1
|
Qian J, Zhang B, Liu C, Xue Y, Zhou H, Huang L, Zheng S, Chen M, Fu YQ. Reconfigurable acoustic tweezer for precise tracking and in-situ sensing of trace miRNAs in tumor cells. Biosens Bioelectron 2025; 282:117505. [PMID: 40288310 DOI: 10.1016/j.bios.2025.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) have emerged as critical biomarkers for early cancer diagnosis and monitoring. However, their isolation from clinical samples typically yields only trace amounts, significantly limiting the sensitivity and efficiency of cancer detection. To address this challenge, we present a octangular reconfigurable acoustic tweezer (ORAT) as an integrated platform for precise tumor cell tracking and in-situ detection of trace miRNAs. By simultaneously modulating multidirectional acoustic signals and parameters, the ORAT dynamically reshapes the acoustic field, enabling precise control over manipulation areas, particle spacing, array angles, distribution patterns, and node rotation. This device allows selective particle manipulation across entire regions or specific areas through adaptive adjustments of the microchamber boundary. Notably, the ORAT achieves rapid and accurate localization and labeling of rare tumor cells within a large population of normal cells. Furthermore, it enhances the sensitivity of CRISPR/Cas-based miRNA detection in digital microdroplets by three orders of magnitude, if compared to that of the conventional tube-based method. With its versatile capabilities, the ORAT holds remarkable promise for advancing nucleic acid analysis in a wide range of cancers and related diseases.
Collapse
Affiliation(s)
- Jingui Qian
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Bowei Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chuanmin Liu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuhang Xue
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hong Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
2
|
Sang D, Ding S, Wei Q, Teng F, Zheng H, Zhang Y, Zhang D, Guo X. A SAW-driven modular acoustofluidic tweezer. LAB ON A CHIP 2025. [PMID: 40370270 DOI: 10.1039/d4lc00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
In surface acoustic wave (SAW)-driven acoustofluidic tweezers (AFTs), most setups are integrated on a piezoelectric substrate for a single purpose, limiting the reusability and versatility of devices fabricated using complex MEMS technologies. Meanwhile, prevalent devices exhibit anisotropy in SAW excitation and propagation, as well as optical birefringence and limited transmittance. This work presents a SAW-driven modular acoustofluidic tweezer consisting of up to four replaceable interdigital transducer (IDT) modules and a function module assembled on a common base. Since the IDT modules are separated, each can be fabricated using the piezoelectric substrate best suited to the requirements. For example, SAWs generated from different directions can simultaneously propagate along the X-axis of 128° Y-cut LiNbO3, enabling highly efficient excitations. The generated SAWs couple into the function module with excellent optical properties and convert into Lamb waves, which then leak into the microfluidic domain and act on the fluid/particles. All modules are connected via standardized interfaces, eliminating potential instabilities caused by wired connections. The reliability of the setup is demonstrated via particle/cell patterning, separation, and concentration experiments, during which the replaceability and reusability of different modules, and the other advantages of the setup, e.g., simple assembly, ease of operation, and application flexibility, are proven.
Collapse
Affiliation(s)
- Dachuan Sang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Suyu Ding
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Qinran Wei
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Fengmeng Teng
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Haixiang Zheng
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Yu Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Zhong R, Xu X, Tutoni G, Liu M, Yang K, Li K, Jin K, Chen Y, Mai JDH, Becker ML, Huang TJ. An acoustofluidic embedding platform for rapid multiphase microparticle injection. Nat Commun 2025; 16:4144. [PMID: 40319024 PMCID: PMC12049528 DOI: 10.1038/s41467-025-59146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/09/2025] [Indexed: 05/07/2025] Open
Abstract
Droplet manipulation technologies play a critical role in many aspects of biochemical research, including in complex reaction assays useful for drug delivery, for building artificial cells, and in synthetic biology. While advancements have been made in manipulating liquid droplets, the capability to freely and dynamically manipulate solid objects across aqueous and oil phases remains unexplored. Here, we develop an acoustofluidic frequency-associated microsphere embedding platform, which enables microscale rapid injection of microparticles from a fluorinated oil into aqueous droplets. By observing different embedding mechanisms at low and high acoustic frequencies, we establish a theoretical model and practical principles for cross-phase manipulations. The proposed system not only enables multi-phase manipulation but also provides contactless control of specific microparticles within various distinctive phases. We demonstrate the acoustic-driven embedding and subsequent on-demand disassembly of hydrogel microspheres. This system indicates potential for reagent delivery and molecule capture applications. It enhances existing droplet manipulation technologies by enabling both multi-phase and cross-phase operations, paving the way for solid-liquid interaction studies in artificial cell research. The capability for intricate multi-phase loading, transport, and reactions offers promising implications for various fields, including in-droplet biochemical assays, drug delivery, and synthetic biology.
Collapse
Grants
- R01GM141055 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 GM143439 NIGMS NIH HHS
- R01GM145960 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R44GM154514 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 GM144417 NIGMS NIH HHS
- R44AG063643 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R44OD024963 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R44GM154515 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 GM141055 NIGMS NIH HHS
- R44 AG063643 NIA NIH HHS
- R44 GM154515 NIGMS NIH HHS
- R01GM144417 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 GM145960 NIGMS NIH HHS
- R01 AG084098 NIA NIH HHS
- CMMI-2104295 National Science Foundation (NSF)
- R44 GM154514 NIGMS NIH HHS
- R44 OD024963 NIH HHS
- R01 HD103727 NICHD NIH HHS
- R01AG084098 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HD103727 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01GM143439 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- National Science Foundation Graduate Research Fellowship, Grant DGE 2139754
Collapse
Affiliation(s)
- Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Xianchen Xu
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Gianna Tutoni
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Mingyuan Liu
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Ke Jin
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Ying Chen
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John D H Mai
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Boudreaux T, Freyhof L, Riehl BD, Kim E, Pedrigi RM, Lim JY. Biological Acoustic Levitation and Its Potential Application for Microgravity Study. Bioengineering (Basel) 2025; 12:458. [PMID: 40428077 PMCID: PMC12109293 DOI: 10.3390/bioengineering12050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
The open and contactless environment of acoustic levitation provides a unique condition in experimenting with varying substances while levitated for observation and implementation with other devices, with recent improvements in cost and accessibility. We briefly decipher the theory behind acoustic levitation and describe currently available levitation platforms. Then, how these platforms have been employed in biological applications is reviewed. Intriguingly, recent researches indicated the viability of acoustic levitation to be utilized as a microgravity simulator. We introduce existing on-ground microgravity platforms, and discuss the potential of acoustic levitation in simulating microgravity. Acoustic levitation could be an alternative to microgravity platforms such as clinostats while allowing for novel microgravity research. On the other hand, the microgravity provided by acoustic levitation may be restricted due to potential limitations in the available levitation volume, relatively larger gravity compared to 10-3 g centrifugal acceleration from clinostats, and probable instability due to air perturbations and acoustic streaming. With more knowledge about in-droplet particle rotation and the regulatory factors during levitation, acoustic levitation may provide a new and advanced platform for microgravity simulation via taking advantage of its availability for real-time observation and manipulation of samples via added instrumentation while samples are levitated in a simulated microgravity condition.
Collapse
Affiliation(s)
- Taylor Boudreaux
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (B.D.R.); (E.K.); (R.M.P.)
| | - Luke Freyhof
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Brandon D. Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (B.D.R.); (E.K.); (R.M.P.)
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (B.D.R.); (E.K.); (R.M.P.)
| | - Ryan M. Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (B.D.R.); (E.K.); (R.M.P.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (B.D.R.); (E.K.); (R.M.P.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
5
|
Li X, Chen J, Yang Y, Cai H, Ao Z, Xing Y, Li K, Yang K, Guan W, Friend J, Lee LP, Wang N, Guo F. Extracellular vesicle-based point-of-care testing for diagnosis and monitoring of Alzheimer's disease. MICROSYSTEMS & NANOENGINEERING 2025; 11:65. [PMID: 40246821 PMCID: PMC12006457 DOI: 10.1038/s41378-025-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 04/19/2025]
Abstract
Extracellular vesicles (EVs) show potential for early diagnosis of Alzheimer's disease (AD) and monitoring of its progression. However, EV-based AD diagnosis faces challenges due to the small size and low abundance of biomarkers. Here, we report a fully integrated organic electrochemical transistor (OECT) sensor for ultrafast, accurate, and convenient point-of-care testing (POCT) of serum EVs from AD patients. By utilizing acoustoelectric enrichment, the EVs can be quickly propelled, significantly enriched, and specifically bound to the OECT detection area, achieving a gain of over 280 times response in 30 s. The integrated POCT sensor can detect serum EVs from AD patients with a limit of detection as low as 500 EV particles/mL and a reduced detection time of just two minutes. Furthermore, the integrated POCT sensors were used to monitor AD progression in an AD mouse model by testing the mouse Aβ EVs at different time courses (up to 18 months) and compared with the Aβ accumulation using high-resolution magnetic resonance imaging (MRI). This innovative technology has the potential for accurate and rapid diagnosis of Alzheimer's and other neurodegenerative diseases, and monitoring of disease progression and treatment response.
Collapse
Affiliation(s)
- Xiang Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Jie Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kangle Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Weihua Guan
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - James Friend
- Department of Mechanical and Aerospace Engineering, and Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Nian Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
6
|
Zhang X, Smith J, Zhou AC, Duong JTT, Qi T, Chen S, Lin YJ, Gill A, Lo CH, Lin NYC, Wen J, Lu Y, Chiou PY. Large-scale acoustic single cell trapping and selective releasing. LAB ON A CHIP 2025; 25:1537-1551. [PMID: 39901861 DOI: 10.1039/d4lc00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Recent advancements in single-cell analysis have underscored the need for precise isolation and manipulation of individual cells. Traditional techniques for single-cell manipulation are often limited by the number of cells that can be parallel trapped and processed and usually require complex devices or instruments to operate. Here, we introduce an acoustic microfluidic platform that efficiently traps and selectively releases individual cells using spherical air cavities embedded in a polydimethylsiloxane (PDMS) substrate for large scale manipulation. Our device utilizes the principle of acoustic impedance mismatches to generate near-field acoustic potential gradients that create trapping sites for single cells. These single cell traps can be selectively disabled by illuminating a near-infrared laser pulse, allowing targeted release of trapped cells. This method ensures minimal impact on cell viability and proliferation, making it ideal for downstream single-cell analysis. Experimental results demonstrate our platform's capability to trap and release synthetic microparticles and biological cells with high efficiency and biocompatibility. Our device can handle a wide range of cell sizes (8-30 μm) across a large active manipulation area of 1 cm2 with 20 000 single-cell traps, providing a versatile and robust platform for single-cell applications. This acoustic microfluidic platform offers a cost-effective and practical method for large scale single-cell trapping and selective releasing with potential applications in genomics, proteomics, and other fields requiring precise single-cell manipulation.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Jacob Smith
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | | | | | - Tong Qi
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Shilin Chen
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Yen-Ju Lin
- Department of Electrical and Computer Engineering, University of California at Los Angeles, USA
| | - Alexi Gill
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Chih-Hui Lo
- Department of Bioengineering, University of California at Los Angeles, USA
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
- Department of Bioengineering, University of California at Los Angeles, USA
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| |
Collapse
|
7
|
Li D, Li K, Li J, Li D, Chen H, Li SS, Yang C, Zhang H, Chen LJ, Hu X. Scalable acoustic virtual stirrer for enhanced interfacial enzymatic nucleic acid reactions. SCIENCE ADVANCES 2025; 11:eadt6955. [PMID: 40043123 PMCID: PMC11881892 DOI: 10.1126/sciadv.adt6955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/30/2025] [Indexed: 05/13/2025]
Abstract
Enzymatic nucleic acid reaction is a fundamental tool in molecular biology. However, high-complexity enzymatic DNA reactions and assays are still challenging due to the difficulties in integrating and scaling up microscale reaction units and mixing tools. Here, we present scalable acoustofluidic platform featuring acoustic virtual stirrer (AVS) arrays, serving as stirrers to increase the efficiency of interfacial enzymatic nucleic acid reactions. Analogous to magnetic stirrers, AVS arrays perturb the fluid through oscillating pressure nodes, controllable in terms of speeds and amplitudes via modulation. By optimizing the kinetics of surface-tethered DNA and enzymes via AVS, we achieve a 7.74% improvement in the stepwise yield of enzymatic DNA synthesis. In addition, the AVS enhanced DNA logic gate architecture can complete responses within 2 minutes, achieving average speed enhancement of 8.58 times compared to the non-AVS configuration. With its tunability, ease of integration, and efficiency, this technology holds promises for applications in biology and chemistry.
Collapse
Affiliation(s)
- Dayang Li
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361012, P. R. China
| | - Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361102, China
| | - Jianquan Li
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361012, P. R. China
| | - Dongfang Li
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361012, P. R. China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361102, China
| | - Sen-Sen Li
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361012, P. R. China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361102, China
| | - Huimin Zhang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361102, China
| | - Lu-Jian Chen
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361012, P. R. China
| | - Xuejia Hu
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361012, P. R. China
| |
Collapse
|
8
|
Xu Q, Jiang Y, Chen J, Wu J, Chen Y, Fan Q, Wang H, Yang Y, Pan J, Fang Q. Single Cell-Pair Proteomics for Decoding Immune-Cancer Cell Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414769. [PMID: 39840604 PMCID: PMC11923901 DOI: 10.1002/advs.202414769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/02/2025] [Indexed: 01/23/2025]
Abstract
The efficacy of cancer immunotherapy is significantly influenced by the heterogeneity of individual tumors and immune responses. To investigate this phenomenon, a microfluidic platform is constructed for profiling immune-cancer cell interactions at the single-cell proteomics level for the first time. Based on the platform, a comprehensive workflow is proposed for achieving accurate single-cell pairing of an immune cell and a cancer cell with low cell damage and high success rate up to 95%, cell pair co-culture, and real-time microscopic monitoring of the cell-pair interactions, cell pair retrieval, mass spectrometry-based proteomic analysis of singe cell pairs, and decoupling of the proteomic information for each cell within the cell pair with the stable-isotope labeling method. With the workflow, the interactions of single natural killer (NK) cells and single K562 tumor cells are investigated based on real-time images and single cell-pair proteomics. Notably, an identification depth of over 1000 protein groups in a single cell-pair is achieved, leading to the discovery of sub-clusters of NK cells with different functions and the identification of important biomarkers for cancer treatments. This demonstrates the unique capability of the present platform in providing substantial and comprehensive datasets for profiling immune-cancer cell interactions, discovering heterogeneous immune responses, and predicting biomarkers in the study of cancer immunotherapy.
Collapse
Affiliation(s)
- Qin‐Qin Xu
- Institute of Microanalytical SystemsDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Yi‐Rong Jiang
- Institute of Microanalytical SystemsDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jian‐Bo Chen
- Institute of Microanalytical SystemsDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jie Wu
- Institute of Microanalytical SystemsDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Yi‐Xue Chen
- Institute of Microanalytical SystemsDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Qian‐Xi Fan
- Institute of Microanalytical SystemsDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Hui‐Feng Wang
- Institute of Microanalytical SystemsDepartment of ChemistryZhejiang UniversityHangzhou310058China
- Key Laboratory of Excited‐State Materials of Zhejiang ProvinceZhejiang UniversityHangzhou310007China
| | - Yi Yang
- Single‐cell Proteomics Research CenterZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311200China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang ProvinceHangzhou311200China
| | - Jian‐Zhang Pan
- Institute of Microanalytical SystemsDepartment of ChemistryZhejiang UniversityHangzhou310058China
- Single‐cell Proteomics Research CenterZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311200China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang ProvinceHangzhou311200China
| | - Qun Fang
- Institute of Microanalytical SystemsDepartment of ChemistryZhejiang UniversityHangzhou310058China
- Key Laboratory of Excited‐State Materials of Zhejiang ProvinceZhejiang UniversityHangzhou310007China
- Single‐cell Proteomics Research CenterZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311200China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang ProvinceHangzhou311200China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Cancer CenterZhejiang UniversityHangzhou310007China
| |
Collapse
|
9
|
Kshetri KG, Cook A, Nama N. Numerical investigation of acoustic radiation force and microstreaming in a viscoelastic fluid. Phys Rev E 2025; 111:025102. [PMID: 40103059 DOI: 10.1103/physreve.111.025102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/30/2025] [Indexed: 03/20/2025]
Abstract
We present a numerical model to study time-averaged acoustic radiation force and microstreaming around an elastic sphere immersed within an acoustically actuated viscoelastic fluid. We employ a perturbation approach to systematically identify limiting regimes where the viscoelastic fluid can be approximated as a purely viscous fluid at the acoustic and mean time scales. Unlike existing numerical models, we account for microstreaming and fluid elasticity contributions to the radiation force. We elucidate the inherent assumptions within reduced expressions considered in prior numerical models and highlight the divergence between the acoustic radiation force obtained from the reduced and general expressions. We also discuss numerical considerations to ensure the invariance of the acoustic radiation force with the choice of integration surface by recasting the time-averaged mass balance equation in terms of Stokes drift. Our results reveal that the acoustic radiation force exhibits a peak value for an optimal relaxation time, and both the peak acoustic radiation force and the optimal relaxation time increase with increasing polymer viscosity. The results also highlight the significant contribution of fluid elasticity to the radiation force and invalidate the previously employed reduced acoustic radiation force expressions for general viscoelastic regime.
Collapse
Affiliation(s)
- Khemraj Gautam Kshetri
- University of Nebraska-Lincoln, Department of Mechanical & Materials Engineering, Lincoln, Nebraska 68588, USA
| | - Andrew Cook
- University of Nebraska-Lincoln, Department of Mechanical & Materials Engineering, Lincoln, Nebraska 68588, USA
| | - Nitesh Nama
- University of Nebraska-Lincoln, Department of Mechanical & Materials Engineering, Lincoln, Nebraska 68588, USA
- University of Nebraska-Lincoln, Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska 68588, USA
| |
Collapse
|
10
|
Upreti N, Jin G, Rich J, Zhong R, Mai J, Zhao C, Huang TJ. Advances in Microsphere-Based Super-Resolution Imaging. IEEE Rev Biomed Eng 2025; 18:337-349. [PMID: 38241119 DOI: 10.1109/rbme.2024.3355875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Techniques to resolve images beyond the diffraction limit of light with a large field of view (FOV) are necessary to foster progress in various fields such as cell and molecular biology, biophysics, and nanotechnology, where nanoscale resolution is crucial for understanding the intricate details of large-scale molecular interactions. Although several means of achieving super-resolutions exist, they are often hindered by factors such as high costs, significant complexity, lengthy processing times, and the classical tradeoff between image resolution and FOV. Microsphere-based super-resolution imaging has emerged as a promising approach to address these limitations. In this review, we delve into the theoretical underpinnings of microsphere-based imaging and the associated photonic nanojet. This is followed by a comprehensive exploration of various microsphere-based imaging techniques, encompassing static imaging, mechanical scanning, optical scanning, and acoustofluidic scanning methodologies. This review concludes with a forward-looking perspective on the potential applications and future scientific directions of this innovative technology.
Collapse
|
11
|
Yuan S, Zhang P, Zhang F, Yan S, Dong R, Wu C, Deng J. Profiling signaling mediators for cell-cell interactions and communications with microfluidics-based single-cell analysis tools. iScience 2025; 28:111663. [PMID: 39868039 PMCID: PMC11763584 DOI: 10.1016/j.isci.2024.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Cell-cell interactions and communication represent the fundamental cornerstone of cells' collaborative efforts in executing diverse biological processes. A profound understanding of how cells interface through various mediators is pivotal across a spectrum of biological systems. Recent strides in microfluidic technologies have significantly bolstered the precision and prowess in capturing and manipulating cells with exceptional spatial and temporal resolution. These advanced methodologies converge with multi-signal mediator detection systems, furnishing potent, high-throughput platforms for dissecting cell-cell interactions at the single-cell level. This approach empowers researchers to delve into intricate cellular dynamics with unprecedented accuracy and efficiency. Here, we present a critical evaluation of the latest advancements in microfluidics-driven techniques for detecting signal mediators involved in cell-cell interactions and communication at the single-cell level. We underscore notable biological applications that have benefited from these technologies and identify pressing challenges that must be addressed in future endeavors leveraging microfluidic tools for single-cell interaction studies.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Peng Zhang
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Feng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Shiqiang Yan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruihua Dong
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Chengjun Wu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jiu Deng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
12
|
Gao W, Bai Y, Yang Y, Jia L, Mi Y, Cui W, Liu D, Shakoor A, Zhao L, Li J, Luo T, Sun D, Jiang Z. Intelligent sensing for the autonomous manipulation of microrobots toward minimally invasive cell surgery. APPLIED PHYSICS REVIEWS 2024; 11. [DOI: 10.1063/5.0211141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The physiology and pathogenesis of biological cells have drawn enormous research interest. Benefiting from the rapid development of microfabrication and microelectronics, miniaturized robots with a tool size below micrometers have widely been studied for manipulating biological cells in vitro and in vivo. Traditionally, the complex physiological environment and biological fragility require human labor interference to fulfill these tasks, resulting in high risks of irreversible structural or functional damage and even clinical risk. Intelligent sensing devices and approaches have been recently integrated within robotic systems for environment visualization and interaction force control. As a consequence, microrobots can be autonomously manipulated with visual and interaction force feedback, greatly improving accuracy, efficiency, and damage regulation for minimally invasive cell surgery. This review first explores advanced tactile sensing in the aspects of sensing principles, design methodologies, and underlying physics. It also comprehensively discusses recent progress on visual sensing, where the imaging instruments and processing methods are summarized and analyzed. It then introduces autonomous micromanipulation practices utilizing visual and tactile sensing feedback and their corresponding applications in minimally invasive surgery. Finally, this work highlights and discusses the remaining challenges of current robotic micromanipulation and their future directions in clinical trials, providing valuable references about this field.
Collapse
Affiliation(s)
- Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yunfei Bai
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yujie Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Lanlan Jia
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Yingbiao Mi
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Wenji Cui
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Dehua Liu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum and Minerals 3 , Dhahran 31261,
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Tao Luo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University 4 , Xiamen 361102,
| | - Dong Sun
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
- Department of Biomedical Engineering, City University of Hong Kong 5 , Hong Kong 999099,
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| |
Collapse
|
13
|
Wu M, Ma Z, Tian Z, Rich JT, He X, Xia J, He Y, Yang K, Yang S, Leong KW, Lee LP, Huang TJ. Sound innovations for biofabrication and tissue engineering. MICROSYSTEMS & NANOENGINEERING 2024; 10:170. [PMID: 39562793 PMCID: PMC11577104 DOI: 10.1038/s41378-024-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/31/2024] [Accepted: 06/20/2024] [Indexed: 11/21/2024]
Abstract
Advanced biofabrication techniques can create tissue-like constructs that can be applied for reconstructive surgery or as in vitro three-dimensional (3D) models for disease modeling and drug screening. While various biofabrication techniques have recently been widely reviewed in the literature, acoustics-based technologies still need to be explored. The rapidly increasing number of publications in the past two decades exploring the application of acoustic technologies highlights the tremendous potential of these technologies. In this review, we contend that acoustics-based methods can address many limitations inherent in other biofabrication techniques due to their unique advantages: noncontact manipulation, biocompatibility, deep tissue penetrability, versatility, precision in-scaffold control, high-throughput capabilities, and the ability to assemble multilayered structures. We discuss the mechanisms by which acoustics directly dictate cell assembly across various biostructures and examine how the advent of novel acoustic technologies, along with their integration with traditional methods, offers innovative solutions for enhancing the functionality of organoids. Acoustic technologies are poised to address fundamental challenges in biofabrication and tissue engineering and show promise for advancing the field in the coming years.
Collapse
Affiliation(s)
- Mengxi Wu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Joseph T Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xin He
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
14
|
Xu X, Jin K, Yang K, Zhong R, Liu M, Collyer W, Jain S, Chen Y, Xia J, Li J, Yang S, Dowell EH, Huang TJ. Acoustofluidic tweezers via ring resonance. SCIENCE ADVANCES 2024; 10:eads2654. [PMID: 39536110 PMCID: PMC11559615 DOI: 10.1126/sciadv.ads2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Ring resonator (RR) devices are closed-loop waveguides where waves circulate only at the resonant frequencies. They have been used in sensor technology and optical tweezers, but controlling micron-scale particles with optical RR tweezers is challenging due to insufficient force, short working distances, and photodamage. To overcome these obstacles, an acoustofluidic RR-based tweezing method is developed to manipulate micro-sized particles that can enhance particle trapping through the resonance interaction of acoustic waves with high Q factor (>3000), more than 20 times greater than traditional acoustic transducers. Particles can be precisely manipulated within the RR by adjusting the signal phase, with trapping amplified by enlarging the connected waveguide. Rapid particle mixing is achieved when particles are placed between the waveguide and RR. The signal path is strengthened by strategically positioning the RR in a two-dimensional plane. Acoustofluidic RR tweezers have immense potential for advancing applications in biosensing, mechanobiology, lab-on-a-chip, and cell-cell communication research.
Collapse
Affiliation(s)
- Xianchen Xu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Ke Jin
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Mingyuan Liu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Wesley Collyer
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Shivam Jain
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Ying Chen
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Junfei Li
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Earl H. Dowell
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
15
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
16
|
Naquin T, Jain S, Zhang J, Xu X, Yao G, Naquin CM, Yang S, Xia J, Wang J, Jimenez S, Huang TJ. An Acoustofluidic Picoinjector. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 418:136294. [PMID: 39131888 PMCID: PMC11308560 DOI: 10.1016/j.snb.2024.136294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Droplet microfluidics has emerged as a valuable technology for a multitude of chemical and biomedical applications, offering the capability to create independent microenvironments for high-throughput assays. Central to numerous droplet microfluidic applications is the picoinjection of materials into individual droplets, yet existing picoinjection methods often exhibit high power requirements, lack biocompatibility, and/or suffer from limited controllability. Here, we present an acoustofluidic picoinjector that generates acoustic pressure at the droplet interface to enable on-demand, energy-efficient, and biocompatible injection at high precision. We validate our platform by performing acid-base titrations by iteratively injecting picoliter volume reagents into droplets to induce pH transitions detectable by color change in solution. Additionally, we demonstrate the versatility of the acoustofluidic picoinjector in the synthesis of metallic nanoparticles, yielding highly monodisperse and reproducible particle morphologies compared to conventional bulk-phase techniques. By facilitating controlled delivery of reagents or biological samples with unparalleled accuracy, acoustofluidic picoinjection broadens the utility of droplet microfluidics for a myriad of applications in chemical and biological research.
Collapse
Affiliation(s)
| | | | - Jinxin Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Xianchen Xu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Gary Yao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Chloe M. Naquin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Janna Wang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Sebastian Jimenez
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Kim MG, Yoon C, Lim HG. Recent Advancements in High-Frequency Ultrasound Applications from Imaging to Microbeam Stimulation. SENSORS (BASEL, SWITZERLAND) 2024; 24:6471. [PMID: 39409511 PMCID: PMC11479296 DOI: 10.3390/s24196471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
Ultrasound is a versatile and well-established technique using sound waves with frequencies higher than the upper limit of human hearing. Typically, therapeutic and diagnosis ultrasound operate in the frequency range of 500 kHz to 15 MHz with greater depth of penetration into the body. However, to achieve improved spatial resolution, high-frequency ultrasound (>15 MHz) was recently introduced and has shown promise in various fields such as high-resolution imaging for the morphological features of the eye and skin as well as small animal imaging for drug and gene therapy. In addition, high-frequency ultrasound microbeam stimulation has been demonstrated to manipulate single cells or microparticles for the elucidation of physical and functional characteristics of cells with minimal effect on normal cell physiology and activity. Furthermore, integrating machine learning with high-frequency ultrasound enhances diagnostics, including cell classification, cell deformability estimation, and the diagnosis of diabetes and dysnatremia using convolutional neural networks (CNNs). In this paper, current efforts in the use of high-frequency ultrasound from imaging to stimulation as well as the integration of deep learning are reviewed, and potential biomedical and cellular applications are discussed.
Collapse
Affiliation(s)
- Min Gon Kim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Changhan Yoon
- Department of Biomedical Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48547, Republic of Korea;
| |
Collapse
|
18
|
Xing Y, Yang K, Lu A, Mackie K, Guo F. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0160. [PMID: 39282019 PMCID: PMC11395709 DOI: 10.34133/cbsystems.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Personalized pain medicine aims to tailor pain treatment strategies for the specific needs and characteristics of an individual patient, holding the potential for improving treatment outcomes, reducing side effects, and enhancing patient satisfaction. Despite existing pain markers and treatments, challenges remain in understanding, detecting, and treating complex pain conditions. Here, we review recent engineering efforts in developing various sensors and devices for addressing challenges in the personalized treatment of pain. We summarize the basics of pain pathology and introduce various sensors and devices for pain monitoring, assessment, and relief. We also discuss advancements taking advantage of rapidly developing medical artificial intelligence (AI), such as AI-based analgesia devices, wearable sensors, and healthcare systems. We believe that these innovative technologies may lead to more precise and responsive personalized medicine, greatly improved patient quality of life, increased efficiency of medical systems, and reducing the incidence of addiction and substance use disorders.
Collapse
Affiliation(s)
- Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Albert Lu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
- Culver Academies High School, Culver, IN 46511, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
19
|
Zhu S, Kubota N, Wang S, Wang T, Xiao G, Hoshida Y. STIE: Single-cell level deconvolution, convolution, and clustering in in situ capturing-based spatial transcriptomics. Nat Commun 2024; 15:7559. [PMID: 39214995 PMCID: PMC11364663 DOI: 10.1038/s41467-024-51728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
In in situ capturing-based spatial transcriptomics, spots of the same size and printed at fixed locations cannot precisely capture the randomly-located single cells, therefore inherently failing to profile transcriptome at the single-cell level. To this end, we present STIE, an Expectation Maximization algorithm that aligns the spatial transcriptome to its matched histology image-based nuclear morphology and recovers missing cells from ~70% gap area, thereby achieving the real single-cell level and whole-slide scale deconvolution, convolution, and clustering for both low- and high-resolution spots. STIE characterizes cell-type-specific gene expression and demonstrates outperforming concordance with true cell-type-specific transcriptomic signatures than the other spot- and subspot-level methods. Furthermore, STIE reveals the single-cell level insights, for instance, lower actual spot resolution than its reported spot size, unbiased evaluation of cell type colocalization, superior power of high-resolution spot in distinguishing nuanced cell types, and spatial cell-cell interactions at the single-cell level other than spot level.
Collapse
Affiliation(s)
- Shijia Zhu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Valenti D, Atlante A. Sound Matrix Shaping of Living Matter: From Macrosystems to Cell Microenvironment, Where Mitochondria Act as Energy Portals in Detecting and Processing Sound Vibrations. Int J Mol Sci 2024; 25:6841. [PMID: 38999952 PMCID: PMC11241420 DOI: 10.3390/ijms25136841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Vibration and sound are the shaping matrix of the entire universe. Everything in nature is shaped by energy vibrating and communicating through its own sound trail. Every cell within our body vibrates at defined frequencies, generating its peculiar "sound signature". Mitochondria are dynamic, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. Novel research has shown that the mitochondrial function of mammalian cells can be modulated by various energetic stimuli, including sound vibrations. Regarding acoustic vibrations, definite types of music have been reported to produce beneficial impacts on human health. In very recent studies, the effects of different sound stimuli and musical styles on cellular function and mitochondrial activity were evaluated and compared in human cells cultured in vitro, investigating the underlying responsible molecular mechanisms. This narrative review will take a multilevel trip from macro to intracellular microenvironment, discussing the intimate vibrational sound activities shaping living matter, delving deeper into the molecular mechanisms underlying the sound modulation of biological systems, and mainly focusing our discussion on novel evidence showing the competence of mitochondria in acting as energy portals capable of sensing and transducing the subtle informational biofields of sound vibration.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
21
|
Hu X, Duan H, Zou D, Dong C, Wang Y, Wang Y, Li Z, Li Z. Acoustic vibration promotes in vitro expansion of human embryonic stem cells. AMERICAN JOURNAL OF STEM CELLS 2024; 13:143-151. [PMID: 39021373 PMCID: PMC11249672 DOI: 10.62347/pjfc2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of acoustic vibration on the pluripotency of human embryonic stem cells (hESCs) and evaluate cell proliferation and self-renewal ability post-treatment. METHODS The human ES cell line H1 was used for the experiments. hESCs were treated with an acoustic vibration device. Their proliferative ability was subsequently detected using a colony formation assay, while the expression of pluripotency-related markers was detected via immunofluorescence staining. Finally, changes in gene expression levels were examined using quantitative polymerase chain reaction (qPCR) in the presence of appropriate primers. RESULTS Compared with normal cells in the control group, the morphology of experimental cells subjected to acoustic vibration did not significantly change. Contrastingly, the colony-forming efficiency of the experimental cells significantly increased. Immunofluorescence staining results showed the cells in experimental group were positive for the pluripotency markers NANOG, octamer-binding transcription factor 4 gene (OCT4), and SRY (sex determining region Y)-box 2 (SOX2). In addition, the expression levels of pluripotency genes NANOG, OCT4, SOX2, and Yes-associated protein (YAP)-related genes were up-regulated following acoustic vibration. CONCLUSIONS Our results revealed that acoustic vibration enhanced the proliferative ability of hESCs and increased the expression levels of NANOG, OCT4, SOX2, and YAP-related genes, indicating that acoustic vibration can optimize the self-renewal ability of hESCs and that the YAP signaling pathway may play a critical role in the functional process of acoustic vibration.
Collapse
Affiliation(s)
- Xiangyue Hu
- Shandong First Medical University (Shandong Academy of Medical Sciences)Jinan 250000, Shandong, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| | - Dulei Zou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan 250021, Shandong, China
| | - Chunxiao Dong
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan 250021, Shandong, China
| | - Yani Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| | - Yao Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| | - Zongren Li
- 970 Hospital of Chinese PLA Joint Logistic Support ForceWeihai 264200, Shandong, China
| | - Zongyi Li
- Shandong First Medical University (Shandong Academy of Medical Sciences)Jinan 250000, Shandong, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyQingdao 266071, Shandong, China
| |
Collapse
|
22
|
Ochieng BO, Zhao L, Ye Z. Three-Dimensional Bioprinting in Vascular Tissue Engineering and Tissue Vascularization of Cardiovascular Diseases. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:340-358. [PMID: 37885200 DOI: 10.1089/ten.teb.2023.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
In the 21st century, significant progress has been made in repairing damaged materials through material engineering. However, the creation of large-scale artificial materials still faces a major challenge in achieving proper vascularization. To address this issue, researchers have turned to biomaterials and three-dimensional (3D) bioprinting techniques, which allow for the combination of multiple biomaterials with improved mechanical and biological properties that mimic natural materials. Hydrogels, known for their ability to support living cells and biological components, have played a crucial role in this research. Among the recent developments, 3D bioprinting has emerged as a promising tool for constructing hybrid scaffolds. However, there are several challenges in the field of bioprinting, including the need for nanoscale biomimicry, the formulation of hydrogel blends, and the ongoing complexity of vascularizing biomaterials, which requires further research. On a positive note, 3D bioprinting offers a solution to the vascularization problem due to its precise spatial control, scalability, and reproducibility compared with traditional fabrication methods. This paper aims at examining the recent advancements in 3D bioprinting technology for creating blood vessels, vasculature, and vascularized materials. It provides a comprehensive overview of the progress made and discusses the limitations and challenges faced in current 3D bioprinting of vascularized tissues. In addition, the paper highlights the future research directions focusing on the development of 3D bioprinting techniques and bioinks for creating functional materials.
Collapse
Affiliation(s)
- Ben Omondi Ochieng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Leqian Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Naseem S, Rizwan M, Durrani AI, Munawar A, Gillani SR. Innovations in cell lysis strategies and efficient protein extraction from blue food (Seaweed). SUSTAINABLE CHEMISTRY AND PHARMACY 2024; 39:101586. [DOI: 10.1016/j.scp.2024.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
|
24
|
Li T, Li J, Bo L, Bachman H, Fan B, Cheng J, Tian Z. Robot-assisted chirality-tunable acoustic vortex tweezers for contactless, multifunctional, 4-DOF object manipulation. SCIENCE ADVANCES 2024; 10:eadm7698. [PMID: 38787945 PMCID: PMC11122681 DOI: 10.1126/sciadv.adm7698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Robotic manipulation of small objects has shown great potential for engineering, biology, and chemistry research. However, existing robotic platforms have difficulty in achieving contactless, high-resolution, 4-degrees-of-freedom (4-DOF) manipulation of small objects, and noninvasive maneuvering of objects in regions shielded by tissue and bone barriers. Here, we present chirality-tunable acoustic vortex tweezers that can tune acoustic vortex chirality, transmit through biological barriers, trap single micro- to millimeter-sized objects, and control object rotation. Assisted by programmable robots, our acoustic systems further enable contactless, high-resolution translation of single objects. Our systems were demonstrated by tuning acoustic vortex chirality, controlling object rotation, and translating objects along arbitrary-shaped paths. Moreover, we used our systems to trap single objects in regions with tissue and skull barriers and translate an object inside a Y-shaped channel of a thick biomimetic phantom. In addition, we showed the function of ultrasound imaging-assisted acoustic manipulation by monitoring acoustic object manipulation via live ultrasound imaging.
Collapse
Affiliation(s)
- Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Luyu Bo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bei Fan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jiangtao Cheng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
25
|
He C, Yao J, Yang C, Wang J, Sun B, Liao G, Shi T, Liu Z. Irreversible Bonding of Polydimethylsiloxane-Lithium Niobate using Oxygen Plasma Modification for Surface Acoustic Wave based Microfluidic Application: Theory and Experiment. SMALL METHODS 2024; 8:e2301321. [PMID: 38054603 DOI: 10.1002/smtd.202301321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Acoustic microfluidic chips, fabricated by combining lithium niobate (LiNbO3) with polydimethylsiloxane (PDMS), practically find applications in biomedicine. However, high-strength direct bonding of LiNbO3 substrate with PDMS microchannel remains a challenge due to the large mismatching of thermal expansion coefficient at the interface and the lack of bonding theory. This paper elaborately reveals the bonding mechanisms of PDMS and LiNbO3, demonstrating an irreversible bonding method for PDMS-LiNbO3 heterostructures using oxygen plasma modification. An in-situ monitoring strategy by using resonant devices is proposed for oxygen plasma, including quartz crystal microbalance (QCM) covered with PDMS and surface acoustic wave (SAW) fabricated by LiNbO3. When oxygen plasma exposure occurs, surfaces are cleaned, oxygen ions are implanted, and hydroxyl groups (-OH) are formed. Upon interfaces bonding, the interface will form niobium-oxygen-silicon covalent bonds to realize an irreversible connection. A champion bonding strength is obtained of 1.1 MPa, and the PDMS-LiNbO3 acoustic microfluidic chip excels in leakage tests, withstanding pressures exceeding 60 psi, outperforming many previously reported devices. This work addresses the gap in PDMS-LiNbO3 bonding theory and advances its practical application in the acoustic microfluidic field.
Collapse
Affiliation(s)
- Chunhua He
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jinhui Yao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Canfeng Yang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jianxin Wang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bo Sun
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guanglan Liao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiyong Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
26
|
Jia Y, Wang M, Li J, An S, Li T, Liu S. Selective Acoustic Trapping, Translating, Rotating, and Orienting of Organism From Heterogeneous Mixture. IEEE Trans Biomed Eng 2024; 71:1542-1551. [PMID: 38117632 DOI: 10.1109/tbme.2023.3342093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Selective contactless manipulation of organisms with intrinsic mobility from heterogeneous mixture is essential for biomedical engineering and microbiology. Acoustic manipulation, compared to its optical, magnetic, and electrostatic counterparts, provides superior bio-compatibility and additive-free properties. In this study, we present an acoustic manipulation system capable of selectively trapping, translating, rotating, and orienting individual organisms from in-Petri dish organism mixture using a phased transducer array and microscope, by dynamically steering the acoustic field. Specifically, using brine shrimp and zebrafish populations as example, the to-be-manipulated organisms with different sizes or morphologies can be manually designated by the user in microscopic image and interactively localized. Thereafter, the selected organisms can be automatically trapped from the heterogeneous mixture using a multiple focal point-based acoustic field steering method. Finally, the trapped organisms can be translated, rotated, and oriented in regard to the user's distinct manipulation objectives in instant response. In different tasks, closed-loop positioning and real-time motion planning control are performed, highlighting the innovation in terms of automation and accuracy of our manipulation technique. The results demonstrate that our acoustic manipulation system and acoustic field steering method enable selective, stable, precision, real-time, and in-Petri dish manipulation of organisms from heterogeneous mixture.
Collapse
|
27
|
Chen W, Xia M, Zhu W, Xu Z, Cai B, Shen H. A bio-fabricated tesla valves and ultrasound waves-powered blood plasma viscometer. Front Bioeng Biotechnol 2024; 12:1394373. [PMID: 38720878 PMCID: PMC11076727 DOI: 10.3389/fbioe.2024.1394373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction: There is clinical evidence that the fresh blood viscosity is an important indicator in the development of vascular disorder and coagulation. However, existing clinical viscosity measurement techniques lack the ability to measure blood viscosity and replicate the in-vivo hemodynamics simultaneously. Methods: Here, we fabricate a novel digital device, called Tesla valves and ultrasound waves-powered blood plasma viscometer (TUBPV) which shows capacities in both viscosity measurement and coagulation monitoring. Results: Based on the Hagen-Poiseuille equation, viscosity analysis can be faithfully performed by a video microscopy. Tesla-like channel ensured unidirectional liquid motion with stable pressure driven that was triggered by the interaction of Tesla valve structure and ultrasound waves. In few seconds the TUBPV can generate an accurate viscosity profile on clinic fresh blood samples from the flow time evaluation. Besides, Tesla-inspired microchannels can be used in the real-time coagulation monitoring. Discussion: These results indicate that the TUBVP can serve as a point-of-care device in the ICU to evaluate the blood's viscosity and the anticoagulation treatment.
Collapse
Affiliation(s)
- Wenqin Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mao Xia
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wentao Zhu
- School of Environment and Health, Jianghan University, Wuhan, China
| | - Zhiye Xu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bo Cai
- School of Environment and Health, Jianghan University, Wuhan, China
| | - Han Shen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Wu Y, Gai J, Zhao Y, Liu Y, Liu Y. Acoustofluidic Actuation of Living Cells. MICROMACHINES 2024; 15:466. [PMID: 38675277 PMCID: PMC11052308 DOI: 10.3390/mi15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acoutofluidics is an increasingly developing and maturing technical discipline. With the advantages of being label-free, non-contact, bio-friendly, high-resolution, and remote-controllable, it is very suitable for the operation of living cells. After decades of fundamental laboratory research, its technical principles have become increasingly clear, and its manufacturing technology has gradually become popularized. Presently, various imaginative applications continue to emerge and are constantly being improved. Here, we introduce the development of acoustofluidic actuation technology from the perspective of related manipulation applications on living cells. Among them, we focus on the main development directions such as acoustofluidic sorting, acoustofluidic tissue engineering, acoustofluidic microscopy, and acoustofluidic biophysical therapy. This review aims to provide a concise summary of the current state of research and bridge past developments with future directions, offering researchers a comprehensive overview and sparking innovation in the field.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Junyang Gai
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Yuwen Zhao
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671000, China
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| |
Collapse
|
29
|
Wu Z, Cai H, Tian C, Ao Z, Jiang L, Guo F. Exploiting Sound for Emerging Applications of Extracellular Vesicles. NANO RESEARCH 2024; 17:462-475. [PMID: 38712329 PMCID: PMC11073796 DOI: 10.1007/s12274-023-5840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Chunhui Tian
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Lei Jiang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
30
|
Rich J, Cole B, Li T, Lu B, Fu H, Smith BN, Xia J, Yang S, Zhong R, Doherty JL, Kaneko K, Suzuki H, Tian Z, Franklin AD, Huang TJ. Aerosol jet printing of surface acoustic wave microfluidic devices. MICROSYSTEMS & NANOENGINEERING 2024; 10:2. [PMID: 38169478 PMCID: PMC10757899 DOI: 10.1038/s41378-023-00606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 01/05/2024]
Abstract
The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Brian Cole
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Brandon Lu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Hanyu Fu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Brittany N. Smith
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - James L. Doherty
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Kanji Kaneko
- Deptartment of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
| | - Hiroaki Suzuki
- Deptartment of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Aaron D. Franklin
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
- Department of Chemistry, Duke University, Durham, NC 27708 USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
31
|
Zhu S, Kubota N, Wang S, Wang T, Xiao G, Hoshida Y. Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.17.572084. [PMID: 38187541 PMCID: PMC10769305 DOI: 10.1101/2023.12.17.572084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In spot-based spatial transcriptomics, spots that are of the same size and printed at the fixed location cannot precisely capture the actual randomly located single cells, therefore failing to profile the transcriptome at the single-cell level. The current studies primarily focused on enhancing the spot resolution in size via computational imputation or technical improvement, however, they largely overlooked that single-cell resolution, i.e., resolution in cellular or even smaller size, does not equal single-cell level. Using both real and simulated spatial transcriptomics data, we demonstrated that even the high-resolution spatial transcriptomics still has a large number of spots partially covering multiple cells simultaneously, revealing the intrinsic non-single-cell level of spot-based spatial transcriptomics regardless of spot size. To this end, we present STIE, an EM algorithm that aligns the spatial transcriptome to its matched histology image-based nuclear morphology and recovers missing cells from up to ~70% gap area between spots via the nuclear morphological similarity and neighborhood information, thereby achieving the real single-cell level and whole-slide scale deconvolution/convolution and clustering for both low- and high-resolution spots. On both real and simulation spatial transcriptomics data, STIE characterizes the cell-type specific gene expression variation and demonstrates the outperforming concordance with the single-cell RNAseq-derived cell type transcriptomic signatures compared to the other spot- and subspot-level methods. Furthermore, STIE enabled us to gain novel insights that failed to be revealed by the existing methods due to the lack of single-cell level, for instance, lower actual spot resolution than its reported spot size, the additional contribution of cellular morphology to cell typing beyond transcriptome, unbiased evaluation of cell type colocalization, superior power of high-resolution spot in distinguishing nuanced cell types, and spatially resolved cell-cell interactions at the single-cell level other than spot level. The STIE code is publicly available as an R package at https://github.com/zhushijia/STIE.
Collapse
Affiliation(s)
- Shijia Zhu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
32
|
Zhu L, Tang Q, Mao Z, Chen H, Wu L, Qin Y. Microfluidic-based platforms for cell-to-cell communication studies. Biofabrication 2023; 16:012005. [PMID: 38035370 DOI: 10.1088/1758-5090/ad1116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Intercellular communication is critical to the understanding of human health and disease progression. However, compared to traditional methods with inefficient analysis, microfluidic co-culture technologies developed for cell-cell communication research can reliably analyze crucial biological processes, such as cell signaling, and monitor dynamic intercellular interactions under reproducible physiological cell co-culture conditions. Moreover, microfluidic-based technologies can achieve precise spatial control of two cell types at the single-cell level with high throughput. Herein, this review focuses on recent advances in microfluidic-based 2D and 3D devices developed to confine two or more heterogeneous cells in the study of intercellular communication and decipher the advantages and limitations of these models in specific cellular research scenarios. This review will stimulate the development of more functionalized microfluidic platforms for biomedical research, inspiring broader interests across various disciplines to better comprehend cell-cell communication and other fields, such as tumor heterogeneity and drug screening.
Collapse
Affiliation(s)
- Lvyang Zhu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Zhenzhen Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Huanhuan Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Wu Z, Sun L, Chen H, Zhao Y. Bioinspired Surfaces Derived from Acoustic Waves for On-Demand Droplet Manipulations. RESEARCH (WASHINGTON, D.C.) 2023; 6:0263. [PMID: 39290236 PMCID: PMC11407685 DOI: 10.34133/research.0263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/13/2023] [Indexed: 09/19/2024]
Abstract
The controllable manipulation and transfer of droplets are fundamental in a wide range of chemical reactions and even life processes. Herein, we present a novel, universal, and straightforward acoustic approach to fabricating biomimetic surfaces for on-demand droplet manipulations like many natural creatures. Based on the capillary waves induced by surface acoustic waves, various polymer films could be deformed into pre-designed structures, such as parallel grooves and grid-like patterns. These structured and functionalized surfaces exhibit impressive ability in droplet transportation and water collection, respectively. Besides these static surfaces, the tunability of acoustics could also endow polymer surfaces with dynamic controllability for droplet manipulations, including programming wettability, mitigating droplet evaporation, and accelerating chemical reactions. Our approach is capable of achieving universal surface manufacturing and droplet manipulation simultaneously, which simplifies the fabrication process and eliminates the need for additional chemical modifications. Thus, we believe that our acoustic-derived surfaces and technologies could provide a unique perspective for various applications, including microreactor integration, biochemical reaction control, tissue engineering, and so on.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Wu Y, Zhao Y, Islam K, Zhou Y, Omidi S, Berdichevsky Y, Liu Y. Acoustofluidic Engineering of Functional Vessel-on-a-Chip. ACS Biomater Sci Eng 2023; 9:6273-6281. [PMID: 37787770 PMCID: PMC10646832 DOI: 10.1021/acsbiomaterials.3c00925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Construction of in vitro vascular models is of great significance to various biomedical research, such as pharmacokinetics and hemodynamics, and thus is an important direction in the tissue engineering field. In this work, a standing surface acoustic wave field was constructed to spatially arrange suspended endothelial cells into a designated acoustofluidic pattern. The cell patterning was maintained after the acoustic field was withdrawn within the solidified hydrogel. Then, interstitial flow was provided to activate vessel tube formation. In this way, a functional vessel network with specific vessel geometry was engineered on-chip. Vascular function, including perfusability and vascular barrier function, was characterized by microbead loading and dextran diffusion, respectively. A computational atomistic simulation model was proposed to illustrate how solutes cross the vascular membrane lipid bilayer. The reported acoustofluidic methodology is capable of facile and reproducible fabrication of the functional vessel network with specific geometry and high resolution. It is promising to facilitate the development of both fundamental research and regenerative therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuwen Zhao
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Khayrul Islam
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Saeed Omidi
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yevgeny Berdichevsky
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
35
|
Kshetri KG, Nama N. Acoustophoresis around an elastic scatterer in a standing wave field. Phys Rev E 2023; 108:045102. [PMID: 37978594 DOI: 10.1103/physreve.108.045102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
Acoustofluidic systems often employ prefabricated acoustic scatterers that perturb the imposed acoustic field to realize the acoustophoresis of immersed microparticles. We present a numerical study to investigate the time-averaged streaming and radiation force fields around a scatterer. Based on the streaming and radiation force field, we obtain the trajectories of the immersed microparticles with varying sizes and identify a critical transition size at which the motion of immersed microparticles in the vicinity of a prefabricated scatterer shifts from being streaming dominated to radiation dominated. We consider a range of acoustic frequencies to reveal that the critical transition size decreases with increasing frequency; this result explains the choice of acoustic frequencies in previously reported experimental studies. We also examine the impact of scatterer material and fluid properties on the streaming and radiation force fields, as well as on the critical transition size. Our results demonstrate that the critical transition size decreases with an increase in acoustic contrast factor: a nondimensional quantity that depends on material properties of the scatterer and the fluid. Our results provide a pathway to realize radiation force based manipulation of small particles by increasing the acoustic contrast factor of the scatterer, lowering the kinematic viscosity of the fluid, and increasing the acoustic frequency.
Collapse
Affiliation(s)
- Khemraj Gautam Kshetri
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Nitesh Nama
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
36
|
Wu Y, Zhao Y, Islam K, Zhou Y, Omidi S, Berdichevsky Y, Liu Y. Acoustofluidic Engineering Functional Vessel-on-a-Chip. ARXIV 2023:arXiv:2308.06219v2. [PMID: 37608938 PMCID: PMC10441438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Construction of in vitro vascular models is of great significance to various biomedical research, such as pharmacokinetics and hemodynamics, thus is an important direction in tissue engineering. In this work, a standing surface acoustic wave field was constructed to spatially arrange suspended endothelial cells into a designated patterning. The cell patterning was maintained after the acoustic field was withdrawn by the solidified hydrogel. Then, interstitial flow was provided to activate vessel tube formation. Thus, a functional vessel-on-a-chip was engineered with specific vessel geometry. Vascular function, including perfusability and vascular barrier function, was characterized by beads loading and dextran diffusion, respectively. A computational atomistic simulation model was proposed to illustrate how solutes cross vascular lipid bilayer. The reported acoustofluidic methodology is capable of facile and reproducible fabrication of functional vessel network with specific geometry. It is promising to facilitate the development of both fundamental research and regenerative therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuwen Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Khayrul Islam
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Saeed Omidi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yevgeny Berdichevsky
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
37
|
Yang S, Rufo J, Zhong R, Rich J, Wang Z, Lee LP, Huang TJ. Acoustic tweezers for high-throughput single-cell analysis. Nat Protoc 2023; 18:2441-2458. [PMID: 37468650 PMCID: PMC11052649 DOI: 10.1038/s41596-023-00844-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/18/2023] [Indexed: 07/21/2023]
Abstract
Acoustic tweezers provide an effective means for manipulating single cells and particles in a high-throughput, precise, selective and contact-free manner. The adoption of acoustic tweezers in next-generation cellular assays may advance our understanding of biological systems. Here we present a comprehensive set of instructions that guide users through device fabrication, instrumentation setup and data acquisition to study single cells with an experimental throughput that surpasses traditional methods, such as atomic force microscopy and micropipette aspiration, by several orders of magnitude. With acoustic tweezers, users can conduct versatile experiments that require the trapping, patterning, pairing and separation of single cells in a myriad of applications ranging across the biological and biomedical sciences. This procedure is widely generalizable and adaptable for investigations in materials and physical sciences, such as the spinning motion of colloids or the development of acoustic-based quantum simulations. Overall, the device fabrication requires ~12 h, the experimental setup of the acoustic tweezers requires 1-2 h and the cell manipulation experiment requires ~30 min to complete. Our protocol is suitable for use by interdisciplinary researchers in biology, medicine, engineering and physics.
Collapse
Affiliation(s)
- Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rufo
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Zeyu Wang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
38
|
Yang Y, Yang Y, Liu D, Wang Y, Lu M, Zhang Q, Huang J, Li Y, Ma T, Yan F, Zheng H. In-vivo programmable acoustic manipulation of genetically engineered bacteria. Nat Commun 2023; 14:3297. [PMID: 37280199 DOI: 10.1038/s41467-023-38814-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Acoustic tweezers can control target movement through the momentum interaction between an acoustic wave and an object. This technology has advantages over optical tweezers for in-vivo cell manipulation due to its high tissue penetrability and strong acoustic radiation force. However, normal cells are difficult to acoustically manipulate because of their small size and the similarity between their acoustic impedance and that of the medium. In this study, we use the heterologous expression of gene clusters to generate genetically engineered bacteria that can produce numerous sub-micron gas vesicles in the bacterial cytoplasm. We show that the presence of the gas vesicles significantly enhances the acoustic sensitivity of the engineering bacteria, which can be manipulated by ultrasound. We find that by employing phased-array-based acoustic tweezers, the engineering bacteria can be trapped into clusters and manipulated in vitro and in vivo via electronically steered acoustic beams, enabling the counter flow or on-demand flow of these bacteria in the vasculature of live mice. Furthermore, we demonstrate that the aggregation efficiency of engineering bacteria in a tumour is improved by utilizing this technology. This study provides a platform for the in-vivo manipulation of live cells, which will promote the progress of cell-based biomedical applications.
Collapse
Affiliation(s)
- Ye Yang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Shenzhen College of Advanced Technology, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yaozhang Yang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Dingyuan Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yuanyuan Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Minqiao Lu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Qi Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jiqing Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yongchuan Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Teng Ma
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Shenzhen College of Advanced Technology, University of the Chinese Academy of Sciences, 100049, Beijing, China.
| | - Fei Yan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Shenzhen College of Advanced Technology, University of the Chinese Academy of Sciences, 100049, Beijing, China.
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Shenzhen College of Advanced Technology, University of the Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
39
|
Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res 2023; 27:55. [PMID: 37264479 DOI: 10.1186/s40824-023-00393-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deepthi Sankar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
40
|
Fakhfouri A, Colditz M, Devendran C, Ivanova K, Jacob S, Neild A, Winkler A. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24023-24033. [PMID: 37188328 PMCID: PMC10215297 DOI: 10.1021/acsami.3c00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Precise manipulation of (sub)micron particles is key for the preparation, enrichment, and quality control in many biomedical applications. Surface acoustic waves (SAW) hold tremendous promise for manipulation of (bio)particles at the micron to nanoscale ranges. In commonly used SAW tweezers, particle manipulation relies on the direct acoustic radiation effect whose superior performance fades rapidly when progressing from micron to nanoscale particles due to the increasing dominance of a second order mechanism, termed acoustic streaming. Through reproducible and high-precision realization of stiff microchannels to reliably actuate the microchannel cross-section, here we introduce an approach that allows the otherwise competing acoustic streaming to complement the acoustic radiation effect. The synergetic effect of both mechanisms markedly enhances the manipulation of nanoparticles, down to 200 nm particles, even at relatively large wavelength (300 μm). Besides spherical particles ranging from 0.1 to 3 μm, we show collections of cells mixed with different sizes and shapes inherently existing in blood including erythrocytes, leukocytes, and thrombocytes.
Collapse
Affiliation(s)
| | - Melanie Colditz
- Leibniz-IFW
Dresden, Helmholtzstr.
20, 01069 Dresden, Germany
| | - Citsabehsan Devendran
- Department
of Mechanical and Aerospace Engineering Monash University, Clayton, Victoria 3800, Australia
| | | | - Stefan Jacob
- Physikalisch-Technische
Bundesanstalt, Bundesallee
100, 38116, Brunswick, Germany
| | - Adrian Neild
- Department
of Mechanical and Aerospace Engineering Monash University, Clayton, Victoria 3800, Australia
| | - Andreas Winkler
- Leibniz-IFW
Dresden, Helmholtzstr.
20, 01069 Dresden, Germany
| |
Collapse
|
41
|
Kolesnik K, Segeritz P, Scott DJ, Rajagopal V, Collins DJ. Sub-wavelength acoustic stencil for tailored micropatterning. LAB ON A CHIP 2023; 23:2447-2457. [PMID: 37042175 DOI: 10.1039/d3lc00043e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Acoustofluidic devices are ideal for biomedical micromanipulation applications, with high biocompatibility and the ability to generate force gradients down to the scale of cells. However, complex and designed patterning at the microscale remains challenging. In this work we report an acoustofluidic approach to direct particles and cells within a structured surface in arbitrary configurations. Wells, trenches and cavities are embedded in this surface. Combined with a half-wavelength acoustic field, together these form an 'acoustic stencil' where arbitrary cell and particle arrangements can be reversibly generated. Here a bulk-wavemode lithium niobate resonator generates multiplexed parallel patterning via a multilayer resonant geometry, where cell-scale resolution is accomplished via structured sub-wavelength microfeatures. Uniquely, this permits simultaneous manipulation in a unidirectional, device-spanning single-node field across scalable ∼cm2 areas in a microfluidic device. This approach is demonstrated via patterning of 5, 10 and 15 μm particles and 293-F cells in a variety of arrangements, where these activities are enabling for a range of cell studies and tissue engineering applications via the generation of highly complex and designed acoustic patterns at the microscale.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
| | - Philipp Segeritz
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
42
|
Deng Z, Kondalkar VV, Cierpka C, Schmidt H, König J. From rectangular to diamond shape: on the three-dimensional and size-dependent transformation of patterns formed by single particles trapped in microfluidic acoustic tweezers. LAB ON A CHIP 2023; 23:2154-2160. [PMID: 37013801 DOI: 10.1039/d3lc00120b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Generally, the pattern formed by individual particles trapped inside a microfluidic chamber by a two-dimensional standing acoustic wave field has been considered only the result of the acoustic radiation force. Previous studies showed that particles can be trapped at the local minima and maxima of the first-order pressure and velocity fields. Thus, either a rectangular or a diamond pattern can be formed solely depending on the particle size, when the acoustic field is unchanged, and the material properties of the particles and the fluid are fixed. In this paper, we report about the co-existence of different patterns with particles of the same size. The actual shape of the patterns depends mainly on the ratio between particle diameter and wavelength. In addition, particles were found to be trapped at locations that coincide with the position of antinodes, even though the particles have a positive acoustic contrast factor. These phenomena imply that the trapping of individual particles cannot be described by the acoustic radiation force solely. Hence, further research is required, taking the viscous drag force caused by the fluid flow induced by the acoustic streaming effect into account.
Collapse
Affiliation(s)
- Zhichao Deng
- Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, Ilmenau, Germany.
| | - Vijay V Kondalkar
- Leibniz Institute for Solid State and Materials Research Dresden, SAWLab Saxony, Dresden, Germany.
| | - Christian Cierpka
- Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, Ilmenau, Germany.
| | - Hagen Schmidt
- Leibniz Institute for Solid State and Materials Research Dresden, SAWLab Saxony, Dresden, Germany.
| | - Jörg König
- Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, Ilmenau, Germany.
| |
Collapse
|
43
|
Kim S, Im G, Kim YH, Bhang SH. Fortifying angiogenic efficacy of conditioned media using phototoxic-free blue light for wound healing. Bioeng Transl Med 2023; 8:e10462. [PMID: 37206233 PMCID: PMC10189464 DOI: 10.1002/btm2.10462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 11/02/2023] Open
Abstract
We used a blue organic light-emitting diode (bOLED) to increase the paracrine factors secreted from human adipose-derived stem cells (hADSCs) for producing conditioned medium (CM). Our results showed that while the bOLED irradiation promotes a mild-dose reactive oxygen generation that enhances the angiogenic paracrine secretion of hADSCs, it does not induce phototoxicity. The bOLED enhances paracrine factors via a cell-signaling mechanism involving hypoxia-inducible factor 1 alpha. This study demonstrated that the CM resulting from bOLED treatment shows improved therapeutic effects on mouse wound-healing models. This method contributes to overcoming the barriers to stem-cell therapies, including the toxicity and low yields from other methods such as nanoparticles, synthetic polymers, and even cell-derived vesicles.
Collapse
Affiliation(s)
- Sung‐Won Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
| | - Gwang‐Bum Im
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
- Present address:
Department of Cardiac SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
| |
Collapse
|
44
|
Seidel S, Maschke RW, Mozaffari F, Eibl-Schindler R, Eibl D. Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution. Bioengineering (Basel) 2023; 10:bioengineering10040478. [PMID: 37106665 PMCID: PMC10135925 DOI: 10.3390/bioengineering10040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
HEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shake flasks, with and without baffles, and in stirred Minifors 2 bioreactors to evaluate its effect on the growth and aggregate size distribution of HEK293 suspension cells. The HEK FreeStyleTM 293-F cell line was cultivated in batch mode at different specific power inputs (from 63 W m-3 to 451 W m-3), whereby ≈60 W m-3 corresponds to the upper limit, which is what has been typically described in published experiments. In addition to the specific growth rate and maximum viable cell density VCDmax, the cell size distribution over time and cluster size distribution were investigated. The VCDmax of (5.77±0.02)·106cellsmL-1 was reached at a specific power input of 233 W m-3 and was 23.8% higher than the value obtained at 63 W m-3 and 7.2% higher than the value obtained at 451 W m-3. No significant change in the cell size distribution could be measured in the investigated range. It was shown that the cell cluster size distribution follows a strict geometric distribution whose free parameter p is linearly dependent on the mean Kolmogorov length scale. Based on the performed experiments, it has been shown that by using CFD-characterised bioreactors, the VCDmax can be increased and the cell aggregate rate can be precisely controlled.
Collapse
Affiliation(s)
- Stefan Seidel
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Rüdiger W Maschke
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Fruhar Mozaffari
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Regine Eibl-Schindler
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| |
Collapse
|
45
|
Pan H, Mei D, Xu C, Li X, Wang Y. Acoustic tweezers using bisymmetric coherent surface acoustic waves for dynamic and reconfigurable manipulation of particle multimers. J Colloid Interface Sci 2023; 643:115-123. [PMID: 37058887 DOI: 10.1016/j.jcis.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
HYPOTHESIS The accurate and dynamic manipulation of multiple micro-sized objects has always been a technical challenge in areas of colloid assembly, tissue engineering, and organ regeneration. The hypothesis of this paper is the precise modulation and parallel manipulation of morphology of individual and multiple colloidal multimers can be achieved by customizing acoustic field. EXPERIMENTS Herein, we present a colloidal multimer manipulation method by using acoustic tweezers with bisymmetric coherent surface acoustic waves (SAWs), which enables contactless morphology modulation of individual colloidal multimers and patterning arrays by regulating the shape of acoustic field to specific desired distributions with high accuracy. Rapid switching of multimer patterning arrays, morphology modulation of individual multimers, and controllable rotation can be achieved by regulating coherent wave vector configurations and phase relations in real time. FINDINGS To demonstrate the capabilities of this technology, we have firstly achieved eleven patterns of deterministic morphology switching for single hexamer and precise switching between three array modes. In addition, the assembly of multimers with three kinds of specific widths and controllable rotation of single multimers and arrays were demonstrated from 0 to 22.4 rpm (tetramers). Therefore, this technique enables reversible assembly and dynamic manipulation of particles and/or cells in colloid synthesis applications.
Collapse
Affiliation(s)
- Hemin Pan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengyao Xu
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Li
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
46
|
Shen L, Tian Z, Zhang J, Zhu H, Yang K, Li T, Rich J, Upreti N, Hao N, Pei Z, Jin G, Yang S, Liang Y, Chaohui W, Huang TJ. Acousto-dielectric tweezers for size-insensitive manipulation and biophysical characterization of single cells. Biosens Bioelectron 2023; 224:115061. [PMID: 36634509 DOI: 10.1016/j.bios.2023.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/03/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The intrinsic biophysical properties of cells, such as mechanical, acoustic, and electrical properties, are valuable indicators of a cell's function and state. However, traditional single-cell biophysical characterization methods are hindered by limited measurable properties, time-consuming procedures, and complex system setups. This study presents acousto-dielectric tweezers that leverage the balance between controllable acoustophoretic and dielectrophoretic forces applied on cells through surface acoustic waves and alternating current electric fields, respectively. Particularly, the balanced acoustophoretic and dielectrophoretic forces can trap cells at equilibrium positions independent of the cell size to differentiate between various cell-intrinsic mechanical, acoustic, and electrical properties. Experimental results show our mechanism has the potential for applications in single-cell analysis, size-insensitive cell separation, and cell phenotyping, which are all primarily based on cells' intrinsic biophysical properties. Our results also show the measured equilibrium position of a cell can inversely determine multiple biophysical properties, including membrane capacitance, cytoplasm conductivity, and acoustic contrast factor. With these features, our acousto-dielectric tweezing mechanism is a valuable addition to the resources available for biophysical property-based biological and medical research.
Collapse
Affiliation(s)
- Liang Shen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA; State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Jinxin Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Haodong Zhu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Neil Upreti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhichao Pei
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Geonsoo Jin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Wang Chaohui
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
47
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Açıkgöz HN, Karaman A, Şahin MA, Çaylan ÖR, Büke GC, Yıldırım E, Eroğlu İC, Erson-Bensan AE, Çetin B, Özer MB. Assessment of silicon, glass, FR4, PDMS and PMMA as a chip material for acoustic particle/cell manipulation in microfluidics. ULTRASONICS 2023; 129:106911. [PMID: 36528906 DOI: 10.1016/j.ultras.2022.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the capabilities of different chip materials for acoustic particle manipulation have been assessed with the same microfluidic device architecture, under the same actuator and flow conditions. Silicon, glass, epoxy with fiberglass filling (FR4), polydimethylsiloxane (PDMS) and polymethyl methacrylate (PMMA) are considered as chip materials. The acoustophoretic chips in this study were manufactured with four different fabrication methods: plasma etching, chemical etching, micromachining and molding. A novel chip material, FR4, has been employed as a microfluidic chip material in acoustophoretic particle manipulation for the first time in literature, which combines the ease of manufacturing of polymer materials with improved acoustic performance. The acoustic particle manipulation performance is evaluated through acoustophoretic focusing experiments with 2μm and 12μm polystyrene microspheres and cultured breast cancer cell line (MDA-MB-231). Unlike the common approach in the literature, the piezoelectric materials were actuated with partitioned cross-polarized electrodes which allowed effective actuation of different family of chip materials. Different from previous studies, this study evaluates the performance of each acoustophoretic device through the perspective of synchronization of electrical, vibrational and acoustical resonances, considers the thermal performance of the chip materials with their effects on cell viability as well as manufacturability and scalability of their fabrication methods. We believe our study is an essential work towards the commercialization of acoustophoretic devices since it brings a critical understanding of the effect of chip material on device performance as well as the cost of achieving that performance.
Collapse
Affiliation(s)
- Hande N Açıkgöz
- Microfluidics & Lab-on-a-chip Research Group, Mech. Eng. Department, Bilkent University, Ankara 06800, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Alara Karaman
- Mech. Eng. Department, Middle East Technical University 06800 Ankara, Turkey
| | - M Akif Şahin
- Microfluidics & Lab-on-a-chip Research Group, Mech. Eng. Department, Bilkent University, Ankara 06800, Turkey; Mech. Eng. Department, Middle East Technical University 06800 Ankara, Turkey
| | - Ömer R Çaylan
- Department Materials Sci.Nanotech. Eng., TOBB Uni. Econ. Tech., 06510 Ankara, Turkey
| | - Göknur C Büke
- Department Materials Sci.Nanotech. Eng., TOBB Uni. Econ. Tech., 06510 Ankara, Turkey
| | - Ender Yıldırım
- Mech. Eng. Department, Middle East Technical University 06800 Ankara, Turkey
| | - İrem C Eroğlu
- Department Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - A Elif Erson-Bensan
- Department Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Barbaros Çetin
- Microfluidics & Lab-on-a-chip Research Group, Mech. Eng. Department, Bilkent University, Ankara 06800, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - M Bülent Özer
- Mech. Eng. Department, Middle East Technical University 06800 Ankara, Turkey.
| |
Collapse
|
49
|
Wu Z, Ao Z, Cai H, Li X, Chen B, Tu H, Wang Y, Lu RO, Gu M, Cheng L, Lu X, Guo F. Acoustofluidic assembly of primary tumor-derived organotypic cell clusters for rapid evaluation of cancer immunotherapy. J Nanobiotechnology 2023; 21:40. [PMID: 36739414 PMCID: PMC9899402 DOI: 10.1186/s12951-023-01786-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy shows promising potential for treating breast cancer. While patients may have heterogeneous treatment responses for adjuvant therapy, it is challenging to predict an individual patient's response to cancer immunotherapy. Here, we report primary tumor-derived organotypic cell clusters (POCCs) for rapid and reliable evaluation of cancer immunotherapy. By using a label-free, contactless, and highly biocompatible acoustofluidic method, hundreds of cell clusters could be assembled from patient primary breast tumor dissociation within 2 min. Through the incorporation of time-lapse living cell imaging, the POCCs could faithfully recapitulate the cancer-immune interaction dynamics as well as their response to checkpoint inhibitors. Superior to current tumor organoids that usually take more than two weeks to develop, the POCCs can be established and used for evaluation of cancer immunotherapy within 12 h. The POCCs can preserve the cell components from the primary tumor due to the short culture time. Moreover, the POCCs can be assembled with uniform fabricate size and cell composition and served as an open platform for manipulating cell composition and ratio under controlled treatment conditions with a short turnaround time. Thus, we provide a new method to identify potentially immunogenic breast tumors and test immunotherapy, promoting personalized cancer therapy.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Xiang Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Bin Chen
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Honglei Tu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Yijie Wang
- Computer Science Department, Indiana University, Bloomington, IN, 47408, USA
| | - Rongze Olivia Lu
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California, CA, 94143, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Pulmonary Biology, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, RI, 02903, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
50
|
Fusi AD, Li Y, Llopis‐Lorente A, Patiño T, van Hest JCM, Abdelmohsen LKEA. Achieving Control in Micro-/Nanomotor Mobility. Angew Chem Int Ed Engl 2023; 62:e202214754. [PMID: 36413146 PMCID: PMC10107182 DOI: 10.1002/anie.202214754] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Unprecedented opportunities exist for the generation of advanced nanotechnologies based on synthetic micro/nanomotors (MNMs), such as active transport of medical agents or the removal of pollutants. In this regard, great efforts have been dedicated toward controlling MNM motion (e.g., speed, directionality). This was generally performed by precise engineering and optimizing of the motors' chassis, engine, powering mode (i.e., chemical or physical), and mechanism of motion. Recently, new insights have emerged to control motors mobility, mainly by the inclusion of different modes that drive propulsion. With high degree of synchronization, these modes work providing the required level of control. In this Minireview, we discuss the diverse factors that impact motion; these include MNM morphology, modes of mobility, and how control over motion was achieved. Moreover, we highlight the main limitations that need to be overcome so that such motion control can be translated into real applications.
Collapse
Affiliation(s)
- Alexander D. Fusi
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - Yudong Li
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - A. Llopis‐Lorente
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Institute of Molecular Recognition and Technological Development (IDM)Universitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
| | - Tania Patiño
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - Jan C. M. van Hest
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - Loai K. E. A. Abdelmohsen
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| |
Collapse
|