1
|
Liu M, Qin X, Luo M, Shen Y, Wang J, Sun J, Czajkowsky DM, Shao Z. Hexameric-Based Hierarchy in the Sizes of a Cytolysin Pore-Forming Complex. Biomolecules 2025; 15:424. [PMID: 40149960 PMCID: PMC11940705 DOI: 10.3390/biom15030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Perfringolysin O (PFO) is a prototypical member of a large family of pore-forming toxins (PFTs) that are potent virulence factors for many pathogenic bacteria. One of the most enigmatic properties of these PFTs is how structural changes are coordinated between different subunits within a single complex. Moreover, there are conflicting data in the literature, with gel electrophoresis results apparently showing that pores are only complete rings, whereas microscopy images clearly also show incomplete-ring pores. Here, we developed a novel multi-stack gel electrophoretic assay to finely separate PFO pore complexes and found that this assay indeed resolves both complete- and incomplete-ring pores. However, unexpectedly, we found that the stoichiometries of these complexes are predominantly integral multiples of six subunits. High-resolution atomic force microscopy images of PFO pore complexes also reveal a predominant hexameric-based stoichiometry. We also observed this hexameric-based stoichiometry at the prepore stage and identified a mutant that is kinetically trapped at a hexameric state. Thus, overall, these results reveal a previously unknown hexameric-based structural hierarchy in the PFO complexes. We suggest that the structural coordination within the hexamers is different than between the hexamers and is thus a critical feature of the structural coordination of the complex as a whole.
Collapse
Affiliation(s)
- Meijun Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | - Xintao Qin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | - Menglin Luo
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | - Yi Shen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | | | - Jielin Sun
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Daniel M. Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| |
Collapse
|
2
|
Lata K, Nandy K, Geetika, Chattopadhyay K. Mechanistic Cooperation of the Two Pore-Forming Transmembrane Motifs Regulates the β-Barrel Pore Formation by Listeriolysin O. Biochemistry 2025; 64:917-927. [PMID: 39869763 DOI: 10.1021/acs.biochem.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen Listeria monocytogenes. LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs. In the soluble monomeric state, these motifs are present as helical segments (two transmembrane helices (TMHs); TMH1 and TMH2), and in the course of oligomeric pore formation, they convert into transmembrane β-hairpins to form the β-barrel scaffold of the CDC pores. Despite their well-established role in forming the β-barrel pore scaffold, precise structural implications of the two distinct TMH motifs and their membrane-insertion mechanism still remain obscure. Here, we show that the two TMH motifs of LLO contribute differently to maintaining the structural integrity of the toxin. While the deletion of TMH1 imposed a more serious defect, truncation of TMH2 was found to have a less severe effect on the structural integrity. Despite showing membrane-binding and oligomerization ability, the TMH2-deleted LLO variant displayed drastically abrogated pore-forming activity, presumably due to compromised membrane-insertion efficacy of the pore-forming TMH motifs. When probed for the membrane-insertion mechanism, we found slower membrane-insertion kinetics for TMH2 than for TMH1. Interestingly, deletion of TMH2 arrested membrane insertion of TMH1, thus suggesting a stringent cooperation between the two TMH motifs in regulating the pore-formation mechanism of LLO. Taken together, our study provides new mechanistic insights regarding the membrane-damaging action of LLO, in the CDC family of PFTs.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Koyel Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Geetika
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Tian S, Zhou N. Gaining New Insights into Fundamental Biological Pathways by Bacterial Toxin-Based Genetic Screens. Bioengineering (Basel) 2023; 10:884. [PMID: 37627769 PMCID: PMC10451959 DOI: 10.3390/bioengineering10080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Genetic screen technology has been applied to study the mechanism of action of bacterial toxins-a special class of virulence factors that contribute to the pathogenesis caused by bacterial infections. These screens aim to identify host factors that directly or indirectly facilitate toxin intoxication. Additionally, specific properties of certain toxins, such as membrane interaction, retrograde trafficking, and carbohydrate binding, provide robust probes to comprehensively investigate the lipid biosynthesis, membrane vesicle transport, and glycosylation pathways, respectively. This review specifically focuses on recent representative toxin-based genetic screens that have identified new players involved in and provided new insights into fundamental biological pathways, such as glycosphingolipid biosynthesis, protein glycosylation, and membrane vesicle trafficking pathways. Functionally characterizing these newly identified factors not only expands our current understanding of toxin biology but also enables a deeper comprehension of fundamental biological questions. Consequently, it stimulates the development of new therapeutic approaches targeting both bacterial infectious diseases and genetic disorders with defects in these factors and pathways.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nini Zhou
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Marini G, Poland B, Leininger C, Lukoyanova N, Spielbauer D, Barry JK, Altier D, Lum A, Scolaro E, Ortega CP, Yalpani N, Sandahl G, Mabry T, Klever J, Nowatzki T, Zhao JZ, Sethi A, Kassa A, Crane V, Lu AL, Nelson ME, Eswar N, Topf M, Saibil HR. Structural journey of an insecticidal protein against western corn rootworm. Nat Commun 2023; 14:4171. [PMID: 37443175 PMCID: PMC10344926 DOI: 10.1038/s41467-023-39891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The broad adoption of transgenic crops has revolutionized agriculture. However, resistance to insecticidal proteins by agricultural pests poses a continuous challenge to maintaining crop productivity and new proteins are urgently needed to replace those utilized for existing transgenic traits. We identified an insecticidal membrane attack complex/perforin (MACPF) protein, Mpf2Ba1, with strong activity against the devastating coleopteran pest western corn rootworm (WCR) and a novel site of action. Using an integrative structural biology approach, we determined monomeric, pre-pore and pore structures, revealing changes between structural states at high resolution. We discovered an assembly inhibition mechanism, a molecular switch that activates pre-pore oligomerization upon gut fluid incubation and solved the highest resolution MACPF pore structure to-date. Our findings demonstrate not only the utility of Mpf2Ba1 in the development of biotechnology solutions for protecting maize from WCR to promote food security, but also uncover previously unknown mechanistic principles of bacterial MACPF assembly.
Collapse
Affiliation(s)
- Guendalina Marini
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Brad Poland
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Chris Leininger
- Corteva Agriscience, Johnston, IA, 50131, USA
- Syngenta, Research Triangle Park, NC, 27709, USA
| | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK
| | | | | | - Dan Altier
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Amy Lum
- Corteva Agriscience, Johnston, IA, 50131, USA
- Willow Biosciences, 319 N Bernardo Ave #4, Mountain View, CA, 94043, USA
| | | | - Claudia Pérez Ortega
- Corteva Agriscience, Johnston, IA, 50131, USA
- Hologic, Inc., 250 Campus Drive, Marlborough, MA, 01752, USA
| | - Nasser Yalpani
- Corteva Agriscience, Johnston, IA, 50131, USA
- Dept. of Biology, University of British Columbia Okanagan, 3187 University Way, Kelowna, BC, V1V 1V7, Canada
| | | | - Tim Mabry
- Corteva Agriscience, Ivesdale, IL, 61851, USA
| | | | | | | | - Amit Sethi
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Adane Kassa
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Albert L Lu
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | | | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK.
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK.
| |
Collapse
|
6
|
Ariyama H. Visualizing the Domino-Like Prepore-to-Pore Transition of Streptolysin O by High-Speed AFM. J Membr Biol 2023; 256:91-103. [PMID: 35980453 PMCID: PMC9884259 DOI: 10.1007/s00232-022-00261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023]
Abstract
Pore-forming proteins (PFPs) are produced by various organisms, including pathogenic bacteria, and form pores within the target cell membrane. Streptolysin O (SLO) is a PFP produced by Streptococcus pyogenes and forms high-order oligomers on the membrane surface. In this prepore state, multiple α-helices in domain 3 of each subunit exist as unfolded structures and transiently interact with each other. They subsequently transition into transmembrane β-hairpins (TMHs) and form pores with diameters of 20-30 nm. However, in this pore formation process, the trigger of the transition in a subunit and collaboration between subunits remains elusive. Here, I observed the dynamic pore formation process using high-speed atomic force microscopy. During the oligomer transition process, each subunit was sequentially inserted into the membrane, propagating along the oligomer in a domino-like fashion (chain reaction). This process also occurred on hybrid oligomers containing wildtype and mutant subunits, which cannot insert into the membrane because of an introduced disulfide bond. Furthermore, propagation still occurred when an excessive force was added to hybrid oligomers in the prepore state. Based on the observed chain reactions, I estimate the free energies and forces that trigger the transition in a subunit. Furthermore, I hypothesize that the collaboration between subunits is related to the structure of their TMH regions and interactions between TMH-TMH and TMH-lipid molecules.
Collapse
Affiliation(s)
- Hirotaka Ariyama
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| |
Collapse
|
7
|
Johnstone BA, Joseph R, Christie MP, Morton CJ, McGuiness C, Walsh JC, Böcking T, Tweten RK, Parker MW. Cholesterol-dependent cytolysins: The outstanding questions. IUBMB Life 2022; 74:1169-1179. [PMID: 35836358 PMCID: PMC9712165 DOI: 10.1002/iub.2661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022]
Abstract
The cholesterol-dependent cytolysins (CDCs) are a major family of bacterial pore-forming proteins secreted as virulence factors by Gram-positive bacterial species. CDCs are produced as soluble, monomeric proteins that bind specifically to cholesterol-rich membranes, where they oligomerize into ring-shaped pores of more than 30 monomers. Understanding the details of the steps the toxin undergoes in converting from monomer to a membrane-spanning pore is a continuing challenge. In this review we summarize what we know about CDCs and highlight the remaining outstanding questions that require answers to obtain a complete picture of how these toxins kill cells.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Riya Joseph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Conall McGuiness
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
8
|
McGuinness C, Walsh JC, Bayly-Jones C, Dunstone MA, Christie MP, Morton CJ, Parker MW, Böcking T. Single-molecule analysis of the entire perfringolysin O pore formation pathway. eLife 2022; 11:e74901. [PMID: 36000711 PMCID: PMC9457685 DOI: 10.7554/elife.74901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
The cholesterol-dependent cytolysin perfringolysin O (PFO) is secreted by Clostridium perfringens as a bacterial virulence factor able to form giant ring-shaped pores that perforate and ultimately lyse mammalian cell membranes. To resolve the kinetics of all steps in the assembly pathway, we have used single-molecule fluorescence imaging to follow the dynamics of PFO on dye-loaded liposomes that lead to opening of a pore and release of the encapsulated dye. Formation of a long-lived membrane-bound PFO dimer nucleates the growth of an irreversible oligomer. The growing oligomer can insert into the membrane and open a pore at stoichiometries ranging from tetramers to full rings (~35 mers), whereby the rate of insertion increases linearly with the number of subunits. Oligomers that insert before the ring is complete continue to grow by monomer addition post insertion. Overall, our observations suggest that PFO membrane insertion is kinetically controlled.
Collapse
Affiliation(s)
- Conall McGuinness
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - Charles Bayly-Jones
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityMelbourneAustralia
| | - Michelle A Dunstone
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityMelbourneAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchVictoriaAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| |
Collapse
|
9
|
Mechanistic Insights into Gasdermin Pore Formation and Regulation in Pyroptosis. J Mol Biol 2022; 434:167297. [PMID: 34627790 PMCID: PMC8844191 DOI: 10.1016/j.jmb.2021.167297] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
The gasdermin family is a newly identified class of pore-forming proteins that play as the executioners of pyroptosis, a lytic pro-inflammatory type of cell death triggered by sensing cytosolic infections and danger signals. Upon activation, the gasdermin N-terminal domain translocates to the cell membrane to form pores, which allow the release of proinflammatory cytokines and alarmins, and cause cell lysis. Many structural studies have been conducted in the past few years to investigate the mechanisms of gasdermin proteins in the activation and pore formation. Here, we review these high-resolution structures and highlight the mechanistic insights into the gasdermin activation and regulation that are provided.
Collapse
|
10
|
Benton JT, Bayly-Jones C. Challenges and approaches to studying pore-forming proteins. Biochem Soc Trans 2021; 49:2749-2765. [PMID: 34747994 PMCID: PMC8892993 DOI: 10.1042/bst20210706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Pore-forming proteins (PFPs) are a broad class of molecules that comprise various families, structural folds, and assembly pathways. In nature, PFPs are most often deployed by their host organisms to defend against other organisms. In humans, this is apparent in the immune system, where several immune effectors possess pore-forming activity. Furthermore, applications of PFPs are found in next-generation low-cost DNA sequencing, agricultural crop protection, pest control, and biosensing. The advent of cryoEM has propelled the field forward. Nevertheless, significant challenges and knowledge-gaps remain. Overcoming these challenges is particularly important for the development of custom, purpose-engineered PFPs with novel or desired properties. Emerging single-molecule techniques and methods are helping to address these unanswered questions. Here we review the current challenges, problems, and approaches to studying PFPs.
Collapse
Affiliation(s)
- Joshua T. Benton
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Charles Bayly-Jones
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Sannigrahi A, Chattopadhyay K. Pore formation by pore forming membrane proteins towards infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:79-111. [PMID: 35034727 DOI: 10.1016/bs.apcsb.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last 25 years, the biology of membrane proteins, including the PFPs-membranes interactions is seeking attention for the development of successful drug molecules against a number of infectious diseases. Pore forming toxins (PFTs), the largest family of PFPs are considered as a group of virulence factors produced in a large number of pathogenic systems which include streptococcus, pneumonia, Staphylococcus aureus, E. coli, Mycobacterium tuberculosis, group A and B streptococci, Corynebacterium diphtheria and many more. PFTs are generally utilized by the disease causing pathogens to disrupt the host first line of defense i.e. host cell membranes through pore formation strategy. Although, pore formation is the principal mode of action of the PFTs but they can have additional adverse effects on the hosts including immune evasion. Recently, structural investigation of different PFTs have imparted the molecular mechanistic insights into how PFTs get transformed from its inactive state to active toxic state. On the basis of their structural entity, PFTs have been classified in different types and their mode of actions alters in terms of pore formation and corresponding cellular toxicity. Although pathogen genome analysis can identify the probable PFTs depending upon their structural diversity, there are so many PFTs which utilize the local environmental conditions to generate their pore forming ability using a novel strategy which is known as "conformational switch" of a protein. This conformational switch is considered as characteristics of the phase shifting proteins which were often utilized by many pathogenic systems to protect them from the invaders through allosteric communication between distant regions of the protein. In this chapter, we discuss the structure function relationships of PFTs and how activity of PFTs varies with the change in the environmental conditions has been explored. Finally, we demonstrate these structural insights to develop therapeutic potential to treat the infections caused by multidrug resistant pathogens.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India.
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Mondal AK, Chattopadhyay K. Structures and functions of the membrane-damaging pore-forming proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:241-288. [PMID: 35034720 DOI: 10.1016/bs.apcsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pore-forming proteins (PFPs) of the diverse life forms have emerged as the potent cell-killing entities owing to their specialized membrane-damaging properties. PFPs have the unique ability to perforate the plasma membranes of their target cells, and they exert this functionality by creating oligomeric pores in the membrane lipid bilayer. Pathogenic bacteria employ PFPs as toxins to execute their virulence mechanisms, whereas in the higher vertebrates PFPs are deployed as the part of the immune system and to generate inflammatory responses. PFPs are the unique dimorphic proteins that are generally synthesized as water-soluble molecules, and transform into membrane-inserted oligomeric pore assemblies upon interacting with the target membranes. In spite of sharing very little sequence similarity, PFPs from diverse organisms display incredible structural similarity. Yet, at the same time, structure-function mechanisms of the PFPs document remarkable versatility. Such notions establish PFPs as the fascinating model system to explore variety of unsolved issues pertaining to the structure-function paradigm of the proteins that interact and act in the membrane environment. In this article, we discuss our current understanding regarding the structural basis of the pore-forming functions of the diverse class of PFPs. We attempt to highlight the similarities and differences in their structures, membrane pore-formation mechanisms, and their implications for the various biological processes, ranging from the bacterial virulence mechanisms to the inflammatory immune response generation in the higher animals.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
13
|
Desikan R, Behera A, Maiti PK, Ayappa KG. Using multiscale molecular dynamics simulations to obtain insights into pore forming toxin mechanisms. Methods Enzymol 2021; 649:461-502. [PMID: 33712196 DOI: 10.1016/bs.mie.2021.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pore forming toxins (PFTs) are virulent proteins released by several species, including many strains of bacteria, to attack and kill host cells. In this article, we focus on the utility of molecular dynamics (MD) simulations and the molecular insights gleaned from these techniques on the pore forming pathways of PFTs. In addition to all-atom simulations which are widely used, coarse-grained MARTINI models and structure-based models have also been used to study PFTs. Here, the emphasis is on methods and techniques involved while setting up, monitoring, and evaluating properties from MD simulations of PFTs in a membrane environment. We draw from several case studies to illustrate how MD simulations have provided molecular insights into protein-protein and protein-lipid interactions, lipid dynamics, conformational transitions and structures of both the oligomeric intermediates and assembled pore structures.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Amit Behera
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
14
|
Evans JC, Tweten RK. How protein engineering has revealed the molecular mechanisms of pore-forming toxins. Methods Enzymol 2021; 649:47-70. [PMID: 33712197 DOI: 10.1016/bs.mie.2021.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pore-forming proteins are found in prokaryotes, vertebrates, and invertebrates, and when involved in pathogenic processes they are classified as pore-forming toxins (PFTs). The use of gene engineering methods in combination with the information provided by the high-resolution crystal structures of the PFTs have allowed investigators to gain a deep understanding of their pore-forming mechanisms. In this chapter, we discuss how protein engineering has helped us and others to reveal the molecular mechanisms of pore formation by prokaryotic PFTs with an emphasis on our experiences with the cholesterol-dependent cytolysins (CDCs).
Collapse
Affiliation(s)
- Jordan C Evans
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rodney K Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
15
|
Drabavicius G, Daelemans D. Intermedilysin cytolytic activity depends on heparan sulfates and membrane composition. PLoS Genet 2021; 17:e1009387. [PMID: 33577603 PMCID: PMC7906465 DOI: 10.1371/journal.pgen.1009387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/25/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cholesterol-dependent cytolysins (CDCs), of which intermedilysin (ILY) is an archetypal member, are a group of pore-forming toxins secreted by a large variety of pathogenic bacteria. These toxins, secreted as soluble monomers, oligomerize upon interaction with cholesterol in the target membrane and transect it as pores of diameters of up to 100 to 300 Å. These pores disrupt cell membranes and result in cell lysis. The immune receptor CD59 is a well-established cellular factor required for intermedilysin pore formation. In this study, we applied genome-wide CRISPR-Cas9 knock-out screening to reveal additional cellular co-factors essential for ILY-mediated cell lysis. We discovered a plethora of genes previously not associated with ILY, many of which are important for membrane constitution. We show that heparan sulfates facilitate ILY activity, which can be inhibited by heparin. Furthermore, we identified hits in both protein and lipid glycosylation pathways and show a role for glucosylceramide, demonstrating that membrane organization is important for ILY activity. We also cross-validated identified genes with vaginolysin and pneumolysin and found that pneumolysin's cytolytic activity strongly depends on the asymmetric distribution of membrane phospholipids. This study shows that membrane-targeting toxins combined with genetic screening can identify genes involved in biological membrane composition and metabolism.
Collapse
Affiliation(s)
- Gediminas Drabavicius
- KU Leuven Department of Microbiology, Immunology, and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Vilnius, Lithuania
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology, and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
- * E-mail:
| |
Collapse
|
16
|
Shah NR, Voisin TB, Parsons ES, Boyd CM, Hoogenboom BW, Bubeck D. Structural basis for tuning activity and membrane specificity of bacterial cytolysins. Nat Commun 2020; 11:5818. [PMID: 33199689 PMCID: PMC7669874 DOI: 10.1038/s41467-020-19482-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are pore-forming proteins that serve as major virulence factors for pathogenic bacteria. They target eukaryotic cells using different mechanisms, but all require the presence of cholesterol to pierce lipid bilayers. How CDCs use cholesterol to selectively lyse cells is essential for understanding virulence strategies of several pathogenic bacteria, and for repurposing CDCs to kill new cellular targets. Here we address that question by trapping an early state of pore formation for the CDC intermedilysin, bound to the human immune receptor CD59 in a nanodisc model membrane. Our cryo electron microscopy map reveals structural transitions required for oligomerization, which include the lateral movement of a key amphipathic helix. We demonstrate that the charge of this helix is crucial for tuning lytic activity of CDCs. Furthermore, we discover modifications that overcome the requirement of cholesterol for membrane rupture, which may facilitate engineering the target-cell specificity of pore-forming proteins.
Collapse
Affiliation(s)
- Nita R Shah
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Tomas B Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Edward S Parsons
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Courtney M Boyd
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
17
|
Evans JC, Johnstone BA, Lawrence SL, Morton CJ, Christie MP, Parker MW, Tweten RK. A Key Motif in the Cholesterol-Dependent Cytolysins Reveals a Large Family of Related Proteins. mBio 2020; 11:e02351-20. [PMID: 32994330 PMCID: PMC7527733 DOI: 10.1128/mbio.02351-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
The cholesterol-dependent cytolysins (CDCs) are bacterial, β-barrel, pore-forming toxins. A central enigma of the pore-forming mechanism is how completion of the prepore is sensed to initiate its conversion to the pore. We identified a motif that is conserved between the CDCs and a diverse family of nearly 300 uncharacterized proteins present in over 220 species that span at least 10 bacterial and 2 eukaryotic phyla. Except for this motif, these proteins exhibit little similarity to the CDCs at the primary structure level. Studies herein show this motif is a critical component of the sensor that initiates the prepore-to-pore transition in the CDCs. We further show by crystallography, single particle analysis, and biochemical studies of one of these CDC-like (CDCL) proteins from Elizabethkingia anophelis, a commensal of the malarial mosquito midgut, that a high degree of structural similarity exists between the CDC and CDCL monomer structures and both form large oligomeric pore complexes. Furthermore, the conserved motif in the E. anophelis CDCL crystal structure occupies a nearly identical position and makes similar contacts to those observed in the structure of the archetype CDC, perfringolysin O (PFO). This suggests a common function in the CDCs and CDCLs and may explain why only this motif is conserved in the CDCLs. Hence, these studies identify a critical component of the sensor involved in initiating the prepore-to-pore transition in the CDCs, which is conserved in a large and diverse group of distant relatives of the CDCs.IMPORTANCE The cholesterol-dependent cytolysins' pore-forming mechanism relies on the ability to sense the completion of the oligomeric prepore structure and initiate the insertion of the β-barrel pore from the assembled prepore structure. These studies show that a conserved motif is an important component of the sensor that triggers the prepore-to-pore transition and that it is conserved in a large family of previously unidentified CDC-like proteins, the genes for which are present in a vast array of microbial species that span most terrestrial environments, as well as most animal and human microbiomes. These studies establish the foundation for future investigations that will probe the contribution of this large family of CDC-like proteins to microbial survival and human disease.
Collapse
Affiliation(s)
- Jordan C Evans
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sara L Lawrence
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
18
|
Desikan R, Maiti PK, Ayappa KG. Predicting interfacial hot-spot residues that stabilize protein-protein interfaces in oligomeric membrane-toxin pores through hydrogen bonds and salt bridges. J Biomol Struct Dyn 2020; 39:20-34. [DOI: 10.1080/07391102.2020.1711806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
19
|
Structural Insight of Gasdermin Family Driving Pyroptotic Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:189-205. [DOI: 10.1007/978-981-13-9367-9_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Insight into the Structural Dynamics of the Lysenin During Prepore-to-Pore Transition Using Hydrogen-Deuterium Exchange Mass Spectrometry. Toxins (Basel) 2019; 11:toxins11080462. [PMID: 31394843 PMCID: PMC6722932 DOI: 10.3390/toxins11080462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
Lysenin is a pore-forming toxin of the aerolysin family, which is derived from coelomic fluid of the earthworm Eisenia fetida. Upon binding to sphingomyelin (SM)-containing membranes, lysenin undergoes a series of structural changes promoting the conversion of water-soluble monomers into oligomers, leading to its insertion into the membrane and the formation of a lytic β-barrel pore. The soluble monomer and transmembrane pore structures were recently described, but the underlying structural details of oligomerization remain unclear. To investigate the molecular mechanisms controlling the conformational rearrangements accompanying pore formation, we compared the hydrogen–deuterium exchange pattern between lyseninWT and its mutant lyseninV88C/Y131C. This mutation arrests lysenin oligomers in the prepore state at the membrane surface and does not affect the structural dynamics of the water-soluble form of lysenin. In contrast, membrane-bound lyseninV88C/Y131C exhibited increased structural stabilization, especially within the twisted β-sheet of the N-terminal domain. We demonstrated that the structural stabilization of the lysenin prepore started at the site of lysenin’s initial interaction with the lipid membrane and was transmitted to the twisted β-sheet of the N-terminal domain, and that lyseninV88C/Y131C was arrested in this conformation. In lyseninWT, stabilization of these regions drove the conformational changes necessary for pore formation.
Collapse
|
21
|
Márquez CL, Lau D, Walsh J, Faysal KMR, Parker MW, Turville SG, Böcking T. Fluorescence Microscopy Assay to Measure HIV-1 Capsid Uncoating Kinetics in vitro. Bio Protoc 2019; 9:e3297. [PMID: 33654810 PMCID: PMC7854090 DOI: 10.21769/bioprotoc.3297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 11/05/2022] Open
Abstract
The stability of the HIV-1 capsid and the spatiotemporal control of its disassembly, a process called uncoating, need to be finely tuned for infection to proceed. Biochemical methods for measuring capsid lattice disassembly in bulk are unable to resolve intermediates in the uncoating reaction. We have developed a single-particle fluorescence microscopy method to follow the real-time uncoating kinetics of authentic HIV capsids in vitro. The assay utilizes immobilized viral particles that are permeabilized with the a pore-former protein, and is designed to (1) detect the first defect of the capsid by the release of a solution phase marker (GFP) and (2) visualize the disassembly of the capsid over time by “painting” the capsid lattice with labeled cyclophilin A (CypA), a protein that binds weakly to the outside of the capsid. This novel assay allows the study of dynamic interactions of molecules with hundreds of individual capsids as well as to determine their effect on viral capsid stability, which provides a powerful tool for dissecting uncoating mechanisms and for the development of capsid-binding drugs.
Collapse
Affiliation(s)
- Chantal L Márquez
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - James Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - Michael W Parker
- St. Vincent's Institute of Medical Research, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | | | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| |
Collapse
|
22
|
An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin. mBio 2019; 10:mBio.01017-19. [PMID: 31266869 PMCID: PMC6606804 DOI: 10.1128/mbio.01017-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A unique feature of the CDC/MACPF/SNTX (cholesterol-dependent cytolysin/membrane attack complex perforin/stonefish toxin) superfamily of pore-forming toxins is that the β-strands that comprise the β-barrel pore are derived from a pair of α-helical bundles. These studies reveal the molecular basis by which the formation of intermolecular interactions within the prepore complex drive the disruption of intramolecular interactions within each monomer of the prepore to trigger the α-helical–to–β-strand transition and formation of the β-barrel pore. The crystal structures of the soluble monomers of the pore-forming cholesterol-dependent cytolysins (CDCs) contain two α-helical bundles that flank a twisted core β-sheet. This protein fold is the hallmark of the CDCs, as well as of the membrane attack complex/perforin immune defense proteins and the stonefish toxins. To form the β-barrel pore, a core β-sheet is flattened to align the membrane-spanning β-hairpins. Concomitantly with this conformational change, the two α-helical bundles that flank the core β-sheet break their restraining contacts and refold into two membrane-spanning β-hairpins of the β-barrel pore. The studies herein show that in the monomer structure of the archetype CDC perfringolysin O (PFO), a conserved Met-Met-Phe triad simultaneously contributes to maintaining the twist in this core β-sheet, as well as restricting the α-helical–to–β-strand transition necessary to form one of two membrane-spanning β-hairpins. A previously identified intermolecular π-stacking interaction is now shown to disrupt the interactions mediated by this conserved triad. This is required to establish the subsequent intermolecular electrostatic interaction, which has previously been shown to drive the final conformational changes necessary to form the β-barrel pore. Hence, these studies show that the intermolecular π-stacking and electrostatic interactions work in tandem to flatten the core β-sheet and initiate the α-helical–to–β-strand transitions to form the β-barrel pore.
Collapse
|
23
|
Morton CJ, Sani MA, Parker MW, Separovic F. Cholesterol-Dependent Cytolysins: Membrane and Protein Structural Requirements for Pore Formation. Chem Rev 2019; 119:7721-7736. [DOI: 10.1021/acs.chemrev.9b00090] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Craig J. Morton
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
24
|
Abstract
The cholesterol-dependent cytolysin (CDC) genes are present in bacterial species that span terrestrial, vertebrate, and invertebrate niches, which suggests that they have evolved to function under widely different environmental conditions. Using a combination of biophysical and crystallographic approaches, we reveal that the relative stability of an intramolecular interface in the archetype CDC perfringolysin O (PFO) plays a central role in regulating its pore-forming properties. The disruption of this interface allows the formation of the membrane spanning β-barrel pore in all CDCs. We show here that the relative strength of the stabilizing forces at this interface directly impacts the energy barrier posed by the transition state for pore formation, as reflected in the Arrhenius activation energy (Ea) for pore formation. This change directly impacts the kinetics and temperature dependence of pore formation. We further show that the interface structure in a CDC from a terrestrial species enables it to function efficiently across a wide range of temperatures by minimizing changes in the strength of the transition state barrier to pore formation. These studies establish a paradigm that CDCs, and possibly other β-barrel pore-forming proteins/toxins, can evolve significantly different pore-forming properties by altering the stability of this transitional interface, which impacts the kinetic parameters and temperature dependence of pore formation.IMPORTANCE The cholesterol-dependent cytolysins (CDCs) are the archetype for the superfamily of oligomeric pore-forming proteins that includes the membrane attack complex/perforin (MACPF) family of immune defense proteins and the stonefish venom toxins (SNTX). The CDC/MACPF/SNTX family exhibits a common protein fold, which forms a membrane-spanning β-barrel pore. We show that changing the relative stability of an extensive intramolecular interface within this fold, which is necessarily disrupted to form the large β-barrel pore, dramatically alters the kinetic and temperature-dependent properties of CDC pore formation. These studies show that the CDCs and other members of the CDC/MACPF/SNTX superfamily have the capacity to significantly alter their pore-forming properties to function under widely different environmental conditions encountered by these species.
Collapse
|
25
|
Kulma M, Kacprzyk-Stokowiec A, Traczyk G, Kwiatkowska K, Dadlez M. Fine-tuning of the stability of β-strands by Y181 in perfringolysin O directs the prepore to pore transition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:110-122. [PMID: 30463694 DOI: 10.1016/j.bbamem.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/15/2018] [Accepted: 08/19/2018] [Indexed: 11/29/2022]
Abstract
Perfringolysin O (PFO) is a toxic protein that forms β-barrel transmembrane pores upon binding to cholesterol-containing membranes. The formation of lytic pores requires conformational changes in PFO that lead to the conversion of water-soluble monomers into membrane-bound oligomers. Although the general outline of stepwise pore formation has been established, the underlying mechanistic details await clarification. To extend our understanding of the molecular mechanisms that control the pore formation, we compared the hydrogen-deuterium exchange patterns of PFO with its derivatives bearing mutations in the D3 domain. In the case of two of these mutations F318A, Y181A, known from previous work to lead to a decreased lytic activity, global destabilization of all protein domains was observed in their water-soluble forms. This was accompanied by local changes in D3 β-sheet, including unexpected stabilization of functionally important β1 strand in Y181A. In case of the double mutation (F318A/Y181A) that completely abolished the lytic activity, several local changes were retained, but the global destabilization effects of single mutations were reverted and hydrogen-deuterium exchange (HDX) pattern returned to PFO level. Strong structural perturbations were not observed in case of remaining variants in which other residues of the hydrophobic core of D3 domain were substituted by alanine. Our results indicate the existence in PFO of a well-tuned H-bonding network that maintains the stability of the D3 β-strands at appropriate level at each transformation step. F318 and Y181 moieties participate in this network and their role extends beyond their direct intermolecular interaction during oligomerization that was identified previously.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland
| | - Aleksandra Kacprzyk-Stokowiec
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland
| | - Gabriela Traczyk
- Department of Cell Biology, The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Department of Cell Biology, The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Michał Dadlez
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Department of Biology, Warsaw University, 1 Miecznikowa St., 02-185 Warsaw, Poland.
| |
Collapse
|
26
|
Christie MP, Johnstone BA, Tweten RK, Parker MW, Morton CJ. Cholesterol-dependent cytolysins: from water-soluble state to membrane pore. Biophys Rev 2018; 10:1337-1348. [PMID: 30117093 DOI: 10.1007/s12551-018-0448-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
The cholesterol-dependent cytolysins (CDCs) are a family of bacterial toxins that are important virulence factors for a number of pathogenic Gram-positive bacterial species. CDCs are secreted as soluble, stable monomeric proteins that bind specifically to cholesterol-rich cell membranes, where they assemble into well-defined ring-shaped complexes of around 40 monomers. The complex then undergoes a concerted structural change, driving a large pore through the membrane, potentially lysing the target cell. Understanding the details of this process as the protein transitions from a discrete monomer to a complex, membrane-spanning protein machine is an ongoing challenge. While many of the details have been revealed, there are still questions that remain unanswered. In this review, we present an overview of some of the key features of the structure and function of the CDCs, including the structure of the secreted monomers, the process of interaction with target membranes, and the transition from bound monomers to complete pores. Future directions in CDC research and the potential of CDCs as research tools will also be discussed.
Collapse
Affiliation(s)
- Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
27
|
Wei R, Song W, Yang F, Zhou J, Zhang M, Zhang X, Zhao W, Zhao C. Bidirectionally pH-Responsive Zwitterionic Polymer Hydrogels with Switchable Selective Adsorption Capacities for Anionic and Cationic Dyes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Wanying Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | | | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
28
|
Kathuria R, Chattopadhyay K. Vibrio choleraecytolysin: Multiple facets of the membrane interaction mechanism of aβ-barrel pore-forming toxin. IUBMB Life 2018; 70:260-266. [DOI: 10.1002/iub.1725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Reema Kathuria
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences; Indian Institute of Science Education and Research Mohali; Manauli, Mohali Punjab India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences; Indian Institute of Science Education and Research Mohali; Manauli, Mohali Punjab India
| |
Collapse
|
29
|
Rampersaud R, Lewis EL, LaRocca TJ, Ratner AJ. Environmental pH modulates inerolysin activity via post-binding blockade. Sci Rep 2018; 8:1542. [PMID: 29367601 PMCID: PMC5784117 DOI: 10.1038/s41598-018-19994-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022] Open
Abstract
The cholesterol dependent cytolysins (CDCs) are a family of pore-forming toxins produced by a wide range of bacteria. Some CDCs are important virulence factors for their cognate organisms, but their activity must be tightly regulated to ensure they operate at appropriate times and within the appropriate subcellular compartments. pH-dependent activity has been described for several CDCs, but the mechanism of such regulation has been studied in depth only for listeriolysin O (LLO), which senses environmental pH through a triad of acidic residues that mediate protein unfolding. Here we present data supporting a distinct mechanism for pH-dependence for inerolysin (INY), the CDC produced by Lactobacillus iners. Inerolysin (INY) has an acidic pH optimum with loss of activity at neutral pH. INY pH-dependence is characterized by reversible loss of pore formation with preservation of membrane binding. Fluorescent membrane probe assays indicated that INY insertion into host cell membranes, but not oligomerization, was defective at neutral pH. These data support the existence of a newly appreciated form of CDC pH-dependence functioning at a late stage of pore formation.
Collapse
Affiliation(s)
- Ryan Rampersaud
- College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Emma L Lewis
- College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Timothy J LaRocca
- College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Department of Basic & Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Adam J Ratner
- College of Physicians & Surgeons, Columbia University, New York, NY, USA. .,Department of Pediatrics, New York University School of Medicine, New York, NY, USA. .,Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Aglietti RA, Dueber EC. Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions. Trends Immunol 2017; 38:261-271. [PMID: 28196749 DOI: 10.1016/j.it.2017.01.003] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Pyroptosis is an inflammatory form of cell death that not only protects multicellular organisms from invading pathogenic bacteria and microbial infections, but can also lead to sepsis and lethal septic shock if overactivated. Here, we present an overview of recent developments within the pyroptosis field, beginning with the discovery of Gasdermin D (GSDMD) as a substrate of caspase-1 and caspase-11 upon detection of cytosolic lipopolysaccharide (LPS). Cleavage releases the N-terminal domain of GSDMD, causing it to form cytotoxic pores in the plasma membrane of cells. We further discuss the implications for the rest of the gasdermin (GSDM) family, which are emerging as mediators of programmed cell death in a variety of processes that regulate cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Robin A Aglietti
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Erin C Dueber
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
31
|
van Pee K, Mulvihill E, Müller DJ, Yildiz Ö. Unraveling the Pore-Forming Steps of Pneumolysin from Streptococcus pneumoniae. NANO LETTERS 2016; 16:7915-7924. [PMID: 27796097 DOI: 10.1021/acs.nanolett.6b04219] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pneumolysin (PLY) is the main virulence factor of Streptococcus pneumoniae that causes pneumonia, meningitis, and invasive pneumococcal infection. PLY is produced as monomers, which bind to cholesterol-containing membranes, where they oligomerize into large pores. To investigate the pore-forming mechanism, we determined the crystal structure of PLY at 2.4 Å and used it to design mutants on the surface of monomers. Electron microscopy of liposomes incubated with PLY mutants revealed that several mutations interfered with ring formation. Mutants that formed incomplete rings or linear arrays had strongly reduced hemolytic activity. By high-resolution time-lapse atomic force microscopy of wild-type PLY, we observed two different ring-shaped complexes. Most of the complexes protruded ∼8 nm above the membrane surface, while a smaller number protruded ∼11 nm or more. The lower complexes were identified as pores or prepores by the presence or absence of a lipid bilayer in their center. The taller complexes were side-by-side assemblies of monomers of soluble PLY that represent an early form of the prepore. Our observations suggest a four-step mechanism of membrane attachment and pore formation by PLY, which is discussed in the context of recent structural models. The functional separation of these steps is necessary for the understanding how cholesterol-dependent cytolysins form pores and lyse cells.
Collapse
Affiliation(s)
- Katharina van Pee
- Department of Structural Biology, Max PIanck Institute of Biophysics , Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Estefania Mulvihill
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, 4058 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, 4058 Basel, Switzerland
| | - Özkan Yildiz
- Department of Structural Biology, Max PIanck Institute of Biophysics , Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
32
|
Guilvout I, Brier S, Chami M, Hourdel V, Francetic O, Pugsley AP, Chamot-Rooke J, Huysmans GHM. Prepore Stability Controls Productive Folding of the BAM-independent Multimeric Outer Membrane Secretin PulD. J Biol Chem 2016; 292:328-338. [PMID: 27903652 DOI: 10.1074/jbc.m116.759498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/21/2016] [Indexed: 12/19/2022] Open
Abstract
Members of a group of multimeric secretion pores that assemble independently of any known membrane-embedded insertase in Gram-negative bacteria fold into a prepore before membrane-insertion occurs. The mechanisms and the energetics that drive the folding of these proteins are poorly understood. Here, equilibrium unfolding and hydrogen/deuterium exchange monitored by mass spectrometry indicated that a loss of 4-5 kJ/mol/protomer in the N3 domain that is peripheral to the membrane-spanning C domain in the dodecameric secretin PulD, the founding member of this class, prevents pore formation by destabilizing the prepore into a poorly structured dodecamer as visualized by electron microscopy. Formation of native PulD-multimers by mixing protomers that differ in N3 domain stability, suggested that the N3 domain forms a thermodynamic seal onto the prepore. This highlights the role of modest free energy changes in the folding of pre-integration forms of a hyperstable outer membrane complex and reveals a key driving force for assembly independently of the β-barrel assembly machinery.
Collapse
Affiliation(s)
- Ingrid Guilvout
- From the Molecular Genetics Unit, CNRS ERL 3526.,Laboratory of Macromolecular Systems and Signaling and
| | - Sébastien Brier
- Structural Mass Spectrometry and Proteomics Unit, CNRS UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France and
| | - Mohamed Chami
- the BioEM lab, Biozentrum, University of Basel, CH 4058 Basel, Switzerland
| | - Véronique Hourdel
- Structural Mass Spectrometry and Proteomics Unit, CNRS UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France and
| | - Olivera Francetic
- From the Molecular Genetics Unit, CNRS ERL 3526.,Laboratory of Macromolecular Systems and Signaling and
| | | | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, CNRS UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France and
| | | |
Collapse
|
33
|
Lawrence SL, Gorman MA, Feil SC, Mulhern TD, Kuiper MJ, Ratner AJ, Tweten RK, Morton CJ, Parker MW. Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins. Structure 2016; 24:1488-98. [PMID: 27499440 PMCID: PMC5320943 DOI: 10.1016/j.str.2016.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022]
Abstract
Cholesterol-dependent cytolysins (CDCs) are a family of pore-forming toxins that punch holes in the outer membrane of eukaryotic cells. Cholesterol serves as the receptor, but a subclass of CDCs first binds to human CD59. Here we describe the crystal structures of vaginolysin and intermedilysin complexed to CD59. These studies, together with small-angle X-ray scattering, reveal that CD59 binds to each at different, though overlapping, sites, consistent with molecular dynamics simulations and binding studies. The CDC consensus undecapeptide motif, which for the CD59-responsive CDCs has a proline instead of a tryptophan in the motif, adopts a strikingly different conformation between the structures; our data suggest that the proline acts as a selectivity switch to ensure CD59-dependent CDCs bind their protein receptor first in preference to cholesterol. The structural data suggest a detailed model of how these water-soluble toxins assemble as prepores on the cell surface.
Collapse
Affiliation(s)
- Sara L Lawrence
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Susanne C Feil
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Terrence D Mulhern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J Kuiper
- Victorian Life Sciences Computation Initiative, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Adam J Ratner
- Departments of Pediatrics and Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Craig J Morton
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
34
|
Bokori-Brown M, Petrov PG, Khafaji MA, Mughal MK, Naylor CE, Shore AC, Gooding KM, Casanova F, Mitchell TJ, Titball RW, Winlove CP. Red Blood Cell Susceptibility to Pneumolysin: CORRELATION WITH MEMBRANE BIOCHEMICAL AND PHYSICAL PROPERTIES. J Biol Chem 2016; 291:10210-27. [PMID: 26984406 DOI: 10.1074/jbc.m115.691899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom,
| | - Peter G Petrov
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Mawya A Khafaji
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Muhammad K Mughal
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Claire E Naylor
- the Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Angela C Shore
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Kim M Gooding
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Francesco Casanova
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Tim J Mitchell
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Richard W Titball
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - C Peter Winlove
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
35
|
Lukoyanova N, Hoogenboom BW, Saibil HR. The membrane attack complex, perforin and cholesterol-dependent cytolysin superfamily of pore-forming proteins. J Cell Sci 2016; 129:2125-33. [DOI: 10.1242/jcs.182741] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
The membrane attack complex and perforin proteins (MACPFs) and bacterial cholesterol-dependent cytolysins (CDCs) are two branches of a large and diverse superfamily of pore-forming proteins that function in immunity and pathogenesis. During pore formation, soluble monomers assemble into large transmembrane pores through conformational transitions that involve extrusion and refolding of two α-helical regions into transmembrane β-hairpins. These transitions entail a dramatic refolding of the protein structure, and the resulting assemblies create large holes in cellular membranes, but they do not use any external source of energy. Structures of the membrane-bound assemblies are required to mechanistically understand and modulate these processes. In this Commentary, we discuss recent advances in the understanding of assembly mechanisms and molecular details of the conformational changes that occur during MACPF and CDC pore formation.
Collapse
Affiliation(s)
- Natalya Lukoyanova
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Bart W. Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Helen R. Saibil
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| |
Collapse
|
36
|
Peraro MD, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2015; 14:77-92. [DOI: 10.1038/nrmicro.2015.3] [Citation(s) in RCA: 476] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Reboul CF, Whisstock JC, Dunstone MA. Giant MACPF/CDC pore forming toxins: A class of their own. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:475-86. [PMID: 26607011 DOI: 10.1016/j.bbamem.2015.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Pore Forming Toxins (PFTs) represent a key mechanism for permitting the passage of proteins and small molecules across the lipid membrane. These proteins are typically produced as soluble monomers that self-assemble into ring-like oligomeric structures on the membrane surface. Following such assembly PFTs undergo a remarkable conformational change to insert into the lipid membrane. While many different protein families have independently evolved such ability, members of the Membrane Attack Complex PerForin/Cholesterol Dependent Cytolysin (MACPF/CDC) superfamily form distinctive giant β-barrel pores comprised of up to 50 monomers and up to 300Å in diameter. In this review we focus on recent advances in understanding the structure of these giant MACPF/CDC pores as well as the underlying molecular mechanisms leading to their formation. Commonalities and evolved variations of the pore forming mechanism across the superfamily are discussed. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia; Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
38
|
Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation. Sci Rep 2015; 5:14352. [PMID: 26403197 PMCID: PMC4585913 DOI: 10.1038/srep14352] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface.
Collapse
|
39
|
Perfringolysin O: The Underrated Clostridium perfringens Toxin? Toxins (Basel) 2015; 7:1702-21. [PMID: 26008232 PMCID: PMC4448169 DOI: 10.3390/toxins7051702] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis.
Collapse
|
40
|
Tweten RK, Hotze EM, Wade KR. The Unique Molecular Choreography of Giant Pore Formation by the Cholesterol-Dependent Cytolysins of Gram-Positive Bacteria. Annu Rev Microbiol 2015; 69:323-40. [PMID: 26488276 PMCID: PMC7875328 DOI: 10.1146/annurev-micro-091014-104233] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanism by which the cholesterol-dependent cytolysins (CDCs) assemble their giant β-barrel pore in cholesterol-rich membranes has been the subject of intense study in the past two decades. A combination of structural, biophysical, and biochemical analyses has revealed deep insights into the series of complex and highly choreographed secondary and tertiary structural transitions that the CDCs undergo to assemble their β-barrel pore in eukaryotic membranes. Our knowledge of the molecular details of these dramatic structural changes in CDCs has transformed our understanding of how giant pore complexes are assembled and has been critical to our understanding of the mechanisms of other important classes of pore-forming toxins and proteins across the kingdoms of life. Finally, there are tantalizing hints that the CDC pore-forming mechanism is more sophisticated than previously imagined and that some CDCs are employed in pore-independent processes.
Collapse
Affiliation(s)
- Rodney K Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104;
| | - Eileen M Hotze
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104;
| | - Kristin R Wade
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104;
| |
Collapse
|