiliation(s)
- Pan Liu
- Section of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago IL, USA
- Feinberg Cardiovascular and Renal Research Inst. Chicago, IL, USA
| | - Jeremy A. Lavine
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amani Fawzi
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E Quaggin
- Section of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago IL, USA
- Feinberg Cardiovascular and Renal Research Inst. Chicago, IL, USA
| | - Benjamin R. Thomson
- Feinberg Cardiovascular and Renal Research Inst. Chicago, IL, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
Asrar H, Tucker AS. Endothelial cells during craniofacial development: Populating and patterning the head. Front Bioeng Biotechnol 2022; 10:962040. [PMID: 36105604 PMCID: PMC9465086 DOI: 10.3389/fbioe.2022.962040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Major organs and tissues require close association with the vasculature during development and for later function. Blood vessels are essential for efficient gas exchange and for providing metabolic sustenance to individual cells, with endothelial cells forming the basic unit of this complex vascular framework. Recent research has revealed novel roles for endothelial cells in mediating tissue morphogenesis and differentiation during development, providing an instructive role to shape the tissues as they form. This highlights the importance of providing a vasculature when constructing tissues and organs for tissue engineering. Studies in various organ systems have identified important signalling pathways crucial for regulating the cross talk between endothelial cells and their environment. This review will focus on the origin and migration of craniofacial endothelial cells and how these cells influence the development of craniofacial tissues. For this we will look at research on the interaction with the cranial neural crest, and individual organs such as the salivary glands, teeth, and jaw. Additionally, we will investigate the methods used to understand and manipulate endothelial networks during the development of craniofacial tissues, highlighting recent advances in this area.
Collapse
|
14
|
Xu X, Mu L, Li L, Liang J, Zhang S, Jia L, Yang X, Dai Y, Zhang J, Wang Y, Niu S, Xia G, Yang Y, Zhang Y, Cao Y, Zhang H. Imaging and tracing the pattern of adult ovarian angiogenesis implies a strategy against female reproductive aging. SCIENCE ADVANCES 2022; 8:eabi8683. [PMID: 35020427 PMCID: PMC8754302 DOI: 10.1126/sciadv.abi8683] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Robust angiogenesis is continuously active in ovaries to remodel the ovary-body connections in mammals, but understanding of this unique process remains elusive. Here, we performed high-resolution, three-dimensional ovarian vascular imaging and traced the pattern of ovarian angiogenesis and vascular development in the long term. We found that angiogenesis was mainly active on ovarian follicles and corpus luteum and that robust angiogenesis constructs independent but temporary vascular networks for each follicle. Based on the pattern of ovarian angiogenesis, we designed an angiogenesis-blocking strategy by axitinib administration to young females, and we found that the temporary suppression of angiogenesis paused ovarian development and kept the ovarian reserve in the long term, leading to postponed ovarian senescence and an extension of the female reproductive life span. Together, by uncovering the detailed model of physiological ovarian angiogenesis, our experiments suggest a potential approach to delay female reproductive aging through the manipulation of angiogenesis.
Collapse
Affiliation(s)
- Xueqiang Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lingyu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Liang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Longzhong Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuebing Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanli Dai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiawei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yibo Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shudong Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Corresponding author.
| |
Collapse
|
15
|
Wiszniak S, Schwarz Q. Mandible Explant Assay for the Analysis of Meckel's Cartilage Development. Methods Mol Biol 2022; 2403:235-247. [PMID: 34913127 DOI: 10.1007/978-1-0716-1847-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ex vivo explant models are a valuable tool for analyzing organ and tissue morphogenesis, providing the opportunity to manipulate and interrogate specific cellular and/or molecular pathways that may not be possible using conventional methods in vivo. The mandible primordia is a remarkably self-organizing structure that has the ability to develop cartilage, bone, teeth, epithelial tissue, and the tongue when grown in culture ex vivo and closely mimics the development of these structures in vivo. Here we describe a robust protocol for the culture of mandibular explants using serum-free, chemically defined culture media. We also describe methods for manipulating mandible and/or Meckel's cartilage development by implantation of agarose beads soaked in various molecular factors to augment mandible development, as well as methods for Alcian blue staining of Meckel's cartilage and immunohistochemistry. This culture method can also be adapted for other molecular analyses, including addition of small-molecule inhibitors and/or growth factors to the culture media, as well as culturing explants from genetically modified mice.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
16
|
Rindone AN, Liu X, Farhat S, Perdomo-Pantoja A, Witham TF, Coutu DL, Wan M, Grayson WL. Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution. Nat Commun 2021; 12:6219. [PMID: 34711819 PMCID: PMC8553857 DOI: 10.1038/s41467-021-26455-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Vascularization is critical for skull development, maintenance, and healing. Yet, there remains a significant knowledge gap in the relationship of blood vessels to cranial skeletal progenitors during these processes. Here, we introduce a quantitative 3D imaging platform to enable the visualization and analysis of high-resolution data sets (>100 GB) throughout the entire murine calvarium. Using this technique, we provide single-cell resolution 3D maps of vessel phenotypes and skeletal progenitors in the frontoparietal cranial bones. Through these high-resolution data sets, we demonstrate that CD31hiEmcnhi vessels are spatially correlated with both Osterix+ and Gli1+ skeletal progenitors during postnatal growth, healing, and stimulated remodeling, and are concentrated at transcortical canals and osteogenic fronts. Interestingly, we find that this relationship is weakened in mice with a conditional knockout of PDGF-BB in TRAP+ osteoclasts, suggesting a potential role for osteoclasts in maintaining the native cranial microvascular environment. Our findings provide a foundational framework for understanding how blood vessels and skeletal progenitors spatially interact in cranial bone, and will enable more targeted studies into the mechanisms of skull disease pathologies and treatments. Additionally, our technique can be readily adapted to study numerous cell types and investigate other elusive phenomena in cranial bone biology.
Collapse
Affiliation(s)
- Alexandra N Rindone
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Stephanie Farhat
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel L Coutu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Guo S, Meng L, Liu H, Yuan L, Zhao N, Ni J, Zhang Y, Ben J, Li YP, Ma J. Trio cooperates with Myh9 to regulate neural crest-derived craniofacial development. Am J Cancer Res 2021; 11:4316-4334. [PMID: 33754063 PMCID: PMC7977452 DOI: 10.7150/thno.51745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Trio is a unique member of the Rho-GEF family that has three catalytic domains and is vital for various cellular processes in both physiological and developmental settings. TRIO mutations in humans are involved in craniofacial abnormalities, in which patients present with mandibular retrusion. However, little is known about the molecular mechanisms of Trio in neural crest cell (NCC)-derived craniofacial development, and there is still a lack of direct evidence to assign a functional role to Trio in NCC-induced craniofacial abnormalities. Methods: In vivo, we used zebrafish and NCC-specific knockout mouse models to investigate the phenotype and dynamics of NCC development in Trio morphants. In vitro, iTRAQ, GST pull-down assays, and proximity ligation assay (PLA) were used to explore the role of Trio and its potential downstream mediators in NCC migration and differentiation. Results: In zebrafish and mouse models, disruption of Trio elicited a migration deficit and impaired the differentiation of NCC derivatives, leading to craniofacial growth deficiency and mandibular retrusion. Moreover, Trio positively regulated Myh9 expression and directly interacted with Myh9 to coregulate downstream cellular signaling in NCCs. We further demonstrated that disruption of Trio or Myh9 inhibited Rac1 and Cdc42 activity, specifically affecting the nuclear export of β-catenin and NCC polarization. Remarkably, craniofacial abnormalities caused by trio deficiency in zebrafish could be partially rescued by the injection of mRNA encoding myh9, ca-Rac1, or ca-Cdc42. Conclusions: Here, we identified that Trio, interacting mostly with Myh9, acts as a key regulator of NCC migration and differentiation during craniofacial development. Our results indicate that trio morphant zebrafish and Wnt1-cre;Triofl/fl mice offer potential model systems to facilitate the study of the pathogenic mechanisms of Trio mutations causing craniofacial abnormalities.
Collapse
|
18
|
Xu X, Wang B, Jiang Z, Chen Q, Mao K, Shi X, Yan C, Hu J, Zha Y, Ma C, Zhang J, Guo R, Wang L, Zhao S, Liu H, Zhang Q, Zhang YB. Novel risk factors for craniofacial microsomia and assessment of their utility in clinic diagnosis. Hum Mol Genet 2021; 30:1045-1056. [PMID: 33615373 DOI: 10.1093/hmg/ddab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/03/2021] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Craniofacial microsomia (CFM, OMIM%164 210) is one of the most common congenital facial abnormalities worldwide, but it's genetic risk factors and environmental threats are poorly investigated, as well as their interaction, making the diagnosis and prenatal screening of CFM impossible. We perform a comprehensive association study on the largest CFM cohort of 6074 samples. We identify 15 significant (P < 5 × 10-8) associated genomic loci (including eight previously reported) and decipher 107 candidates based on multi-omics data. Gene Ontology term enrichment found that these candidates are mainly enriched in neural crest cell (NCC) development and hypoxic environment. Single-cell RNA-seq data of mouse embryo demonstrate that nine of them show dramatic expression change during early cranial NCC development whose dysplasia is involved in pathogeny of CFM. Furthermore, we construct a well-performed CFM risk-predicting model based on polygenic risk score (PRS) method and estimate seven environmental risk factors that interacting with PRS. Single-nucleotide polymorphism-based PRS is significantly associated with CFM [P = 7.22 × 10-58, odds ratio = 3.15, 95% confidence interval (CI) 2.74-3.63], and the top fifth percentile has a 6.8-fold CFM risk comparing with the 10th percentile. Father's smoking increases CFM risk as evidenced by interaction parameter of -0.324 (95% CI -0.578 to -0.070, P = 0.011) with PRS. In conclusion, the newly identified risk loci will significantly improve our understandings of genetics contribution to CFM. The risk prediction model is promising for CFM prediction, and father's smoking is a key environmental risk factor for CFM through interacting with genetic factors.
Collapse
Affiliation(s)
- Xiaopeng Xu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China
| | - Bingqing Wang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Zhuoyuan Jiang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qi Chen
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Ke Mao
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaofeng Shi
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| | - Chun Yan
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| | - Jintian Hu
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Yan Zha
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chao Ma
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiao Zhang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Rui Guo
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Shouqin Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Huisheng Liu
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China
| | - Qingguo Zhang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Yong-Biao Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing 100191, China
| |
Collapse
|
19
|
Finding MEMO-Emerging Evidence for MEMO1's Function in Development and Disease. Genes (Basel) 2020; 11:genes11111316. [PMID: 33172038 PMCID: PMC7694686 DOI: 10.3390/genes11111316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Although conserved throughout animal kingdoms, the protein encoded by the gene Mediator of ERBB2 Driven Cell Motility 1 or MEMO1, has only recently come into focus. True to its namesake, MEMO1 first emerged from a proteomic screen of molecules bound to the ERBB2 receptor and was found to be necessary for efficient cell migration upon receptor activation. While initially placed within the context of breast cancer metastasis—a pathological state that has provided tremendous insight into MEMO1′s cellular roles—MEMO1′s function has since expanded to encompass additional cancer cell types, developmental processes during embryogenesis and homeostatic regulation of adult organ systems. Owing to MEMO1′s deep conservation, a variety of model organisms have been amenable to uncovering biological facets of this multipurpose protein; facets ranging from the cellular (e.g., receptor signaling, cytoskeletal regulation, redox flux) to the organismal (e.g., mineralization and mineral homeostasis, neuro/gliogenesis, vasculogenesis) level. Although these facets emerge at the intersection of numerous biological and human disease processes, how and if they are interconnected remains to be resolved. Here, we review our current understanding of this ‘enigmatic’ molecule, its role in development and disease and open questions emerging from these previous studies.
Collapse
|
20
|
Mandibulofacial Dysostosis Attributed to a Recessive Mutation of CYP26C1 in Hereford Cattle. Genes (Basel) 2020; 11:genes11111246. [PMID: 33105751 PMCID: PMC7690606 DOI: 10.3390/genes11111246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
In spring 2020, six Hereford calves presented with congenital facial deformities attributed to a condition we termed mandibulofacial dysostosis (MD). Affected calves shared hallmark features of a variably shortened and/or asymmetric lower mandible and bilateral skin tags present 2–10 cm caudal to the commissure of the lips. Pedigree analysis revealed a single common ancestor shared by the sire and dam of each affected calf. Whole-genome sequencing (WGS) of 20 animals led to the discovery of a variant (Chr26 g. 14404993T>C) in Exon 3 of CYP26C1 associated with MD. This missense mutation (p.L188P), is located in an α helix of the protein, which the identified amino acid substitution is predicted to break. The implication of this mutation was further validated through genotyping 2 additional affected calves, 760 other Herefords, and by evaluation of available WGS data from over 2500 other individuals. Only the affected individuals were homozygous for the variant and all heterozygotes had at least one pedigree tie to the suspect founder. CYP26C1 plays a vital role in tissue-specific regulation of retinoic acid (RA) during embryonic development. Dysregulation of RA can result in teratogenesis by altering the endothelin-1 signaling pathway affecting the expression of Dlx genes, critical to mandibulofacial development. We postulate that this recessive missense mutation in CYP26C1 impacts the catalytic activity of the encoded enzyme, leading to excess RA resulting in the observed MD phenotype.
Collapse
|
21
|
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn 2020; 250:377-392. [PMID: 32813296 DOI: 10.1002/dvdy.240] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/19/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFβ/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
22
|
Svandova E, Anthwal N, Tucker AS, Matalova E. Diverse Fate of an Enigmatic Structure: 200 Years of Meckel's Cartilage. Front Cell Dev Biol 2020; 8:821. [PMID: 32984323 PMCID: PMC7484903 DOI: 10.3389/fcell.2020.00821] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Meckel's cartilage was first described by the German anatomist Johann Friedrich Meckel the Younger in 1820 from his analysis of human embryos. Two hundred years after its discovery this paper follows the development and largely transient nature of the mammalian Meckel's cartilage, and its role in jaw development. Meckel's cartilage acts as a jaw support during early development, and a template for the later forming jaw bones. In mammals, its anterior domain links the two arms of the dentary together at the symphysis while the posterior domain ossifies to form two of the three ear ossicles of the middle ear. In between, Meckel's cartilage transforms to a ligament or disappears, subsumed by the growing dentary bone. Several human syndromes have been linked, directly or indirectly, to abnormal Meckel's cartilage formation. Herein, the evolution, development and fate of the cartilage and its impact on jaw development is mapped. The review focuses on developmental and cellular processes that shed light on the mechanisms behind the different fates of this cartilage, examining the control of Meckel's cartilage patterning, initiation and maturation. Importantly, human disorders and mouse models with disrupted Meckel's cartilage development are highlighted, in order to understand how changes in this cartilage impact on later development of the dentary and the craniofacial complex as a whole. Finally, the relative roles of tissue interactions, apoptosis, autophagy, macrophages and clast cells in the removal process are discussed. Meckel's cartilage is a unique and enigmatic structure, the development and function of which is starting to be understood but many interesting questions still remain.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
23
|
Che J, Yao X, Wang C, Zheng J, Guo C. Hypoxia promoted renal cell carcinoma cell migration through regulating lncRNA-ENST00000574654.1. Am J Transl Res 2020; 12:3884-3894. [PMID: 32774742 PMCID: PMC7407743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hypoxia is common in solid tumor masses that has functional consequences for tumor progression. Previous studies demonstrated that nearly 80% renal cell carcinoma (RCC) are under hypoxia. However, effect and its mechanism of hypoxia on RCC cell invasion remains to be defined. METHODS The shRNA expression vectors, which were constructed to express a short hairpin RNA against lncRNA and overexpression of lncRNA, were transfected into the RCC cell lines (SW839 and OSRC-2). Levels of lncRNA-ENST00000574654.1, VEGF-A and VEGF-C mRNA and protein were examined by real-time quantitative-fluorescent PCR and Western blot analysis, respectively. The effects of lncRNA silencing and overexpression on cell invasion of SW839 and OSRC-2 cells were evaluated with cell migration assay. RESULTS Hypoxia significantly stimulated cell invasion in both RCC cell lines (SW839: 2.38 ± 0.19 of normoxia vs 7.83 ± 0.38 of hypoxia, P < 0.05; and OSRC-2: 1.00 ± 0.08 of normoxia vs 5.88 ± 0.32 of hypoxia, P < 0.05). LncRNA microarray analysis found that lncRNA-ENST00000574654.1 was down-regulated under hypoxia. Consistently, over-expression of lncRNA-ENST00000574654.1 resulted in significant blockade of hypoxia-induced RCC migration. Furthermore, expression of lncRNA-ENST00000574654.1 was regulated by HIF-1α and VEGA-A through interacting with hnRNP, which in turn regulated the RCC cell invasion. CONCLUSIONS These findings suggested that hypoxia promoted RCC cell invasion through HIF-1α/lncRNA (ENST00000574654.1)/hnRNP/VEGF-A pathway. Targeting this pathway could potentially improve therapeutic outcomes of renal cell carcinoma.
Collapse
Affiliation(s)
- Jianping Che
- Department of Urology, The Affiliated Shanghai Tenth People’s Hospital, Nanjing Medical UniversityShanghai 200072, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, China
| | - Chunguang Wang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, China
| | - Junhua Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong UniversityShanghai 200080, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, China
| |
Collapse
|
24
|
Marchant C, Anderson P, Schwarz Q, Wiszniak S. Vessel-derived angiocrine IGF1 promotes Meckel's cartilage proliferation to drive jaw growth during embryogenesis. Development 2020; 147:dev.190488. [PMID: 32439763 PMCID: PMC7295590 DOI: 10.1242/dev.190488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
Craniofacial development is a complex morphogenic process that requires highly orchestrated interactions between multiple cell types. Blood vessel-derived angiocrine factors are known to promote proliferation of chondrocytes in Meckel's cartilage to drive jaw outgrowth, however the specific factors controlling this process remain unknown. Here, we use in vitro and ex vivo cell and tissue culture, as well as genetic mouse models, to identify IGF1 as a novel angiocrine factor directing Meckel's cartilage growth during embryonic development. We show that IGF1 is secreted by blood vessels and that deficient IGF1 signalling underlies mandibular hypoplasia in Wnt1-Cre; Vegfafl/fl mice that exhibit vascular and associated jaw defects. Furthermore, conditional removal of IGF1 from blood vessels causes craniofacial defects including a shortened mandible, and reduced proliferation of Meckel's cartilage chondrocytes. This demonstrates a crucial angiocrine role for IGF1 during craniofacial cartilage growth, and identifies IGF1 as a putative therapeutic for jaw and/or cartilage growth disorders.
Collapse
Affiliation(s)
- Ceilidh Marchant
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Peter Anderson
- Australian Craniofacial Unit, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Sophie Wiszniak
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| |
Collapse
|
25
|
McLaughlin KI, Milne TJ, Zafar S, Zanicotti DG, Cullinan MP, Seymour GJ, Coates DE. The in vitro effect of VEGF receptor inhibition on primary alveolar osteoblast nodule formation. Aust Dent J 2020; 65:196-204. [PMID: 32072641 DOI: 10.1111/adj.12752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a master regulator and is required for the effective coupling of angiogenesis and osteogenesis supporting both skeletal development and postnatal bone repair. A direct role for VEGF in intramembranous-derived osteoblast growth and differentiation is not clear. We investigated the expression of primary alveolar osteoblast VEGF receptors and the subsequent effects on mineralization and nodule formation in vitro following VEGFR inhibition. METHODS Primary human alveolar osteoblasts (HAOBs) were cultured in the presence of VEGF receptor inhibitors, exogenous VEGF or the bisphosphonate, zoledronic acid. VEGF, VEGFR1 and VEGFR2 mRNA expression and nodule formation following 21 days of culture. VEGFR1 protein expression was examined using immunofluorescence after 48 h. RESULTS The HAOBs expressed high levels of VEGF and VEGFR1 protein but VEGFR2 was not detected. The VEGFR1/2 inhibitors, ZM306416 and KRN633, lead to a dose-dependent decrease in mineralization. Treatment with zoledronic acid showed no difference in HAOB VEGF receptor expression. CONCLUSION VEGF/VEGFR1 pathway appears to be important for intramembranous-derived osteoblast differentiation and maturation in vitro.
Collapse
Affiliation(s)
- K I McLaughlin
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - T J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - S Zafar
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - D G Zanicotti
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M P Cullinan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - G J Seymour
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - D E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
26
|
Xu J, Wang L, Huang Z, Chen Y, Shao M. Exogenous FGF8 signaling in osteocytes leads to mandibular hypoplasia in mice. Oral Dis 2020; 26:590-596. [PMID: 31863612 DOI: 10.1111/odi.13262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Fibroblast growth factor 8 (FGF8) signaling is essential in regulating craniofacial osteogenesis. This study aims to explore the effect of altered FGF8 signaling in maxillomandibular development during embryogenesis. MATERIALS AND METHODS Dmp1Cre ;R26RmTmG mice were generated to trace Dmp1+ cell lineage, and Dmp1Cre ;R26RFgf8 mice were generated to explore the effects of augmented FGF8 signaling in Dmp1+ cells on osteogenesis with a focus on maxillomandibular development during embryogenesis, as assessed by whole mount skeletal staining, histology, and immunostaining. Additionally, cell proliferation rate and the expression of osteogenic genes were examined. RESULTS Osteocytes of maxillomandibular bones were found Dmp1-positive prenatally, and Fgf8 over-expression in Dmp1+ cells led to mandibular hypoplasia. While Dmp1Cre allele functions in the osteocytes of the developing mandibular bone at as early as E13.5, and enhanced cell proliferation rate is observed in the bone forming region of the mandible in Dmp1Cre ;R26RFgf8 mice at E14.5, histological examination showed that osteogenesis was initially impacted at E15.5, along with an inhibition of osteogenic differentiation markers. CONCLUSIONS Augmented FGF8 signaling in Dmp1+ cells lead to osteogenic deficiency in the mandibular bones, resulting in mandibular hypoplasia.
Collapse
Affiliation(s)
- Jue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Linyan Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Kabak SL, Savrasova NA, Zatochnaya VV, Melnichenko YM. Hemifacial microsomia: skeletal abnormalities evaluation using CBCT (case report). J Radiol Case Rep 2019; 13:1-9. [PMID: 32190180 DOI: 10.3941/jrcr.v13i11.3687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The article presents a case report and literature review of hemifacial microsomia with cervical vertebral anomalies. Unilateral hypoplasia of the mandible, congenital anomalies of the external ear and cervical spine pathology identified in this case are common major signs/symptoms of Goldenhar (Goldenhar-Gorlin) syndrome. Complete fusion of bodies and spinous processes of the second and third cervical vertebrae as well as atlantooccipital assimilation and anterior cleft of the atlas were also found. All abnormalities were accidentally identified and not accompanied by clinical symptoms.
Collapse
Affiliation(s)
- Sergey Lvovich Kabak
- Department of Human Morphology, Belarusian State Medical University, Minsk, Belarus
| | | | | | | |
Collapse
|
28
|
Zhao Y, Chen Q, Chen L, Shen SGF, Dai J. Thalidomide leads to mandible hypoplasia through inhibiting angiogenesis and secondary hemorrhage in the fetal craniofacial region in rabbits. Toxicol Lett 2019; 319:250-255. [PMID: 31778774 DOI: 10.1016/j.toxlet.2019.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 11/23/2019] [Indexed: 11/18/2022]
Abstract
The effect of thalidomide on mandibular development is unclear. In this study, thalidomide was delivered to pregnant rabbits from the 8th to 14th day of gestation. Then, embryos were harvested for examination on the 16th day (GD16), 20th day (GD20) and 24th day (GD24) of gestation. The results showed obvious hemorrhage and hematoma on one side of the craniofacial region in 50 % of the thalidomide-treated embryos and obvious hemorrhage and hematoma on both sides of the craniofacial region in 50 % of the thalidomide-treated embryos at GD16. Histological examination showed soft tissues and mandible defects on the affected side of the maxillofacial region. The expression of Vegf-α, Ki67 and Sox9 on the affected side was significantly down-regulated in comparison to their expression on the unaffected side at GD20. There was also an obvious defect in the affected mandible, and the density of the skull and mandible was decreased compared to the unaffected side or the control group at GD24. These findings demonstrated that thalidomide may lead to hemorrhage and hematoma in the craniofacial region by inhibiting angiogenesis, resulting in the abnormal development of cranial neural crest cells that are involved in the normal development of the mandible in rabbits.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No.639 Zhizaoju Road, Shanghai 200011, China
| | - Qiming Chen
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No.639 Zhizaoju Road, Shanghai 200011, China
| | - Long Chen
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No.639 Zhizaoju Road, Shanghai 200011, China
| | - Steve G F Shen
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No.639 Zhizaoju Road, Shanghai 200011, China.
| | - Jiewen Dai
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No.639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
29
|
3D Printing PLA/Gingival Stem Cells/ EVs Upregulate miR-2861 and -210 during Osteoangiogenesis Commitment. Int J Mol Sci 2019; 20:ijms20133256. [PMID: 31269731 PMCID: PMC6651609 DOI: 10.3390/ijms20133256] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue regeneration strategies require approaches that provide an osteogenic and angiogenic microenvironment able to drive the bone growth. Recently, the development of 3D printing biomaterials, including poly(lactide) (3D-PLA), enriched with mesenchymal stem cells (MSCs) and/or their derivatives, such as extracellular vesicles (EVs) has been achieving promising results. In this study, in vitro results showed an increased expression of osteogenic and angiogenic markers, as RUNX2, VEGFA, OPN and COL1A1 in the living construct 3D-PLA/human Gingival MSCs (hGMSCs)/EVs. Considering that EVs carry and transfer proteins, mRNA and microRNA into target cells, we evaluated miR-2861 and miR-210 expression related to osteoangiogenesis commitment. Histological examination of rats implanted with 3D-PLA/hGMSCs/EVs evidenced the activation of bone regeneration and of the vascularization process, confirmed also by MicroCT. In synthesis, an upregulation of miR-2861 and -210 other than RUNX2, VEGFA, OPN and COL1A1 was evident in cells cultured in the presence of the biomaterial and EVs. Then, these results evidenced that EVs may enhance bone regeneration in calvaria defects, in association with an enhanced vascularization offering a novel regulatory system in the osteoangiogenesis evolution. The application of new strategies to improve biomaterial engraftment is of great interest in the regenerative medicine and can represent a way to promote bone regeneration.
Collapse
|
30
|
Ex Vivo Culture and Manipulation of Mouse Neural Crest Cells from Primary Embryonic Tissue Explants. Methods Mol Biol 2019. [PMID: 30977067 DOI: 10.1007/978-1-4939-9412-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In vitro culture of neural crest cells allows for the manipulation and study of neural crest cell function in a cell-autonomous manner. While several stable neural crest cell lines exist, the transformed nature of these cells may not closely reflect the in vivo properties of neural crest cells, hence making molecular and functional analyses using these cell lines difficult to interpret. Here we describe a robust method to culture primary mouse neural crest cells ex vivo for several days to weeks in culture. We further describe a method for siRNA knockdown in these cells to study gene function. This culture method can also be adapted for other molecular analyses, including addition of small-molecule inhibitors and/or growth factors to the culture media, as well as culturing neural crest cells from knockout or genetically modified mice.
Collapse
|
31
|
Abstract
Jaw bones and teeth originate from the first pharyngeal arch and develop in closely related ways. Reciprocal epithelial-mesenchymal interactions are required for the early patterning and morphogenesis of both tissues. Here we review the cellular contribution during the development of the jaw bones and teeth. We also highlight signaling networks as well as transcription factors mediating tissue-tissue interactions that are essential for jaw bone and tooth development. Finally, we discuss the potential for stem cell mediated regenerative therapies to mitigate disorders and injuries that affect these organs.
Collapse
Affiliation(s)
- Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
32
|
Manocha S, Farokhnia N, Khosropanah S, Bertol JW, Santiago J, Fakhouri WD. Systematic review of hormonal and genetic factors involved in the nonsyndromic disorders of the lower jaw. Dev Dyn 2019; 248:162-172. [PMID: 30576023 DOI: 10.1002/dvdy.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mandibular disorders are among the most common birth defects in humans, yet the etiological factors are largely unknown. Most of the neonates affected by mandibular abnormalities have a sequence of secondary anomalies, including airway obstruction and feeding problems, that reduce the quality of life. In the event of lacking corrective surgeries, patients with mandibular congenital disorders suffer from additional lifelong problems such as sleep apnea and temporomandibular disorders, among others. The goal of this systematic review is to gather evidence on hormonal and genetic factors that are involved in signaling pathways and interactions that are potentially associated with the nonsyndromic mandibular disorders. We found that members of FGF and BMP pathways, including FGF8/10, FGFR2/3, BMP2/4/7, BMPR1A, ACVR1, and ACVR2A/B, have a prominent number of gene-gene interactions among all identified genes in this review. Gene ontology of the 154 genes showed that the functional gene sets are involved in all aspects of cellular processes and organogenesis. Some of the genes identified by the genome-wide association studies of common mandibular disorders are involved in skeletal formation and growth retardation based on animal models, suggesting a potential direct role as genetic risk factors in the common complex jaw disorders. Developmental Dynamics 248:162-172, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Srishti Manocha
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nadia Farokhnia
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sepideh Khosropanah
- Ostrow School of Dentistry, University of Southern California, California, Los Angeles
| | - Jessica W Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Joel Santiago
- Pró-Reitoria de Pesquisa e Pós-graduação (PRPPG), Universidade do Sagrado Coração, Jardim Brasil, Bauru, Sao Paulo, Brazil
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
33
|
Zaffran S, Odelin G, Stefanovic S, Lescroart F, Etchevers HC. Ectopic expression of Hoxb1 induces cardiac and craniofacial malformations. Genesis 2018; 56:e23221. [PMID: 30134070 DOI: 10.1002/dvg.23221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Members of the large family of Hox transcription factors are encoded by genes whose tightly regulated expression in development and in space within different embryonic tissues confer positional identity from the neck to the tips of the limbs. Many structures of the face, head, and heart develop from cell populations expressing few or no Hox genes. Hoxb1 is the member of its chromosomal cluster expressed in the most rostral domain during vertebrate development, but never by the multipotent neural crest cell population anterior to the cerebellum. We have developed a novel floxed transgenic mouse line, CAG-Hoxb1,-EGFP (CAG-Hoxb1), which upon recombination by Cre recombinase conditionally induces robust Hoxb1 and eGFP overexpression. When induced within the neural crest lineage, pups die at birth. A variable phenotype develops from E11.5 on, associating frontonasal hypoplasia/aplasia, micrognathia/agnathia, major ocular and forebrain anomalies, and cardiovascular malformations. Neural crest derivatives in the body appear unaffected. Transcription of effectors of developmental signaling pathways (Bmp, Shh, Vegfa) and transcription factors (Pax3, Sox9) is altered in mutants. These outcomes emphasize that repression of Hoxb1, along with other paralog group 1 and 2 Hox genes, is strictly necessary in anterior cephalic NC for craniofacial, visual, auditory, and cardiovascular development.
Collapse
Affiliation(s)
| | - Gaëlle Odelin
- Aix Marseille Univ, MMG, INSERM, Marseille, U1251, France
| | | | | | | |
Collapse
|
34
|
Chen Q, Zhao Y, Shen G, Dai J. Etiology and Pathogenesis of Hemifacial Microsomia. J Dent Res 2018; 97:1297-1305. [PMID: 30205013 DOI: 10.1177/0022034518795609] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hemifacial microsomia (HFM) is a common congenital malformation of the craniofacial region. There are 3 possible pathogenic models of HFM—vascular abnormality and hemorrhage in the craniofacial region, damage to Meckel’s cartilage, and the abnormal development of cranial neural crest cells—and the most plausible hypothesis is the vascular abnormality and hemorrhage model. These 3 models are interrelated, and none of them is completely concordant with all the variable manifestations of HFM. External environmental factors (e.g., thalidomide, triazene, retinoic acid, and vasoactive medications), maternal intrinsic factors (e.g., maternal diabetes), and genetic factors (e.g., the recently reported mutations in OTX2, PLCD3, and MYT1) may lead to HFM through ≥1 of these pathogenic processes. Whole genome sequencing to identify additional pathogenic variants, biological functional studies to understand the exact molecular mechanisms, and additional animal model and clinical studies with large stratified samples to elucidate the pathogenesis of HFM will be necessary. Small-molecule drugs, as well as CRISPR/CAS9-based genetic interventions, for the prevention and treatment of HFM may also be a future research hotspot.
Collapse
Affiliation(s)
- Q. Chen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Y. Zhao
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - G. Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - J. Dai
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Nie X, Zheng J, Ricupero CL, He L, Jiao K, Mao JJ. mTOR acts as a pivotal signaling hub for neural crest cells during craniofacial development. PLoS Genet 2018; 14:e1007491. [PMID: 29975682 PMCID: PMC6049956 DOI: 10.1371/journal.pgen.1007491] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/17/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
mTOR is a highly conserved serine/threonine protein kinase that is critical for diverse cellular processes in both developmental and physiological settings. mTOR interacts with a set of molecules including Raptor and Rictor to form two distinct functional complexes, namely the mTORC1 and mTORC2. Here, we used novel genetic models to investigate functions of the mTOR pathway for cranial neural crest cells (NCCs), which are a temporary type of cells arising from the ectoderm layer and migrate to the pharyngeal arches participating craniofacial development. mTOR deletion elicited a proliferation deficit and excessive apoptosis of post-migratory NCCs, leading to growth arrest of the facial primordia along with midline orofacial clefts. Furthermore, NCC differentiation was impaired. Thus, NCC derivatives, such as skeletons, vasculatures and neural tissues were either rudimentary or malformed. We further demonstrate that disruption of mTOR caused P53 hyperactivity and cell cycle arrest in cranial NCCs, and lowering P53 activity by one copy reduction attenuated the severity of craniofacial phenotype in NCC-mTOR knockout mice. Remarkably, NCC-Rptor disruption caused a spectrum of defects mirroring that of the NCC-mTOR deletion, whereas NCC-Rictor disruption only caused a mild craniofacial phenotype compared to the mTOR and Rptor conditional knockout models. Altogether, our data demonstrate that mTOR functions mediated by mTORC1 are indispensable for multiple processes of NCC development including proliferation, survival, and differentiation during craniofacial morphogenesis and organogenesis, and P53 hyperactivity in part accounts for the defective craniofacial development in NCC-mTOR knockout mice.
Collapse
Affiliation(s)
- Xuguang Nie
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Jinxuan Zheng
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Christopher L. Ricupero
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Ling He
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Kai Jiao
- University of Alabama at Birmingham, Department of Genetics, Birmingham, Alabama, United States of America
| | - Jeremy J. Mao
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
36
|
Al-Dujaili M, Milne TJ, Cannon RD, Farella M. Postnatal expression of chondrogenic and osteogenic regulatory factor mRNA in the rat condylar cartilage. Arch Oral Biol 2018; 93:126-132. [PMID: 29906711 DOI: 10.1016/j.archoralbio.2018.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
OBJECTIVES The condylar cartilage is a key site of growth and development of the mandible. The aim of this research was to determine the mRNA expression levels of a number of chondrogenic and osteogenic regulatory factors in the condylar cartilage of the postnatal rat. MATERIALS AND METHODS Condyles were extracted from 40 rats aged 4, 10, 21 or 90 days with 10 rats assigned to each age group. The condyles from one rat from each age group was fixed and decalcified in 10% EDTA for histology. Using cryogenic grinding combined with QIAzol reagent total RNA was purified from pooled samples collected for each age group. Each pool contained six condyles (N = 3). mRNA expression levels for 28 genes were determined using qPCR. RESULTS Histological analysis revealed distinct morphological differences in the condyle tissue of the 4, 10, 21 and 90 day old postnatal rats. Expression of all examined genes was detected. High levels of mRNA for Alpl, Bglap, Col1a1, Col2a1, Runx2, Sox9 and Sp7 but not Msx1 were detected. Fgf1 and Fgf2 were expressed at a similar level. No significant difference (defined as ± fold-regulation > 2 and P < 0.05) in the gene mRNA expression levels was found when days 10, 21 or 90 were compared to day 4. CONCLUSIONS Apparent morphological changes of the rat condylar cartilage are not reflected in a change in the expression levels of the chondrogenic and osteogenic regulatory factor mRNA investigated in this study.
Collapse
Affiliation(s)
- Mohamad Al-Dujaili
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| | - Trudy J Milne
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Richard D Cannon
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| | - Mauro Farella
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Zhao X, Zhou S, Wang D, He W, Li J, Zhang S. MicroRNA-205 is downregulated in hepatocellular carcinoma and inhibits cell growth and metastasis via directly targeting vascular endothelial growth factor A. Oncol Lett 2018; 16:2207-2214. [PMID: 30008920 DOI: 10.3892/ol.2018.8933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) are an emerging class of non-coding, endogenous and small RNA molecules that serve important functions in tumorigenesis and development. The present study investigated the expression, functions and molecular mechanism underlying miR-205 in hepatocellular carcinoma. miR-205 was downregulated in hepatocellular carcinoma tissues and cell lines. Ectopic miR-205 expression suppressed hepatocellular carcinoma cell proliferation, migration and invasion in vitro. In addition, vascular endothelial growth factor A (VEGFA) was identified as a functional downstream target of miR-205 in hepatocellular carcinoma. Furthermore, knockdown of VEGFA revealed the same functions with miR-205 overexpression in hepatocellular carcinoma cells. These results provided evidence that miR-205 served important functions in the inhibition of hepatocellular carcinoma cells growth and metastasis via directly targeting VEGFA, which indicated that miR-205 may have therapeutic value for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xuya Zhao
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Shi Zhou
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Dazhi Wang
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Wei He
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Junxiang Li
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Shuai Zhang
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| |
Collapse
|
38
|
Guo S, Zhang Y, Zhou T, Wang D, Weng Y, Chen Q, Ma J, Li YP, Wang L. GATA4 as a novel regulator involved in the development of the neural crest and craniofacial skeleton via Barx1. Cell Death Differ 2018. [PMID: 29523871 PMCID: PMC6219484 DOI: 10.1038/s41418-018-0083-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The role of GATA-binding protein 4 (GATA4) in neural crest cells (NCCs) is poorly defined. Here we showed that mouse NCCs lacking GATA4 exhibited developmental defects in craniofacial bone, teeth, and heart. The defects likely occurred due to decreased cell proliferation at the developmental stage. The in vitro results were consistent with the mouse model. The isobaric tags for relative and absolute quantitation assay revealed that BARX1 is one of the differentially expressed proteins after GATA4 knockdown in NCCs. On the basis of the results of dual-luciferase, electro-mobility shift, and chromatin immunoprecipitation assays, Barx1 expression is directly regulated by GATA4 in NCCs. In zebrafish, gata4 knockdown affects the development of NCCs derivatives. However, the phenotype in zebrafish could be partly rescued by co-injection of gata4 morpholino oligomers and barx1 mRNA. This study identified new downstream targets of GATA4 in NCCs and uncovered additional evidence of the complex regulatory functions of GATA4 in NCC development.
Collapse
Affiliation(s)
- Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Tingting Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Boulevard, Birmingham, AL, 35294-2182, USA.
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
39
|
Chai M, Sanosaka T, Okuno H, Zhou Z, Koya I, Banno S, Andoh-Noda T, Tabata Y, Shimamura R, Hayashi T, Ebisawa M, Sasagawa Y, Nikaido I, Okano H, Kohyama J. Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes Dev 2018; 32:165-180. [PMID: 29440260 PMCID: PMC5830929 DOI: 10.1101/gad.301887.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Multiple congenital disorders often present complex phenotypes, but how the mutation of individual genetic factors can lead to multiple defects remains poorly understood. In the present study, we used human neuroepithelial (NE) cells and CHARGE patient-derived cells as an in vitro model system to identify the function of chromodomain helicase DNA-binding 7 (CHD7) in NE-neural crest bifurcation, thus revealing an etiological link between the central nervous system (CNS) and craniofacial anomalies observed in CHARGE syndrome. We found that CHD7 is required for epigenetic activation of superenhancers and CNS-specific enhancers, which support the maintenance of the NE and CNS lineage identities. Furthermore, we found that BRN2 and SOX21 are downstream effectors of CHD7, which shapes cellular identities by enhancing a CNS-specific cellular program and indirectly repressing non-CNS-specific cellular programs. Based on our results, CHD7, through its interactions with superenhancer elements, acts as a regulatory hub in the orchestration of the spatiotemporal dynamics of transcription factors to regulate NE and CNS lineage identities.
Collapse
Affiliation(s)
- MuhChyi Chai
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.,Gene Regulation Research, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ikuko Koya
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoe Banno
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomoko Andoh-Noda
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshikuni Tabata
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.,E-WAY Research Laboratory, Discovery, Medicine Creation, Neurology Business Group, Tsukuba, Ibaraki 300-2635, Japan
| | - Rieko Shimamura
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsutaro Hayashi
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Masashi Ebisawa
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yohei Sasagawa
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Itoshi Nikaido
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan.,Single-Cell Omics Research Unit, RIKEN Center for Developmental Biology, Wako, Saitama 351-0198, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
40
|
Qin C, Zha W, Fan R, Ding H, Xu Y, Wang C. MicroRNA‑302a inhibits cell proliferation and invasion, and induces cell apoptosis in hepatocellular carcinoma by directly targeting VEGFA. Mol Med Rep 2017; 16:6360-6367. [PMID: 28849033 DOI: 10.3892/mmr.2017.7312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 06/21/2017] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most common cause of cancer‑related mortality worldwide. An increasing number of studies have demonstrated that microRNAs may be used as diagnostic, therapeutic and prognostic targets for human cancers, including HCC. The present study aimed to evaluate microRNA (miR)‑302a expression and function in HCC, and its underlying mechanisms. The results revealed that miR‑302a was expressed at low levels in HCC tissues and cell lines. Reduced miR‑302a expression was correlated with tumor‑node‑metastasis stage and lymph node metastasis in patients with HCC. Additionally, overexpression of miR‑302a reduced cell proliferation and invasion, and induced apoptosis in HCC cells. Vascular endothelial growth factor A (VEGFA) was demonstrated to be a direct target gene of miR‑302a. VEGFA was highly expressed in HCC tissues and inversely correlated with miR‑302a expression. Knockdown of VEGFA expression led to reduced HCC cell proliferation and invasion, and increased apoptosis rates, similar to miR‑302a overexpression, which suggested that VEGFA may be a functional downstream target of miR‑302a in HCC. These data suggested that this newly identified miR‑302a/VEGFA axis may be involved in HCC formation and progression. The present results also provide novel potential targets for the treatments of patients with HCC.
Collapse
Affiliation(s)
- Chenglin Qin
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Wenzhang Zha
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Rengen Fan
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Huimin Ding
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Yonghua Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Chen Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| |
Collapse
|
41
|
Role of GATA binding protein 4 (GATA4) in the regulation of tooth development via GNAI3. Sci Rep 2017; 7:1534. [PMID: 28484278 PMCID: PMC5431507 DOI: 10.1038/s41598-017-01689-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Transcription factor GATA4 regulates cardiac and osteoblast differentiation. However, its role in tooth development is not clear. Therefore, we generated Wnt1-Cre;GATA4fl/fl mice, with conditional inactivation of the GATA4 gene in the dental papilla mesenchymal cells. Phenotypic analysis showed short root deformity along with reduced expressions of odonto/osteogenic markers. Proliferation (but not apoptosis) of cells around the apical area of the root was attenuated. In vitro, we knocked down GATA4 expression in stem cells of dental apical papilla (SCAPs). Proliferation, migration and odonto/osteogenic differentiation of SCAPs were affected in the shGATA4 group. Overexpression of GATA4 in SCAPs increased mineralization. Based on our previous iTRAQ results, guanine nucleotide binding proteins 3 (GNAI3) is one of the distinct proteins after GATA4 deletion. G protein signaling is involved in bone development, remodeling, and disease. In this study, both GATA4 deletion in the mouse root and knock-down in human SCAPs decreased the expression of GNAI3. Dual-luciferase and ChIP assay confirmed the direct binding of GATA4 to the GNAI3 promoter, both in vitro and in vivo. GNAI3 knock-down significantly decreased the odonto/osteogenic differentiation ability of SCAPs. We thus establish the role of GATA4 as a novel regulator of root development and elucidate its downstream molecular events.
Collapse
|
42
|
Li J, Zhang Y, Wang X, Zhao R. microRNA-497 overexpression decreases proliferation, migration and invasion of human retinoblastoma cells via targeting vascular endothelial growth factor A. Oncol Lett 2017; 13:5021-5027. [PMID: 28588740 DOI: 10.3892/ol.2017.6083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/28/2017] [Indexed: 01/01/2023] Open
Abstract
The expression level and roles of microRNA-497 (miR-497) have been frequently reported in previous studies on cancer. However, its expression, function and associated molecular mechanisms in retinoblastoma remain unknown. In the present study, miR-497 expression levels in human retinoblastoma tissues, normal retinal tissues and retinoblastoma cell lines were determined using reverse transcription-quantitative polymerase chain reaction. In addition, a Cell Counting Kit-8 assay, cell migration assay, cell invasion assay, western blot analysis and Dual-Luciferase reporter assay were used to explore the expression, functions and molecular mechanisms of miR-497 in human retinoblastoma. It was demonstrated that miR-497 was significantly downregulated in retinoblastoma tissues and cell lines compared with normal retinal tissues. Ectopic expression of miR-497 decreased the proliferation, migration and invasion of retinoblastoma cells. Furthermore, VEGFA was verified as a potential direct target of miR-497 in vitro. Taken together, the results indicate that miR-497 functions as a tumor suppressor in the carcinogenesis and progression of retinoblastoma via targeting VEGFA. miR-497 should be investigated as a potential therapeutic target for the treatment of retinoblastoma.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Ophthalmology, Xi'an XD Group Hospital, Xi'an, Shaanxi 710077, P.R. China
| | - Yinghui Zhang
- Department of Ophthalmology, Xi'an XD Group Hospital, Xi'an, Shaanxi 710077, P.R. China
| | - Xiuchao Wang
- Department of Ophthalmology, Xi'an XD Group Hospital, Xi'an, Shaanxi 710077, P.R. China
| | - Ruibo Zhao
- Refractive Surgery Center, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
43
|
Hu K, Olsen BR. Vascular endothelial growth factor control mechanisms in skeletal growth and repair. Dev Dyn 2017; 246:227-234. [PMID: 27750398 PMCID: PMC5354946 DOI: 10.1002/dvdy.24463] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/01/2016] [Indexed: 01/04/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) is a critical regulator of vascular development and postnatal angiogenesis and homeostasis, and it is essential for bone development and repair. Blood vessels serve both as structural templates for bone formation and they provide essential cells, growth factors and minerals needed for synthesis and mineralization, as well as turnover, of the extracellular matrix in bone. Through its regulation of angiogenesis, VEGF contributes to coupling of osteogenesis to angiogenesis, and it directly controls the differentiation and function of osteoblasts and osteoclasts. In this review, we summarize the properties of VEGF and its receptors that are relevant to bone formation and repair; the roles of VEGF during development of endochondral and membranous bones; and the contributions of VEGF to bone healing during different phases of bone repair. Finally, we discuss contributions of altered VEGF function in inherited disorders with bone defects as part of their phenotypes, and we speculate on what will be required before therapeutic strategies based on VEGF modulation can be developed for clinical use to treat patients with bone growth disorders and/or compromised bone repair. Developmental Dynamics 246:227-234, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kai Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
44
|
The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 2017; 20:291-302. [PMID: 28194536 PMCID: PMC5511612 DOI: 10.1007/s10456-017-9541-1] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022]
Abstract
Bone is a richly vascularized connective tissue. As the main source of oxygen, nutrients, hormones, neurotransmitters and growth factors delivered to the bone cells, vasculature is indispensable for appropriate bone development, regeneration and remodeling. Bone vasculature also orchestrates the process of hematopoiesis. Blood supply to the skeletal system is provided by the networks of arteries and arterioles, having distinct molecular characteristics and localizations within the bone structures. Blood vessels of the bone develop through the process of angiogenesis, taking place through different, bone-specific mechanisms. Impaired functioning of the bone blood vessels may be associated with the occurrence of some skeletal and systemic diseases, i.e., osteonecrosis, osteoporosis, atherosclerosis or diabetes mellitus. When a disease or trauma-related large bone defects appear, bone grafting or bone tissue engineering-based strategies are required. However, a successful bone regeneration in both approaches largely depends on a proper blood supply. In this paper, we review the most recent data on the functions, molecular characteristics and significance of the bone blood vessels, with a particular emphasis on the role of angiogenesis and blood vessel functioning in bone development and regeneration, as well as the consequences of its impairment in the course of different skeletal and systemic diseases.
Collapse
|
45
|
Maeda Y, Miwa Y, Sato I. Expression of CGRP, vasculogenesis and osteogenesis associated mRNAs in the developing mouse mandible and tibia. Eur J Histochem 2017; 61:2750. [PMID: 28348418 PMCID: PMC5289303 DOI: 10.4081/ejh.2017.2750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/27/2022] Open
Abstract
The neuropeptide Calcitonin Gene-Related Peptide (CGRP) is a well-characterized neurotransmitter. However, little is known about the role of CGRP in osteogenesis and vascular genesis during the developmental formation of bone. In the present study, we assessed the abundance of CGRP mRNA and the mRNA of osteogenesis and vascular genesis markers in the foetal mouse mandible and leg bone (tibia). We also analysed the expression and localization of CGRP, osteopontin (OPN) and vascular endothelial growth factor (VEGF-A) using in situ hybridization and immunohistochemical localization in the mouse mandible and tibia at embryonic days 12.5 (E12.5), E14.5, E17.5, and postnatal day 1 (P1). CGRP was clearly detected in the mandible relative to the tibia at E14.5. Hybridization using an anti-sense probe for CGRP was not detected in the mandible at P1. Hybridization with an anti-sense probe for OPN was detected at E14.5, later in the mandible and at P1 in Meckel’s cartilage. However, OPN was only detected in the tibia at E17.5 and later. The abundance of CGRP mRNA differed between the mandible and tibia. The level of vasculogenesis markers, such as VEGF-A, was similar to that of CGRP in the mandible. The levels of VEGF-A, cluster of differentiation 31 (CD31) and lymphatic vessel endothelial hyaluronan receptor 1 (LIVE-1) differed from that of OPN in the mandible. In contrast, the levels of VEGF-A, CD31, matrix metalloproteinase-2 (MMP-2), collagen I (Col I), collagen II (Col II) and OPN mRNA differed from E12.5 to P1 (P<0.001) in the tibia. The abundance of mRNA of CGRP and bone matrix markers (Col I, Col II, and OPN) was low at P5 in the tibia. These differences in CGRP and other mRNAs may induce a different manner of ossification between the mandible and tibia. Therefore, a time lag of ossification occurs between the mandible and tibia during foetal development.
Collapse
Affiliation(s)
- Yuuki Maeda
- The Nippon Dental University, Department of Anatomy.
| | | | | |
Collapse
|
46
|
Chemotaxis during neural crest migration. Semin Cell Dev Biol 2016; 55:111-8. [DOI: 10.1016/j.semcdb.2016.01.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023]
|
47
|
A case of mandible hypoplasia treated with autologous bone graft from mandibular symphysis: Expression of VEGF and receptors in bone regeneration. Acta Histochem 2016; 118:652-656. [PMID: 27432807 DOI: 10.1016/j.acthis.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/16/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
Abstract
The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) system plays an important role in angiogenesis and osteogenesis during both skeletal development and postnatal bone growth and repair. Indeed, protein expression changes of this system could contribute to craniofacial defects commonly associated with a variety of congenital syndromes. Similarly to other craniofacial bones, mandible arises from neural crest cells of the neuroectodermal germ layer, and undergoes membranous ossification. Here, we report a case of left mandibular hypoplasia in a 42-year-old man treated with autologous bone graft from mandibular symphysis. After 3 months from surgical reconstruction, the protein expression of VEGF and receptors (VEGFR-1, -2 and -3) in regenerated bone tissue was evaluated by immunohistochemistry. At variance with the mandibular symphysis bone harvested for graft surgery, we observed de novo expression of VEGF and VEGFRs in osteoblasts and osteocytes from post-graft regenerating mandible bone tissue. In particular, while VEGFR-1 and VEGFR-3 immunopositivity was widespread in osteoblasts, that of VEGFR-2 was scattered. Among the three receptors, VEGFR-3 was the more intensively expressed both in osteoblasts and osteocytes. These findings suggest that VEGFR-2 might be produced during the early period of regeneration, while VEGFR-1 might participate in bone cell maintenance during the middle or late consolidation period. VEGFR-3 might, instead, represent a specific signal for ectomesenchymal lineage differentiation during bone regeneration. Modulation of VEGF/VEGFR signaling could contribute to graft integration and new bone formation during mandibular regeneration.
Collapse
|
48
|
George L, Dunkel H, Hunnicutt BJ, Filla M, Little C, Lansford R, Lefcort F. In vivo time-lapse imaging reveals extensive neural crest and endothelial cell interactions during neural crest migration and formation of the dorsal root and sympathetic ganglia. Dev Biol 2016; 413:70-85. [PMID: 26988118 PMCID: PMC4834247 DOI: 10.1016/j.ydbio.2016.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/11/2016] [Accepted: 02/27/2016] [Indexed: 11/21/2022]
Abstract
During amniote embryogenesis the nervous and vascular systems interact in a process that significantly affects the respective morphogenesis of each network by forming a "neurovascular" link. The importance of neurovascular cross-talk in the central nervous system has recently come into focus with the growing awareness that these two systems interact extensively both during development, in the stem-cell niche, and in neurodegenerative conditions such as Alzheimer's Disease and Amyotrophic Lateral Sclerosis. With respect to the peripheral nervous system, however, there have been no live, real-time investigations of the potential relationship between these two developing systems. To address this deficit, we used multispectral 4D time-lapse imaging in a transgenic quail model in which endothelial cells (ECs) express a yellow fluorescent marker, while neural crest cells (NCCs) express an electroporated red fluorescent marker. We monitored EC and NCC migration in real-time during formation of the peripheral nervous system. Our time-lapse recordings indicate that NCCs and ECs are physically juxtaposed and dynamically interact at multiple locations along their trajectories. These interactions are stereotypical and occur at precise anatomical locations along the NCC migratory pathway. NCCs migrate alongside the posterior surface of developing intersomitic vessels, but fail to cross these continuous streams of motile ECs. NCCs change their morphology and migration trajectory when they encounter gaps in the developing vasculature. Within the nascent dorsal root ganglion, proximity to ECs causes filopodial retraction which curtails forward persistence of NCC motility. Overall, our time-lapse recordings support the conclusion that primary vascular networks substantially influence the distribution and migratory behavior of NCCs and the patterned formation of dorsal root and sympathetic ganglia.
Collapse
Affiliation(s)
- Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, United States; Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, United States.
| | - Haley Dunkel
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, United States
| | - Barbara J Hunnicutt
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, United States
| | - Michael Filla
- University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Charles Little
- University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
49
|
Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research. Stem Cells Int 2016; 2016:2849879. [PMID: 27006661 PMCID: PMC4783549 DOI: 10.1155/2016/2849879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/02/2016] [Indexed: 12/28/2022] Open
Abstract
Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs). The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs) are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.
Collapse
|
50
|
Duan X, Bradbury SR, Olsen BR, Berendsen AD. VEGF stimulates intramembranous bone formation during craniofacial skeletal development. Matrix Biol 2016; 52-54:127-140. [PMID: 26899202 DOI: 10.1016/j.matbio.2016.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 01/16/2023]
Abstract
Deficiency of vascular endothelial growth factor A (VEGF) has been associated with severe craniofacial anomalies in both humans and mice. Cranial neural crest cell (NCC)-derived VEGF regulates proliferation, vascularization and ossification of cartilage and membranous bone. However, the function of VEGF derived from specific subpopulations of NCCs in controlling unique aspects of craniofacial morphogenesis is not clear. In this study a conditional knockdown strategy was used to genetically delete Vegfa expression in Osterix (Osx) and collagen II (Col2)-expressing NCC descendants. No major defects in calvaria and mandibular morphogenesis were observed upon knockdown of VEGF in the Col2(+) cell population. In contrast, loss of VEGF in Osx(+) osteoblast progenitor cells led to reduced ossification of calvarial and mandibular bones without affecting the formation of cartilage templates in newborn mice. The early stages of ossification in the developing jaw revealed decreased initial mineralization levels and a reduced thickness of the collagen I (Col1)-positive bone template upon loss of VEGF in Osx(+) precursors. Increased numbers of proliferating cells were detected within the jaw mesenchyme of mutant embryos. Explant culture assays revealed that mandibular osteogenesis occurred independently of paracrine VEGF action and vascular development. Reduced VEGF expression in mandibles coincided with increased phospho-Smad1/5 (P-Smad1/5) levels and bone morphogenetic protein 2 (Bmp2) expression in the jaw mesenchyme. We conclude that VEGF derived from Osx(+) osteoblast progenitor cells is required for optimal ossification of developing mandibular bones and modulates mechanisms controlling BMP-dependent specification and expansion of the jaw mesenchyme.
Collapse
Affiliation(s)
- Xuchen Duan
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Seth R Bradbury
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Agnes D Berendsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|