1
|
Sugata K, Rahman A, Niimura K, Monde K, Ueno T, Rajib SA, Takatori M, Sakhor W, Hossain MB, Sithi SN, Jahan MI, Matsuda K, Ueda M, Yamano Y, Ikeda T, Ueno T, Tsuchiya K, Tanaka Y, Tokunaga M, Maeda K, Utsunomiya A, Okuma K, Ono M, Satou Y. Intragenic viral silencer element regulates HTLV-1 latency via RUNX complex recruitment. Nat Microbiol 2025:10.1038/s41564-025-02006-7. [PMID: 40360701 DOI: 10.1038/s41564-025-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
Retroviruses integrate their genetic material into the host genome, enabling persistent infection. Human T cell leukaemia virus type 1 (HTLV-1) and human immunodeficiency virus type 1 (HIV-1) share similarities in genome structure and target cells, yet their infection dynamics differ drastically. While HIV-1 leads to high viral replication and immune system collapse, HTLV-1 establishes latency, promoting the survival of infected cells and, in some cases, leading to leukaemia. The mechanisms underlying this latency preference remain unclear. Here we analyse blood samples from people with HTLV-1 and identify an open chromatin region within the HTLV-1 provirus that functions as a transcriptional silencer and regulates transcriptional burst. The host transcription factor RUNX1 binds to this open chromatin region, repressing viral expression. Mutation of this silencer enhances HTLV-1 replication and immunogenicity, while its insertion into HIV-1 suppresses viral production. These findings reveal a strategy by which HTLV-1 ensures long-term persistence, offering potential insights into retroviral evolution and therapeutic targets.
Collapse
Affiliation(s)
- Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Koki Niimura
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Takatori
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Wajihah Sakhor
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sharmin Nahar Sithi
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - M Ishrat Jahan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuetsu Tanaka
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Xiao Q, Liu Y, Li T, Wang C, He S, Zhai L, Yang Z, Zhang X, Wu Y, Liu Y. Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduct Target Ther 2025; 10:151. [PMID: 40350456 PMCID: PMC12066790 DOI: 10.1038/s41392-025-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025] Open
Abstract
The year 2024 marks the 60th anniversary of the discovery of the Epstein-Barr virus (EBV), the first virus confirmed to cause human cancer. Viral infections significantly contribute to the global cancer burden, with seven known Group 1 oncogenic viruses, including hepatitis B virus (HBV), human papillomavirus (HPV), EBV, Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), and human immunodeficiency virus (HIV). These oncogenic viruses induce cellular transformation and cancer development by altering various biological processes within host cells, particularly under immunosuppression or co-carcinogenic exposures. These viruses are primarily associated with hepatocellular carcinoma, gastric cancer, cervical cancer, nasopharyngeal carcinoma, Kaposi sarcoma, lymphoma, and adult T-cell leukemia/lymphoma. Understanding the mechanisms of viral oncogenesis is crucial for identifying and characterizing the early biological processes of virus-related cancers, providing new targets and strategies for treatment or prevention. This review first outlines the global epidemiology of virus-related tumors, milestone events in research, and the process by which oncogenic viruses infect target cells. It then focuses on the molecular mechanisms by which these viruses induce tumors directly or indirectly, including the regulation of oncogenes or tumor suppressor genes, induction of genomic instability, disruption of regular life cycle of cells, immune suppression, chronic inflammation, and inducing angiogenesis. Finally, current therapeutic strategies for virus-related tumors and recent advances in preclinical and clinical research are discussed.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
Shichijo T, Yasunaga JI. Stratagems of HTLV-1 for persistent infection and the resultant oncogenesis: Immune evasion and clonal expansion. Leuk Res 2025; 152:107680. [PMID: 40120237 DOI: 10.1016/j.leukres.2025.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is one of the most severe malignant T-cell leukemia/lymphomas induced by human T-cell leukemia virus type I (HTLV-1). HTLV-1 persists in the host through stratagems of proliferating infected cells and evading host immunity. HTLV-1 encodes two viral oncogenes, tax and HTLV-1 bZIP factor (HBZ), which are related with protection from cell death and promotion of cell proliferation. In addition, HBZ and the somatic mutations in host genes, such as C-C chemokine receptor 4 (CCR4) and CIC, convert HTLV-1-infected cells into regulatory T (Treg)-like cells, leading to evasion of host immunity. A recent study demonstrated the key mechanisms for clonal expansion of HTLV-1-infected cells; the activation of the transforming growth factor (TGF)-β signaling pathway by HBZ not only converts HTLV-1-infected cells into a Treg-like cells through Foxp3 expression, but also contributes to the proliferation of HTLV-1-infected cells themselves. Due to the longevity induced by HTLV-1 infection, somatic mutations and epigenetic aberrations are accumulated in infected clones, contributing to the oncogenesis of ATL. Collectively, the long-term survival of infected cells enabled by the HTLV-1's stratagems for persistent infection ultimately leads to ATL oncogenesis via the accumulation of genetic/epigenetic abnormalities.
Collapse
Affiliation(s)
- Takafumi Shichijo
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Branda F, Romano C, Pavia G, Bilotta V, Locci C, Azzena I, Deplano I, Pascale N, Perra M, Giovanetti M, Ciccozzi A, De Vito A, Quirino A, Marascio N, Matera G, Madeddu G, Casu M, Sanna D, Ceccarelli G, Ciccozzi M, Scarpa F. Human T-Lymphotropic Virus (HTLV): Epidemiology, Genetic, Pathogenesis, and Future Challenges. Viruses 2025; 17:664. [PMID: 40431676 DOI: 10.3390/v17050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Human T-lymphotropic viruses (HTLVs) are deltaretroviruses infecting millions of individuals worldwide, with HTLV-1 and HTLV-2 being the most widespread and clinically relevant types. HTLV-1 is associated with severe diseases such as adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), while HTLV-2 shows a lower pathogenic potential, with occasional links to neurological disorders. HTLV-3 and HTLV-4, identified in Central Africa, remain poorly characterized but are genetically close to their simian counterparts, indicating recent zoonotic transmission events. HTLVs replicate through a complex cycle involving cell-to-cell transmission and clonal expansion of infected lymphocytes. Viral persistence is mediated by regulatory and accessory proteins, notably Tax and HBZ in HTLV-1, which alter host cell signaling, immune responses, and genomic stability. Integration of proviral DNA into transcriptionally active regions of the host genome may contribute to oncogenesis and long-term viral latency. Differences in viral protein function and intracellular localization contribute to the distinct pathogenesis observed between HTLV-1 and HTLV-2. Geographically, HTLV-1 shows endemic clusters in southwestern Japan, sub-Saharan Africa, the Caribbean, South America, and parts of the Middle East and Oceania. HTLV-2 is concentrated among Indigenous populations in the Americas and people who inject drugs in Europe and North America. Transmission occurs primarily via breastfeeding, sexual contact, contaminated blood products, and, in some regions, zoonotic spillover. Diagnostic approaches include serological screening (ELISA, Western blot, LIA) and molecular assays (PCR, qPCR), with novel biosensor and AI-based methods under development. Despite advances in understanding viral biology, therapeutic options remain limited, and preventive strategies focus on transmission control. The long latency period, lack of effective treatments, and global neglect complicate public health responses, underscoring the need for increased awareness, research investment, and targeted interventions.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Renato Dulbecco" Teaching Hospital, 88100 Catanzaro, Italy
| | - Viola Bilotta
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Ilaria Deplano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Noemi Pascale
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Perra
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Marta Giovanetti
- Department of Science and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
- Instituto Rene Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte 30190-009, MG, Brazil
| | - Alessandra Ciccozzi
- Facoltà Dipartimentale di Scienze e Tecnologie per lo Sviluppo Sostenibile e One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Renato Dulbecco" Teaching Hospital, 88100 Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Renato Dulbecco" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Renato Dulbecco" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy
- Azienda Ospedaliero Universitaria Umberto I, 00185 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
5
|
Van Weyenbergh J, Assone T, Racine I, Menezes S, Gonçalves F, Folgosi V, Marcusso R, Haziot M, Smid J, Dahy F, Gascon M, Paiva A, Galvao-Castro B, Araújo T, Grassi M, Sousa M, Puccioni-Sohler M, Nukui Y, Kashima S, Dierckx T, Twizere JC, Murphy E, Bruhn R, Pannecouque C, Claes S, Vanderlinden E, Schols D, Vercauteren J, Alvarez C, Lopez G, Talledo M, Gotuzzo E, Oliveira A, Cleynen I, Casseb J. Multi-cohort cross-omics analysis reveals disease mechanisms and therapeutic targets in HTLV-1-associated myelopathy, a neglected retroviral neuroinflammatory disorder. RESEARCH SQUARE 2025:rs.3.rs-5960764. [PMID: 40343334 PMCID: PMC12060986 DOI: 10.21203/rs.3.rs-5960764/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
HTLV-1 is an enigmatic retrovirus triggering a debilitating neuroinflammatory disease, HTLV-1-associated myelopathy (HAM), with unknown pathogenesis. Both HTLV-1 infection and HAM predominantly affect women and non-white neglected populations. HAM is lacking disease-modifying treatment, as current treatment is mostly symptomatic and inspired by either HIV-1 or multiple sclerosis therapeutic strategies. We used systems biology analyses of novel and publicly available data comprising (epi)genomics, transcriptomics, metabolomics and proteomics of multi-ancestry cohorts from a total of > 2500 People Living with HTLV-1 from 5 countries (Brazil, Peru, Japan, UK, US). Leveraging an unique admixed Brazilian cohort, genome-wide association study (GWAS) revealed African-specific variants in inflammasome sensor AIM2 with genome-wide significance (p < 5x10-8). Suggestive loci (p > 5x10-8) corresponding to metabolic, immune and neuronal genes were validated using published Japanese GWAS. Polygenic risk score and proviral load were independent disease predictors across ancestries. Systems biology analysis revealed neuronal/synaptic signaling, monocyte count, glucose/lipid metabolism, and neurocognition/depression as genetically linked to HAM. In silico drug screening identified estrogen blocker Fulvestrant as the top hit, while also confirming existing (pre)clinical data for HDAC inhibitors and immunosuppressants. Validated GWAS genes were overexpressed in HAM patients' whole blood and CD4 T-cells, as well as in spinal cord astrocytes, oligodendrocytes, and microglia by single-cell RNAseq. We experimentally confirmed decreased ApoA1/lipid/cholesterol levels, higher monocyte levels and lower neurocognitive scores in multi-ancestry cohorts. We found striking biological similarities between retroviral Hbz/Tax overexpression, Hbz interactome and HAM multi-omics findings: enrichment for lipid/cholesterol metabolism, estrogen signaling, neurodegenerative diseases, and viral pathways including EBV, recently identified as the major driver of multiple sclerosis. In conclusion, our data-driven approach uncovers novel disease mechanisms and therapeutic targets, and a validated polygenic risk score allowing targeted surveillance for high-risk individuals. A strong molecular overlap to other neurodegenerative/neuroinflammatory diseases reveals shared neuropathogenic pathways between unrelated viruses.
Collapse
Affiliation(s)
| | | | - Isaac Racine
- Laboratory for Complex Genetics, Department of Human Genetics/KU Leuven
| | - Soraya Menezes
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven
| | | | | | - Rosa Marcusso
- Institute of Infectious Diseases "Emilio Ribas" / Secretaria de Saúde do Estado de São Paulo
| | - Michel Haziot
- Institute of Infectious Diseases "Emilio Ribas" / Secretaria de Saúde do Estado de São Paulo
| | - Jerusa Smid
- Institute of Infectious Diseases "Emilio Ribas" / Secretaria de Saúde do Estado de São Paulo
| | - Flavia Dahy
- Institute of Infectious Diseases "Emilio Ribas" / Secretaria de Saúde do Estado de São Paulo
| | | | - Arthur Paiva
- Hospital Universitário Prof. Alberto Antunes / Universidade Federal de Alagoas
| | | | | | - Maria Grassi
- Instituto Gonçalo Moniz/ Fundação Oswaldo Cruz (Fiocruz)
| | - Maísa Sousa
- Núcleo de Medicina Tropical/ Universidade Federal do Pará
| | | | - Youko Nukui
- Hospital das Clínicas da FMUSP/ Universidade de Sao Paulo
| | - Simone Kashima
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Tim Dierckx
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research
| | | | | | | | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven
| | - Evelien Vanderlinden
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven
| | | | - Jurgen Vercauteren
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven
| | - Carolina Alvarez
- Instituto de Medicina Tropical 'Alexander von Humboldt', Universidad Peruana Cayetano Heredia
| | - Giovanni Lopez
- Instituto de Medicina Tropical 'Alexander von Humboldt', Universidad Peruana Cayetano Heredia
| | - Michael Talledo
- Instituto de Medicina Tropical 'Alexander von Humboldt', Universidad Peruana Cayetano Heredia
| | - Eduardo Gotuzzo
- Instituto de Medicina Tropical 'Alexander von Humboldt', Universidad Peruana Cayetano Heredia
| | - Augusto Oliveira
- Institute of Infectious Diseases "Emilio Ribas" / Secretaria de Saúde do Estado de São Paulo
| | | | | |
Collapse
|
6
|
Hossain MB, Tan BJY, Satou Y. Viral oncogenesis of δ-retroviruses, HTLV-1 and BLV, and recent advances in its diagnosis. Virology 2025; 605:110461. [PMID: 40015031 DOI: 10.1016/j.virol.2025.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
The δ-retrovirus genus includes human T-cell leukemia viruses (HTLV-1, HTLV-2, HTLV-3), simian T-lymphotropic viruses (STLV), and bovine leukemia viruses (BLV), which establish lifelong, typically asymptomatic, infections. However, HTLV-1 and BLV can lead to leukemia or lymphoma in 2-5% of infected hosts after prolonged latency. HTLV-1, the first identified human oncogenic retrovirus, drives T-cell leukemia/lymphoma via cell-intrinsic mechanisms. Similarly, BLV induces B-cell lymphoma in cattle, sharing key genomic and disease progression features with HTLV-1. Retrovirus-induced leukemias/lymphomas arise through complex interactions of viral and host factors. This review explores current virological perspectives on δ-retroviral oncogenesis, focusing on proviral integration sites within the host genome. Additionally, we briefly compare HTLV-1 with the human immunodeficiency virus (HIV), highlighting that while HIV causes AIDS, it also induces clonal expansion of infected cells. Finally, we discuss the potential diagnostic and prognostic value of analyzing viral factors and integration sites.
Collapse
Affiliation(s)
- Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan; Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh
| | - Benjy Jek Yang Tan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
7
|
King EM, Panfil AR. Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology. Viruses 2025; 17:124. [PMID: 39861913 PMCID: PMC11769288 DOI: 10.3390/v17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished. The ability to study RNA epigenetic modifications and splice variants has become more feasible with the recent development of third-generation sequencing technologies, such as Oxford nanopore sequencing. This review will highlight the dynamic roles of known RNA and post-transcriptional RNA epigenetic modifications within HTLV-1 biology, including viral hbz, long noncoding RNAs, microRNAs (miRNAs), transfer RNAs (tRNAs), R-loops, N6-methyladenosine (m6A) modifications, and RNA-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Emily M. King
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Comprehensive Cancer Center, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Venu V, Roth C, Adikari SH, Small EM, Starkenburg SR, Sanbonmatsu KY, Steadman CR. Multi-omics analysis reveals the dynamic interplay between Vero host chromatin structure and function during vaccinia virus infection. Commun Biol 2024; 7:721. [PMID: 38862613 PMCID: PMC11166932 DOI: 10.1038/s42003-024-06389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
The genome folds into complex configurations and structures thought to profoundly impact its function. The intricacies of this dynamic structure-function relationship are not well understood particularly in the context of viral infection. To unravel this interplay, here we provide a comprehensive investigation of simultaneous host chromatin structural (via Hi-C and ATAC-seq) and functional changes (via RNA-seq) in response to vaccinia virus infection. Over time, infection significantly impacts global and local chromatin structure by increasing long-range intra-chromosomal interactions and B compartmentalization and by decreasing chromatin accessibility and inter-chromosomal interactions. Local accessibility changes are independent of broad-scale chromatin compartment exchange (~12% of the genome), underscoring potential independent mechanisms for global and local chromatin reorganization. While infection structurally condenses the host genome, there is nearly equal bidirectional differential gene expression. Despite global weakening of intra-TAD interactions, functional changes including downregulated immunity genes are associated with alterations in local accessibility and loop domain restructuring. Therefore, chromatin accessibility and local structure profiling provide impactful predictions for host responses and may improve development of efficacious anti-viral counter measures including the optimization of vaccine design.
Collapse
Affiliation(s)
- Vrinda Venu
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Cullen Roth
- Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Samantha H Adikari
- Biochemistry & Biotechnology Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Eric M Small
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shawn R Starkenburg
- Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Christina R Steadman
- Climate, Ecology & Environment Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
9
|
Joseph A, Cheng X, Harding J, Al-Saleem J, Green P, Veis D, Rauch D, Ratner L. Role of the CTCF Binding Site in Human T-Cell Leukemia Virus-1 Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596170. [PMID: 38853836 PMCID: PMC11160593 DOI: 10.1101/2024.05.28.596170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During HTLV-1 infection, the virus integrates into the host cell genome as a provirus with a single CCCTC binding protein (CTCF) binding site (vCTCF-BS), which acts as an insulator between transcriptionally active and inactive regions. Previous studies have shown that the vCTCF-BS is important for maintenance of chromatin structure, regulation of viral expression, and DNA and histone methylation. Here, we show that the vCTCF-BS also regulates viral infection and pathogenesis in vivo in a humanized (Hu) mouse model of adult T-cell leukemia/lymphoma. Three cell lines were used to initiate infection of the Hu-mice, i) HTLV-1-WT which carries an intact HTLV-1 provirus genome, ii) HTLV-1-CTCF, which contains a provirus with a mutated vCTCF-BS which abolishes CTCF binding, and a stop codon immediate upstream of the mutated vCTCF-BS which deletes the last 23 amino acids of p12, and iii) HTLV-1-p12stop that contains the intact vCTCF-BS, but retains the same stop codon in p12 as in the HTLV-1-CTCF cell line. Hu-mice were infected with mitomycin treated or irradiated HTLV-1 producing cell lines. There was a delay in pathogenicity when Hu-mice were infected with the CTCF virus compared to mice infected with either p12 stop or WT virus. Proviral load (PVL), spleen weights, and CD4 T cell counts were significantly lower in HTLV-1-CTCF infected mice compared to HTLV-1-p12stop infected mice. Furthermore, we found a direct correlation between the PVL in peripheral blood and death of HTLV-1-CTCF infected mice. In cell lines, we found that the vCTCF-BS regulates Tax expression in a time-dependent manner. The scRNAseq analysis of splenocytes from infected mice suggests that the vCTCF-BS plays an important role in activation and expansion of T lymphocytes in vivo. Overall, these findings indicate that the vCTCF-BS regulates Tax expression, proviral load, and HTLV pathogenicity in vivo.
Collapse
Affiliation(s)
- Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Jacob Al-Saleem
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Patrick Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Deborah Veis
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
10
|
Kim KD, Lieberman PM. Viral remodeling of the 4D nucleome. Exp Mol Med 2024; 56:799-808. [PMID: 38658699 PMCID: PMC11058267 DOI: 10.1038/s12276-024-01207-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea.
| | | |
Collapse
|
11
|
Yaguchi H, Melamed A, Ramanayake S, Kiik H, Witkover A, Bangham CRM. The impact of HTLV-1 expression on the 3D structure and expression of host chromatin. PLoS Pathog 2024; 20:e1011716. [PMID: 38427693 PMCID: PMC10936777 DOI: 10.1371/journal.ppat.1011716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/13/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
A typical HTLV-1-infected individual carries >104 different HTLV-1-infected T cell clones, each with a single-copy provirus integrated in a unique genomic site. We previously showed that the HTLV-1 provirus causes aberrant transcription in the flanking host genome and, by binding the chromatin architectural protein CTCF, forms abnormal chromatin loops with the host genome. However, it remained unknown whether these effects were exerted simply by the presence of the provirus or were induced by its transcription. To answer this question, we sorted HTLV-1-infected T-cell clones into cells positive or negative for proviral plus-strand expression, and then quantified host and provirus transcription using RNA-seq, and chromatin looping using quantitative chromosome conformation capture (q4C), in each cell population. We found that proviral plus-strand transcription induces aberrant transcription and splicing in the flanking genome but suppresses aberrant chromatin loop formation with the nearby host chromatin. Reducing provirus-induced host transcription with an inhibitor of transcriptional elongation allows recovery of chromatin loops in the plus-strand-expressing population. We conclude that aberrant host transcription induced by proviral expression causes temporary, reversible disruption of chromatin looping in the vicinity of the provirus.
Collapse
Affiliation(s)
- Hiroko Yaguchi
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anat Melamed
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Helen Kiik
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aviva Witkover
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Dobrica MO, Varghese CS, Harris JM, Ferguson J, Magri A, Arnold R, Várnai C, Parish JL, McKeating JA. CTCF regulates hepatitis B virus cccDNA chromatin topology. J Gen Virol 2024; 105. [PMID: 38175123 DOI: 10.1099/jgv.0.001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcription, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessible Chromatin Sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down-stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.
Collapse
Affiliation(s)
- Mihaela Olivia Dobrica
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Present address: Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Christy Susan Varghese
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Jack Ferguson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Present address: Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Csilla Várnai
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Wang C, Zhao B. Epstein-Barr virus and host cell 3D genome organization. J Med Virol 2023; 95:e29234. [PMID: 37988227 PMCID: PMC10664867 DOI: 10.1002/jmv.29234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The human genome is organized in an extremely complexed yet ordered way within the nucleus. Genome organization plays a critical role in the regulation of gene expression. Viruses manipulate the host machinery to influence host genome organization to favor their survival and promote disease development. Epstein-Barr virus (EBV) is a common human virus, whose infection is associated with various diseases, including infectious mononucleosis, cancer, and autoimmune disorders. This review summarizes our current knowledge of how EBV uses different strategies to control the cellular 3D genome organization to affect cell gene expression to transform normal cells into lymphoblasts.
Collapse
Affiliation(s)
- Chong Wang
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bo Zhao
- Department of Medicine, Division of Infectious Disease, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Minarovits J. Human tumor viruses: induction of three-dimensional alterations in the host genome structure. Front Microbiol 2023; 14:1280210. [PMID: 37928671 PMCID: PMC10620758 DOI: 10.3389/fmicb.2023.1280210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Certain viruses called tumor viruses or oncoviruses are capable to change the gene expression pattern of distinct human or animal cell types in tissue culture, resulting in uncontrolled proliferation as well as a change in the social behavior of the infected cells: the oncovirus-transformed, immortalized cells are capable to form malignant neoplasms in suitable animal models. At present, seven human viruses are categorized as causative agents of distinct human malignancies. The genomes of human tumor viruses, typically encode viral oncoproteins and non- translated viral RNAs that affect the gene expression pattern of their target cells or induce genetic and epigenetic alterations contributing to oncogenesis. Recently, the application of chromatin conformation capture technologies and three-dimensional (3D) molecular imaging techniques revealed how the gene products or genomes of certain human tumor viruses interact with and induce alterations in the 3D host genome structure. This Mini Review aims to cover selected aspects of these developments. The papers, discussed briefly, describe how insertion of a novel viral binding site for the 3D genome organizer cellular protein CCCTC-binding factor (CTCF) into the DNA of T cells infected by human T-cell lymphotropic virus type 1 (HTLV-1) may contribute to lymphomagenesis, as well as how integration of high risk human papillomavirus genome into the host cell DNA may facilitate cervical carcinogenesis. Recent results regarding the interactions of cellular genomes with the episomal, chromatinized DNA genomes of oncogenic human herpesvirus, Epstein-Barr virus (EBV) will also be summarized, similarly to available data regarding contacts formed by episomal or integrated hepatitis B virus (HBV) DNA with host chromatin. Finally, a putative mechanism of hepatitis C virus (HCV) induced chromatin alterations will be presented, which may solve the riddle, how a cytoplasmic RNA virus without a viral oncogene could induce malingnant transfrormation of hepatocytes.
Collapse
Affiliation(s)
- Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
Smith S, Seth J, Midkiff A, Stahl R, Syu YC, Shkriabai N, Kvaratskhelia M, Musier-Forsyth K, Jain P, Green PL, Panfil AR. The Pleiotropic Effects of YBX1 on HTLV-1 Transcription. Int J Mol Sci 2023; 24:13119. [PMID: 37685922 PMCID: PMC10487795 DOI: 10.3390/ijms241713119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
HTLV-1 is an oncogenic human retrovirus and the etiologic agent of the highly aggressive ATL malignancy. Two viral genes, Tax and Hbz, are individually linked to oncogenic transformation and play an important role in the pathogenic process. Consequently, regulation of HTLV-1 gene expression is a central feature in the viral lifecycle and directly contributes to its pathogenic potential. Herein, we identified the cellular transcription factor YBX1 as a binding partner for HBZ. We found YBX1 activated transcription and enhanced Tax-mediated transcription from the viral 5' LTR promoter. Interestingly, YBX1 also interacted with Tax. shRNA-mediated loss of YBX1 decreased transcript and protein abundance of both Tax and HBZ in HTLV-1-transformed T-cell lines, as well as Tax association with the 5' LTR. Conversely, YBX1 transcriptional activation of the 5' LTR promoter was increased in the absence of HBZ. YBX1 was found to be associated with both the 5' and 3' LTRs in HTLV-1-transformed and ATL-derived T-cell lines. Together, these data suggest that YBX1 positively influences transcription from both the 5' and 3' promoter elements. YBX1 is able to interact with Tax and help recruit Tax to the 5' LTR. However, through interactions with HBZ, YBX1 transcriptional activation of the 5' LTR is repressed.
Collapse
Affiliation(s)
- Susan Smith
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Jaideep Seth
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Amanda Midkiff
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Rachel Stahl
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Yu-Ci Syu
- Center for Retrovirus Research, Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; (Y.-C.S.); (K.M.-F.)
| | - Nikoloz Shkriabai
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.S.); (M.K.)
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.S.); (M.K.)
| | - Karin Musier-Forsyth
- Center for Retrovirus Research, Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; (Y.-C.S.); (K.M.-F.)
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Patrick L. Green
- Center for Retrovirus Research, Comprehensive Cancer Center and Solove Research Institute, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Amanda R. Panfil
- Center for Retrovirus Research, Comprehensive Cancer Center and Solove Research Institute, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
16
|
Aristodemou AEN, Rueda DS, Taylor GP, Bangham CRM. The transcriptome of HTLV-1-infected primary cells following reactivation reveals changes to host gene expression central to the proviral life cycle. PLoS Pathog 2023; 19:e1011494. [PMID: 37523412 PMCID: PMC10431621 DOI: 10.1371/journal.ppat.1011494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/16/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Infections by Human T cell Leukaemia Virus type 1 (HTLV-1) persist for the lifetime of the host by integrating into the genome of CD4+ T cells. Proviral gene expression is essential for proviral survival and the maintenance of the proviral load, through the pro-proliferative changes it induces in infected cells. Despite their role in HTLV-1 infection and a persistent cytotoxic T lymphocyte response raised against the virus, proviral transcripts from the sense-strand are rarely detected in fresh cells extracted from the peripheral blood, and have recently been found to be expressed intermittently by a small subset of cells at a given time. Ex vivo culture of infected cells prompts synchronised proviral expression in infected cells from peripheral blood, allowing the study of factors involved in reactivation in primary cells. Here, we used bulk RNA-seq to examine the host transcriptome over six days in vitro, following proviral reactivation in primary peripheral CD4+ T cells isolated from subjects with non-malignant HTLV-1 infection. Infected cells displayed a conserved response to reactivation, characterised by discrete stages of gene expression, cell division and subsequently horizontal transmission of the virus. We observed widespread changes in Polycomb gene expression following reactivation, including an increase in PRC2 transcript levels and diverse changes in the expression of PRC1 components. We hypothesize that these transcriptional changes constitute a negative feedback loop that maintains proviral latency by re-deposition of H2AK119ub1 following the end of proviral expression. Using RNAi, we found that certain deubiquitinases, BAP1, USP14 and OTUD5 each promote proviral transcription. These data demonstrate the detailed trajectory of HTLV-1 proviral reactivation in primary HTLV-1-carrier lymphocytes and the impact on the host cell.
Collapse
Affiliation(s)
- Aris E. N. Aristodemou
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David S. Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, United Kingdom
| | - Graham P. Taylor
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Maksimova V, Wilkie T, Smith S, Phelps C, Melvin C, Yu L, Niewiesk S, Green PL, Panfil AR. HTLV-1 Hbz protein, but not hbz mRNA secondary structure, is critical for viral persistence and disease development. PLoS Pathog 2023; 19:e1011459. [PMID: 37327244 DOI: 10.1371/journal.ppat.1011459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic cause of adult T-cell leukemia/lymphoma (ATL) and encodes a viral oncoprotein (Hbz) that is consistently expressed in asymptomatic carriers and ATL patients, suggesting its importance in the development and maintenance of HTLV-1 leukemic cells. Our previous work found Hbz protein is dispensable for virus-mediated T-cell immortalization but enhances viral persistence. We and others have also shown that hbz mRNA promotes T-cell proliferation. In our current studies, we evaluated the role of hbz mRNA on HTLV-1-mediated immortalization in vitro as well as in vivo persistence and disease development. We generated mutant proviral clones to examine the individual contributions of hbz mRNA, hbz mRNA secondary structure (stem-loop), and Hbz protein. Wild-type (WT) and all mutant viruses produced virions and immortalized T-cells in vitro. Viral persistence and disease development were also evaluated in vivo by infection of a rabbit model and humanized immune system (HIS) mice, respectively. Proviral load and sense and antisense viral gene expression were significantly lower in rabbits infected with mutant viruses lacking Hbz protein compared to WT or virus with an altered hbz mRNA stem-loop (M3 mutant). HIS mice infected with Hbz protein-deficient viruses showed significantly increased survival times compared to animals infected with WT or M3 mutant virus. Altered hbz mRNA secondary structure, or loss of hbz mRNA or protein, has no significant effect on T-cell immortalization induced by HTLV-1 in vitro; however, the Hbz protein plays a critical role in establishing viral persistence and leukemogenesis in vivo.
Collapse
Affiliation(s)
- Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Tasha Wilkie
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Susan Smith
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Cameron Phelps
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Corrine Melvin
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Lianbo Yu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Stefan Niewiesk
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Patrick L Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
18
|
Collora JA, Ho YC. Integration site-dependent HIV-1 promoter activity shapes host chromatin conformation. Genome Res 2023; 33:891-906. [PMID: 37295842 PMCID: PMC10519397 DOI: 10.1101/gr.277698.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
HIV-1 integration introduces ectopic transcription factor binding sites into host chromatin. We postulate that the integrated provirus serves as an ectopic enhancer that recruits additional transcription factors to the integration locus, increases chromatin accessibility, changes 3D chromatin interactions, and enhances both retroviral and host gene expression. We used four well-characterized HIV-1-infected cell line clones having unique integration sites and low to high levels of HIV-1 expression. Using single-cell DOGMA-seq, which captured the heterogeneity of HIV-1 expression and host chromatin accessibility, we found that HIV-1 transcription correlated with HIV-1 accessibility and host chromatin accessibility. HIV-1 integration increased local host chromatin accessibility within an ∼5- to 30-kb distance. CRISPRa- and CRISPRi-mediated HIV-1 promoter activation and inhibition confirmed integration site-dependent HIV-1-driven changes of host chromatin accessibility. HIV-1 did not drive chromatin confirmation changes at the genomic level (by Hi-C) or the enhancer connectome (by H3K27ac HiChIP). Using 4C-seq to interrogate HIV-1-chromatin interactions, we found that HIV-1 interacted with host chromatin ∼100-300 kb from the integration site. By identifying chromatin regions having both increased transcription factor activity (by ATAC-seq) and HIV-1-chromatin interaction (by 4C-seq), we identified enrichment of ETS, RUNT, and ZNF-family transcription factor binding that may mediate HIV-1-host chromatin interactions. Our study has found that HIV-1 promoter activity increases host chromatin accessibility, and HIV-1 interacted with host chromatin within the existing chromatin boundaries in an integration site-dependent manner.
Collapse
Affiliation(s)
- Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| |
Collapse
|
19
|
Bangham CRM. HTLV-1 persistence and the oncogenesis of adult T-cell leukemia/lymphoma. Blood 2023; 141:2299-2306. [PMID: 36800643 PMCID: PMC10646791 DOI: 10.1182/blood.2022019332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), also known as human T-lymphotropic virus type 1, causes the aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) in 5% of infected people and a chronic progressive inflammatory disease of the central nervous system, HTLV-1-associated myelopathy, in ∼0.3% to 4% of them, varying between regions where it is endemic. Reliable treatments are lacking for both conditions, although there have been promising recent advances in the prevention and treatment of ATL. Because ATL typically develops after several decades of infection, it is necessary to understand how the virus persists in the host despite a strong immune response, and how this persistence results in oncogenesis.
Collapse
|
20
|
Rheinberger M, Costa AL, Kampmann M, Glavas D, Shytaj IL, Sreeram S, Penzo C, Tibroni N, Garcia-Mesa Y, Leskov K, Fackler OT, Vlahovicek K, Karn J, Lucic B, Herrmann C, Lusic M. Genomic profiling of HIV-1 integration in microglia cells links viral integration to the topologically associated domains. Cell Rep 2023; 42:112110. [PMID: 36790927 DOI: 10.1016/j.celrep.2023.112110] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.
Collapse
Affiliation(s)
- Mona Rheinberger
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ana Luisa Costa
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany
| | - Martin Kampmann
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dunja Glavas
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iart Luca Shytaj
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Sheetal Sreeram
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carlotta Penzo
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany.
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Zuo X, Zhou R, Yang S, Ma G. HTLV-1 persistent infection and ATLL oncogenesis. J Med Virol 2023; 95:e28424. [PMID: 36546414 DOI: 10.1002/jmv.28424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus; whereas HTLV-1 mainly persists in the infected host cell as a provirus, it also causes a malignancy called adult T-cell leukemia/lymphoma (ATLL) in about 5% of infection. HTLV-1 replication is in most cases silent in vivo and viral de novo infection rarely occurs; HTLV-1 rather relies on clonal proliferation of infected T cells for viral propagation as it multiplies the number of the provirus copies. It is mechanistically elusive how leukemic clones emerge during the course of HTLV-1 infection in vivo and eventually cause the onset of ATLL. This review summarizes our current understanding of HTLV-1 persistence and oncogenesis, with the incorporation of recent cutting-edge discoveries obtained by high-throughput sequencing.
Collapse
Affiliation(s)
- Xiaorui Zuo
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ruoning Zhou
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Sikai Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangyong Ma
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Shah R, Gallardo CM, Jung YH, Clock B, Dixon JR, McFadden WM, Majumder K, Pintel DJ, Corces VG, Torbett BE, Tedbury PR, Sarafianos SG. Activation of HIV-1 proviruses increases downstream chromatin accessibility. iScience 2022; 25:105490. [PMID: 36505924 PMCID: PMC9732416 DOI: 10.1016/j.isci.2022.105490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
It is unclear how the activation of HIV-1 transcription affects chromatin structure. We interrogated chromatin organization both genome-wide and nearby HIV-1 integration sites using Hi-C and ATAC-seq. In conjunction, we analyzed the transcription of the HIV-1 genome and neighboring genes. We found that long-range chromatin contacts did not differ significantly between uninfected cells and those harboring an integrated HIV-1 genome, whether the HIV-1 genome was actively transcribed or inactive. Instead, the activation of HIV-1 transcription changes chromatin accessibility immediately downstream of the provirus, demonstrating that HIV-1 can alter local cellular chromatin structure. Finally, we examined HIV-1 and neighboring host gene transcripts with long-read sequencing and found populations of chimeric RNAs both virus-to-host and host-to-virus. Thus, multiomics profiling revealed that the activation of HIV-1 transcription led to local changes in chromatin organization and altered the expression of neighboring host genes.
Collapse
Affiliation(s)
- Raven Shah
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Christian M. Gallardo
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yoonhee H. Jung
- Department of Biology, Emory University, Atlanta, GA 30329, USA
| | - Ben Clock
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jesse R. Dixon
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Pintel
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | - Bruce E. Torbett
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| |
Collapse
|
23
|
Wei Y, Ho YC. Interferon opens up: HIV-induced inflammation reconfigures 3D chromatin conformation and affects where HIV integrates. Mol Cell 2022; 82:4585-4587. [PMID: 36525953 PMCID: PMC9925257 DOI: 10.1016/j.molcel.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Plaza-Jennings et al. applied single-nucleus RNA-seq, sorted neuronal and microglia cells for HiC, and found that chronic HIV infection in the brain induces interferon stimulation in microglia, drives chromatin reconfiguration into a transcriptionally active environment, and changes HIV integration landscape.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
24
|
Visualization of clonal expansion after massive depletion of cells carrying the bovine leukemia virus (BLV) integration sites during the course of disease progression in a BLV naturally-infected cow: a case report. Retrovirology 2022; 19:24. [PMID: 36329491 PMCID: PMC9635170 DOI: 10.1186/s12977-022-00609-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Bovine leukemia virus (BLV) infects cattle, integrates into host DNA as a provirus, and induces malignant B-cell lymphoma. Previous studies have addressed the impact of proviral integration of BLV on BLV-induced leukemogenesis. However, no studies have monitored sequential changes in integration sites in which naturally infected BLV individuals progress from the premalignant stage to the terminal disease. Here, we collected blood samples from a single, naturally infected Holstein cow at three disease progression stages (Stage I: polyclonal stage, Stage II: polyclonal toward oligoclonal stage, Stage III: oligoclonal stage) and successfully visualized the kinetics of clonal expansion of cells carrying BLV integration sites using our BLV proviral DNA-capture sequencing method. Although 24 integration sites were detected in Stages I and II, 92% of these sites experienced massive depletion in Stage III. Of these sites, 46%, 37%, and 17% were located within introns of Refseq genes, intergenic regions, and repetitive sequences, respectively. At Stage III cattle with lymphoma, only two integration sites were generated de novo in the intergenic region of Chr1, and the intron of the CHEK2 gene on Chr17 was significantly increased. Our results are the first to demonstrate clonal expansion after the massive depletion of cells carrying BLV integration sites in a naturally infected cow.
Collapse
|
25
|
Tan BJY, Sugata K, Ono M, Satou Y. HTLV-1 persistence and leukemogenesis: A game of hide-and-seek with the host immune system. Front Immunol 2022; 13:991928. [PMID: 36300109 PMCID: PMC9591123 DOI: 10.3389/fimmu.2022.991928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus which mainly infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATL), is primarily transmitted via direct cell-to-cell transmission. This feature generates a wide variety of infected clones in hosts, which are maintained via clonal proliferation, resulting in the persistence and survival of the virus. The maintenance of the pool of infected cells is achieved by sculpting the immunophenotype of infected cells and modulating host immune responses to avoid immune surveillance. Here, we review the processes undertaken by HTLV-1 to modulate and subvert host immune responses which contributes to viral persistence and development of ATL.
Collapse
Affiliation(s)
- Benjy J. Y. Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- *Correspondence: Benjy J. Y. Tan, ; Yorifumi Satou,
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- *Correspondence: Benjy J. Y. Tan, ; Yorifumi Satou,
| |
Collapse
|
26
|
Nakano K, Watanabe T. Tuning Rex rules HTLV-1 pathogenesis. Front Immunol 2022; 13:959962. [PMID: 36189216 PMCID: PMC9523361 DOI: 10.3389/fimmu.2022.959962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
HTLV-1 is an oncovirus causing ATL and other inflammatory diseases such as HAM/TSP and HU in about 5% of infected individuals. It is also known that HTLV-1-infected cells maintain a disease-free, immortalized, latent state throughout the lifetimes of about 95% of infected individuals. We believe that the stable maintenance of disease-free infected cells in the carrier is an intrinsic characteristic of HTLV-1 that has been acquired during its evolution in the human life cycle. We speculate that the pathogenesis of the virus is ruled by the orchestrated functions of viral proteins. In particular, the regulation of Rex, the conductor of viral replication rate, is expected to be closely related to the viral program in the early active viral replication followed by the stable latency in HTLV-1 infected T cells. HTLV-1 and HIV-1 belong to the family Retroviridae and share the same tropism, e.g., human CD4+ T cells. These viruses show significant similarities in the viral genomic structure and the molecular mechanism of the replication cycle. However, HTLV-1 and HIV-1 infected T cells show different phenotypes, especially in the level of virion production. We speculate that how the activity of HTLV-1 Rex and its counterpart HIV-1 Rev are regulated may be closely related to the properties of respective infected T cells. In this review, we compare various pathological aspects of HTLV-1 and HIV-1. In particular, we investigated the presence or absence of a virally encoded "regulatory valve" for HTLV-1 Rex or HIV-1 Rev to explore its importance in the regulation of viral particle production in infected T cells. Finally, wereaffirm Rex as the key conductor for viral replication and viral pathogenesis based on our recent study on the novel functional aspects of Rex. Since the activity of Rex is closely related to the viral replication rate, we hypothesize that the "regulatory valve" on the Rex activity may have been selectively evolved to achieve the "scenario" with early viral particle production and the subsequent long, stable deep latency in HTLV-1 infected cells.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki, Japan
| |
Collapse
|
27
|
Varghese CS, Parish JL, Ferguson J. Lying low-chromatin insulation in persistent DNA virus infection. Curr Opin Virol 2022; 55:101257. [PMID: 35998396 DOI: 10.1016/j.coviro.2022.101257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
Abstract
Persistent virus infections are achieved when the intricate balance of virus replication, host-cell division and successful immune evasion is met. The genomes of persistent DNA viruses are either maintained as extrachromosomal episomes or can integrate into the host genome. Common to both these strategies of persistence is the chromatinisation of viral DNA by cellular histones which, like host DNA, are subject to epigenetic modification. Epigenetic repression of viral genes required for lytic replication occurs, while genes required for latent or persistent infection are maintained in an active chromatin state. Viruses utilise host-cell chromatin insulators, which function to maintain epigenetic boundaries and enforce this strict transcriptional programme. Here, we review insulator protein function in virus transcription control, focussing on CCCTC-binding factor (CTCF) and cofactors. We describe CTCF-dependent activities in virus transcription regulation through epigenetic and promoter-enhancer insulation, three-dimensional chromatin looping and manipulation of transcript splicing.
Collapse
Affiliation(s)
- Christy S Varghese
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK.
| | - Jack Ferguson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK
| |
Collapse
|
28
|
Linden N, Jones RB. Potential multi-modal effects of provirus integration on HIV-1 persistence: lessons from other viruses. Trends Immunol 2022; 43:617-629. [PMID: 35817699 PMCID: PMC9429957 DOI: 10.1016/j.it.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
Despite antiretroviral therapy (ART), HIV-1 persists as proviruses integrated into the genomic DNA of CD4+ T cells. The mechanisms underlying the persistence and clonal expansion of these cells remain incompletely understood. Cases have been described in which proviral integration can alter host gene expression to drive cellular proliferation. Here, we review observations from other genome-integrating human viruses to propose additional putative modalities by which HIV-1 integration may alter cellular function to favor persistence, such as by altering susceptibility to cytotoxicity in virus-expressing cells. We propose that signals implicating such mechanisms may have been masked thus far by the preponderance of defective and/or nonreactivatable HIV-1 proviruses, but could be revealed by focusing on the integration sites of intact proviruses with expression potential.
Collapse
Affiliation(s)
- Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
29
|
Matsuo M, Ueno T, Monde K, Sugata K, Tan BJY, Rahman A, Miyazato P, Uchiyama K, Islam S, Katsuya H, Nakajima S, Tokunaga M, Nosaka K, Hata H, Utsunomiya A, Fujisawa JI, Satou Y. Identification and characterization of a novel enhancer in the HTLV-1 proviral genome. Nat Commun 2022; 13:2405. [PMID: 35504920 PMCID: PMC9065021 DOI: 10.1038/s41467-022-30029-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes adult T-cell leukemia/lymphoma (ATL), a cancer of infected CD4+ T-cells. There is both sense and antisense transcription from the integrated provirus. Sense transcription tends to be suppressed, but antisense transcription is constitutively active. Various efforts have been made to elucidate the regulatory mechanism of HTLV-1 provirus for several decades; however, it remains unknown how HTLV-1 antisense transcription is maintained. Here, using proviral DNA-capture sequencing, we found a previously unidentified viral enhancer in the middle of the HTLV-1 provirus. The transcription factors, SRF and ELK-1, play a pivotal role in the activity of this enhancer. Aberrant transcription of genes in the proximity of integration sites was observed in freshly isolated ATL cells. This finding resolves certain long-standing questions concerning HTLV-1 persistence and pathogenesis. We anticipate that the DNA-capture-seq approach can be applied to analyze the regulatory mechanisms of other oncogenic viruses integrated into the host cellular genome. Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic virus with constantly active antisense transcription from the proviral genome. Here, Matsuo et al. perform proviral DNA-capture followed by high-throughput sequencing and identify a yet unknown viral enhancer in the middle of the HTLV-1 provirus.
Collapse
Affiliation(s)
- Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Paola Miyazato
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kyosuke Uchiyama
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Saiful Islam
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan.,Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, 21702, US
| | - Hiroo Katsuya
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, 849-8501, Japan
| | - Shinsuke Nakajima
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, 890-0064, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology and Infectious Disease, Kumamoto University Hospital, Kumamoto, 860-8556, Japan.,Cancer Center, Kumamoto University Hospital, Kumamoto, 860-8556, Japan
| | - Hiroyuki Hata
- Division of Informative Clinical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0972, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, 890-0064, Japan.,Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan. .,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
30
|
Kiik H, Ramanayake S, Miura M, Tanaka Y, Melamed A, Bangham CRM. Time-course of host cell transcription during the HTLV-1 transcriptional burst. PLoS Pathog 2022; 18:e1010387. [PMID: 35576236 PMCID: PMC9135347 DOI: 10.1371/journal.ppat.1010387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) transactivator protein Tax has pleiotropic functions in the host cell affecting cell-cycle regulation, DNA damage response pathways and apoptosis. These actions of Tax have been implicated in the persistence and pathogenesis of HTLV-1-infected cells. It is now known that tax expression occurs in transcriptional bursts of the proviral plus-strand, but the effects of the burst on host transcription are not fully understood. We carried out RNA sequencing of two naturally-infected T-cell clones transduced with a Tax-responsive Timer protein, which undergoes a time-dependent shift in fluorescence emission, to study transcriptional changes during successive phases of the HTLV-1 plus-strand burst. We found that the transcriptional regulation of genes involved in the NF-κB pathway, cell-cycle regulation, DNA damage response and apoptosis inhibition were immediate effects accompanying the plus-strand burst, and are limited to the duration of the burst. The results distinguish between the immediate and delayed effects of HTLV-1 reactivation on host transcription, and between clone-specific effects and those observed in both clones. The major transcriptional changes in the infected host T-cells observed here, including NF-κB, are transient, suggesting that these pathways are not persistently activated at high levels in HTLV-1-infected cells. The two clones diverged strongly in their expression of genes regulating the cell cycle. Up-regulation of senescence markers was a delayed effect of the proviral plus-strand burst and the up-regulation of some pro-apoptotic genes outlasted the burst. We found that activation of the aryl hydrocarbon receptor (AhR) pathway enhanced and prolonged the proviral burst, but did not increase the rate of reactivation. Our results also suggest that sustained plus-strand expression is detrimental to the survival of infected cells.
Collapse
Affiliation(s)
- Helen Kiik
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michi Miura
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Anat Melamed
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Melamed A, Fitzgerald TW, Wang Y, Ma J, Birney E, Bangham CRM. Selective clonal persistence of human retroviruses in vivo: Radial chromatin organization, integration site, and host transcription. SCIENCE ADVANCES 2022; 8:eabm6210. [PMID: 35486737 PMCID: PMC9054021 DOI: 10.1126/sciadv.abm6210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The human retroviruses HTLV-1 (human T cell leukemia virus type 1) and HIV-1 persist in vivo as a reservoir of latently infected T cell clones. It is poorly understood what determines which clones survive in the reservoir. We compared >160,000 HTLV-1 integration sites (>40,000 HIV-1 sites) from T cells isolated ex vivo from naturally infected individuals with >230,000 HTLV-1 integration sites (>65,000 HIV-1 sites) from in vitro infection to identify genomic features that determine selective clonal survival. Three statistically independent factors together explained >40% of the observed variance in HTLV-1 clonal survival in vivo: the radial intranuclear position of the provirus, its genomic distance from the centromere, and the intensity of local host genome transcription. The radial intranuclear position of the provirus and its distance from the centromere also explained ~7% of clonal persistence of HIV-1 in vivo. Selection for the intranuclear and intrachromosomal location of the provirus and host transcription intensity favors clonal persistence of human retroviruses in vivo.
Collapse
Affiliation(s)
- Anat Melamed
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | | | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ewan Birney
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
32
|
Miura M, Naito T, Saito M. Current Perspectives in Human T-Cell Leukemia Virus Type 1 Infection and Its Associated Diseases. Front Med (Lausanne) 2022; 9:867478. [PMID: 35463007 PMCID: PMC9024061 DOI: 10.3389/fmed.2022.867478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a replication-competent human retrovirus associated with two distinct types of diseases: a malignancy of mature CD4+ T cells called adult T-cell leukemia-lymphoma (ATL) and a chronic inflammatory central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It was the first human retrovirus ever associated with a human cancer. Although most HTLV-1-infected individuals remain asymptomatic for life, a subpopulation develops ATL or HAM/TSP. Although the factors that cause these different manifestations of HTLV-1 infection are not fully understood, accumulating evidence suggests that the complex virus-host interactions, as well as the host immune response against HTLV-1 infection, appear to regulate the development of HTLV-1-associated diseases. This review outlines and discusses the current understanding, ongoing developments, and future perspectives of HTLV-1 research.
Collapse
|
33
|
Jamehdor S, Pajouhanfar S, Saba S, Uzan G, Teimoori A, Naserian S. Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells 2022; 11:999. [PMID: 35326449 PMCID: PMC8946942 DOI: 10.3390/cells11060999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.
Collapse
Affiliation(s)
- Saleh Jamehdor
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 989155432609, Iran;
| | - Sara Pajouhanfar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sadaf Saba
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838738, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
34
|
Clonal Selection and Evolution of HTLV-1-Infected Cells Driven by Genetic and Epigenetic Alteration. Viruses 2022; 14:v14030587. [PMID: 35336993 PMCID: PMC8950914 DOI: 10.3390/v14030587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
T cells infected with human T-cell leukemia virus type 1 (HTLV-1) acquire various abnormalities during a long latent period and transform into highly malignant adult T-cell leukemia-lymphoma (ATL) cells. This can be described as “clonal evolution”, in which a single clone evolves into ATL cells after overcoming various selective pressures in the body of the infected individuals. Many studies have shown that the genome and epigenome contain a variety of abnormalities, which are reflected in gene expression patterns and define the characteristics of the disease. The latest research findings suggest that epigenomic disorders are thought to begin forming early in infection and evolve into ATL through further changes and accentuation as they progress. Genomic abnormalities profoundly affect clonal dominance and tumor cell characteristics in later events. ATL harbors both genomic and epigenomic abnormalities, and an accurate understanding of these can be expected to provide therapeutic opportunities.
Collapse
|
35
|
Bellefroid M, Rodari A, Galais M, Krijger PHL, Tjalsma SJD, Nestola L, Plant E, Vos ESM, Cristinelli S, Van Driessche B, Vanhulle C, Ait-Ammar A, Burny A, Ciuffi A, de Laat W, Van Lint C. Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Res 2022; 50:3190-3202. [PMID: 35234910 PMCID: PMC8989512 DOI: 10.1093/nar/gkac107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/12/2023] Open
Abstract
Bovine leukemia virus (BLV)-induced tumoral development is a multifactorial phenomenon that remains incompletely understood. Here, we highlight the critical role of the cellular CCCTC-binding factor (CTCF) both in the regulation of BLV transcriptional activities and in the deregulation of the three-dimensional (3D) chromatin architecture surrounding the BLV integration site. We demonstrated the in vivo recruitment of CTCF to three conserved CTCF binding motifs along the provirus. Next, we showed that CTCF localized to regions of transitions in the histone modifications profile along the BLV genome and that it is implicated in the repression of the 5′Long Terminal Repeat (LTR) promoter activity, thereby contributing to viral latency, while favoring the 3′LTR promoter activity. Finally, we demonstrated that BLV integration deregulated the host cellular 3D chromatin organization through the formation of viral/host chromatin loops. Altogether, our results highlight CTCF as a new critical effector of BLV transcriptional regulation and BLV-induced physiopathology.
Collapse
Affiliation(s)
- Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Mathilde Galais
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Lorena Nestola
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Erica S M Vos
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Arsène Burny
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| |
Collapse
|
36
|
Katsuya H, Cook LBM, Rowan AG, Melamed A, Turpin J, Ito J, Islam S, Miyazato P, Jek Yang Tan B, Matsuo M, Miyakawa T, Nakata H, Matsushita S, Taylor GP, Bangham CRM, Kimura S, Satou Y. Clonality of HIV-1- and HTLV-1-Infected Cells in Naturally Coinfected Individuals. J Infect Dis 2022; 225:317-326. [PMID: 33844021 DOI: 10.1093/infdis/jiab202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/11/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Coinfection with human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) diminishes the value of the CD4+ T-cell count in diagnosing AIDS, and increases the rate of HTLV-1-associated myelopathy. It remains elusive how HIV-1/HTLV-1 coinfection is related to such characteristics. We investigated the mutual effect of HIV-1/HTLV-1 coinfection on their integration sites (ISs) and clonal expansion. METHODS We extracted DNA from longitudinal peripheral blood samples from 7 HIV-1/HTLV-1 coinfected, and 12 HIV-1 and 13 HTLV-1 monoinfected individuals. Proviral loads (PVL) were quantified using real-time polymerase chain reaction (PCR). Viral ISs and clonality were quantified by ligation-mediated PCR followed by high-throughput sequencing. RESULTS PVL of both HIV-1 and HTLV-1 in coinfected individuals was significantly higher than that of the respective virus in monoinfected individuals. The degree of oligoclonality of both HIV-1- and HTLV-1-infected cells in coinfected individuals was also greater than in monoinfected subjects. ISs of HIV-1 in cases of coinfection were more frequently located in intergenic regions and transcriptionally silent regions, compared with HIV-1 monoinfected individuals. CONCLUSIONS HIV-1/HTLV-1 coinfection makes an impact on the distribution of viral ISs and clonality of virus-infected cells and thus may alter the risks of both HTLV-1- and HIV-1-associated disease.
Collapse
Affiliation(s)
- Hiroo Katsuya
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Lucy B M Cook
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Aileen G Rowan
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Anat Melamed
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Jocelyn Turpin
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saiful Islam
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Paola Miyazato
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshikazu Miyakawa
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University of Medicine, Kumamoto, Japan
| | - Hirotomo Nakata
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University of Medicine, Kumamoto, Japan
| | - Shuzo Matsushita
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Graham P Taylor
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Charles R M Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
37
|
Maksimova V, Smith S, Seth J, Phelps C, Niewiesk S, Satou Y, Green P, Panfil AR. HTLV-1 intragenic viral enhancer influences immortalization phenotype in vitro, but is dispensable for persistence and disease development in animal models. Front Immunol 2022; 13:954077. [PMID: 35958554 PMCID: PMC9359075 DOI: 10.3389/fimmu.2022.954077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL) and chronic neurological disease. The disparity between silenced sense transcription versus constitutively active antisense (Hbz) transcription from the integrated provirus is not fully understood. The presence of an internal viral enhancer has recently been discovered in the Tax gene near the 3' long terminal repeat (LTR) of HTLV-1. In vitro, this enhancer has been shown to bind SRF and ELK-1 host transcription factors, maintain chromatin openness and viral gene transcription, and induce aberrant host gene transcription near viral integration sites. However, the function of the viral enhancer in the context of early HTLV-1 infection events remains unknown. In this study, we generated a mutant Enhancer virus (mEnhancer) and evaluated its effects on HTLV-1-mediated in vitro immortalization, establishment of persistent infection with an in vivo rabbit model, and disease development in a humanized immune system (HIS) mouse model. The mEnhancer virus was able to establish persistent infection in rabbits, and there were no significant differences in proviral load or HTLV-1-specific antibody responses over a 25-week study. However, rabbits infected with the mEnhancer virus had significantly decreased sense and antisense viral gene expression at 12-weeks post-infection. HIS mice infected with wt or mEnhancer virus showed similar disease progression, proviral load, and viral gene expression. While mEnhancer virus was able to sufficiently immortalize primary T-lymphocytes in cell culture, the immortalized cells had an altered phenotype (CD8+ T-cells), decreased proviral load, decreased sense and anti-sense gene expression, and altered cell cycle progression compared to HTLV-1.wt immortalized cells (CD4+ T-cells). These results suggest that the HTLV-1 enhancer element alone does not determine persistence or disease development but plays a pivotal role in regulating viral gene expression.
Collapse
Affiliation(s)
- Victoria Maksimova
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Susan Smith
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Jaideep Seth
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Cameron Phelps
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Patrick L. Green
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Amanda R. Panfil,
| |
Collapse
|
38
|
Lin E, Panfil AR, Sandel G, Jain P. Novel perspectives on antisense transcription in HIV-1, HTLV-1, and HTLV-2. Front Microbiol 2022; 13:1042761. [PMID: 36620051 PMCID: PMC9822710 DOI: 10.3389/fmicb.2022.1042761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 12/25/2022] Open
Abstract
The genome of retroviruses contains two promoter elements (called long terminal repeat or LTR) at the 5' and 3' end of their genome. Although the expression of retroviral genes generally depends on the promoter located in the 5' LTR, the 3' LTR also has promoter activity responsible for producing antisense transcripts. These natural antisense transcripts (NATs) are a class of RNA molecules transcribed from the opposite strand of a protein-coding gene. NATs have been identified in many prokaryotic and eukaryotic systems, as well as in human retroviruses such as human immunodeficiency virus type 1 (HIV-1) and HTLV-1/2 (human T-cell leukemia virus type 1/2). The antisense transcripts of HIV-1, HTLV-1, and HTLV-2 have been briefly characterized over the past several years. However, a complete appreciation of the role these transcripts play in the virus lifecycle and the cellular factors which regulate their transcription is still lacking. This review provides an overview of antisense transcription in human retroviruses with a specific focus on the MEF-2 family of transcription factors, the function(s) of the antisense protein products, and the application of antisense transcription models in therapeutics against HIV-1 and HTLV-1 in the context of co-infection.
Collapse
Affiliation(s)
- Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Pooja Jain,
| |
Collapse
|
39
|
Ratner L. Epigenetic Regulation of Human T-Cell Leukemia Virus Gene Expression. Microorganisms 2021; 10:84. [PMID: 35056532 PMCID: PMC8781281 DOI: 10.3390/microorganisms10010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Viral and cellular gene expression are regulated by epigenetic alterations, including DNA methylation, histone modifications, nucleosome positioning, and chromatin looping. Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus associated with inflammatory disorders and T-cell lymphoproliferative malignancy. The transforming activity of HTLV-1 is driven by the viral oncoprotein Tax, which acts as a transcriptional activator of the cAMP response element-binding protein (CREB) and nuclear factor kappa B (NFκB) pathways. The epigenetic effects of Tax and the induction of lymphoproliferative malignancy include alterations in DNA methylation and histone modifications. In addition, alterations in nucleosome positioning and DNA looping also occur in HTLV-1-induced malignant cells. A mechanistic definition of these effects will pave the way to new therapies for HTLV-1-associated disorders.
Collapse
Affiliation(s)
- Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Box 8069, 660 S Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
Jia W, Xu C, Li SC. Resolving complex structures at oncovirus integration loci with conjugate graph. Brief Bioinform 2021; 22:6359003. [PMID: 34463709 DOI: 10.1093/bib/bbab359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023] Open
Abstract
Oncovirus integrations cause copy number variations and complex structural variations (SVs) on host genomes. However, the understanding of how inserted viral DNA impacts the local genome remains limited. The linear structure of the oncovirus integrated local genomic map (LGM) will lay the foundations to understand how oncovirus integrations emerge and compromise the host genome's functioning. We propose a conjugate graph model to reconstruct the rearranged LGM at integrated loci. Simulation tests prove the reliability and credibility of the algorithm. Applications of the algorithm to whole-genome sequencing data of human papillomavirus (HPV) and hepatitis B virus (HBV)-infected cancer samples gained biological insights on oncovirus integrations. We observed four affection patterns of oncovirus integrations from the HPV and HBV-integrated cancer samples, including the coding-frame truncation, hyper-amplification of tumor gene, the viral cis-regulation inserted at the single intron and at the intergenic region. We found that the focal duplicates and host SVs are frequent in the HPV-integrated LGMs, while the focal deletions are prevalent in HBV-integrated LGMs. Furthermore, with the results yields from our method, we found the enhanced microhomology-mediated end joining might lead to both HPV and HBV integrations and conjectured that the HPV integrations might mainly occur during the DNA replication process. The conjugate graph algorithm code and LGM construction pipeline, available at https://github.com/deepomicslab/FuseSV.
Collapse
Affiliation(s)
- Wenlong Jia
- Department of Computer Science, City University of Hong Kong, Hong Kong
| | - Chang Xu
- Department of Computer Science, City University of Hong Kong, Hong Kong
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong
| |
Collapse
|
41
|
Yeh YHJ, Yang K, Razmi A, Ho YC. The Clonal Expansion Dynamics of the HIV-1 Reservoir: Mechanisms of Integration Site-Dependent Proliferation and HIV-1 Persistence. Viruses 2021; 13:1858. [PMID: 34578439 PMCID: PMC8473165 DOI: 10.3390/v13091858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
More than 50% of the HIV-1 latent reservoir is maintained by clonal expansion. The clonally expanded HIV-1-infected cells can contribute to persistent nonsuppressible low-level viremia and viral rebound. HIV-1 integration site and proviral genome landscape profiling reveals the clonal expansion dynamics of HIV-1-infected cells. In individuals under long-term suppressive antiretroviral therapy (ART), HIV-1 integration sites are enriched in specific locations in certain cancer-related genes in the same orientation as the host transcription unit. Single-cell transcriptome analysis revealed that HIV-1 drives aberrant cancer-related gene expression through HIV-1-to-host RNA splicing. Furthermore, the HIV-1 promoter dominates over the host gene promoter and drives high levels of cancer-related gene expression. When HIV-1 integrates into cancer-related genes and causes gain of function of oncogenes or loss of function of tumor suppressor genes, HIV-1 insertional mutagenesis drives the proliferation of HIV-1-infected cells and may cause cancer in rare cases. HIV-1-driven aberrant cancer-related gene expression at the integration site can be suppressed by CRISPR-mediated inhibition of the HIV-1 promoter or by HIV-1 suppressing agents. Given that ART does not suppress HIV-1 promoter activity, therapeutic agents that suppress HIV-1 transcription and halt the clonal expansion of HIV-1-infected cells should be explored to block the clonal expansion of the HIV-1 latent reservoir.
Collapse
Affiliation(s)
| | | | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA; (Y.-H.J.Y.); (K.Y.); (A.R.)
| |
Collapse
|
42
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
43
|
Abstract
Viral infection is intrinsically linked to the capacity of the virus to generate progeny. Many DNA and some RNA viruses need to access the nuclear machinery and therefore transverse the nuclear envelope barrier through the nuclear pore complex. Viral genomes then become chromatinized either in their episomal form or upon integration into the host genome. Interactions with host DNA, transcription factors or nuclear bodies mediate their replication. Often interfering with nuclear functions, viruses use nuclear architecture to ensure persistent infections. Discovering these multiple modes of replication and persistence served in unraveling many important nuclear processes, such as nuclear trafficking, transcription, and splicing. Here, by using examples of DNA and RNA viral families, we portray the nucleus with the virus inside.
Collapse
Affiliation(s)
- Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Ines J de Castro
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Groves IJ, Drane ELA, Michalski M, Monahan JM, Scarpini CG, Smith SP, Bussotti G, Várnai C, Schoenfelder S, Fraser P, Enright AJ, Coleman N. Short- and long-range cis interactions between integrated HPV genomes and cellular chromatin dysregulate host gene expression in early cervical carcinogenesis. PLoS Pathog 2021; 17:e1009875. [PMID: 34432858 PMCID: PMC8439666 DOI: 10.1371/journal.ppat.1009875] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/14/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.
Collapse
Affiliation(s)
- Ian J. Groves
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emma L. A. Drane
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco Michalski
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jack M. Monahan
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Cinzia G. Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen P. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Giovanni Bussotti
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Anania C, Lupiáñez DG. Order and disorder: abnormal 3D chromatin organization in human disease. Brief Funct Genomics 2021; 19:128-138. [PMID: 32025693 PMCID: PMC7115703 DOI: 10.1093/bfgp/elz028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
A precise three-dimensional (3D) organization of chromatin is central to achieve the intricate transcriptional patterns that are required to form complex organisms. Growing evidence supports an important role of 3D chromatin architecture in development and delineates its alterations as prominent causes of disease. In this review, we discuss emerging concepts on the fundamental forces shaping genomes in space and on how their disruption can lead to pathogenic phenotypes. We describe the molecular mechanisms underlying a wide range of diseases, from the systemic effects of coding mutations on 3D architectural factors, to the more tissue-specific phenotypes resulting from genetic and epigenetic modifications at specific loci. Understanding the connection between the 3D organization of the genome and its underlying biological function will allow a better interpretation of human pathogenesis.
Collapse
Affiliation(s)
- Chiara Anania
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
46
|
Identification and characterization of Stathmin 1 as a host factor involved in HIV-1 latency. Biochem Biophys Res Commun 2021; 567:106-111. [PMID: 34146904 DOI: 10.1016/j.bbrc.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Latency remains a barrier to achieving a sterilizing cure to HIV infection. It is thus important to find new host factor(s) to better understand maintenance of HIV latency and be exploited to develop new and more efficient latency reversing agents (LRAs). Here we employed RNA interference screening with a latently HIV-1-infected cell-line to identify Stathmin 1 (STMN1) as a host factor required for maintaining HIV-1 latency. Depletion of STMN1 significantly enhanced HIV-1 expression in a STMN1 depletion-dependent manner and forced expression of exogenous STMN1 suppressed it. We further showed that STMN1 depletion increases HIV-1 proviral transcriptional elongation. Moreover, chromatin immunoprecipitation (ChIP)-qPCR assays revealed STMN1 accumulation on/near the HIV-1 5' LTR region compared to other regions on the HIV-1 provirus, suggesting the possible contribution of STMN1 to HIV-1 transcription. These results suggest that STMN1 is required for the maintenance of HIV-1 latency and implicates STMN1 as a novel therapeutic target to eradicate HIV-1.
Collapse
|
47
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
48
|
Cheng X, Joseph A, Castro V, Chen-Liaw A, Skidmore Z, Ueno T, Fujisawa JI, Rauch DA, Challen GA, Martinez MP, Green P, Griffith M, Payton JE, Edwards JR, Ratner L. Epigenomic regulation of human T-cell leukemia virus by chromatin-insulator CTCF. PLoS Pathog 2021; 17:e1009577. [PMID: 34019588 PMCID: PMC8174705 DOI: 10.1371/journal.ppat.1009577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/03/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes an aggressive T-cell malignancy and a variety of inflammatory conditions. The integrated provirus includes a single binding site for the epigenomic insulator, CCCTC-binding protein (CTCF), but its function remains unclear. In the current study, a mutant virus was examined that eliminates the CTCF-binding site. The mutation did not disrupt the kinetics and levels of virus gene expression, or establishment of or reactivation from latency. However, the mutation disrupted the epigenetic barrier function, resulting in enhanced DNA CpG methylation downstream of the CTCF binding site on both strands of the integrated provirus and H3K4Me3, H3K36Me3, and H3K27Me3 chromatin modifications both up- and downstream of the site. A majority of clonal cell lines infected with wild type HTLV-1 exhibited increased plus strand gene expression with CTCF knockdown, while expression in mutant HTLV-1 clonal lines was unaffected. These findings indicate that CTCF binding regulates HTLV-1 gene expression, DNA and histone methylation in an integration site dependent fashion. Human T-cell leukemia virus type 1 (HTLV-1) is a cause of leukemia and lymphoma as well as several inflammatory medical disorders. The virus integrates in the host cell DNA, and it has a single binding site for a protein designated CTCF. This protein is important in the regulation of many DNA viruses, as well as many properties of normal and malignant cells. In order to define the role of CTCF binding to HTLV, we analyzed a mutant virus lacking the binding site. We found that this mutation variably affected gene expression, DNA and histone modification, suggesting a key role in regulation of virus replication in infected cells.
Collapse
Affiliation(s)
- Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Victor Castro
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Alice Chen-Liaw
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Zachary Skidmore
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Grant A. Challen
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael P. Martinez
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Patrick Green
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - John R. Edwards
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Phamacogenomics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
49
|
Li R, Sklutuis R, Groebner JL, Romerio F. HIV-1 Natural Antisense Transcription and Its Role in Viral Persistence. Viruses 2021; 13:v13050795. [PMID: 33946840 PMCID: PMC8145503 DOI: 10.3390/v13050795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Natural antisense transcripts (NATs) represent a class of RNA molecules that are transcribed from the opposite strand of a protein-coding gene, and that have the ability to regulate the expression of their cognate protein-coding gene via multiple mechanisms. NATs have been described in many prokaryotic and eukaryotic systems, as well as in the viruses that infect them. The human immunodeficiency virus (HIV-1) is no exception, and produces one or more NAT from a promoter within the 3’ long terminal repeat. HIV-1 antisense transcripts have been the focus of several studies spanning over 30 years. However, a complete appreciation of the role that these transcripts play in the virus lifecycle is still lacking. In this review, we cover the current knowledge about HIV-1 NATs, discuss some of the questions that are still open and identify possible areas of future research.
Collapse
Affiliation(s)
- Rui Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Rachel Sklutuis
- HIV Dynamics and Replication Program, Host-Virus Interaction Branch, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (R.S.); (J.L.G.)
| | - Jennifer L. Groebner
- HIV Dynamics and Replication Program, Host-Virus Interaction Branch, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (R.S.); (J.L.G.)
| | - Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Correspondence:
| |
Collapse
|
50
|
Izaki M, Yasunaga JI, Nosaka K, Sugata K, Utsunomiya H, Suehiro Y, Shichijo T, Yamada A, Sugawara Y, Hibi T, Inomata Y, Akari H, Melamed A, Bangham C, Matsuoka M. In vivo dynamics and adaptation of HTLV-1-infected clones under different clinical conditions. PLoS Pathog 2021; 17:e1009271. [PMID: 33524072 PMCID: PMC7877780 DOI: 10.1371/journal.ppat.1009271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/11/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) spreads through cell contact. Therefore, this virus persists and propagates within the host by two routes: clonal proliferation of infected cells and de novo infection. The proliferation is influenced by the host immune responses and expression of viral genes. However, the detailed mechanisms that control clonal expansion of infected cells remain to be elucidated. In this study, we show that newly infected clones were strongly suppressed, and then stable clones were selected, in a patient who was infected by live liver transplantation from a seropositive donor. Conversely, most HTLV-1+ clones persisted in patients who received hematopoietic stem cell transplantation from seropositive donors. To clarify the role of cell-mediated immunity in this clonal selection, we suppressed CD8+ or CD16+ cells in simian T-cell leukemia virus type 1 (STLV-1)-infected Japanese macaques. Decreasing CD8+ T cells had marginal effects on proviral load (PVL). However, the clonality of infected cells changed after depletion of CD8+ T cells. Consistent with this, PVL at 24 hours in vitro culture increased, suggesting that infected cells with higher proliferative ability increased. Analyses of provirus in a patient who received Tax-peptide pulsed dendritic cells indicate that enhanced anti-Tax immunity did not result in a decreased PVL although it inhibited recurrence of ATL. We postulate that in vivo selection, due to the immune response, cytopathic effects of HTLV-1 and intrinsic attributes of infected cells, results in the emergence of clones of HTLV-1-infected T cells that proliferate with minimized HTLV-1 antigen expression. HTLV-1 spreads in vivo through two routes: de novo infection and clonal proliferation of infected cells. Reverse transcriptase inhibitors and integrase inhibitors do not influence the PVL in HTLV-1-infected individuals, indicating that clonal proliferation is dominant to maintain and increase PVL in vivo in the chronic phase. It is assumed that the host immune responses are critical factors for clonal proliferation. We found that HTLV-1-infected clones dramatically changed during de novo infection whereas the clones in the chronic phase survived long-term after transplantation, indicating that HTLV-1-infected clones are selected for survival in vivo. Surprisingly, depletion of CD8+ cells had a small impact on PVL in a STLV-1 infected Japanese macaque, but modified the clonality of infected cells. The cells after depletion of CD8+ cells showed a higher proliferative activity during short-term in vitro culture. This study reveals that intrinsic attributes of selected clones contribute to clonal proliferation of infected cells.
Collapse
Affiliation(s)
- Mikiko Izaki
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hayato Utsunomiya
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Takafumi Shichijo
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Asami Yamada
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiko Sugawara
- Department of Transplantation and Pediatric Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taizo Hibi
- Department of Transplantation and Pediatric Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukihiro Inomata
- Department of Transplantation and Pediatric Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Anat Melamed
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Charles Bangham
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|