1
|
Gomes MPO, Adolpho LF, Souza ATP, Bighetti-Trevisan RL, Calixto RD, Oliveira FS, Almeida ALG, Ramos AP, Gori F, Baron R, Rosa AL, Beloti MM. Agrin-deficient osteocytes disrupt bone tissue homeostasis in male mice. Int J Biol Macromol 2025; 308:142551. [PMID: 40158584 DOI: 10.1016/j.ijbiomac.2025.142551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Osteocytes are terminally differentiated osteoblasts that secrete molecules that regulate bone-tissue homeostasis. Considering that the extracellular matrix protein agrin (AGRN) is secreted by osteoblasts and modulates their differentiation, we hypothesized that AGRN is also expressed by osteocytes and plays a role in their function and therefore in bone remodeling. To test this hypothesis, we deleted agrin specifically in osteocytes using dentin matrix acidic phosphoprotein 1 (DMP1)-Cre mice (C57/BL6 background) and silenced agrin in vitro using clustered regularly interspaced short palindromic repeats/associated nuclease Cas-9 in the Ocy454 osteocyte cell line. We found that osteocytes express agrin and its receptors, low-density lipoprotein receptor-related protein 4, and α-dystroglycan, and that mice with agrin-deficient osteocytes exhibited lower bone mass and impaired mechanical and chemical properties of bone tissue. Agrin knockdown in Ocy454 cells disrupted osteocyte differentiation and function, which reduced osteoblast and increased osteoclast differentiation in a cell co-culture model. Our results showed that agrin is expressed by osteocytes, which are key regulators of bone mass and its mechanical and chemical properties. These findings indicate that agrin may be a therapeutic target because it is important to maintain the balance of the osteocyte-osteoblast-osteoclast circuit, and consequently, bone tissue homeostasis.
Collapse
Affiliation(s)
- Maria Paula Oliveira Gomes
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alann Thaffarell Portilho Souza
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil; School of Dentistry, Metropolitan University Center of the Amazon, Belém, PA 66053-000, Brazil
| | - Rayana Longo Bighetti-Trevisan
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil; Faculty of Dentistry, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Robson Diego Calixto
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Ana Paula Ramos
- Chemistry Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francesca Gori
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Roland Baron
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Adalberto Luiz Rosa
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Zhang Y, Wang X, Huo S, Hong L, Li F. The association between dietary inflammatory index and bone health in US adolescents: Analysis of the NHANES data. Bone Rep 2025; 24:101823. [PMID: 39866531 PMCID: PMC11758120 DOI: 10.1016/j.bonr.2024.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/30/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Adolescents with a lower peak bone mineral density (BMD) and bone mineral content (BMC) have an elevated risk of osteoporosis in adulthood. The impact of diet on bone health, particularly its role in managing inflammation, which is a key factor in bone health, is gaining wider recognition. Despite evidence that anti-inflammatory diets can enhance bone health, the link between the dietary inflammatory index (DII) and bone health among US adolescents has not been thoroughly investigated. This study aimed to evaluate the correlation between DII score and bone health in this population. Methods This cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) of US adolescents aged 12-18 years, spanning surveys from 2001 to 2018. The DII was derived from dietary recall data obtained through questionnaire interviews. Bone health was assessed through total body less head (TBLH) BMD and BMC z-scores and lumbar spine bone mineral apparent density for age (BMADa). Results The study comprised 8773 adolescents with a mean age of 14.94 ± 1.97 years, 52.2 % were male. Multivariate linear regression analysis revealed a negative correlation between DII and lumbar spine BMADa (β = -0.000003, 95 % confidence interval [CI], -0.000005 to -0.000001; P = 0.001).This significant association remained robust when DII was treated as a categorical variable. Compared with individuals in quartile 1(Q1) DII scores (-3.71 to 1.04), those in Q4 (3.37 to 5.04) had lower BMADa, with a regression coefficient of -0.00002 (95 % CI, -0.00003 to -0.000007, P < 0.001). DII was negatively correlated with TBLH BMC z-scores; however, the difference was not statistically significant. Subgroup analyses showed that DII was associated with lumbar spine BMADa and TBLH BMC z-scores in participants who were male, non-black, with a higher educational level, with a high family income, and underweight to normal weight. We found no significant association between DII and TBLH BMD z-scores. Conclusion The findings from this cross-sectional analysis indicate a significant association between the DII and bone health among adolescents in the US, with a notable impact in males and non-black. These insights underscore the importance of adopting dietary patterns to mitigate inflammation and to support optimal bone health and metabolism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of pediatrics, Liaocheng Second People's Hospital, Liaocheng 252600, China
| | - Xuejing Wang
- Department of pediatrics, Liaocheng Second People's Hospital, Liaocheng 252600, China
| | - Shiguang Huo
- Department of pediatrics, Liaocheng Second People's Hospital, Liaocheng 252600, China
| | - Li Hong
- Department of pediatrics, Liaocheng Second People's Hospital, Liaocheng 252600, China
| | - Feifei Li
- Department of pediatrics, Liaocheng Second People's Hospital, Liaocheng 252600, China
| |
Collapse
|
3
|
Li Z, Zhang J, Xu T, Hao Z, Li Y. Mechanism of histone demethylase KDM5A in osteoporotic fracture healing through epigenetic regulation of the miR-495/SKP2/Runx2 axis. Mol Med 2025; 31:65. [PMID: 39972431 PMCID: PMC11837617 DOI: 10.1186/s10020-025-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Osteoporosis represents a salient metabolic bone disorder. Histone demethylase plays a vital role in bone development and homeostasis. This study explored the mechanism of histone demethylase KDM5A affecting osteoporotic fracture healing via the miR-495/SKP2/Runx2 axis. METHODS The murine model of osteoporotic fracture was established. The bone mineral density, maximum elastic stress, and maximum load were tested. The relative trabecular bone volume, bone trabecular thickness, and trabecular number at the proximal end of tibia were detected. The histopathological changes of femur tissues and bone microstructure were observed. Expressions of KDM5A and osteogenic factors were detected. The cell proliferation, alkaline phosphatase activity, and calcified nodules were measured. The binding relationships between KDM5A and miR-495 promoter, and miR-495 and SKP2 were verified. The interaction between SKP2 and Runx2 was detected. The ubiquitination level of Runx2 and the stability of Runx2 protein were detected. RESULTS KDM5A was highly expressed in the murine model of osteoporotic fracture. Interference of KDM5A expression facilitated fracture healing in osteoporotic mice. KDM5A downregulated miR-495 expression by promoting the H3K4me3 methylation of the miR-495 promoter. Inhibition of miR-495 reversed the effect of KDM5A silencing on osteoblast proliferation, differentiation, and mineralization. miR-495 facilitated osteoblast proliferation, differentiation, and mineralization by targeting SKP2. SKP2 suppressed Runx2 expression through ubiquitination degradation. Inhibition of Runx2 reversed the promoting effect of SKP2 silencing on osteogenic differentiation. CONCLUSION KDM5A attenuated the inhibition of miR-495 on SKP2 and promoted the ubiquitination degradation of Runx2 protein by SKP2, thereby repressing osteoblast differentiation and retarding osteoporotic fracture healing.
Collapse
Affiliation(s)
- Zhuoran Li
- School of Medicine, University of Nottingham, Nottingham, NG7 2NR, UK
| | - Junyan Zhang
- Department of Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingting Xu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhiying Hao
- Department of Pharmacy, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No. 3, ZhiGong New Street, Xinghualing District, Taiyuan, Shanxi Province, 030013, China.
| | - Yadong Li
- Department of Emergency, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Xinghualing District, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
4
|
Sun R, Liu K, Pan S, Ye Y, Li N, Chen S, Cui X, Zhang Y, Chen L, Pan J, Hu Z, Luo C, Fan J, Zhou Z, Zhou S, Zhou J. LRP4 mutations promote tumor progression and resistance to anti-PD-1 therapy in recurrent hepatocellular carcinoma. Hepatology 2024:01515467-990000000-01125. [PMID: 39723987 DOI: 10.1097/hep.0000000000001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND AND AIMS HCC recurrence is a major factor limiting long-term survival and the cause of most deaths in patients with HCC. However, molecular characterization and potential therapeutic targets of recurrent HCC remain mostly unknown. APPROACH AND RESULTS We performed whole-exome sequencing in 63 matched primary and recurrent HCC tumors and combined the data with whole-genome sequencing results in 43 paired samples from our previous study. Sanger sequencing was used to identify all low-density lipoprotein receptor-related protein 4 ( LRP4 ) coding exons in 203 additional patients with recurrent HCC. We identified LRP4 somatic mutations in 7.8% (24/309) of recurrent tumors and only 0.97% (3/309) of primary tumors ( p <0.001). Prognosis after the second liver resection was poorer in patients with an LRP4 mutation. Biofunctional investigations demonstrated that inactivating LRP4 mutations promoted tumor progression and immunosuppression. Mechanistically, mutated LRP4 reduced intratumoral conventional type 1 dendritic cell and CD8 + T cell infiltration by repressing C-C motif chemokine ligand 4 expression and secretion through activation of β-catenin signaling, resulting in resistance to anti-programmed cell death protein-1 therapy. Patients with recurrent HCC carrying an LRP4 mutation did not benefit from anti-programmed cell death protein-1 treatment after their second resection surgery. A β-catenin inhibitor-reversed LRP4-induced resistance to anti-programmed cell death protein-1 therapy in humanized tumor-bearing mice. CONCLUSIONS Our results identified novel LRP4 mutations important in recurrent HCC. Inactivating LRP4 mutations were associated with resistance to anti-programmed cell death protein-1 therapy and could be useful biomarkers for precision therapy in patients with recurrent HCC.
Collapse
Affiliation(s)
- Rongqi Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kaixuan Liu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Siyuan Pan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yuhang Ye
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ning Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Shuangyi Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xinyi Cui
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yuxi Zhang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Long Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jingyue Pan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhiqiang Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Chubin Luo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhengjun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Shaolai Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Fudan University, Guangzhou, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Fudan University, Guangzhou, China
| |
Collapse
|
5
|
Chen L, Xiong L, Guo H, Feng X, Zhu X, Xiong WC. Osteoclastic ATP6AP2 maintains β-catenin levels to prevent hyper-osteoclastic activation and trabecular bone-loss. J Bone Miner Res 2024; 39:1821-1834. [PMID: 39400061 DOI: 10.1093/jbmr/zjae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/07/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Osteoclast (OC) formation and bone resorption are regulated by several factors, including V-ATPase, Wnt/β-catenin, and RANKL/RANK signaling. ATP6AP2, also known as the prorenin receptor (PRR), is an accessory subunit of V-ATPase and a regulator of Wnt/β-catenin signaling. While the V-ATPase subunit ATP6AP1 is essential for OC formation and function, the role of ATP6AP2 in OC-lineage cells is less clear. Here, we provide evidence that ATP6AP2 plays a negative role in osteoclastogenesis and function, contrasting with the positive role of ATP6AP1. Mice with conditional KO (cKO) of ATP6AP2 in OCs (Atp6ap2LysM) exhibit trabecular bone loss, likely due to the increased osteoclastogenesis and activity, since bone formation rates (BFRs) are comparable to control mice. In vitro assays using bone marrow macrophages (BMMs) show that Atp6ap2LysM cultures have more RANKL-induced TRAP+ OC-like cells and increased bone resorptive activity. Further studies reveal that while RANKL signaling and V-ATPase activity are normal, ATP6AP2 KO OCs, but not BMMs, have reduced basal levels of Wnt/β-catenin pathway proteins, such as LRP5/6 and β-catenin, compared to controls. Wnt3A treatment induces β-catenin and suppresses OC formation in both control and ATP6AP2 KO OC-lineage cells, indicating that Wnt/β-catenin signaling negatively regulates OC-formation and operates independently of ATP6AP2. Overall, these results suggest that ATP6AP2 is critical for maintaining basal levels of LRP5/6 receptors and β-catenin in OCs, thus acting as a negative regulator of osteoclastogenesis and activation.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin 130022, China
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, United States
| | - Haohan Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, United States
| | - Xu Feng
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 619 19th St S Ste P210, Birmingham, AL 35233, United States
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin 130022, China
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, United States
| |
Collapse
|
6
|
Vandormael P, Fadlallah S, Ruytinx P, Pues A, Sleurs E, Liesenborgs J, Joly J, Agten A, Vandenabeele F, Fraussen J, Verschueren P, Somers V. Fibroblast-like synoviocyte targeting antibodies are associated with failure to reach early and sustained remission or low disease activity after first-line therapy in rheumatoid arthritis. RMD Open 2024; 10:e004743. [PMID: 39551578 PMCID: PMC11574395 DOI: 10.1136/rmdopen-2024-004743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024] Open
Abstract
OBJECTIVE To discover antibody biomarkers that can predict a lack of response to first-line therapy in rheumatoid arthritis (RA) patients. METHODS Two RA cDNA phage display libraries were screened for novel antibodies in baseline RA sera from the Care in early RA (CareRA) trial, differentiating between patients who did or did not reach remission after first-line therapy (n=20 each). Antibody reactivity to identified University Hasselt (UH)-RA antigens was validated in baseline samples from 136 additional CareRA participants. The novel antibodies' potential to predict failure to reach remission or low disease activity (LDA), according to the Disease Activity Score 28-joint C-reactive protein/erythrocyte sedimentation rate (DAS28CRP/ESR) and Clinical/Simplified Disease Activity Index (CDAI/SDAI), was studied by multivariate analyses. The presence of the antibody targets in RA synovial tissue and the fibroblast-like synoviocyte (FLS) cell line SW982 was determined by immunofluorescence. RESULTS We identified antibodies to 41 novel antigens. Antibodies against any of three antigens, UH-RA.305/318/329, discriminated between RA patients not reaching week (w)8 DAS28CRP remission and those that did (36% vs 13%,p=0.0031). In all patients, anti-UH-RA.305/318/329 antibody reactivity was associated with failure to reach week 8 DAS28CRP and DAS28ESR remission (OR 3.63,p=0.0031; OR 2.92,p=0.016; respectively), SDAI/CDAI sustained remission (OR 5.59,p=0.039 for both) and DAS28CRP and DAS28ESR sustained LDA (OR 3.7,p=0.009; OR 2.76,p=0.042; respectively). In rheumatoid factor/anti-citrullinated protein antibody (RF/ACPA) seronegative patients, these antibodies were strongly associated with failure to achieve week 8 DAS28CRP remission (OR 17.3,p=0.0029). Anti-UH-RA.305/329 antibodies were shown to target FLS in RA synovial tissue and SW982 cells. CONCLUSION We identified three antibody biomarkers that are associated with failure to achieve remission/LDA after first-line RA therapy.
Collapse
Affiliation(s)
- Patrick Vandormael
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Hasselt, Belgium
| | - Sukayna Fadlallah
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Hasselt, Belgium
| | - Pieter Ruytinx
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Hasselt, Belgium
| | - Astrid Pues
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Hasselt, Belgium
| | - Ellen Sleurs
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Hasselt, Belgium
| | - Jori Liesenborgs
- Expertise Centre for Digital Media Transnational University Limburg, UHasselt, Hasselt, Belgium
| | - Johan Joly
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Anouk Agten
- Faculty of Rehabilitation Sciences, REVAL-Rehabilitation Research Center, UHasselt, Hasselt, Belgium
| | - Frank Vandenabeele
- Faculty of Rehabilitation Sciences, REVAL-Rehabilitation Research Center, UHasselt, Hasselt, Belgium
| | - Judith Fraussen
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Hasselt, Belgium
| | - Patrick Verschueren
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | - Veerle Somers
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Hasselt, Belgium
| |
Collapse
|
7
|
Xiaohui T, Wang L, Yang X, Jiang H, Zhang N, Zhang H, Li D, Li X, Zhang Y, Wang S, Zhong C, Yu S, Ren M, Sun M, Li N, Chen T, Ma Y, Li F, Liu J, Yu Y, Yue H, Zhang Z, Zhang G. Sclerostin inhibition in rare bone diseases: Molecular understanding and therapeutic perspectives. J Orthop Translat 2024; 47:39-49. [PMID: 39007037 PMCID: PMC11245887 DOI: 10.1016/j.jot.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 07/16/2024] Open
Abstract
Sclerostin emerges as a novel target for bone anabolic therapy in bone diseases. Osteogenesis imperfecta (OI) and X-linked hypophosphatemia (XLH) are rare bone diseases in which therapeutic potential of sclerostin inhibition cannot be ignored. In OI, genetic/pharmacologic sclerostin inhibition promoted bone formation of mice, but responses varied by genotype and age. Serum sclerostin levels were higher in young OI-I patients, while lower in adult OI-I/III/IV. It's worth investigating whether therapeutic response of OI to sclerostin inhibition could be clinically predicted by genotype and age. In XLH, preclinical/clinical data suggested factors other than identified FGF23 contributing to XLH. Higher levels of circulating sclerostin were detected in XLH. Sclerostin inhibition promoted bone formation in Hyp mice, while restored phosphate homeostasis in age-/gender-dependent manner. The role of sclerostin in regulating phosphate metabolism deserves investigation. Sclerostin/FGF23 levels of XLH patients with/without response to FGF23-antibody warrants study to develop precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy. Notably, OI patients were associated with cardiovascular abnormalities, so were XLH patients receiving conventional therapy. Targeting sclerostin loop3 promoted bone formation without cardiovascular risks. Further, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety. The Translational Potential of this Article. Preclinical data on the molecular understanding of sclerostin inhibition in OI and therapeutic efficacy in mouse models of different genotypes, as well as clinical data on serum sclerostin levels in patients with different phenotypes of OI, were reviewed and discussed. Translationally, it would facilitate to develop clinical prediction strategies (e.g. based on genotype and age, not just phenotype) for OI patients responsive to sclerostin inhibition. Both preclinical and clinical data suggested sclerostin as another factor contributing to XLH, in addition to the identified FGF23. The molecular understanding and therapeutic effects of sclerostin inhibition on both promoting bone anabolism and improving phosphate homostasis in Hyp mice were reviewed and discussed. Translationaly, it would facilitate the development of precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy for the treatment of XLH. Cardiovascular risk could not be ruled out during sclerostin inhibition treatment, especially for OI and XLH patients with cardiovascular diseases history and cardiovascular abnormalities. Studies on the role of sclerostin in inhiting bone formation and protecting cardiovascular system were reviewed and discussed. Translationaly, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety.
Collapse
Affiliation(s)
- Tao Xiaohui
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaofei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shenghang Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meishen Ren
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tienan Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
8
|
Xiong L, Guo HH, Pan JX, Ren X, Lee D, Chen L, Mei L, Xiong WC. ATP6AP2, a regulator of LRP6/β-catenin protein trafficking, promotes Wnt/β-catenin signaling and bone formation in a cell type dependent manner. Bone Res 2024; 12:33. [PMID: 38811544 PMCID: PMC11137048 DOI: 10.1038/s41413-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Wnt/β-catenin signaling is critical for various cellular processes in multiple cell types, including osteoblast (OB) differentiation and function. Exactly how Wnt/β-catenin signaling is regulated in OBs remain elusive. ATP6AP2, an accessory subunit of V-ATPase, plays important roles in multiple cell types/organs and multiple signaling pathways. However, little is known whether and how ATP6AP2 in OBs regulates Wnt/β-catenin signaling and bone formation. Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions. Conditionally knocking out (CKO) ATP6AP2 in the OB-lineage cells (Atp6ap2Ocn-Cre) reduced trabecular, but not cortical, bone formation and bone mass. Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs, but not osteocytes. Additional in vitro and in vivo studies revealed impaired β-catenin signaling in ATP6AP2-KO BMSCs and OBs, but not osteocytes, under both basal and Wnt stimulated conditions, although LRP5 was decreased in ATP6AP2-KO osteocytes, but not BMSCs. Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression of β-catenin phosphorylation, but necessary for LRP6/β-catenin and N-cadherin/β-catenin protein complex distribution at the cell membrane, thus preventing their degradation. Expression of active β-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs. Taken together, these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability, and thus regulating β-catenin levels, demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/β-catenin signaling and trabecular bone formation.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Li Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Turoń-Skrzypińska A, Mińko A, Rył A, Mańkowska K, Ciechanowski K, Bereda Z, Rotter I, Dutkiewicz G. Impact of Effectiveness of Physical Activity in a Virtual Environment on the Regulation of Sclerostin and Interleukin 6 Levels in Haemodialysis Patients. J Clin Med 2024; 13:2321. [PMID: 38673595 PMCID: PMC11051331 DOI: 10.3390/jcm13082321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Chronic kidney disease is a significant public health issue associated with reduced physical activity. This can lead to mineral and bone disorders and increased levels of inflammatory markers. One innovative solution that can significantly contribute to increasing patient motivation is the combination of physical training with virtual reality technology during haemodialysis sessions. The aim of this study is to comprehensively assess the impact of regular virtual reality-based physical activity on plasma sclerostin and interleukin 6 levels, as well as on physical performance and the level of physical activity in patients undergoing renal replacement therapy through haemodialysis. Methods: This study is a prospective cohort study. Patients included in the study were randomly assigned to two groups: the study group and the control group. The study group consisted of patients who were entrusted with the task of conducting training using the prototype of the NefroVR system. The duration of the study period for both the study and control groups was 3 months. Results: One hundred and two (102) patients with stage 5 chronic kidney disease who underwent haemodialysis as a renal replacement therapy participated in the study. Patients from the study group were characterized by higher physical activity compared to the control group. There was a significant difference in the level of IL-6 and SOST between the study and control groups in the second measurement. Conclusions: Regular physical activity, especially using approaches such as virtual reality, contributes to improving physical fitness and overall activity levels in patients undergoing haemodialysis. The study demonstrated that regular exercise may be associated with a reduction in inflammatory parameters and positive effects on bone metabolism in patients undergoing haemodialysis.
Collapse
Affiliation(s)
- Agnieszka Turoń-Skrzypińska
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (Z.B.); (I.R.)
| | - Alicja Mińko
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (Z.B.); (I.R.)
| | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (Z.B.); (I.R.)
| | - Katarzyna Mańkowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Kazimierz Ciechanowski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.C.); (G.D.)
| | - Zuzanna Bereda
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (Z.B.); (I.R.)
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (Z.B.); (I.R.)
| | - Grażyna Dutkiewicz
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.C.); (G.D.)
| |
Collapse
|
10
|
Liu C, Liu J, Chen H. Overexpression of miR-7-5p Promoted Fracture Healing Through Inhibiting LRP4 and Activating Wnt/β-Catenin Pathway. INT J LOW EXTR WOUND 2024; 23:86-91. [PMID: 36883209 DOI: 10.1177/15347346231157443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Background. The bone healing after fracture had a great impact on the patients' life quality. However, how miR-7-5p participated in fracture healing has not been investigated. Methods. For in vitro studies, the pre-osteoblast cell line MC3T3-E1 was obtained. The male C57BL/6 mice were purchased for in vivo experiments, and the fracture model was constructed. Cell proliferation was determined by CCK8 assay, and alkaline phosphatase (ALP) activity was measured by commercial kit. Histological status was evaluated using H&E and TRAP staining. The RNA and protein levels were detected via RT-qPCR and western blotting, respectively. Results. Overexpression of miR-7-5p increased cell viability and ALP activity in vitro. Moreover, in vivo studies consistently indicated that transfection of miR-7-5p improved the histological status and increased the proportion of TRAP-positive cells. Overexpression of miR-7-5p suppressed LRP4 expression while upregulated Wnt/β-catenin pathway. Conclusion. MiR-7-5p decreased LRP4 level and further activated the Wnt/β-catenin signaling, facilitating the process of fracture healing.
Collapse
Affiliation(s)
- Changtie Liu
- The Orthopaedic Trauma, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Junlin Liu
- The Orthopaedic Trauma, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Hong Chen
- The Orthopaedic Trauma, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
11
|
Chen BH, Lin ZY, Zeng XX, Jiang YH, Geng F. LRP4-related signalling pathways and their regulatory role in neurological diseases. Brain Res 2024; 1825:148705. [PMID: 38065285 DOI: 10.1016/j.brainres.2023.148705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/28/2024]
Abstract
The mechanism of action of low-density lipoprotein receptor related protein 4 (LRP4) is mediated largely via the Agrin-LRP4-MuSK signalling pathway in the nervous system. LRP4 contributes to the development of synapses in the peripheral nervous system (PNS). It interacts with signalling molecules such as the amyloid beta-protein precursor (APP) and the wingless type protein (Wnt). Its mechanisms of action are complex and mediated via interaction between the pre-synaptic motor neuron and post-synaptic muscle cell in the PNS, which enhances the development of the neuromuscular junction (NMJ). LRP4 may function differently in the central nervous system (CNS) than in the PNS, where it regulates ATP and glutamate release via astrocytes. It mayaffect the growth and development of the CNS by controlling the energy metabolism. LRP4 interacts with Agrin to maintain dendrite growth and density in the CNS. The goal of this article is to review the current studies involving relevant LRP4 signaling pathways in the nervous system. The review also discusses the clinical and etiological roles of LRP4 in neurological illnesses, such as myasthenia gravis, Alzheimer's disease and epilepsy. In this review, we provide a theoretical foundation for the pathogenesis and therapeutic application of LRP4 in neurologic diseases.
Collapse
Affiliation(s)
- Bai-Hui Chen
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Ze-Yu Lin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Xue Zeng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yi-Han Jiang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
12
|
Hendrickx G, Boudin E, Mateiu L, Yorgan TA, Steenackers E, Kneissel M, Kramer I, Mortier G, Schinke T, Van Hul W. An Additional Lrp4 High Bone Mass Mutation Mitigates the Sost-Knockout Phenotype in Mice by Increasing Bone Remodeling. Calcif Tissue Int 2024; 114:171-181. [PMID: 38051321 DOI: 10.1007/s00223-023-01158-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Pathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost-/-) with our p.Arg1170Gln Lrp4 knock-in (Lrp4KI/KI) mouse model to create double mutant Sost-/-;Lrp4KI/KI mice. We compared the phenotype of Sost-/- mice with that of Sost-/-;Lrp4KI/KI mice, to investigate a possible synergistic effect of the disease-causing p.Arg1170Trp variant in Lrp4 on Sost deficiency. Interestingly, presence of Lrp4KI alleles partially mitigated the Sost-/- phenotype. Cellular and dynamic histomorphometry did not reveal mechanistic insights into the observed phenotypic differences. We therefore determined the molecular effect of the Lrp4KI allele by performing bulk RNA sequencing on Lrp4KI/KI primary osteoblasts. Unexpectedly, mostly genes related to bone resorption or remodeling (Acp5, Rankl, Mmp9) were upregulated in Lrp4KI/KI primary osteoblasts. Verification of these markers in Lrp4KI/KI, Sost-/- and Sost-/-;Lrp4KI/KI mice revealed that sclerostin deficiency counteracts this Lrp4KI/KI effect in Sost-/-;Lrp4KI/KI mice. We therefore hypothesize that models with two inactivating Lrp4KI alleles rather activate bone remodeling, with a net gain in bone mass, whereas sclerostin deficiency has more robust anabolic effects on bone formation. Moreover, these effects of sclerostin and Lrp4 are stronger in female mice, contributing to a more severe phenotype than in males and more detectable phenotypic differences among different genotypes.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Eveline Boudin
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ellen Steenackers
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Michaela Kneissel
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ina Kramer
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Geert Mortier
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wim Van Hul
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Liu X, Li F, Dong Z, Gu C, Mao D, Chen J, Luo L, Huang Y, Xiao J, Li Z, Liu Z, Yang Y. Metal-polyDNA nanoparticles reconstruct osteoporotic microenvironment for enhanced osteoporosis treatment. SCIENCE ADVANCES 2023; 9:eadf3329. [PMID: 37531423 PMCID: PMC10396296 DOI: 10.1126/sciadv.adf3329] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Current clinical approaches to osteoporosis primarily target osteoclast biology, overlooking the synergistic role of bone cells, immune cells, cytokines, and inorganic components in creating an abnormal osteoporotic microenvironment. Here, metal-polyDNA nanoparticles (Ca-polyCpG MDNs) composed of Ca2+ and ultralong single-stranded CpG sequences were developed to reconstruct the osteoporotic microenvironment and suppress osteoporosis. Ca-polyCpG MDNs can neutralize osteoclast-secreted hydrogen ions, provide calcium repletion, promote remineralization, and repair bone defects. Besides, the immune-adjuvant polyCpG in MDNs could induce the secretion of osteoclastogenesis inhibitor interleukin-12 and reduce the expression of osteoclast function effector protein to inhibit osteoclast differentiation, further reducing osteoclast-mediated bone resorption. PPi4- generated during the rolling circle amplification reaction acts as bisphosphonate analog and enhances bone targeting of Ca-polyCpG MDNs. In ovariectomized mouse and rabbit models, Ca-polyCpG MDNs prevented bone resorption and promoted bone repair by restoring the osteoporotic microenvironment, providing valuable insights into osteoporosis therapy.
Collapse
Affiliation(s)
- Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Ziliang Dong
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Gu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dongsheng Mao
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Luo
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuting Huang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Xiao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhanchun Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Nakamura K, Koide M, Kobayashi Y, Yamashita T, Matsushita M, Yasuda H, Ishihara Y, Yoshinari N, Udagawa N. Sclerostin deficiency effectively promotes bone morphogenetic protein-2-induced ectopic bone formation. J Periodontal Res 2023. [PMID: 37154419 DOI: 10.1111/jre.13134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Severe periodontitis causes alveolar bone resorption, resulting in tooth loss. Developments of tissue regeneration therapy that can restore alveolar bone mass are desired for periodontal disease. The application of bone morphogenetic protein-2 (BMP-2) has been attempted for bone fractures and severe alveolar bone loss. BMP-2 reportedly induces sclerostin expression, an inhibitor of Wnt signals, that attenuates bone acquisition. However, the effect of sclerostin-deficiency on BMP-2-induced bone regeneration has not been fully elucidated. We investigated BMP-2-induced ectopic bones in Sost-knockout (KO) mice. METHODS rhBMP-2 were implanted into the thighs of C57BL/6 (WT) and Sost-KO male mice at 8 weeks of age. The BMP-2-induced ectopic bones in these mice were examined on days 14 and 28 after implantation. RESULTS Immunohistochemical and quantitative RT-PCR analyses showed that BMP-2-induced ectopic bones expressed sclerostin in osteocytes on days 14 and 28 after implantation in Sost-Green reporter mice. Micro-computed tomography analysis revealed that BMP-2-induced ectopic bones in Sost-KO mice showed a significant increased relative bone volume and bone mineral density (WT = 468 mg/cm3 , Sost-KO = 602 mg/cm3 ) compared with those in WT mice on day 14 after implantation. BMP-2-induced ectopic bones in Sost-KO mice showed an increased horizontal cross-sectional bone area on day 28 after implantation. Immunohistochemical staining showed that BMP-2-induced ectopic bones in Sost-KO mice had an increased number of osteoblasts with osterix-positive nuclei compared with those in WT mice on days 14 and 28 after implantation. CONCLUSION Sclerostin deficiency increased bone mineral density in BMP-2-induced ectopic bones.
Collapse
Affiliation(s)
- Keigo Nakamura
- Department of Operative Dentistry, Endodontology and Periodontology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Mai Matsushita
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Hisataka Yasuda
- Bioindustry Division, Oriental Yeast Co., Ltd., Tokyo, Japan
| | | | - Nobuo Yoshinari
- Department of Operative Dentistry, Endodontology and Periodontology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Nobuyuki Udagawa
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
15
|
Zhang X, Sun Z, Zhang Y, Pan L, Jiang W, Dong H, Jin Z, Kang J, Liu R, Ning B. Periplocin targets low density lipoprotein receptor-related protein 4 to attenuate osteoclastogenesis and protect against osteoporosis. Biochem Pharmacol 2023; 211:115516. [PMID: 36966936 DOI: 10.1016/j.bcp.2023.115516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Osteoporosis is a common inflammaging-related condition, where long-term accumulation of pro-inflammatory cytokines causes massive bone loss. Periplocin, a cardiotonic steroid isolated from Periploca forrestii, has been proved to reduce inflammation in several inflammatory diseases, such as rheumatoid arthritis. However, its effect and mechanism of inflammation in osteoporosis, in which pro-inflammatory factors accelerate bone loss, has not been well demonstrated. In this study, periplocin attenuated receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation of bone marrow-derived macrophages (BMMs) and RAW264.7 cells in vitro. It reduced osteoclast numbers and bone resorption in a concentration- and time-dependent manner. Further, periplocin treatment resulted in reduced bone loss on mice with ovariectomy-induced osteoporosis in vivo. By transcriptome sequencing, periplocin was indicated to function through inhibition of the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways and attenuating interactions between NF-κB and nuclear factor of activated T-cells 1 (NFATc1). It was further detected to bind low density lipoprotein receptor-related protein 4 (LRP4) in osteoclasts to exert anti-inflammatory and anti-osteoclastic effects. Overall, the findings have highlighted a better understanding for the anti-inflammatory and anti-osteoclastic role of periplocin in osteoporosis and its mechanism, bringing new possibilities for osteoporosis treatment.
Collapse
Affiliation(s)
- Xiaodi Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Zhengfang Sun
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Liuzhu Pan
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Wei Jiang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Hui Dong
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250013, China
| | - Zhengxin Jin
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250013, China
| | - Jianning Kang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Ronghan Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China.
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China; Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250013, China.
| |
Collapse
|
16
|
Cao R, Chen P, Wang H, Jing H, Zhang H, Xing G, Luo B, Pan J, Yu Z, Xiong WC, Mei L. Intrafusal-fiber LRP4 for muscle spindle formation and maintenance in adult and aged animals. Nat Commun 2023; 14:744. [PMID: 36765071 PMCID: PMC9918736 DOI: 10.1038/s41467-023-36454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Proprioception is sensed by muscle spindles for precise locomotion and body posture. Unlike the neuromuscular junction (NMJ) for muscle contraction which has been well studied, mechanisms of spindle formation are not well understood. Here we show that sensory nerve terminals are disrupted by the mutation of Lrp4, a gene required for NMJ formation; inducible knockout of Lrp4 in adult mice impairs sensory synapses and movement coordination, suggesting that LRP4 is required for spindle formation and maintenance. LRP4 is critical to the expression of Egr3 during development; in adult mice, it interacts in trans with APP and APLP2 on sensory terminals. Finally, spindle sensory endings and function are impaired in aged mice, deficits that could be diminished by LRP4 expression. These observations uncovered LRP4 as an unexpected regulator of muscle spindle formation and maintenance in adult and aged animals and shed light on potential pathological mechanisms of abnormal muscle proprioception.
Collapse
Affiliation(s)
- Rangjuan Cao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinxiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Riddle RC. Endocrine Functions of Sclerostin. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2023; 28:10.1016/j.coemr.2022.100433. [PMID: 36713826 PMCID: PMC9881182 DOI: 10.1016/j.coemr.2022.100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sclerostin, the product of the SOST gene has primarily been studied for its profound impact on bone mass. By interacting with LRP5 and LRP6, the glycoprotein suppresses the propagation of Wnt signals to β-catenin and thereby suppresses new bone formation. In this review, we discuss emerging data which suggest that sclerostin also acts outside the skeleton to influence metabolism. In humans, serum sclerostin levels are associated with body mass index and indices of metabolic function. Likewise, genetic mouse models of Sost gene deficiency indicate sclerostin influences adipocyte development and insulin signaling. These data raise the possibility that sclerostin neutralization may be effective at treating two epidemic conditions: osteoporosis and obesity.
Collapse
Affiliation(s)
- Ryan C. Riddle
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA.,Address Correspondence to: Ryan C. Riddle, Ph.D., Department of Orthopaedics, University of Maryland School of Medicine, 660 W. Redwood Street, Room 592, Baltimore, MD 21201, USA, , Ph: 410-706-0422
| |
Collapse
|
18
|
Kague E, Medina-Gomez C, Boyadjiev SA, Rivadeneira F. The genetic overlap between osteoporosis and craniosynostosis. Front Endocrinol (Lausanne) 2022; 13:1020821. [PMID: 36225206 PMCID: PMC9548872 DOI: 10.3389/fendo.2022.1020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is the most prevalent bone condition in the ageing population. This systemic disease is characterized by microarchitectural deterioration of bone, leading to increased fracture risk. In the past 15 years, genome-wide association studies (GWAS), have pinpointed hundreds of loci associated with bone mineral density (BMD), helping elucidate the underlying molecular mechanisms and genetic architecture of fracture risk. However, the challenge remains in pinpointing causative genes driving GWAS signals as a pivotal step to drawing the translational therapeutic roadmap. Recently, a skull BMD-GWAS uncovered an intriguing intersection with craniosynostosis, a congenital anomaly due to premature suture fusion in the skull. Here, we recapitulate the genetic contribution to both osteoporosis and craniosynostosis, describing the biological underpinnings of this overlap and using zebrafish models to leverage the functional investigation of genes associated with skull development and systemic skeletal homeostasis.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Fernando Rivadeneira
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
19
|
Heterozygous LRP1 deficiency causes developmental dysplasia of the hip by impairing triradiate chondrocytes differentiation due to inhibition of autophagy. Proc Natl Acad Sci U S A 2022; 119:e2203557119. [PMID: 36067312 PMCID: PMC9477389 DOI: 10.1073/pnas.2203557119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing and identified likely pathogenic variants in the LRP1 (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients. We found that the timing of triradiate cartilage development was brought forward 1 or 2 wk earlier in the LRP-deficient mice, which leads to malformation of the acetabulum and femoral head. Furthermore, Lrp1 deficiency caused a significant decrease of chondrogenic ability in vitro. Our study reveals a critical role of LRP1 in the etiology and pathogenesis of DDH, opening an avenue for its treatment. Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing in eight DDH families followed by targeted sequencing of 68 sporadic DDH patients. We identified likely pathogenic variants in the LRP1 (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients. All patients harboring the LRP1 variants presented a typical DDH phenotype. The heterozygous Lrp1 knockout (KO) mouse (Lrp1+/−) showed phenotypes recapitulating the human DDH phenotypes, indicating Lrp1 loss of function causes DDH. Lrp1 knockin mice with a missense variant corresponding to a human variant identified in DDH (Lrp1R1783W) also presented DDH phenotypes, which were milder in heterozygotes and severer in homozygotes than those of the Lrp1 KO mouse. The timing of triradiate cartilage development was brought forward 1 or 2 wk earlier in the LRP-deficient mice, which leads to malformation of the acetabulum and femoral head. Furthermore, Lrp1 deficiency caused a significant decrease of chondrogenic ability in vitro. During the chondrogenic induction of mice bone marrow stem cells and ATDC5 (an inducible chondrogenic cell line), Lrp1 deficiency caused decreased autophagy levels with significant β-catenin up-regulation and suppression of chondrocyte marker genes. The expression of chondrocyte markers was rescued by PNU-74654 (a β-catenin antagonist) in an shRNA-Lrp1–expressed ATDC5 cell. Our study reveals a critical role of LRP1 in the etiology and pathogenesis of DDH, opening an avenue for its treatment.
Collapse
|
20
|
Huang W, Lao L, Deng Y, Li Z, Liao W, Duan S, Xiao S, Cao Y, Miao J. Preparation, characterization, and osteogenic activity mechanism of casein phosphopeptide-calcium chelate. Front Nutr 2022; 9:960228. [PMID: 35983483 PMCID: PMC9378869 DOI: 10.3389/fnut.2022.960228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Casein phosphopeptides (CPPs) are good at calcium-binding and intestinal calcium absorption, but there are few studies on the osteogenic activity of CPPs. In this study, the preparation of casein phosphopeptide calcium chelate (CPP-Ca) was optimized on the basis of previous studies, and its peptide-calcium chelating activity was characterized. Subsequently, the effects of CPP-Ca on the proliferation, differentiation, and mineralization of MC3T3-E1 cells were studied, and the differentiation mechanism of CPP-Ca on MC3T3-E1 cells was further elucidated by RNA sequencing (RNA-seq). The results showed that the calcium chelation rate of CPPs was 23.37%, and the calcium content of CPP-Ca reached 2.64 × 105 mg/kg. The test results of Ultraviolet–Visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) indicated that carboxyl oxygen and amino nitrogen atoms of CPPs might be chelated with calcium during the chelation. Compared with the control group, the proliferation of MC3T3-E1 cells treated with 250 μg/mL of CPP-Ca increased by 21.65%, 26.43%, and 28.43% at 24, 48, and 72 h, respectively, and the alkaline phosphatase (ALP) activity and mineralized calcium nodules of MC3T3-E1 cells were notably increased by 55% and 72%. RNA-seq results showed that 321 differentially expressed genes (DEGs) were found in MC3T3-E1 cells treated with CPP-Ca, including 121 upregulated and 200 downregulated genes. Gene ontology (GO) revealed that the DEGs mainly played important roles in the regulation of cellular components. The enrichment of the Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathway indicated that the AMPK, PI3K-Akt, MAPK, and Wnt signaling pathways were involved in the differentiation of MC3T3-E1 cells. The results of a quantitative real-time PCR (qRT-PCR) showed that compared with the blank control group, the mRNA expressions of Apolipoprotein D (APOD), Osteoglycin (OGN), and Insulin-like growth factor (IGF1) were significantly increased by 2.6, 2.0 and 3.0 times, respectively, while the mRNA levels of NOTUM, WIF1, and LRP4 notably decreased to 2.3, 2.1, and 4.2 times, respectively, which were consistent both in GO functional and KEGG enrichment pathway analysis. This study provided a theoretical basis for CPP-Ca as a nutritional additive in the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Linhui Lao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuliang Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wanwen Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Suyao Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China.,Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
21
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
22
|
Iwamoto R, Koide M, Udagawa N, Kobayashi Y. Positive and Negative Regulators of Sclerostin Expression. Int J Mol Sci 2022; 23:ijms23094895. [PMID: 35563281 PMCID: PMC9102037 DOI: 10.3390/ijms23094895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research.
Collapse
Affiliation(s)
- Rina Iwamoto
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan;
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
- Correspondence: ; Tel.: +81-263-51-2238
| |
Collapse
|
23
|
Katchkovsky S, Chatterjee B, Abramovitch-Dahan CV, Papo N, Levaot N. Competitive blocking of LRP4-sclerostin binding interface strongly promotes bone anabolic functions. Cell Mol Life Sci 2022; 79:113. [PMID: 35099616 PMCID: PMC11073160 DOI: 10.1007/s00018-022-04127-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Induction of bone formation by Wnt ligands is inhibited when sclerostin (Scl), an osteocyte-produced antagonist, binds to its receptors, the low-density lipoprotein receptor-related proteins 5 or 6 (LRP5/6). Recently, it was shown that enhanced inhibition is achieved by Scl binding to the co-receptor LRP4. However, it is not clear if the binding of Scl to LRP4 facilitates Scl binding to LRP5/6 or inhibits the Wnt pathway in an LRP5/6-independent manner. Here, using the yeast display system, we demonstrate that Scl exhibits a stronger binding affinity for LRP4 than for LRP6. Moreover, we found stronger Scl binding to LRP6 in the presence of LRP4. We further show that a Scl mutant (SclN93A), which tightly binds LRP4 but not LRP6, does not inhibit the Wnt pathway on its own. We demonstrate that SclN93A competes with Scl for a common binding site on LRP4 and antagonizes Scl inhibition of the Wnt signaling pathway in osteoblasts in vitro. Finally, we demonstrate that 2 weeks of bi-weekly subcutaneous injections of SclN93A fused to the fragment crystallizable (Fc) domain of immunoglobulin (SclN93AFc), which retains the antagonistic activity of the mutant, significantly increases bone formation rate and enhances trabecular volumetric bone fraction, trabecular number, and bone length in developing mice. Our data show that LRP4 serves as an anchor that facilitates Scl-LRP6 binding and that inhibition of the Wnt pathway by Scl depends on its prior binding to LRP4. We further provide evidence that compounds that inhibit Scl-LRP4 interactions offer a potential strategy to promote anabolic bone functions.
Collapse
Affiliation(s)
- Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Biplab Chatterjee
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Chen-Viki Abramovitch-Dahan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
24
|
Lagrange J, Worou ME, Michel JB, Raoul A, Didelot M, Muczynski V, Legendre P, Plénat F, Gauchotte G, Lourenco-Rodrigues MD, Christophe OD, Lenting PJ, Lacolley P, Denis CV, Regnault V. The VWF/LRP4/αVβ3-axis represents a novel pathway regulating proliferation of human vascular smooth muscle cells. Cardiovasc Res 2022; 118:622-637. [PMID: 33576766 DOI: 10.1093/cvr/cvab042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 01/22/2023] Open
Abstract
AIMS Von Willebrand factor (VWF) is a plasma glycoprotein involved in primary haemostasis, while also having additional roles beyond haemostasis namely in cancer, inflammation, angiogenesis, and potentially in vascular smooth muscle cell (VSMC) proliferation. Here, we addressed how VWF modulates VSMC proliferation and investigated the underlying molecular pathways and the in vivo pathophysiological relevance. METHODS AND RESULTS VWF induced proliferation of human aortic VSMCs and also promoted VSMC migration. Treatment of cells with a siRNA against αv integrin or the RGT-peptide blocking αvβ3 signalling abolished proliferation. However, VWF did not bind to αvβ3 on VSMCs through its RGD-motif. Rather, we identified the VWF A2 domain as the region mediating binding to the cells. We hypothesized the involvement of a member of the LDL-related receptor protein (LRP) family due to their known ability to act as co-receptors. Using the universal LRP-inhibitor receptor-associated protein, we confirmed LRP-mediated VSMC proliferation. siRNA experiments and confocal fluorescence microscopy identified LRP4 as the VWF-counterreceptor on VSMCs. Also co-localization between αvβ3 and LRP4 was observed via proximity ligation analysis and immuno-precipitation experiments. The pathophysiological relevance of our data was supported by VWF-deficient mice having significantly reduced hyperplasia in carotid artery ligation and artery femoral denudation models. In wild-type mice, infiltration of VWF in intimal regions enriched in proliferating VSMCs was found. Interestingly, also analysis of human atherosclerotic lesions showed abundant VWF accumulation in VSMC-proliferating rich intimal areas. CONCLUSION VWF mediates VSMC proliferation through a mechanism involving A2 domain binding to the LRP4 receptor and integrin αvβ3 signalling. Our findings provide new insights into the mechanisms that drive physiological repair and pathological hyperplasia of the arterial vessel wall. In addition, the VWF/LRP4-axis may represent a novel therapeutic target to modulate VSMC proliferation.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Hyperplasia
- Integrin alphaVbeta3/genetics
- Integrin alphaVbeta3/metabolism
- LDL-Receptor Related Proteins/genetics
- LDL-Receptor Related Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Plaque, Atherosclerotic
- Signal Transduction
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- von Willebrand Factor/genetics
- von Willebrand Factor/metabolism
- Mice
Collapse
Affiliation(s)
- Jérémy Lagrange
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Morel E Worou
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | | | - Alexandre Raoul
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Mélusine Didelot
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Vincent Muczynski
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Paulette Legendre
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | | | | | - Marc-Damien Lourenco-Rodrigues
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Patrick Lacolley
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Cécile V Denis
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Véronique Regnault
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| |
Collapse
|
25
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
26
|
Huybrechts Y, Boudin E, Hendrickx G, Steenackers E, Hamdy N, Mortier G, Martínez Díaz-Guerra G, Bracamonte MS, Appelman-Dijkstra NM, Van Hul W. Identification of Compound Heterozygous Variants in LRP4 Demonstrates That a Pathogenic Variant outside the Third β-Propeller Domain Can Cause Sclerosteosis. Genes (Basel) 2021; 13:genes13010080. [PMID: 35052419 PMCID: PMC8774882 DOI: 10.3390/genes13010080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Sclerosteosis is a high bone mass disorder, caused by pathogenic variants in the genes encoding sclerostin or LRP4. Both proteins form a complex that strongly inhibits canonical WNT signaling activity, a pathway of major importance in bone formation. So far, all reported disease-causing variants are located in the third β-propeller domain of LRP4, which is essential for the interaction with sclerostin. Here, we report the identification of two compound heterozygous variants, a known p.Arg1170Gln and a novel p.Arg632His variant, in a patient with a sclerosteosis phenotype. Interestingly, the novel variant is located in the first β-propeller domain, which is known to be indispensable for the interaction with agrin. However, using luciferase reporter assays, we demonstrated that both the p.Arg1170Gln and the p.Arg632His variant in LRP4 reduced the inhibitory capacity of sclerostin on canonical WNT signaling activity. In conclusion, this study is the first to demonstrate that a pathogenic variant in the first β-propeller domain of LRP4 can contribute to the development of sclerosteosis, which broadens the mutational spectrum of the disorder.
Collapse
Affiliation(s)
- Yentl Huybrechts
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | - Eveline Boudin
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | - Gretl Hendrickx
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | - Ellen Steenackers
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | - Neveen Hamdy
- Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, 2332 ZA Leiden, The Netherlands; (N.H.); (N.M.A.-D.)
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
| | | | - Milagros Sierra Bracamonte
- Endocrinology and Nutrition Resident, 12 de Octubre University Hospital, 28041 Madrid, Spain; (G.M.D.-G.); (M.S.B.)
| | - Natasha M. Appelman-Dijkstra
- Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, 2332 ZA Leiden, The Netherlands; (N.H.); (N.M.A.-D.)
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp and University Hospital Antwerp, 2650 Antwerp, Belgium; (Y.H.); (E.B.); (G.H.); (E.S.); (G.M.)
- Correspondence: ; Tel.: +32-(0)3-275-97-61
| |
Collapse
|
27
|
Novel variants in the LRP4 underlying Cenani-Lenz Syndactyly syndrome. J Hum Genet 2021; 67:253-259. [PMID: 34857885 DOI: 10.1038/s10038-021-00995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Cenani-Lenz syndrome (CLS) is a rare autosomal-recessive congenital disorder affecting development of distal limbs. It is characterized mainly by syndactyly and/or oligodactyly, renal anomalies, and characteristic facial features. Mutations in the LRP4 gene, located on human chromosome 11p11.2-q13.1, causes the CLS. The gene LRP4 encodes a low-density lipoprotein receptor-related protein-4, which mediates SOST-dependent inhibition of bone formation and Wnt signaling. In the study, presented here, three families of Pakistani origin, segregating CLS in the autosomal recessive manner were clinically and genetically characterized. In two families (A and B), microsatellite-based homozygosity mapping followed by Sanger sequencing identified a novel homozygous missense variant [NM_002334.3: c.295G>C; p.(Asp99His)] in the LRP4 gene. In the third family C, exome sequencing revealed a second novel homozygous missense variant [NM_002334.3: c.1633C>T; p.(Arg545Trp)] in the same gene. To determine the functional relevance of these variants, we tested their ability to inhibit canonical WNT signaling in a luciferase assay. Wild type LRP4 was able to inhibit LRP6-dependent WNT signaling robustly. The two mutants p.(Asp99His) and p.(Arg545Trp) inhibited WNT signaling less effectively, suggesting they reduced LRP4 function.
Collapse
|
28
|
Wang KD, Ding X, Jiang N, Zeng C, Wu J, Cai XY, Hettinghouse A, Khleborodova A, Lei ZN, Chen ZS, Lei GH, Liu CJ. Digoxin targets low density lipoprotein receptor-related protein 4 and protects against osteoarthritis. Ann Rheum Dis 2021; 81:544-555. [PMID: 34853001 DOI: 10.1136/annrheumdis-2021-221380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/12/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Dysregulated chondrocyte metabolism is closely associated with the pathogenesis of osteoarthritis (OA). Suppressing chondrocyte catabolism to restore cartilage homeostasis has been extensively explored, whereas far less effort has been invested toward enhancing chondrocyte anabolism. This study aimed to repurpose clinically approved drugs as potential stimulators of chondrocyte anabolism in treating OA. METHODS Screening of a Food and Drug Administration-approved drug library; Assays for examining the chondroprotective effects of digoxin in vitro; Assays for defining the therapeutic effects of digoxin using a surgically-induced OA model; A propensity-score matched cohort study using The Health Improvement Network to examine the relationship between digoxin use and the risk of joint OA-associated replacement among patients with atrial fibrillation; identification and characterisation of the binding of digoxin to low-density lipoprotein receptor-related protein 4 (LRP4); various assays, including use of CRISPR-Cas9 genome editing to delete LRP4 in human chondrocytes, for examining the dependence on LRP4 of digoxin regulation of chondrocytes. RESULTS Serial screenings led to the identification of ouabain and digoxin as stimulators of chondrocyte differentiation and anabolism. Ouabain and digoxin protected against OA and relieved OA-associated pain. The cohort study of 56 794 patients revealed that digoxin use was associated with reduced risk of OA-associated joint replacement. LRP4 was isolated as a novel target of digoxin, and deletion of LRP4 abolished digoxin's regulations of chondrocytes. CONCLUSIONS These findings not only provide new insights into the understanding of digoxin's chondroprotective action and underlying mechanisms, but also present new evidence for repurposing digoxin for OA.
Collapse
Affiliation(s)
- Kai-di Wang
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Xiang Ding
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA.,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xian-Yi Cai
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Asya Khleborodova
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, New York, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, New York, USA
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China .,Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA .,Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Kim SP, Da H, Wang L, Taketo MM, Wan M, Riddle RC. Bone-derived sclerostin and Wnt/β-catenin signaling regulate PDGFRα + adipoprogenitor cell differentiation. FASEB J 2021; 35:e21957. [PMID: 34606641 PMCID: PMC8496915 DOI: 10.1096/fj.202100691r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
The Wnt signaling antagonist, sclerostin, is a potent suppressor of bone acquisition that also mediates endocrine communication between bone and adipose. As a result, Sost-/- mice exhibit dramatic increases in bone formation but marked decreases in visceral and subcutaneous adipose that are secondary to alterations in lipid synthesis and utilization. While interrogating the mechanism by which sclerostin influences adipocyte metabolism, we observed paradoxical increases in the adipogenic potential and numbers of CD45- :Sca1+ :PDGFRα+ adipoprogenitors in the stromal vascular compartment of fat pads isolated from male Sost-/- mice. Lineage tracing studies indicated that sclerostin deficiency blocks the differentiation of PDGFRα+ adipoprogenitors to mature adipocytes in association with increased Wnt/β-catenin signaling. Importantly, osteoblast/osteocyte-specific Sost gene deletion mirrors the accumulation of PDGFRα+ adipoprogenitors, reduction in fat mass, and improved glucose metabolism evident in Sost-/- mice. These data indicate that bone-derived sclerostin regulates multiple facets of adipocyte physiology ranging from progenitor cell commitment to anabolic metabolism.
Collapse
Affiliation(s)
- Soohyun P Kim
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Da
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Mao Z, Wang Z, Zhang S, Pu Y, Wang J, Zhang T, Long Y, Liu Y, Ma Y, Zhu J. LRP4 promotes migration and invasion of gastric cancer under the regulation of microRNA-140-5p. Cancer Biomark 2021; 29:245-253. [PMID: 32675391 DOI: 10.3233/cbm-190571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 4 (LRP4) has been reported to be implicated in multiple types of cancers. However, the significance of LRP4 in gastric cancer (GC) remains poorly elucidated. Therefore, it's urgent to investigate the importance and underlying mechanisms of LRP4 in GC. OBJECTIVE To investigate the clinical roles of LRP4 in GC. METHODS The LRP4 mRNA and miR-140-5p was measured by qRT-PCR. The protein expression was determined Western blot. Kaplan-Meier survival curves and Cox proportional hazard regression models were performed to evaluate prognosis. RESULTS We demonstrated that LRP4 mRNA and protein was up-regulated in GC tissues for the first time. Its high expression was significantly correlated with malignant clinical features including TNM stage and lymph-node metastasis and poor prognosis for GC patients. LRP4 promotes migration, invasion and epithelial-mesenchymal transition (EMT) progress of GC cells. Mechanically, LRP4 regulated PI3K/AKT in GC cells. AKT inhibitors reversed the effects of LRP4. Finally, LRP4 was regulated by miR-140-5p in GC. CONCLUSIONS Our findings showed that LRP4 has an important function in GC progression and promotes GC migration, invasion and EMT by regulating PI3K/AKT under regulation of miR-140-5p, providing a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Zhijun Mao
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhen Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Shiping Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yansong Pu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jianhua Wang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Tao Zhang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yanbin Long
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yi Liu
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yu Ma
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Zhu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Guo HH, Xiong L, Pan JX, Lee D, Liu K, Ren X, Wang B, Yang X, Cui S, Mei L, Xiong WC. Hepcidin contributes to Swedish mutant APP-induced osteoclastogenesis and trabecular bone loss. Bone Res 2021; 9:31. [PMID: 34108442 PMCID: PMC8190093 DOI: 10.1038/s41413-021-00146-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Patients with Alzheimer's disease (AD) often have lower bone mass than healthy individuals. However, the mechanisms underlying this change remain elusive. Previously, we found that Tg2576 mice, an AD animal model that ubiquitously expresses Swedish mutant amyloid precursor protein (APPswe), shows osteoporotic changes, reduced bone formation, and increased bone resorption. To understand how bone deficits develop in Tg2576 mice, we used a multiplex antibody array to screen for serum proteins that are altered in Tg2576 mice and identified hepcidin, a master regulator of iron homeostasis. We further investigated hepcidin's function in bone homeostasis and found that hepcidin levels were increased not only in the serum but also in the liver, muscle, and osteoblast (OB) lineage cells in Tg2576 mice at both the mRNA and protein levels. We then generated mice selectively expressing hepcidin in hepatocytes or OB lineage cells, which showed trabecular bone loss and increased osteoclast (OC)-mediated bone resorption. Further cell studies suggested that hepcidin increased OC precursor proliferation and differentiation by downregulating ferroportin (FPN) expression and increasing intracellular iron levels. In OB lineage cells, APPswe enhanced hepcidin expression by inducing ER stress and increasing OC formation, in part through hepcidin. Together, these results suggest that increased hepcidin expression in hepatocytes and OB lineage cells in Tg2576 mice contributes to enhanced osteoclastogenesis and trabecular bone loss, identifying the hepcidin-FPN-iron axis as a potential therapeutic target to prevent AD-associated bone loss.
Collapse
Affiliation(s)
- Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kevin Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bo Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shun Cui
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
32
|
Hui T, Jing H, Zhou T, Chen P, Liu Z, Dong X, Yan M, Ren D, Zou S, Wang S, Fei E, Hong D, Lai X. Increasing LRP4 diminishes neuromuscular deficits in a mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2021; 30:1579-1590. [PMID: 33987657 PMCID: PMC8369839 DOI: 10.1093/hmg/ddab135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease characterized by progressive wasting of skeletal muscles. The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, critical for the control of muscle contraction. The NMJ decline is observed in DMD patients, but the mechanism is unclear. LRP4 serves as a receptor for agrin, a proteoglycan secreted by motor neurons to induce NMJ, and plays a critical role in NMJ formation and maintenance. Interestingly, we found that protein levels of LRP4 were reduced both in muscles of the DMD patients and DMD model mdx mice. We explored whether increasing LRP4 is beneficial for DMD and crossed muscle-specific LRP4 transgenic mice with mdx mice (mdx; HSA-LRP4). The LRP4 transgene increased muscle strength, together with improved neuromuscular transmission in mdx mice. Furthermore, we found the LRP4 expression mitigated NMJ fragments and denervation in mdx mice. Mechanically, we showed that overexpression of LRP4 increased the activity of MuSK and expression of dystrophin-associated glycoprotein complex proteins in the mdx mice. Overall, our findings suggest that increasing LRP4 improves both function and structure of NMJ in the mdx mice and Agrin signaling might serve as a new therapeutic strategy in DMD.
Collapse
Affiliation(s)
- Tiankun Hui
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Hongyang Jing
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Tian Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Peng Chen
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Ziyang Liu
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xia Dong
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Min Yan
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Dongyan Ren
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Suqi Zou
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Shunqi Wang
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Erkang Fei
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Sun D, Milibari L, Pan JX, Ren X, Yao LL, Zhao Y, Shen C, Chen WB, Tang FL, Lee D, Zhang JS, Mei L, Xiong WC. Critical Roles of Embryonic Born Dorsal Dentate Granule Neurons for Activity-Dependent Increases in BDNF, Adult Hippocampal Neurogenesis, and Antianxiety-like Behaviors. Biol Psychiatry 2021; 89:600-614. [PMID: 33183762 PMCID: PMC7889658 DOI: 10.1016/j.biopsych.2020.08.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Dentate gyrus (DG), a "gate" that controls information flow into the hippocampus, plays important roles in regulating both cognitive (e.g., spatial learning and memory) and mood behaviors. Deficits in DG neurons contribute to the pathogenesis of not only neurological, but also psychiatric, disorders, such as anxiety disorder. Whereas DG's function in spatial learning and memory has been extensively investigated, its role in regulating anxiety remains elusive. METHODS Using c-Fos to mark DG neuron activation, we identified a group of embryonic born dorsal DG (dDG) neurons, which were activated by anxiogenic stimuli and specifically express osteocalcin (Ocn)-Cre. We further investigated their functions in regulating anxiety and the underlying mechanisms by using a combination of chemogenetic, electrophysiological, and RNA-sequencing methods. RESULTS The Ocn-Cre+ dDG neurons were highly active in response to anxiogenic environment but had lower excitability and fewer presynaptic inputs than those of Ocn-Cre- or adult born dDG neurons. Activating Ocn-Cre+ dDG neurons suppressed anxiety-like behaviors and increased adult DG neurogenesis, whereas ablating or chronically inhibiting Ocn-Cre+ dDG neurons exacerbated anxiety-like behaviors, impaired adult DG neurogenesis, and abolished activity (e.g., voluntary wheel running)-induced anxiolytic effect and adult DG neurogenesis. RNA-sequencing screening for factors induced by activation of Ocn-Cre+ dDG neurons identified BDNF, which was required for Ocn-Cre+ dDG neurons mediated antianxiety-like behaviors and adult DG neurogenesis. CONCLUSIONS These results demonstrate critical functions of Ocn-Cre+ dDG neurons in suppressing anxiety-like behaviors but promoting adult DG neurogenesis, and both functions are likely through activation of BDNF.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Leena Milibari
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ling-Ling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yang Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Bing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jun-Shi Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
34
|
Yan M, Guo A, Chen P, Jing H, Ren D, Zhong Y, Wu Y, Fei E, Lai X, Zou S, Wang S. LRP4 LDLα repeats of astrocyte enhance dendrite arborization of the neuron. Mol Brain 2020; 13:166. [PMID: 33302985 PMCID: PMC7730773 DOI: 10.1186/s13041-020-00708-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
The low-density lipoprotein receptor-related protein 4 (LRP4) is essential for inducing the neuromuscular junction (NMJ) formation in muscle fibers, and LRP4 plays a critical role in dendritic development and synaptogenesis in the central nervous system (CNS). As a single transmembrane protein, LRP4 contains an enormously sizeable extracellular domain (ECD), containing multiple LDLα repeats in the N-terminal of ECD. LRP4 only with extracellular domain acts as a similar mechanism of full-length LRP4 in muscles to stimulate acetylcholine receptor clustering. In this study, we elucidated that LDLα repeats of LRP4 maintained the body weight and survival rate. Dendritic branches of the pyramidal neurons in Lrp4-null mice with LRP4 LDLα repeats residue were more than in Lrp4-null mice without residual LRP4 domain. Supplement with conditioned medium from LRP4 LDLα overexpression cells, the primary culture pyramidal neurons achieved strong dendritic arborization ability. Besides, astrocytes with LRP4 LDLα repeats residue could promote pyramidal neuronal dendrite arborization in the primary co-cultured system. These observations signify that LRP4 LDLα repeats play a prominent underlying role in dendrite arborization.
Collapse
Affiliation(s)
- Min Yan
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Amin Guo
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Peng Chen
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Hongyang Jing
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Dongyan Ren
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Yanzi Zhong
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Yongqiang Wu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Erkang Fei
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xinsheng Lai
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Suqi Zou
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Shunqi Wang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China. .,Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
35
|
Yu Z, Zhang M, Luo B, Jing H, Yu Y, Wang S, Luo S. Lrp4 in hippocampal astrocytes serves as a negative feedback factor in seizures. Cell Biosci 2020; 10:135. [PMID: 33292473 PMCID: PMC7684739 DOI: 10.1186/s13578-020-00498-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epilepsy is characterized by the typical symptom of seizure, and anti-seizure medications are the main therapeutic method in clinical, but the effects of these therapy have not been satisfactory. To find a better treatment, it makes sense to further explore the regulatory mechanisms of seizures at genetic level. Lrp4 regionally expresses in mice hippocampus where is key to limbic epileptogenesis. It is well known that neurons release a high level of glutamate during seizures, and it has been reported that Lrp4 in astrocytes down-regulates glutamate released from neurons. However, it is still unclear whether there is a relationship between Lrp4 expression level and seizures, and whether Lrp4 plays a role in seizures. RESULTS We found that seizures induced by pilocarpine decreased Lrp4 expression level and increased miR-351-5p expression level in mice hippocampus. Glutamate reduced Lrp4 expression and enhanced miR-351-5p expression in cultured hippocampal astrocytes, and these effects can be partially attenuated by AP5. Furthermore, miR-351-5p inhibitor lessened the reduction of Lrp4 expression in glutamate treated hippocampal astrocytes. Local reduction of Lrp4 in hippocampus by sh Lrp4 lentivirus injection in hippocampus increased the threshold of seizures in pilocarpine or pentylenetetrazol (PTZ) injected mice. CONCLUSIONS These results indicated that high released glutamate induced by seizures down-regulated astrocytic Lrp4 through increasing miR-351-5p in hippocampal astrocytes via activating astrocytic NMDA receptor, and locally reduction of Lrp4 in hippocampus increased the threshold of seizures. Lrp4 in hippocampal astrocytes appears to serve as a negative feedback factor in seizures. This provides a new potential therapeutic target for seizures regulation.
Collapse
Affiliation(s)
- Zheng Yu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Meiying Zhang
- Nanchang University Hospital, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bin Luo
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hongyang Jing
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yue Yu
- Teensen Genesis School, Nanchang, 330006, Jiangxi, China
| | - Shunqi Wang
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghuo Distinct, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
36
|
Turoń-Skrzypińska A, Dutkiewicz G, Marchelek-Myśliwiec M, Rył A, Dziedziejko V, Safranow K, Ciechanowski K, Rotter I. Physical Activity versus Sclerostin and Interleukin 6 Concentration in Patients Receiving Renal Replacement Therapy by Hemodialysis. Risk Manag Healthc Policy 2020; 13:1467-1475. [PMID: 32982505 PMCID: PMC7490095 DOI: 10.2147/rmhp.s255780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/22/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Chronic kidney disease and renal replacement therapy are associated with reduced motor activity, which may result in the presence of mineral bone disorders and an increase in inflammation markers. The aim of the study was to assess the relationship between the performance of daily physical activity, expressed in the number of steps performed by patients undergoing hemodialysis and the concentration of selected biochemical parameters (SCL, IL-6). Patients and Methods The study group (B) involved 33 patients aged 59.8 ± 9.8 years from the dialysis station at the Department of Nephrology, Transplantology and Internal Medicine PUM. In group B, interventions considering an increase in physical activity expressed in the number of steps were introduced. Group C consisted of 30 people aged 54.9 (9.37), with GFR over 60 mL/min/1.73m. Physical activity was measured with pedometers. Anthropometric and biochemical parameters were assessed at baseline, after the third and sixth month of the study. Descriptive statistics, intergroup comparisons using Mann–Whitney U test and Spearman correlation analysis were performed. The level of significance was set at p≤0.005. Results A relationship between IL-6 concentration and the number of steps in group B after three months of intervention was demonstrated. In group C, the concentration of SCL and IL-6 decreased with the increase in the number of steps taken. Only in group C the waist circumference decreased with the increase of the number of steps performed. Conclusion Patients receiving renal replacement therapy by hemodialysis showed significantly lower physical activity compared to people without kidney disease. Performing bigger number of steps can lower interleukin 6 levels in hemodialysis patients.
Collapse
Affiliation(s)
- Agnieszka Turoń-Skrzypińska
- Department of Medical Rehabilitation and Clinical Rehabilitation, Pomeranian Medical University, Szczecin 71-210, Poland
| | - Grażyna Dutkiewicz
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin 70-111, Poland
| | | | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Rehabilitation, Pomeranian Medical University, Szczecin 71-210, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Kazimierz Ciechanowski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Rehabilitation, Pomeranian Medical University, Szczecin 71-210, Poland
| |
Collapse
|
37
|
Men Y, Wang Y, Yi Y, Jing D, Luo W, Shen B, Stenberg W, Chai Y, Ge WP, Feng JQ, Zhao H. Gli1+ Periodontium Stem Cells Are Regulated by Osteocytes and Occlusal Force. Dev Cell 2020; 54:639-654.e6. [PMID: 32652075 DOI: 10.1016/j.devcel.2020.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/04/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Teeth are attached to alveolar bone by the periodontal ligament (PDL), which contains stem cells supporting tissue turnover. Here, we identified Gli1+ cells in adult mouse molar PDL as multi-potential stem cells (PDLSCs) giving rise to PDL, alveolar bone, and cementum. They support periodontium tissue turnover and injury repair. Gli1+ PDLSCs are surrounding the neurovascular bundle and more enriched in the apical region. Canonical Wnt signaling is essential for their activation. Alveolar bone osteocytes negatively regulate Gli1+ PDLSCs activity through sclerostin, a Wnt inhibitor. Blockage of sclerostin accelerates the PDLSCs lineage contribution rate in vivo. Sclerostin expression is modulated by physiological occlusal force. Removal of occlusal force upregulates sclerostin and inhibits PDLSCs activation. In summary, Gli1+ cells are the multipotential PDLSCs in vivo. Osteocytes provide negative feedback to PDLSCs and inhibit their activities through sclerostin. Physiological occlusal force indirectly regulates PDLSCs activities by fine-tuning this feedback loop.
Collapse
Affiliation(s)
- Yi Men
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuhong Wang
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Dian Jing
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Wenjing Luo
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Bo Shen
- Children's Research Institute, UT Southwestern Medical Center Dallas, TX 75235, USA
| | - William Stenberg
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jian Q Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA.
| |
Collapse
|
38
|
Xiong L, Zhao K, Cao Y, Guo HH, Pan JX, Yang X, Ren X, Mei L, Xiong WC. Linking skeletal muscle aging with osteoporosis by lamin A/C deficiency. PLoS Biol 2020; 18:e3000731. [PMID: 32479501 PMCID: PMC7310860 DOI: 10.1371/journal.pbio.3000731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/23/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
The nuclear lamina protein lamin A/C is a key component of the nuclear envelope. Mutations in the lamin A/C gene (LMNA) are identified in patients with various types of laminopathy-containing diseases, which have features of accelerated aging and osteoporosis. However, the underlying mechanisms for laminopathy-associated osteoporosis remain largely unclear. Here, we provide evidence that loss of lamin A/C in skeletal muscles, but not osteoblast (OB)-lineage cells, results in not only muscle aging-like deficit but also trabecular bone loss, a feature of osteoporosis. The latter is due in large part to elevated bone resorption. Further cellular studies show an increase of osteoclast (OC) differentiation in cocultures of bone marrow macrophages/monocytes (BMMs) and OBs after treatment with the conditioned medium (CM) from lamin A/C-deficient muscle cells. Antibody array screening analysis of the CM proteins identifies interleukin (IL)-6, whose expression is markedly increased in lamin A/C-deficient muscles. Inhibition of IL-6 by its blocking antibody in BMM-OB cocultures diminishes the increase of osteoclastogenesis. Knockout (KO) of IL-6 in muscle lamin A/C-KO mice diminishes the deficits in trabecular bone mass but not muscle. Further mechanistic studies reveal an elevation of cellular senescence marked by senescence-associated beta-galactosidase (SA-β-gal), p16Ink4a, and p53 in lamin A/C-deficient muscles and C2C12 muscle cells, and the p16Ink4a may induce senescence-associated secretory phenotype (SASP) and IL-6 expression. Taken together, these results suggest a critical role for skeletal muscle lamin A/C to prevent cellular senescence, IL-6 expression, hyperosteoclastogenesis, and trabecular bone loss, uncovering a pathological mechanism underlying the link between muscle aging/senescence and osteoporosis.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Yu Cao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
39
|
Zhang Y, Luo G, Yu X. Cellular Communication in Bone Homeostasis and the Related Anti-osteoporotic Drug Development. Curr Med Chem 2020; 27:1151-1169. [PMID: 30068268 DOI: 10.2174/0929867325666180801145614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
Background:Intercellular crosstalk among osteoblast, osteoclast, osteocyte and chondrocyte is involved in the precise control of bone homeostasis. Disruption of this cellular and molecular signaling would lead to metabolic bone diseases such as osteoporosis. Currently a number of anti-osteoporosis interventions are restricted by side effects, complications and long-term intolerance. This review aims to summarize the bone cellular communication involved in bone remodeling and its usage to develop new drugs for osteoporosis. Methods:We searched PubMed for publications from 1 January 1980 to 1 January 2018 to identify relevant and latest literatures, evaluation and prospect of osteoporosis medication were summarized. Detailed search terms were 'osteoporosis', 'osteocyte', 'osteoblast', 'osteoclast', 'bone remodeling', 'chondrocyte', 'osteoporosis treatment', 'osteoporosis therapy', 'bisphosphonates', 'denosumab', 'Selective Estrogen Receptor Modulator (SERM)', 'PTH', 'romosozumab', 'dkk-1 antagonist', 'strontium ranelate'. Results:A total of 170 papers were included in the review. About 80 papers described bone cell interactions involved in bone remodeling. The remaining papers were focused on the novel advanced and new horizons in osteoporosis therapies. Conclusion:There exists a complex signal network among bone cells involved in bone remodeling. The disorder of cell-cell communications may be the underlying mechanism of osteoporosis. Current anti-osteoporosis therapies are effective but accompanied by certain drawbacks simultaneously. Restoring the abnormal signal network and individualized therapy are critical for ideal drug development.
Collapse
Affiliation(s)
- Yi Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guojing Luo
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Yang TL, Shen H, Liu A, Dong SS, Zhang L, Deng FY, Zhao Q, Deng HW. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 2020; 16:91-103. [PMID: 31792439 PMCID: PMC6980376 DOI: 10.1038/s41574-019-0282-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by low bone mineral density and an increased risk of fracture, termed osteoporotic fracture. Notably, bone mineral density, osteoporosis and osteoporotic fracture are highly heritable; however, determining the genetic architecture, and especially the underlying genomic and molecular mechanisms, of osteoporosis in vivo in humans is still challenging. In addition to susceptibility loci identified in genome-wide association studies, advances in various omics technologies, including genomics, transcriptomics, epigenomics, proteomics and metabolomics, have all been applied to dissect the pathogenesis of osteoporosis. However, each technology individually cannot capture the entire view of the disease pathology and thus fails to comprehensively identify the underlying pathological molecular mechanisms, especially the regulatory and signalling mechanisms. A change to the status quo calls for integrative multi-omics and inter-omics analyses with approaches in 'systems genetics and genomics'. In this Review, we highlight findings from genome-wide association studies and studies using various omics technologies individually to identify mechanisms of osteoporosis. Furthermore, we summarize current studies of data integration to understand, diagnose and inform the treatment of osteoporosis. The integration of multiple technologies will provide a road map to illuminate the complex pathogenesis of osteoporosis, especially from molecular functional aspects, in vivo in humans.
Collapse
Affiliation(s)
- Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Shen
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Anqi Liu
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA.
- School of Basic Medical Science, Central South University, Changsha, China.
| |
Collapse
|
41
|
Rossi M, Buonuomo PS, Battafarano G, Conforti A, Mariani E, Algeri M, Pelle S, D'Agostini M, Macchiaiolo M, De Vito R, Gonfiantini MV, Jenkner A, Rana I, Bartuli A, Del Fattore A. Dissecting the mechanisms of bone loss in Gorham-Stout disease. Bone 2020; 130:115068. [PMID: 31525474 DOI: 10.1016/j.bone.2019.115068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Gorham-Stout disease (GSD) is a rare disorder characterized by progressive osteolysis and angiomatous proliferation. Since the mechanisms leading to bone loss in GSD are not completely understood, we performed histological, serum, cellular and molecular analyses of 7 patients. Increased vessels, osteoclast number and osteocyte lacunar area were revealed in patients' bone biopsies. Biochemical analysis of sera showed high levels of ICTP, Sclerostin, VEGF-A and IL-6. In vitro experiments revealed increased osteoclast differentiation and activity, and impaired mineralization ability of osteoblasts. To evaluate the involvement of systemic factors in GSD, control cells were treated with patients' sera and displayed an increase of osteoclastogenesis, bone resorption activity and a reduction of osteoblast function. Interestingly, GSD sera stimulated the vessel formation by endothelial cells EA.hy926. These results suggest that bone cell autonomous alterations with the cooperation of systemic factors are involved in massive bone loss and angiomatous proliferation observed in GSD patients.
Collapse
Affiliation(s)
- Michela Rossi
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Giulia Battafarano
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Conforti
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Eda Mariani
- Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | - Marina Macchiaiolo
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rita De Vito
- Histopathology, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Alessandro Jenkner
- Division of Immunology and Infectious Diseases Department of Pediatrics, Bambino Gesù Children Hospital, Rome, Italy
| | - Ippolita Rana
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
42
|
Turon-Skrzypinska A, Dutkiewicz G, Marchelek-Mysliwiec M, Dziedziejko V, Ciechanowski K, Ryl A, Rotter I. Assessment of Sclerostin and Interleukin 6 Levels and Selected Anthropometric Parameters in Patients Receiving Hemodialysis Replacement Therapy-Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E784. [PMID: 31847451 PMCID: PMC6955865 DOI: 10.3390/medicina55120784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022]
Abstract
Background and Objectives: Chronic kidney disease (CKD) is an important public health problem associated with, e.g., progressive renal insufficiency, bone mineral disorders, and increased inflammatory marker levels. The objective of this study was to compare selected biochemical parameters and to evaluate potential correlations between selected anthropometric parameters and levels of sclerostin and interleukin 6 (IL-6) in blood plasma. Materials and Methods: The study group consisted of 34 patients aged 59.8 ± 9.8 years, receiving hemodialysis therapy. The control group consisted of 31 individuals aged 55.4 ± 9.37 years, presenting with GFR (glomerular filtration rate) of more than 60 mL/min/1.73 m2. Selected anthropometric and biochemical parameters were assessed at baseline, as well as 3 and 6 months into the study. Statistical analyses were performed using the Statistica 2014 software package (StatSoft, Inc.Tulsa, OK, USA). Analyses included descriptive statistics, intergroup comparisons using the Mann-Whitney U-test or the Kruskal-Wallis test, and Spearman's correlation analysis. The significance level was set at p ≤ 0.005. Results: At all measurement time points, i.e., at baseline, at month 3, and at month 6, the IL-6 levels in the study group were significantly higher than those in the control group. No correlations were observed in the study group between SCL or IL-6 levels and anthropometric parameters such as body weight, body mass index (BMI), or waist circumference. Conclusions: Patients receiving hemodialysis replacement therapy present with significantly higher levels of IL-6 in their blood. Anthropometric parameters (body weight, BMI, and waist circumference) have no impact on sclerostin and IL-6 levels in patients undergoing hemodialysis therapy. The results obtained are satisfactory, and the research will be continued.
Collapse
Affiliation(s)
- Agnieszka Turon-Skrzypinska
- Department of Medical Rehabilitation and Clinical Rehabilitation, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.R.); (I.R.)
| | - Grazyna Dutkiewicz
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111Szczecin, Poland; (G.D.); (M.M.-M.); (K.C.)
| | - Malgorzata Marchelek-Mysliwiec
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111Szczecin, Poland; (G.D.); (M.M.-M.); (K.C.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Kazimierz Ciechanowski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111Szczecin, Poland; (G.D.); (M.M.-M.); (K.C.)
| | - Aleksandra Ryl
- Department of Medical Rehabilitation and Clinical Rehabilitation, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.R.); (I.R.)
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Rehabilitation, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.R.); (I.R.)
| |
Collapse
|
43
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
44
|
Lrp4 Mediates Bone Homeostasis and Mechanotransduction through Interaction with Sclerostin In Vivo. iScience 2019; 20:205-215. [PMID: 31585407 PMCID: PMC6817631 DOI: 10.1016/j.isci.2019.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 01/18/2023] Open
Abstract
Wnt signaling plays a key role in regulating bone remodeling. In vitro studies suggest that sclerostin's inhibitory action on Lrp5 is facilitated by the membrane-associated receptor Lrp4. We generated an Lrp4 R1170W knockin mouse model (Lrp4KI), based on a published mutation in patients with high bone mass (HBM). Lrp4KI mice have an HBM phenotype (assessed radiographically), including increased bone strength and formation. Overexpression of a Sost transgene had osteopenic effects in Lrp4-WT but not Lrp4KI mice. Conversely, sclerostin inhibition had blunted osteoanabolic effects in Lrp4KI mice. In a disuse-induced bone wasting model, Lrp4KI mice exhibit significantly less bone loss than wild-type (WT) mice. In summary, mice harboring the Lrp4-R1170W missense mutation recapitulate the human HBM phenotype, are less sensitive to altered sclerostin levels, and are protected from disuse-induced bone loss. Lrp4 is an attractive target for pharmacological targeting aimed at increasing bone mass and preventing bone loss due to disuse. Missense mutation in the third beta-propeller of Lrp4 improve bone properties The R1170W mutation in Lrp4 interferes with sclerostin inhibition in vivo The R1170W Lrp4 mutation alters the bone wasting effects of mechanical disuse
Collapse
|
45
|
Wang B, Pan JX, Yu H, Xiong L, Zhao K, Xiong S, Guo JP, Lin S, Sun D, Zhao L, Guo H, Mei L, Xiong WC. Lack of Myosin X Enhances Osteoclastogenesis and Increases Cell Surface Unc5b in Osteoclast-Lineage Cells. J Bone Miner Res 2019; 34:939-954. [PMID: 30645777 PMCID: PMC7105956 DOI: 10.1002/jbmr.3667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/23/2018] [Accepted: 01/05/2019] [Indexed: 01/08/2023]
Abstract
Normal bone mass is maintained by balanced bone formation and resorption. Myosin X (Myo10), an unconventional "myosin tail homology 4-band 4.1, ezrin, radixin, moesin" (MyTH4-FERM) domain containing myosin, is implicated in regulating osteoclast (OC) adhesion, podosome positioning, and differentiation in vitro. However, evidence is lacking for Myo10 in vivo function. Here we show that mice with Myo10 loss of function, Myo10m/m , exhibit osteoporotic deficits, which are likely due to the increased OC genesis and bone resorption because bone formation is unchanged. Similar deficits are detected in OC-selective Myo10 conditional knockout (cko) mice, indicating a cell autonomous function of Myo10. Further mechanistic studies suggest that Unc-5 Netrin receptor B (Unc5b) protein levels, in particular its cell surface level, are higher in the mutant OCs, but lower in RAW264.7 cells or HEK293 cells expressing Myo10. Suppressing Unc5b expression in bone marrow macrophages (BMMs) from Myo10m/m mice by infection with lentivirus of Unc5b shRNA markedly impaired RANKL-induced OC genesis. Netrin-1, a ligand of Unc5b, increased RANKL-induced OC formation in BMMs from both wild-type and Myo10m/m mice. Taken together, these results suggest that Myo10 plays a negative role in OC formation, likely by inhibiting Unc5b cell-surface targeting, and suppressing Netrin-1 promoted OC genesis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Huali Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Key laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shan Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jun-Peng Guo
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sen Lin
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Lu Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Key laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Haohan Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
46
|
Kim SP, Da H, Li Z, Kushwaha P, Beil C, Mei L, Xiong WC, Wolfgang MJ, Clemens TL, Riddle RC. Lrp4 expression by adipocytes and osteoblasts differentially impacts sclerostin's endocrine effects on body composition and glucose metabolism. J Biol Chem 2019; 294:6899-6911. [PMID: 30842262 DOI: 10.1074/jbc.ra118.006769] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/23/2019] [Indexed: 01/10/2023] Open
Abstract
Sclerostin exerts profound local control over bone acquisition and also mediates endocrine communication between fat and bone. In bone, sclerostin's anti-osteoanabolic activity is enhanced by low-density lipoprotein receptor-related protein 4 (Lrp4), which facilitates its interaction with the Lrp5 and Lrp6 Wnt co-receptors. To determine whether Lrp4 similarly affects sclerostin's endocrine function, we examined body composition as well as glucose and fatty acid metabolism in mice rendered deficient of Lrp4 in the adipocyte (AdΔLrp4) or the osteoblast (ObΔLrp4). AdΔLrp4 mice exhibit a reduction in adipocyte hypertrophy and improved glucose and lipid homeostasis, marked by increased glucose and insulin tolerance and reduced serum fatty acids, and mirror the effect of sclerostin deficiency on whole-body metabolism. Indeed, epistasis studies place adipocyte-expressed Lrp4 and sclerostin in the same genetic cascade that regulates adipocyte function. Intriguingly, ObΔLrp4 mice, which exhibit dramatic increases in serum sclerostin, accumulate body fat and develop impairments in glucose tolerance and insulin sensitivity despite development of a high bone mass phenotype. These data indicate that expression of Lrp4 by both the adipocyte and osteoblast is required for normal sclerostin endocrine function and that the impact of sclerostin deficiency on adipocyte physiology is distinct from the effect on osteoblast function.
Collapse
Affiliation(s)
| | - Hao Da
- From the Departments of Orthopedic Surgery and
| | - Zhu Li
- From the Departments of Orthopedic Surgery and
| | | | - Conor Beil
- From the Departments of Orthopedic Surgery and
| | - Lin Mei
- the Department of Neuroscience, Case Western Reserve University Medical School, Cleveland, Ohio 44106, and
| | - Wen-Cheng Xiong
- the Department of Neuroscience, Case Western Reserve University Medical School, Cleveland, Ohio 44106, and
| | - Michael J Wolfgang
- Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Thomas L Clemens
- From the Departments of Orthopedic Surgery and.,the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Ryan C Riddle
- From the Departments of Orthopedic Surgery and .,the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
47
|
Wang J, Qiu X, Xu T, Sheng Z, Yao L. Sclerostin/Receptor Related Protein 4 and Ginkgo Biloba Extract Alleviates β-Glycerophosphate-Induced Vascular Smooth Muscle Cell Calcification By Inhibiting Wnt/β-Catenin Pathway. Blood Purif 2019; 47 Suppl 1:17-23. [PMID: 30699436 DOI: 10.1159/000496219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Abnormal mineral metabolism in patients with chronic kidney disease (CKD) may lead to vascular calcification, which is markedly associated with adverse events, including ischemic cardiac diseases and all-cause cardiovascular mortality. Thus, preventing and treating vascular calcification play an important role in improving the prognosis of CKD patients. OBJECTIVES To investigate the potential functions of sclerostin and low-density lipoprotein receptor-related protein 4 (Lrp4) in alleviating the β-glycerophosphate (β-GP)-induced vascular smooth muscle cell (VSMC) calcification, and the protective effect of Ginkgo biloba extract (GBE). METHODS VSMC were extracted from Sprague-Dawley rat aorta and cultured in medium. The VSMCs were divided into 3 groups: (1) Negative control group, (2) β-GP group, in which the VSMCs were treated with β-GP, and (3) GBE and β-GP group, where the VSMCs were treated with both β-GP and GBE. The calcium nodules within the cells were examined by using Alizarin red S staining. The mRNA expression levels of β-catenin and bone gamma-carboxyglutamic-acid-containing proteins (BGP) were detected by real-time PCR. The protein levels of sclerostin and Lrp4 were determined by Western blot. RESULTS Alizarin red S staining showed that the VSMCs in β-GP group had a distinct orange-red precipitate when compared with VSMCs in the negative control group, while the orange-red precipitate of the GBE and β-GP group was significantly reduced compared to the β-GP group. Real-time PCR showed that the mRNA levels of β-catenin and BGP in VSMCs of β-GP group were significantly higher than those of the negative control group (p < 0.05); while they were significantly reduced in VSMCs of the GBE and β-GP group (p < 0.05). Western blot results showed that the expression of sclerostin in the β-GP group was significantly higher than that in the control group (p < 0.05), whereas Lrp4 was significantly lower than in control group (p < 0.05). Sclerostin in GBE and β-GP group was significantly reduced (p < 0.05), but Lrp4 was significantly elevated when compared with that of the β-GP group (p < 0.05). CONCLUSION β-GP induced VSMC calcification by activating the Wnt/β-catenin signaling pathway. Sclerostin and Lrp4 were involved in β-GP-induced VSMC calcification and play an important role. GBE could alleviate VSMC calcification induced by β-GP through inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jian Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaobo Qiu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Zitong Sheng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China,
| |
Collapse
|
48
|
|
49
|
Koide M, Kobayashi Y. Regulatory mechanisms of sclerostin expression during bone remodeling. J Bone Miner Metab 2019; 37:9-17. [PMID: 30357564 DOI: 10.1007/s00774-018-0971-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022]
Abstract
Osteocytes are embedded in bone matrices and are connected to each other to respond to mechanical loading on bone. Recent studies have demonstrated the roles of mechanical loading in bone accrual. Bone responds to mechanical loading by decreasing the expression of sclerostin, an inhibitor of Wnt/β-catenin signals, in osteocytes. This increases bone mass because the activation of Wnt/β-catenin signals in bone microenvironments promotes bone formation and suppresses bone resorption. Thus, in recent years, sclerostin have attracted increasing attention in bone metabolism. However, the regulatory mechanism of sclerostin expression during bone remodeling has not been fully elucidated. In this review, we summarized the regulation of bone formation and resorption by Wnt signals, a Wnt/β-catenin signal inhibitor sclerostin, and molecular mechanisms by which the expression of sclerostin is suppressed by mechanical loading and parathyroid hormone. We also discuss a possibility that osteoclasts suppress the expression of sclerostin during bone remodeling, which in turn, promote bone formation. The effectiveness of an anti-sclerostin antibody with anti-dickkopf-1 antibody for increasing bone mass was discussed.
Collapse
Affiliation(s)
- Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan.
| |
Collapse
|
50
|
Lu W, Zhang X, Firth F, Mei L, Yi J, Gong C, Li H, Zheng W, Li Y. Sclerostin injection enhances orthodontic tooth movement in rats. Arch Oral Biol 2018; 99:43-50. [PMID: 30605820 DOI: 10.1016/j.archoralbio.2018.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE It was aimed to investigate the in vivo effects of local injection of sclerostin protein on orthodontic tooth movement. DESIGN A total of 48 rats underwent orthodontic mesialization of the maxillary first molars on both sides. Local injection was given at the compression side in the alveolar bone on both maxillary sides, with sclerostin protein carried by hydrogel on one side, and the same volume of normal saline carried by hydrogel on the other side serving as the control. After two weeks, the tooth movement amount and effects on the periodontium were assessed through micro-computed tomography (μCT) analysis, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemistry (IHC) analysis. RESULTS After two weeks of intervention, tooth movement was significantly greater in the 4 μg/kg and 20 μg/kg sclerostin injection groups, compared to the control. Analysis of the furcation area of the maxillary first molar showed that the 20 μg/kg group had significantly decreased BV/TV. At the compression side, the number of TRAP-positive osteoclasts was significantly increased in 20 μg/kg group compared to the control. The expression of RANKL was statistically higher in all the sclerostin groups, while the expression of OPG was statistically lower in the 4 μg/kg and 20 μg/kg groups, compared to the control. At the tension side, the expression of RUNX2 and COL-1 was statistically higher in the 20 μg/kg group compared to the control. CONCLUSIONS Local injection of sclerostin protein in the alveolar bone at the compression side accelerates OTM in rats by promoting osteoclastogenesis.
Collapse
Affiliation(s)
- Wenxin Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Xuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China; 3E Dental Clinic, Chengdu, China
| | - Fiona Firth
- Discipline of Orthodontics, Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Li Mei
- Discipline of Orthodontics, Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Jianru Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Hanshi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|