1
|
Chen T, Fernández-Espartero CH, Illand A, Tsai CT, Yang Y, Klapholz B, Jouchet P, Fabre M, Rossier O, Cui B, Lévêque-Fort S, Brown NH, Giannone G. Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue. Nat Commun 2024; 15:8691. [PMID: 39375335 PMCID: PMC11458790 DOI: 10.1038/s41467-024-52899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Morphogenesis requires building stable macromolecular structures from highly dynamic proteins. Muscles are anchored by long-lasting integrin adhesions to resist contractile force. However, the mechanisms governing integrin diffusion, immobilization, and activation within developing tissues remain elusive. Here, we show that actin polymerization-driven membrane protrusions form nanotopographies that enable strong adhesion at Drosophila muscle attachment sites (MASs). Super-resolution microscopy reveals that integrins assemble adhesive belts around Arp2/3-dependent actin protrusions, forming invadosome-like structures with membrane nanotopographies. Single protein tracking shows that, during MAS development, integrins become immobile and confined within diffusion traps formed by the membrane nanotopographies. Actin filaments also display restricted motion and confinement, indicating strong mechanical connection with integrins. Using isolated muscle cells, we show that substrate nanotopography, rather than rigidity, drives adhesion maturation by regulating actin protrusion, integrin diffusion and immobilization. These results thus demonstrate that actin-polymerization-driven membrane protrusions are essential for the formation of strong integrin adhesions sites in the developing embryo, and highlight the important contribution of geometry to morphogenesis.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| | - Cecilia H Fernández-Espartero
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Sevilla, Spain
| | - Abigail Illand
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Ching-Ting Tsai
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Yang Yang
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pierre Jouchet
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Mélanie Fabre
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Bianxiao Cui
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Sandrine Lévêque-Fort
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| |
Collapse
|
2
|
Cloâtre T, Mondin M, Sibarita JB, Levet F, Thoumine O. Protocol for matching protein localization to synapse morphology in primary rat neurons by correlative super-resolution microscopy. STAR Protoc 2024; 5:103160. [PMID: 38943646 PMCID: PMC11261141 DOI: 10.1016/j.xpro.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
Super-resolution imaging provides unprecedented visualization of sub-cellular structures, but the two main techniques used, single-molecule localization microscopy (SMLM) and stimulated emission depletion (STED), are not easily reconciled. We present a protocol to super-impose nanoscale protein distribution reconstructed with SMLM to sub-cellular morphology obtained in STED. We describe steps for tracking cells on etched coverslips and registering images from two different microscopes with 30-nm accuracy. In this protocol, synaptic proteins are mapped in the dendritic spines of primary neurons. For complete details on the use and execution of this protocol, please refer to Inavalli et al.1.
Collapse
Affiliation(s)
- Tiffany Cloâtre
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Magali Mondin
- University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000 Bordeaux, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Florian Levet
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000 Bordeaux, France.
| | - Olivier Thoumine
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
3
|
Qiu Z, Minegishi T, Aoki D, Abe K, Baba K, Inagaki N. Adhesion-clutch between DCC and netrin-1 mediates netrin-1-induced axonal haptotaxis. Front Mol Neurosci 2024; 17:1307755. [PMID: 38375502 PMCID: PMC10875621 DOI: 10.3389/fnmol.2024.1307755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024] Open
Abstract
The growth cone, a motile structure located at the tip of growing axons, senses extracellular guidance cues and translates them into directional forces that drive axon outgrowth and guidance. Axon guidance directed by chemical cues on the extracellular adhesive substrate is termed haptotaxis. Recent studies reported that netrin-1 on the substrate functions as a haptotactic axon guidance cue. However, the mechanism mediating netrin-1-induced axonal haptotaxis remains unclear. Here, we demonstrate that substrate-bound netrin-1 induces axonal haptotaxis by facilitating physical interactions between the netrin-1 receptor, DCC, and the adhesive substrates. DCC serves as an adhesion receptor for netrin-1. The clutch-linker molecule shootin1a interacted with DCC, linking it to actin filament retrograde flow at the growth cone. Speckle imaging analyses showed that DCC underwent either grip (stop) or retrograde slip on the adhesive substrate. The grip state was more prevalent on netrin-1-coated substrate compared to the control substrate polylysine, thereby transmitting larger traction force on the netrin-1-coated substrate. Furthermore, disruption of the linkage between actin filament retrograde flow and DCC by shootin1 knockout impaired netrin-1-induced axonal haptotaxis. These results suggest that the directional force for netrin-1-induced haptotaxis is exerted on the substrates through the adhesion-clutch between DCC and netrin-1 which occurs asymmetrically within the growth cone.
Collapse
Affiliation(s)
| | | | | | | | | | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
4
|
Liu G, Li J, Wu C. Reciprocal regulation of actin filaments and cellular metabolism. Eur J Cell Biol 2022; 101:151281. [PMID: 36343493 DOI: 10.1016/j.ejcb.2022.151281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
For cells to adhere, migrate and proliferate, remodeling of the actin cytoskeleton is required. This process consumes a large amount of ATP while having an intimate connection with cellular metabolism. Signaling pathways that regulate energy homeostasis can also affect actin dynamics, whereas a variety of actin binding proteins directly or indirectly interact with the anabolic and catabolic regulators in cells. Here, we discuss the inter-regulation between actin filaments and cellular metabolism, reviewing recent discoveries on key metabolic enzymes that respond to actin remodeling as well as historical findings on metabolic stress-induced cytoskeletal reorganization. We also address emerging techniques that would benefit the study of cytoskeletal dynamics and cellular metabolism in high spatial-temporal resolution.
Collapse
Affiliation(s)
- Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiayi Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; International Cancer Institute, Peking University, Beijing 100191, China.
| |
Collapse
|
5
|
Butler C, Saraceno GE, Kechkar A, Bénac N, Studer V, Dupuis JP, Groc L, Galland R, Sibarita JB. Multi-Dimensional Spectral Single Molecule Localization Microscopy. FRONTIERS IN BIOINFORMATICS 2022; 2:813494. [PMID: 36304321 PMCID: PMC9580959 DOI: 10.3389/fbinf.2022.813494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Single molecule localization (SML) and tracking (SPT) techniques, such as (spt)PALM, (u/DNA)PAINT and quantum dot tracking, have given unprecedented insight into the nanoscale molecular organization and dynamics in living cells. They allow monitoring individual proteins with millisecond temporal resolution and high spatial resolution (<30 nm) by precisely localizing the point spread function (PSF) of individual emitters and tracking their position over time. While SPT methods have been extended to study the temporal dynamics and co-organization of multiple proteins, conventional experimental setups are restricted in the number of proteins they can probe simultaneously and usually have to tradeoff between the number of colors, the spatio-temporal resolution, and the field of view. Yet, localizing and tracking several proteins simultaneously at high spatial and temporal resolution within large field of views can provide important biological insights. By employing a dual-objective spectral imaging configuration compatible with live cell imaging combined with dedicated computation tools, we demonstrate simultaneous 3D single particle localization and tracking of multiple distinct species over large field of views to be feasible without compromising spatio-temporal resolution. The dispersive element introduced into the second optical path induces a spectrally dependent displacement, which we used to analytically separate up to five different fluorescent species of single emitters based on their emission spectra. We used commercially available microscope bodies aligned one on top of the other, offering biologists with a very ergonomic and flexible instrument covering a broad range of SMLM applications. Finally, we developed a powerful freely available software, called PALMTracer, which allows to quantitatively assess 3D + t + λ SMLM data. We illustrate the capacity of our approach by performing multi-color 3D DNA-PAINT of fixed samples, and demonstrate simultaneous tracking of multiple receptors in live fibroblast and neuron cultures.
Collapse
Affiliation(s)
- Corey Butler
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297F-33000, F-33000, Bordeaux, France
- Imagine Optic, Orsay, France
| | - G Ezequiel Saraceno
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297F-33000, F-33000, Bordeaux, France
| | - Adel Kechkar
- Ecole Nationale Supérieure de Biotechnologie, Laboratoire de Bioengineering, Constantine, El Khroub, Algeria
| | - Nathan Bénac
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297F-33000, F-33000, Bordeaux, France
| | - Vincent Studer
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297F-33000, F-33000, Bordeaux, France
| | - Julien P. Dupuis
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297F-33000, F-33000, Bordeaux, France
| | - Laurent Groc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297F-33000, F-33000, Bordeaux, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297F-33000, F-33000, Bordeaux, France
| | - Jean-Baptiste Sibarita
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297F-33000, F-33000, Bordeaux, France
| |
Collapse
|
6
|
Polenghi A, Nieus T, Guazzi S, Gorostiza P, Petrini EM, Barberis A. Kainate Receptor Activation Shapes Short-Term Synaptic Plasticity by Controlling Receptor Lateral Mobility at Glutamatergic Synapses. Cell Rep 2021; 31:107735. [PMID: 32521260 PMCID: PMC7296349 DOI: 10.1016/j.celrep.2020.107735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 01/24/2023] Open
Abstract
Kainate receptors (KARs) mediate postsynaptic currents with a key impact on neuronal excitability. However, the molecular determinants controlling KAR postsynaptic localization and stabilization are poorly understood. Here, we exploit optogenetic and single-particle tracking approaches to study the role of KAR conformational states induced by glutamate binding on KAR lateral mobility at synapses. We report that following glutamate binding, KARs are readily and reversibly trapped at glutamatergic synapses through increased interaction with the β-catenin/N-cadherin complex. We demonstrate that such activation-dependent synaptic immobilization of KARs is crucial for the modulation of short-term plasticity of glutamatergic synapses. Thus, the present study unveils the crosstalk between conformational states and lateral mobility of KARs, a mechanism regulating glutamatergic signaling, particularly in conditions of sustained synaptic activity. Anchoring of KARs at glutamatergic synapses depends on receptor-glutamate binding KARs activation/desensitization promotes receptors trapping at glutamatergic synapses N-cadherins mediate the KAR activation/desensitization-dependent anchoring at synapses Synaptic trapping of desensitized KARs affects short-term synaptic plasticity
Collapse
Affiliation(s)
- Alice Polenghi
- Synaptic Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Thierry Nieus
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, Milan, Italy
| | - Stefania Guazzi
- Synaptic Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Pau Gorostiza
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Network Biomedical Research Center in Bioengineering, Biomaterials and Nanotechnology (CIBER-BBN), 50018 Zaragoza, Spain
| | - Enrica Maria Petrini
- Synaptic Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Andrea Barberis
- Synaptic Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| |
Collapse
|
7
|
Choquet D, Sainlos M, Sibarita JB. Advanced imaging and labelling methods to decipher brain cell organization and function. Nat Rev Neurosci 2021; 22:237-255. [PMID: 33712727 DOI: 10.1038/s41583-021-00441-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.
Collapse
Affiliation(s)
- Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France. .,University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Bordeaux, France.
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| | - Jean-Baptiste Sibarita
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
8
|
FluoSim: simulator of single molecule dynamics for fluorescence live-cell and super-resolution imaging of membrane proteins. Sci Rep 2020; 10:19954. [PMID: 33203884 PMCID: PMC7672080 DOI: 10.1038/s41598-020-75814-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Fluorescence live-cell and super-resolution microscopy methods have considerably advanced our understanding of the dynamics and mesoscale organization of macro-molecular complexes that drive cellular functions. However, different imaging techniques can provide quite disparate information about protein motion and organization, owing to their respective experimental ranges and limitations. To address these issues, we present here a robust computer program, called FluoSim, which is an interactive simulator of membrane protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT. FluoSim integrates diffusion coefficients, binding rates, and fluorophore photo-physics to calculate in real time the localization and intensity of thousands of independent molecules in 2D cellular geometries, providing simulated data directly comparable to actual experiments. FluoSim was thoroughly validated against experimental data obtained on the canonical neurexin-neuroligin adhesion complex at cell-cell contacts. This unified software allows one to model and predict membrane protein dynamics and localization at the ensemble and single molecule level, so as to reconcile imaging paradigms and quantitatively characterize protein behavior in complex cellular environments.
Collapse
|
9
|
Knüfer A, Diana G, Walsh GS, Clarke JD, Guthrie S. Cadherins regulate nuclear topography and function of developing ocular motor circuitry. eLife 2020; 9:56725. [PMID: 33001027 PMCID: PMC7599068 DOI: 10.7554/elife.56725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
In the vertebrate central nervous system, groups of functionally related neurons, including cranial motor neurons of the brainstem, are frequently organised as nuclei. The molecular mechanisms governing the emergence of nuclear topography and circuit function are poorly understood. Here we investigate the role of cadherin-mediated adhesion in the development of zebrafish ocular motor (sub)nuclei. We find that developing ocular motor (sub)nuclei differentially express classical cadherins. Perturbing cadherin function in these neurons results in distinct defects in neuronal positioning, including scattering of dorsal cells and defective contralateral migration of ventral subnuclei. In addition, we show that cadherin-mediated interactions between adjacent subnuclei are critical for subnucleus position. We also find that disrupting cadherin adhesivity in dorsal oculomotor neurons impairs the larval optokinetic reflex, suggesting that neuronal clustering is important for co-ordinating circuit function. Our findings reveal that cadherins regulate distinct aspects of cranial motor neuron positioning and establish subnuclear topography and motor function.
Collapse
Affiliation(s)
- Athene Knüfer
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Giovanni Diana
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Gregory S Walsh
- Department of Biology, Virginia Commonwealth University, Richmond, United States
| | - Jonathan Dw Clarke
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Sarah Guthrie
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
10
|
TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Rep 2020; 29:1130-1146.e8. [PMID: 31665629 PMCID: PMC6899445 DOI: 10.1016/j.celrep.2019.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses. TSPAN5 is expressed in pyramidal neurons and localizes mainly to dendritic spines TSPAN5 interacts with neuroligin-1 and promotes its clustering TSPAN5-neuroligin-1 complex is fundamental for dendritic spine maturation
Collapse
|
11
|
Minegishi T, Inagaki N. Forces to Drive Neuronal Migration Steps. Front Cell Dev Biol 2020; 8:863. [PMID: 32984342 PMCID: PMC7490296 DOI: 10.3389/fcell.2020.00863] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
To establish and maintain proper brain architecture and elaborate neural networks, neurons undergo massive migration. As a unique feature of their migration, neurons move in a saltatory manner by repeating two distinct steps: extension of the leading process and translocation of the cell body. Neurons must therefore generate forces to extend the leading process as well as to translocate the cell body. In addition, neurons need to switch these forces alternately in order to orchestrate their saltatory movement. Recent studies with mechanobiological analyses, including traction force microscopy, cell detachment analyses, live-cell imaging, and loss-of-function analyses, have begun to reveal the forces required for these steps and the molecular mechanics underlying them. Spatiotemporally organized forces produced between cells and their extracellular environment, as well as forces produced within cells, play pivotal roles to drive these neuronal migration steps. Traction force produced by the leading process growth cone extends the leading processes. On the other hand, mechanical tension of the leading process, together with reduction in the adhesion force at the rear and the forces to drive nucleokinesis, translocates the cell body. Traction forces are generated by mechanical coupling between actin filament retrograde flow and the extracellular environment through clutch and adhesion molecules. Forces generated by actomyosin and dynein contribute to the nucleokinesis. In addition to the forces generated in cell-intrinsic manners, external forces provided by neighboring migratory cells coordinate cell movement during collective migration. Here, we review our current understanding of the forces that drive neuronal migration steps and describe the molecular machineries that generate these forces for neuronal migration.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
12
|
Dos-Santos Carvalho S, Moreau MM, Hien YE, Garcia M, Aubailly N, Henderson DJ, Studer V, Sans N, Thoumine O, Montcouquiol M. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. eLife 2020; 9:51822. [PMID: 31909712 PMCID: PMC6946565 DOI: 10.7554/elife.51822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dynamic mechanical interactions between adhesion complexes and the cytoskeleton are essential for axon outgrowth and guidance. Whether planar cell polarity (PCP) proteins, which regulate cytoskeleton dynamics and appear necessary for some axon guidance, also mediate interactions with membrane adhesion is still unclear. Here we show that Vangl2 controls growth cone velocity by regulating the internal retrograde actin flow in an N-cadherin-dependent fashion. Single molecule tracking experiments show that the loss of Vangl2 decreased fast-diffusing N-cadherin membrane molecules and increased confined N-cadherin trajectories. Using optically manipulated N-cadherin-coated microspheres, we correlated this behavior to a stronger mechanical coupling of N-cadherin with the actin cytoskeleton. Lastly, we show that the spatial distribution of Vangl2 within the growth cone is selectively affected by an N-cadherin-coated substrate. Altogether, our data show that Vangl2 acts as a negative regulator of axonal outgrowth by regulating the strength of the molecular clutch between N-cadherin and the actin cytoskeleton.
Collapse
Affiliation(s)
- Steve Dos-Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maite M Moreau
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Yeri Esther Hien
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Mikael Garcia
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Aubailly
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Olivier Thoumine
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
13
|
Minegishi T, Uesugi Y, Kaneko N, Yoshida W, Sawamoto K, Inagaki N. Shootin1b Mediates a Mechanical Clutch to Produce Force for Neuronal Migration. Cell Rep 2018; 25:624-639.e6. [DOI: 10.1016/j.celrep.2018.09.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 11/26/2022] Open
|
14
|
Abstract
To get a complete understanding of cell migration, it is critical to study its orchestration at the molecular level. Since the recent developments in single-molecule imaging, it is now possible to study molecular phenomena at the single-molecule level inside living cells. In this chapter, we describe how such approaches have been and can be used to decipher molecular mechanisms involved in cell migration.
Collapse
|
15
|
Ning G, Liu Y, Xu H, Li Y, Wu H, Wang X, Feng S. Gene silencing NMII promotes axonal regeneration against contusive spinal cord injury in rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11345-11352. [PMID: 31966489 PMCID: PMC6965883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/09/2017] [Indexed: 06/10/2023]
Abstract
There are drastic changes that occur in the impaired regions after spinal cord injury (SCI), however, improvement of the detrimental pathological process after injury is limited in the mammalian adult, which is due a large part to the failure of local axons to grow. Non-muscle myosin II (NMII) has been proved having essential role in the regulation of cytoskeletal structure and genetic silencing NMII markedly accelerates axon growth in vitro. Our purpose is to explore the association between phosphorylated NMII expression and axonal regeneration after SCI in rats and determine whether gene silencing NMII can improve the locomotor function in rats with SCI. The results showed that phosphorylated NMII level was up regulated after SCI and may even play important role in inhibiting neuronal survival and axonal regeneration. After silencing NMII, the viability of neurons, proliferation of axons, synaptic connection and locomotor functional recovery were promoted significantly after SCI. Our study provides an effective way by direct regulation of neuron viability, the proliferation of axons and synaptic connection for treating SCI, which may be a novel method for repairing SCI. However, the specific signaling pathway mechanisms about the recovery require further study.
Collapse
Affiliation(s)
- Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General HospitalTianjing, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin CityTianjin, China
| | - Yang Liu
- Department of Orthopedics, Tianjin Medical University General HospitalTianjing, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin CityTianjin, China
| | - Hong Xu
- Department of Orthopedics, Tianjin Medical University General HospitalTianjing, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin CityTianjin, China
| | - Yulin Li
- Department of Orthopedics, Tianjin Medical University General HospitalTianjing, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin CityTianjin, China
| | - Hong Wu
- Department of Orthopedics, Tianjin Medical University General HospitalTianjing, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin CityTianjin, China
| | - Xiaobo Wang
- Department of Orthopedics, Tianjin Medical University General HospitalTianjing, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin CityTianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General HospitalTianjing, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin CityTianjin, China
| |
Collapse
|
16
|
Dynamics of surface neurotransmitter receptors and transporters in glial cells: Single molecule insights. Cell Calcium 2017; 67:46-52. [PMID: 29029790 DOI: 10.1016/j.ceca.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022]
Abstract
The surface dynamics of neurotransmitter receptors and transporters, as well as ion channels, has been well-documented in neurons, revealing complex molecular behaviour and key physiological functions. However, our understanding of the membrane trafficking and dynamics of the signalling molecules located at the plasma membrane of glial cells is still in its infancy. Yet, recent breakthroughs in the field of glial cells have been obtained using combination of superresolution microscopy, single molecule imaging, and electrophysiological recordings. Here, we review our current knowledge on the surface dynamics of neurotransmitter receptors, transporters and ion channels, in glial cells. It has emerged that the brain cell network activity, synaptic activity, and calcium signalling, regulate the surface distribution and dynamics of these molecules. Remarkably, the dynamics of a given neurotransmitter receptor/transporter at the plasma membrane of a glial cell or neuron is unique, revealing the existence of cell-type specific regulatory pathways. Thus, investigating the dynamics of signalling proteins at the surface of glial cells will likely shed new light on our understanding of glial cell physiology and pathology.
Collapse
|
17
|
Actin Waves: Origin of Cell Polarization and Migration? Trends Cell Biol 2017; 27:515-526. [DOI: 10.1016/j.tcb.2017.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/07/2017] [Indexed: 01/22/2023]
|
18
|
Chan EH, Chavadimane Shivakumar P, Clément R, Laugier E, Lenne PF. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. eLife 2017; 6. [PMID: 28537220 PMCID: PMC5443664 DOI: 10.7554/elife.22796] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI:http://dx.doi.org/10.7554/eLife.22796.001
Collapse
|
19
|
Defective Gpsm2/Gα i3 signalling disrupts stereocilia development and growth cone actin dynamics in Chudley-McCullough syndrome. Nat Commun 2017; 8:14907. [PMID: 28387217 PMCID: PMC5385604 DOI: 10.1038/ncomms14907] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/13/2017] [Indexed: 01/14/2023] Open
Abstract
Mutations in GPSM2 cause Chudley-McCullough syndrome (CMCS), an autosomal recessive neurological disorder characterized by early-onset sensorineural deafness and brain anomalies. Here, we show that mutation of the mouse orthologue of GPSM2 affects actin-rich stereocilia elongation in auditory and vestibular hair cells, causing deafness and balance defects. The G-protein subunit Gαi3, a well-documented partner of Gpsm2, participates in the elongation process, and its absence also causes hearing deficits. We show that Gpsm2 defines an ∼200 nm nanodomain at the tips of stereocilia and this localization requires the presence of Gαi3, myosin 15 and whirlin. Using single-molecule tracking, we report that loss of Gpsm2 leads to decreased outgrowth and a disruption of actin dynamics in neuronal growth cones. Our results elucidate the aetiology of CMCS and highlight a new molecular role for Gpsm2/Gαi3 in the regulation of actin dynamics in epithelial and neuronal tissues. Mutations in GPSM2 cause a rare disease characterized by deafness and brain abnormalities. Here the authors show that Gpsm2 forms a molecular complex with a heterotrimeric G-protein subunit, whirlin and a myosin motor to regulate actin dynamics in neurons and auditory hair cell stereocilia.
Collapse
|
20
|
Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci 2017; 84:11-28. [PMID: 28363876 DOI: 10.1016/j.mcn.2017.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarization establishes distinct molecular structures to generate a single axon and multiple dendrites. Studies over the past years indicate that this efficient separation is brought about by a network of feedback loops. Axonal growth seems to play a major role in fueling those feedback loops and thereby stabilizing neuronal polarity. Indeed, various effectors involved in feedback loops are pivotal for axonal growth by ultimately acting on the actin and microtubule cytoskeleton. These effectors have key roles in interconnecting actin and microtubule dynamics - a mechanism crucial to commanding the growth of axons. We propose a model connecting signaling with cytoskeletal dynamics and neurite growth to better describe the underlying processes involved in neuronal polarization. We will discuss the current views on feedback loops and highlight the current limits of our understanding.
Collapse
|
21
|
van Stegen B, Dagar S, Gottmann K. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin. Sci Rep 2017; 7:40865. [PMID: 28106089 PMCID: PMC5247765 DOI: 10.1038/srep40865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4–64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis.
Collapse
Affiliation(s)
- Bernd van Stegen
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Buck KB, Schaefer AW, Schoonderwoert VT, Creamer MS, Dufresne ER, Forscher P. Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation. Mol Biol Cell 2016; 28:98-110. [PMID: 27852899 PMCID: PMC5221634 DOI: 10.1091/mbc.e16-04-0228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
In growth cones, local Arp 2/3-dependent actin assembly mechanically buffers apCAM adhesions from retrograde flow–associated traction forces. The resulting propulsive forces drive the exploratory motility of inductopodia. Increasing the stiffness of apCAM targets induces an extensive 3D actin cup to form at the adhesion during evoked growth responses. Homophilic binding of immunoglobulin superfamily molecules such as the Aplysia cell adhesion molecule (apCAM) leads to actin filament assembly near nascent adhesion sites. Such actin assembly can generate significant localized forces that have not been characterized in the larger context of axon growth and guidance. We used apCAM-coated bead substrates applied to the surface of neuronal growth cones to characterize the development of forces evoked by varying stiffness of mechanical restraint. Unrestrained bead propulsion matched or exceeded rates of retrograde network flow and was dependent on Arp2/3 complex activity. Analysis of growth cone forces applied to beads at low stiffness of restraint revealed switching between two states: frictional coupling to retrograde flow and Arp2/3-dependent propulsion. Stiff mechanical restraint led to formation of an extensive actin cup matching the geometric profile of the bead target and forward growth cone translocation; pharmacological inhibition of the Arp2/3 complex or Rac attenuated F-actin assembly near bead binding sites, decreased the efficacy of growth responses, and blocked accumulation of signaling molecules associated with nascent adhesions. These studies introduce a new model for regulation of traction force in which local actin assembly forces buffer nascent adhesion sites from the mechanical effects of retrograde flow.
Collapse
Affiliation(s)
- Kenneth B Buck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Andrew W Schaefer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Vincent T Schoonderwoert
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| | - Eric R Dufresne
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520
| | - Paul Forscher
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
23
|
Chazeau A, Giannone G. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell Mol Life Sci 2016; 73:3053-73. [PMID: 27105623 PMCID: PMC11108290 DOI: 10.1007/s00018-016-2214-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/18/2022]
Abstract
In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.
Collapse
Affiliation(s)
- Anaël Chazeau
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France.
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France.
| |
Collapse
|
24
|
Abstract
UNLABELLED Growth cones interact with the extracellular matrix (ECM) through integrin receptors at adhesion sites termed point contacts. Point contact adhesions link ECM proteins to the actin cytoskeleton through numerous adaptor and signaling proteins. One presumed function of growth cone point contacts is to restrain or "clutch" myosin-II-based filamentous actin (F-actin) retrograde flow (RF) to promote leading edge membrane protrusion. In motile non-neuronal cells, myosin-II binds and exerts force upon actin filaments at the leading edge, where clutching forces occur. However, in growth cones, it is unclear whether similar F-actin-clutching forces affect axon outgrowth and guidance. Here, we show in Xenopus spinal neurons that RF is reduced in rapidly migrating growth cones on laminin (LN) compared with non-integrin-binding poly-d-lysine (PDL). Moreover, acute stimulation with LN accelerates axon outgrowth over a time course that correlates with point contact formation and reduced RF. These results suggest that RF is restricted by the assembly of point contacts, which we show occurs locally by two-channel imaging of RF and paxillin. Further, using micropatterns of PDL and LN, we demonstrate that individual growth cones have differential RF rates while interacting with two distinct substrata. Opposing effects on RF rates were also observed in growth cones treated with chemoattractive and chemorepulsive axon guidance cues that influence point contact adhesions. Finally, we show that RF is significantly attenuated in vivo, suggesting that it is restrained by molecular clutching forces within the spinal cord. Together, our results suggest that local clutching of RF can control axon guidance on ECM proteins downstream of axon guidance cues. SIGNIFICANCE STATEMENT Here, we correlate point contact adhesions directly with clutching of filamentous actin retrograde flow (RF), which our findings strongly suggest guides developing axons. Acute assembly of new point contact adhesions is temporally and spatially linked to attenuation of RF at sites of forward membrane protrusion. Importantly, clutching of RF is modulated by extracellular matrix (ECM) proteins and soluble axon guidance cues, suggesting that it may regulate axon guidance in vivo. Consistent with this notion, we found that RF rates of spinal neuron growth cones were slower in vivo than what was observed in vitro. Together, our study provides the best evidence that growth cone-ECM adhesions clutch RF locally to guide axons in vivo.
Collapse
|
25
|
Identification of a shootin1 isoform expressed in peripheral tissues. Cell Tissue Res 2016; 366:75-87. [PMID: 27177867 DOI: 10.1007/s00441-016-2415-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/20/2016] [Indexed: 10/24/2022]
Abstract
Shootin1 is a brain-specific cytoplasmic protein involved in neuronal polarity formation and axon outgrowth. It accumulates at the leading edge of axonal growth cones, where it mediates the mechanical coupling between F-actin retrograde flow and cell adhesions as a clutch molecule, thereby producing force for axon outgrowth. In this study, we report a novel splicing isoform of shootin1 which is expressed not only in the brain but also in peripheral tissues. We have renamed the brain-specific shootin1 as shootin1a and termed the novel isoform as shootin1b. Immunoblot and immunohistochemical analyses with a shootin1b-specific antibody revealed that shootin1b is distributed in various mouse tissues including the lung, liver, stomach, intestines, spleen, pancreas, kidney and skin. Interestingly, shootin1b immunoreactivity was widely detected in epithelial cells that constitute simple and stratified epithelia; in some cells, it colocalized with E-cadherin and cortactin at cell-cell contact sites. Shootin1b also localized in dendritic cells in the spleen. These results suggest that shootin1b may function in various peripheral tissues including epithelial cells.
Collapse
|