1
|
Yan M, Shi Z, Zhang X, Lin X, Sun Y, Cheng X, Tian H, Li Y. Decipher syntrophies and adaptive response towards enhancing conversion of propionate to methane under psychrophilic condition. WATER RESEARCH 2025; 274:123143. [PMID: 39824022 DOI: 10.1016/j.watres.2025.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways. Electron paramagnetic resonance analyses detected 2.6E-05mol/L reactive oxygen species as stress metabolites in the inhibited psychrophilic reactors. Conversely, supplementation with syntrophic cold-tolerant consortia and trace elements enhanced the abundance of Smithellaceae, Syntrophobacteraceae, and Methanothrix by fivefold in the bioenhanced reactors. This supplementation broadened the propionate degradation pathways from relying solely on the methylmalonyl-CoA pathway to also incorporating the dismutation pathway, while upregulating both pathways. These changes enhanced methanogenesis from propionate through improved activity of the syntrophic cold-tolerant consortia. Genome-centric metatranscriptomic analysis identified the upregulation of key antioxidant genes (sod, kat, grx), temperature regulation genes (cspA), and cryoprotective genes (pslF, pslH, cysE) within the syntrophic cold-tolerant consortia. Additionally, extracellular polymeric substance (EPS) yield per cell increased in the bioenhanced reactors by up to 1.07-fold compared to RC-P. These metabolic traits emphasize the critical roles in mitigating oxidative stress, adapting to low temperatures, and supporting efficient methanogenesis under psychrophilic conditions. These findings offer insights into the transcriptional responses and adaptive mechanisms of propionate-degrading consortia in response to psychrophilic stress.
Collapse
Affiliation(s)
- Miao Yan
- Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhijian Shi
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Xinjie Zhang
- Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaofeng Lin
- Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yongming Sun
- Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xingyu Cheng
- Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hailin Tian
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Developmen, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ying Li
- Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
2
|
Jain R, Le NH, Bertaux L, Baudry J, Bibette J, Denis Y, Habermann BH, Mignot T. Fatty acid metabolism and the oxidative stress response support bacterial predation. Proc Natl Acad Sci U S A 2025; 122:e2420875122. [PMID: 39869799 PMCID: PMC11804543 DOI: 10.1073/pnas.2420875122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a Myxococcus xanthus predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program. Functional analysis of the mutations accumulated across the evolutionary time in a two-component system and Acyl-CoA-manipulating enzymes revealed the critical roles of fatty acid metabolism and antioxidant gene induction. The former likely adapts the predator to metabolites derived from the prey while the latter protects predatory cells from reactive oxygen species generated by prey cells under stress and released upon lysis during predation. These findings reveal interesting parallels between bacterial predator-prey dynamics and pathogen-host cell interactions.
Collapse
Affiliation(s)
- Rikesh Jain
- Aix-Marseille Université–CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille13009, France
| | - Nguyen-Hung Le
- Aix-Marseille Université–CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille13009, France
| | - Lionel Bertaux
- Aix-Marseille Université–CNRS UMR 7283, Institut de Microbiologie de la Méditerranée, Marseille13009, France
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR 8231, École supérieure de physique et de chimie industrielles ESPCI Paris, CNRS, Université Paris Sciences et Lettres, Paris75005, France
| | - Jérôme Bibette
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR 8231, École supérieure de physique et de chimie industrielles ESPCI Paris, CNRS, Université Paris Sciences et Lettres, Paris75005, France
| | - Yann Denis
- Aix-Marseille Université–CNRS FR3479, Institut de Microbiologie de la Méditerranée, Marseille13009, France
| | - Bianca H. Habermann
- Aix Marseille University, CNRS, Institut de Biologie du Développement de Marseille IBDM UMR 7288, Turing Center for Living Systems, Marseille13009, France
| | - Tâm Mignot
- Aix-Marseille Université–CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille13009, France
| |
Collapse
|
3
|
Wang Z, Zhao M, Huang X, Wang Y, Li W, Qiao J, Yang X. Therapeutic types and advantages of functionalized nanoparticles in inducing ferroptosis in cancer therapy. Ann Med 2024; 56:2396568. [PMID: 39276361 PMCID: PMC11404394 DOI: 10.1080/07853890.2024.2396568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The clinical efficacy of cancer treatment protocols remains unsatisfactory; however, the emergence of ferroptosis-driven therapy strategies has renewed hope for tumor treatment, owing to their remarkable tumor suppression effects. Biologically based small-molecule inducers are used in conventional method to induce ferroptosis. Nevertheless, some molecular drugs have limited solubility, poor ability to target cells, and fast metabolism, which hinder their ability to induce ferroptosis over a prolonged period. Fortunately, further investigations of ferroptosis and the development of nanotechnology have demonstrated that nanoparticles (NPs) are more efficient in inducing ferroptosis than drugs alone, which opens up new perspectives for cancer therapy. OBJECTIVE In order to organize a profile of recent advance in NPs for inducing ferroptosis in cancer therapy, and NPs were comprehensively classified in a new light.Materials and methods: We comprehensively searched the databases such as PubMed and Embase. The time limit for searching was from the establishment of the database to 2023.11. All literatures were related to "ferroptosis", "nanoparticles", "nanodelivery systems", "tumors", "cancer". RESULTS We summarized and classified the available NPs from a new perspective. The NPs were classified into six categories based on their properties: (1) iron oxide NPs (2) iron - based conversion NPs (3) core-shell structure (4) organic framework (5) silica NPs (6) lipoprotein NPs. According to the therapeutic types of NPs, they can be divided into categories: (1) NPs induced ferroptosis-related immunotherapy (2) NPs loaded with drugs (3) targeted therapy of NPs (4) multidrug resistance therapy (5) gene therapy with NPs (6) energy conversion therapy. CONCLUSIONS The insights gained from this review can provide ideas for the development of original NPs and nanodelivery systems, pave the way for related nanomaterials application in clinical cancer therapy, and advance the application and development of nanotechnology in the medical field.
Collapse
Affiliation(s)
- Ziying Wang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Miaomiao Zhao
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaotong Huang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuxin Wang
- School of Pharmacy, Binzhou Medical College, Yantai, Shandong, China
| | - Wentong Li
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Jianhong Qiao
- Department of Outpatient, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiao Yang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
4
|
Bernal-Bernal D, Pantoja-Uceda D, López-Alonso JP, López-Rojo A, López-Ruiz JA, Galbis-Martínez M, Ochoa-Lizarralde B, Tascón I, Elías-Arnanz M, Ubarretxena-Belandia I, Padmanabhan S. Structural basis for regulation of a CBASS-CRISPR-Cas defense island by a transmembrane anti-σ factor and its ECF σ partner. SCIENCE ADVANCES 2024; 10:eadp1053. [PMID: 39454004 PMCID: PMC11506125 DOI: 10.1126/sciadv.adp1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
How CRISPR-Cas and cyclic oligonucleotide-based antiphage signaling systems (CBASS) are coordinately deployed against invaders remains unclear. We show that a locus containing two CBASS and one type III-B CRISPR-Cas system, regulated by the transmembrane anti-σ DdvA and its cognate extracytoplasmic function (ECF) σ DdvS, can defend Myxococcus xanthus against a phage. Cryo-electron microscopy reveals DdvA-DdvS pairs assemble as arrow-shaped transmembrane dimers. Each DdvA periplasmic domain adopts a separase/craspase-type tetratricopeptide repeat (TPR)-caspase HetF-associated with TPR (TPR-CHAT) architecture with an incomplete His-Cys active site, lacking three α-helices conserved among CHAT domains. Each active site faces the dimer interface, raising the possibility that signal-induced caspase-like DdvA autoproteolysis in trans precedes RseP-mediated intramembrane proteolysis and DdvS release. Nuclear magnetic resonance reveals a DdvA cytoplasmic CHCC-type zinc-bound three-helix bundle that binds to DdvS σ2 and σ4 domains, undergoing σ4-induced helix extension to trap DdvS. Altogether, we provide structural-mechanistic insights into membrane anti-σ-ECF σ regulation of an antiviral CBASS-CRISPR-Cas defense island.
Collapse
Affiliation(s)
- Diego Bernal-Bernal
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| | | | - Alfonso López-Rojo
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - José Antonio López-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Marisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | | | - Igor Tascón
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - S. Padmanabhan
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| |
Collapse
|
5
|
Peng Y, Moffat JG, DuPai C, Kofoed EM, Skippington E, Modrusan Z, Gloor SL, Clark K, Xu Y, Li S, Chen L, Liu X, Wu P, Harris SF, Wang S, Crawford TD, Li CS, Liu Z, Wai J, Tan MW. Differential effects of inosine monophosphate dehydrogenase (IMPDH/GuaB) inhibition in Acinetobacter baumannii and Escherichia coli. J Bacteriol 2024; 206:e0010224. [PMID: 39235234 PMCID: PMC11500612 DOI: 10.1128/jb.00102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH), known as GuaB in bacteria, catalyzes the rate-limiting step in de novo guanine biosynthesis and is conserved from humans to bacteria. We developed a series of potent inhibitors that selectively target GuaB over its human homolog. Here, we show that these GuaB inhibitors are bactericidal, generate phenotypic signatures that are distinct from other antibiotics, and elicit different time-kill kinetics and regulatory responses in two important Gram-negative pathogens: Acinetobacter baumannii and Escherichia coli. Specifically, the GuaB inhibitor G6 rapidly kills A. baumannii but only kills E. coli after 24 h. After exposure to G6, the expression of genes involved in purine biosynthesis and stress responses change in opposite directions while siderophore biosynthesis is downregulated in both species. Our results suggest that different species respond to GuaB inhibition using distinct regulatory programs and possibly explain the different bactericidal kinetics upon GuaB inhibition. The comparison highlights opportunities for developing GuaB inhibitors as novel antibiotics.IMPORTANCEA. baumannii is a priority bacterial pathogen for which development of new antibiotics is urgently needed due to the emergence of multidrug resistance. We recently developed a series of specific inhibitors against GuaB, a bacterial inosine 5'-monophosphate dehydrogenase, and achieved sub-micromolar minimum inhibitory concentrations against A. baumannii. GuaB catalyzes the rate-limiting step of de novo guanine biosynthesis and is highly conserved across bacterial pathogens. This study shows that inhibition of GuaB induced a bacterial morphological profile distinct from that of other classes of antibiotics, highlighting a novel mechanism of action. Moreover, our transcriptomic analysis showed that regulation of de novo purine biosynthesis and stress responses of A. baumannii upon GuaB inhibition differed significantly from that of E. coli.
Collapse
Affiliation(s)
- Yutian Peng
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | - John G. Moffat
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Cory DuPai
- Department of Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Eric M. Kofoed
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | | | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, California, USA
| | - Susan L. Gloor
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Shuxuan Li
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Seth F. Harris
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Shumei Wang
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Terry D. Crawford
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Chun Sing Li
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Zhiguo Liu
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - John Wai
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
6
|
Stevenson EM, Rushby-Jones O, Buckling A, Cole M, Lindeque PK, Murray AK. Selective colonization of microplastics, wood and glass by antimicrobial-resistant and pathogenic bacteria. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001506. [PMID: 39405105 PMCID: PMC11477370 DOI: 10.1099/mic.0.001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
The Plastisphere is a novel niche whereby microbial communities attach to plastic debris, including microplastics. These communities can be distinct from those found in the surrounding environment or those attached to natural substrates and may serve as a reservoir of both pathogenic and antimicrobial-resistant (AMR) bacteria. Owing to the frequent omission of appropriate comparator particles (e.g. natural substrates) in previous studies, there is a lack of empirical evidence supporting the unique risks posed by microplastics in terms of enrichment and spread of AMR pathogens. This study investigated selective colonization by a sewage community on environmentally sampled microplastics with three different polymers, sources and morphologies, alongside natural substrate (wood), inert substrate (glass) and free-living/planktonic community controls. Culture and molecular methods (quantitative polymerase chain reaction (qPCR)) were used to ascertain phenotypic and genotypic AMR prevalence, respectively, and multiplex colony PCR was used to identify extra-intestinal pathogenic Escherichia coli (ExPECs). From this, polystyrene and wood particles were found to significantly enrich AMR bacteria, whereas sewage-sourced bio-beads significantly enriched ExPECs. Polystyrene and wood were the least smooth particles, and so the importance of particle roughness on AMR prevalence was then directly investigated by comparing the colonization of virgin vs artificially weathered polyethylene particles. Surface weathering did not have a significant effect on the AMR prevalence of colonized particles. Our results suggest that the colonization of plastic and non-plastic particles by AMR and pathogenic bacteria may be enhanced by substrate-specific traits.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Owen Rushby-Jones
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Angus Buckling
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Penelope K. Lindeque
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Aimee K. Murray
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK
| |
Collapse
|
7
|
Song D, Kim B, Kim M, Lee JK, Choi J, Lee H, Shin S, Shin D, Nam HY, Lee Y, Lee S, Kim Y, Seo J. Impact of Conjugation of the Reactive Oxygen Species (ROS)-Generating Catalytic Moiety with Membrane-Active Antimicrobial Peptoids: Promoting Multitarget Mechanism and Enhancing Selectivity. J Med Chem 2024; 67:15148-15167. [PMID: 39207209 DOI: 10.1021/acs.jmedchem.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) represent promising therapeutic modalities against multidrug-resistant bacterial infections. As a mimic of natural AMPs, peptidomimetic oligomers like peptoids (i.e., oligo-N-substituted glycines) have been utilized for antimicrobials with resistance against proteolytic degradation. Here, we explore the conjugation of catalytic metal-binding motifs─the amino terminal Cu(II) and Ni(II) binding (ATCUN) motif─with cationic amphipathic antimicrobial peptoids to enhance their efficacy. Upon complexation with Cu(II) or Ni(II), the conjugates catalyzed hydroxyl radical generation, and 22 and 22-Cu exhibited over 10-fold improved selectivity compared to the parent peptoid, likely due to reduced hydrophobicity. Cu-ATCUN-peptoids caused bacterial membrane disruption, aggregation of intracellular biomolecules, DNA oxidation, and lipid peroxidation, promoting multiple killing mechanisms. In a mouse sepsis model, 22 demonstrated antimicrobial and anti-inflammatory efficacy with low toxicity. This study suggests a strategy to improve the potency of membrane-acting antimicrobial peptoids by incorporating ROS-generating motifs, thereby adding oxidative damage as a killing mechanism.
Collapse
Affiliation(s)
- Dasom Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minsang Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Kyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dongmin Shin
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
8
|
Zhang T, Jiang H, Zhao Y, Yao T, Li R. Insertion with long target duplication in polymyxin B-induced resistant mutant of Salmonella. J Glob Antimicrob Resist 2024; 38:231-235. [PMID: 39009134 DOI: 10.1016/j.jgar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES A Salmonella enterica subsp. diarizonae (hereafter S. diarizonae) clinical strain S499 demonstrated unique genomic features. The strain S499 was treated with polymyxin B in vitro to investigate the mechanism of resistance. METHODS S499 was treated with polymyxin B by increasing concentration gradually to obtain a resistant mutant S499V. Whole genomes of the two strains were sequenced using Illumina HiSeq X-10 and PacBio RS II platforms. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to compare the gene expression. RESULTS The chromosome of strain S499 contained a 40-kb DNA region that was replicated after treatment with polymyxin B and generated a triple tandem DNA repeat region in the chromosome of mutant strain S499V. This repeat region in S499V was flanked by IS1 and contained pmrD, pmrG, and arnBCADTEF operon. In comparison to the homologous 40-kb DNA region of strain S499, a few genes in the repeat DNA region of strain S499V contained truncating mutations that generate two open reading frames (ORFs). The expression of pmrD, pmrG, and arnT was significantly upregulated in S499V. CONCLUSION The duplication and overexpression of pmrD, pmrG, and arnT operon may be responsible for the polymyxin B resistance of mutant strain S499V.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Huifen Jiang
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ying Zhao
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Tingting Yao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rui Li
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
9
|
Amábile-Cuevas CF, Lund-Zaina S. Non-Canonical Aspects of Antibiotics and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:565. [PMID: 38927231 PMCID: PMC11200725 DOI: 10.3390/antibiotics13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The understanding of antibiotic resistance, one of the major health threats of our time, is mostly based on dated and incomplete notions, especially in clinical contexts. The "canonical" mechanisms of action and pharmacodynamics of antibiotics, as well as the methods used to assess their activity upon bacteria, have not changed in decades; the same applies to the definition, acquisition, selective pressures, and drivers of resistance. As a consequence, the strategies to improve antibiotic usage and overcome resistance have ultimately failed. This review gathers most of the "non-canonical" notions on antibiotics and resistance: from the alternative mechanisms of action of antibiotics and the limitations of susceptibility testing to the wide variety of selective pressures, lateral gene transfer mechanisms, ubiquity, and societal factors maintaining resistance. Only by having a "big picture" view of the problem can adequate strategies to harness resistance be devised. These strategies must be global, addressing the many aspects that drive the increasing prevalence of resistant bacteria aside from the clinical use of antibiotics.
Collapse
Affiliation(s)
| | - Sofia Lund-Zaina
- Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
10
|
Lu W, Lu H, Huo X, Wang C, Zhang Z, Zong B, Wang G, Dong W, Li X, Li Y, Chen H, Tan C. EvfG is a multi-function protein located in the Type VI secretion system for ExPEC. Microbiol Res 2024; 283:127647. [PMID: 38452551 DOI: 10.1016/j.micres.2024.127647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
The Type VI secretion system (T6SS) functions as a protein transport nanoweapon in several stages of bacterial life. Even though bacterial competition is the primary function of T6SS, different bacteria exhibit significant variations. Particularly in Extraintestinal pathogenic Escherichia coli (ExPEC), research into T6SS remains relatively limited. This study identified the uncharacterized gene evfG within the T6SS cluster of ExPEC RS218. Through our experiments, we showed that evfG is involved in T6SS expression in ExPEC RS218. We also found evfG can modulate T6SS activity by competitively binding to c-di-GMP, leading to a reduction in the inhibitory effect. Furthermore, we found that evfG can recruit sodA to alleviate oxidative stress. The research shown evfG controls an array of traits, both directly and indirectly, through transcriptome and additional tests. These traits include cell adhesion, invasion, motility, drug resistance, and pathogenicity of microorganisms. Overall, we contend that evfG serves as a multi-functional regulator for the T6SS and several crucial activities. This forms the basis for the advancement of T6SS function research, as well as new opportunities for vaccine and medication development.
Collapse
Affiliation(s)
- Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinyu Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Bingbing Zong
- School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiaodan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yuying Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Cardoso P, Pinto R, Lopes T, Figueira E. How Bacteria Cope with Oxidative Stress Induced by Cadmium: Volatile Communication Is Differentially Perceived among Strains. Antioxidants (Basel) 2024; 13:565. [PMID: 38790670 PMCID: PMC11118407 DOI: 10.3390/antiox13050565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent stimulus. To shed light on how bacteria trigger their response and adapt to changes in the environment, the intra- and interspecific influences of volatiles on bacterial strains growing under non-stressed and cadmium-stressed conditions were assessed. Each strain was exposed to its volatiles emitted by cells growing under different conditions to test whether the environment in which a cell grows influences neighboring cells. The five genera tested showed different responses, with Rhizobium displaying the greatest influence. In a second experiment, 13 strains from different genera were grown under control conditions but exposed to volatiles released by Cd-stressed Rhizobium cells to ascertain whether Rhizobium's observed influence was strain-specific or broader. Our results showed that the volatiles emitted by some bacteria under stress are differentially perceived and translated into biochemical changes (growth, alteration of the antioxidant response, and oxidative damage) by other bacteria, which may increase the adaptability and resilience of bacterial communities to environmental changes, especially those with a prooxidant nature. Cadmium (Cd) contamination of soils constitutes a risk to the environment and human health. Here, we showed the effects of Cd exposure on bacteria and how volatile communication influences the biochemistry related to coping with oxidative stress. This knowledge can be important for remediation and risk assessment and highlights that new biological features, such as volatile communication, should be considered when studying and assessing the impact of contaminants on soil ecosystems.
Collapse
Affiliation(s)
- Paulo Cardoso
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Pinto
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Lopes
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Yang S, Cao J, Zhao C, Zhang X, Li C, Wang S, Yang X, Qiu Z, Li C, Wang J, Xue B, Shen Z. Cylindrospermopsin enhances the conjugative transfer of plasmid-mediated multi-antibiotic resistance genes through glutathione biosynthesis inhibition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116288. [PMID: 38581909 DOI: 10.1016/j.ecoenv.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Cylindrospermopsin (CYN), a cyanobacterial toxin, has been detected in the global water environment. However, information concerning the potential environmental risk of CYN is limited, since the majority of previous studies have mainly focused on the adverse health effects of CYN through contaminated drinking water. The present study reported that CYN at environmentally relevant levels (0.1-100 μg/L) can significantly enhance the conjugative transfer of RP4 plasmid in Escherichia coli genera, wherein application of 10 μg/L of CYN led to maximum fold change of ∼6.5- fold at 16 h of exposure. Meanwhile, evaluation of underlying mechanisms revealed that environmental concentration of CYN exposure could increase oxidative stress in the bacterial cells, resulting in ROS overproduction. In turn, this led to an upregulation of antioxidant enzyme-related genes to avoid ROS attack. Further, inhibition of the synthesis of glutathione (GSH) was also detected, which led to the rapid depletion of GSH in cells and thus triggered the SOS response and promoted the conjugative transfer process. Increase in cell membrane permeability, upregulation of expression of genes related to pilus generation, ATP synthesis, and RP4 gene expression were also observed. These results highlight the potential impact on the spread of antimicrobial resistance in water environments.
Collapse
Affiliation(s)
- Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jinrui Cao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Zhigang Qiu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Chao Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Bin Xue
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
13
|
Kim D, Bhat A, Kim SK, Lee S, Ryu CM. Small RNA-modulated anaerobic respiration allows bacteria to survive under antibiotic stress conditions. Front Cell Infect Microbiol 2024; 14:1287557. [PMID: 38577619 PMCID: PMC10993149 DOI: 10.3389/fcimb.2024.1287557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Despite extensive knowledge of antibiotic-targeted bacterial cell death, deeper understanding of antibiotic tolerance mechanisms is necessary to combat multi-drug resistance in the global healthcare settings. Regulatory RNAs in bacteria control important cellular processes such as cell division, cellular respiration, metabolism, and virulence. Here, we investigated how exposing Escherichia coli to the moderately effective first-generation antibiotic cephalothin alters transcriptional and post-transcriptional dynamics. Bacteria switched from active aerobic respiration to anaerobic adaptation via an FnrS and Tp2 small RNA-mediated post-transcriptional regulatory circuit. From the early hours of antibiotic exposure, FnrS was involved in regulating reactive oxygen species levels, and delayed oxygen consumption in bacteria. We demonstrated that bacteria strive to maintain cellular homeostasis via sRNA-mediated sudden respiratory changes upon sublethal antibiotic exposure.
Collapse
Affiliation(s)
- Dajeong Kim
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Abhayprasad Bhat
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Seon-Kyu Kim
- Personalised Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Pediatrics School of Medicine, University of California at San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Li C, Wei Z, He X, He H, Liu Y, Zuo Y, Xiao H, Wang Y, Shen X, Zhu L. OxyR-regulated T6SS functions in coordination with siderophore to resist oxidative stress. Microbiol Spectr 2024; 12:e0323123. [PMID: 38189330 PMCID: PMC10846153 DOI: 10.1128/spectrum.03231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
The formation of reactive oxygen species is harmful and can destroy intracellular macromolecules such as lipids, proteins, and DNA, even leading to bacterial death. To cope with this situation, microbes have evolved a variety of sophisticated mechanisms, including antioxidant enzymes, siderophores, and the type VI secretion system (T6SS). However, the mechanism of oxidative stress resistance in Cupriavidus pinatubonensis is unclear. In this study, we identified Reut_A2805 as an OxyR ortholog in C. pinatubonensis, which positively regulated the expression of T6SS1 by directly binding to its operon promoter region. The study revealed that OxyR-regulated T6SS1 combats oxidative stress by importing iron into bacterial cells. Moreover, the T6SS1-mediated outer membrane vesicles-dependent iron acquisition pathway played a crucial role in the oxidative stress resistance process. Finally, our study demonstrated that the T6SS1 and siderophore systems in C. pinatubonensis exhibit different responses in combating oxidative stress under low-iron conditions, providing a comprehensive understanding of how bacterial iron acquisition systems function in diverse conditions.IMPORTANCEThe ability to eliminate reactive oxygen species is crucial for bacterial survival. Continuous formation of hydroperoxides can damage metalloenzymes, disrupt DNA integrity, and even result in cell death. While various mechanisms have been identified in other bacterial species to combat oxidative stress, the specific mechanism of oxidative stress resistance in C. pinatubonensis remains unclear. The importance of this study is that we elucidate the mechanism that OxyR-regulated T6SS1 combats oxidative stress by importing iron with the help of bacterial outer membrane vesicle. Moreover, the study highlights the contrasting responses of T6SS1- and siderophore-mediated iron acquisition systems to oxidative stress. This study provides a comprehensive understanding of bacterial iron acquisition and its role in oxidative stress resistance in C. pinatubonensis under low-iron conditions.
Collapse
Affiliation(s)
- Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinquan He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiyang He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - He Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Gao W, Li C, Wang F, Yang Y, Zhang L, Wang Z, Chen X, Tan M, Cao G, Zong G. An efflux pump in genomic island GI-M202a mediates the transfer of polymyxin B resistance in Pandoraea pnomenusa M202. Int Microbiol 2024; 27:277-290. [PMID: 37316617 PMCID: PMC10266961 DOI: 10.1007/s10123-023-00384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Polymyxin B is considered a last-line therapeutic option against multidrug-resistant gram-negative bacteria, especially in COVID-19 coinfections or other serious infections. However, the risk of antimicrobial resistance and its spread to the environment should be brought to the forefront. METHODS Pandoraea pnomenusa M202 was isolated under selection with 8 mg/L polymyxin B from hospital sewage and then was sequenced by the PacBio RS II and Illumina HiSeq 4000 platforms. Mating experiments were performed to evaluate the transfer of the major facilitator superfamily (MFS) transporter in genomic islands (GIs) to Escherichia coli 25DN. The recombinant E. coli strain Mrc-3 harboring MFS transporter encoding gene FKQ53_RS21695 was also constructed. The influence of efflux pump inhibitors (EPIs) on MICs was determined. The mechanism of polymyxin B excretion mediated by FKQ53_RS21695 was investigated by Discovery Studio 2.0 based on homology modeling. RESULTS The MIC of polymyxin B for the multidrug-resistant bacterial strain P. pnomenusa M202, isolated from hospital sewage, was 96 mg/L. GI-M202a, harboring an MFS transporter-encoding gene and conjugative transfer protein-encoding genes of the type IV secretion system, was identified in P. pnomenusa M202. The mating experiment between M202 and E. coli 25DN reflected the transferability of polymyxin B resistance via GI-M202a. EPI and heterogeneous expression assays also suggested that the MFS transporter gene FKQ53_RS21695 in GI-M202a was responsible for polymyxin B resistance. Molecular docking revealed that the polymyxin B fatty acyl group inserts into the hydrophobic region of the transmembrane core with Pi-alkyl and unfavorable bump interactions, and then polymyxin B rotates around Tyr43 to externally display the peptide group during the efflux process, accompanied by an inward-to-outward conformational change in the MFS transporter. Additionally, verapamil and CCCP exhibited significant inhibition via competition for binding sites. CONCLUSIONS These findings demonstrated that GI-M202a along with the MFS transporter FKQ53_RS21695 in P. pnomenusa M202 could mediate the transmission of polymyxin B resistance.
Collapse
Affiliation(s)
- Wenhui Gao
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China
| | - Congcong Li
- Shandong Quancheng Test & Technology Limited Company, Ji'nan, 250101, China
| | - Fengtian Wang
- Jinan Municipal Minzu Hospital, Ji'nan, 250012, China
| | - Yilin Yang
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China
| | - Lu Zhang
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China
| | - Zhongxue Wang
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Xi Chen
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Meixia Tan
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Guangxiang Cao
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China.
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China.
| | - Gongli Zong
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China.
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China.
| |
Collapse
|
16
|
Wang Y, Fu H, Shi XJ, Zhao GP, Lyu LD. Genome-wide screen reveals cellular functions that counteract rifampicin lethality in Escherichia coli. Microbiol Spectr 2024; 12:e0289523. [PMID: 38054714 PMCID: PMC10782999 DOI: 10.1128/spectrum.02895-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Rifamycins are a group of antibiotics with a wide antibacterial spectrum. Although the binding target of rifamycin has been well characterized, the mechanisms underlying the discrepant killing efficacy between gram-negative and gram-positive bacteria remain poorly understood. Using a high-throughput screen combined with targeted gene knockouts in the gram-negative model organism Escherichia coli, we established that rifampicin efficacy is strongly dependent on several cellular pathways, including iron acquisition, DNA repair, aerobic respiration, and carbon metabolism. In addition, we provide evidence that these pathways modulate rifampicin efficacy in a manner distinct from redox-related killing. Our findings provide insights into the mechanism of rifamycin efficacy and may aid in the development of new antimicrobial adjuvants.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Fu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jie Shi
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Guo-Ping Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
17
|
Das M, Sreedharan S, Shee S, Malhotra N, Nandy M, Banerjee U, Kohli S, Rajmani RS, Chandra N, Seshasayee ASN, Laxman S, Singh A. Cysteine desulfurase (IscS)-mediated fine-tuning of bioenergetics and SUF expression prevents Mycobacterium tuberculosis hypervirulence. SCIENCE ADVANCES 2023; 9:eadh2858. [PMID: 38091389 PMCID: PMC10848736 DOI: 10.1126/sciadv.adh2858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Iron-sulfur (Fe-S) biogenesis requires multiprotein assembly systems, SUF and ISC, in most prokaryotes. M. tuberculosis (Mtb) encodes a complete SUF system, the depletion of which was bactericidal. The ISC operon is truncated to a single gene iscS (cysteine desulfurase), whose function remains uncertain. Here, we show that MtbΔiscS is bioenergetically deficient and hypersensitive to oxidative stress, antibiotics, and hypoxia. MtbΔiscS resisted killing by nitric oxide (NO). RNA sequencing indicates that IscS is important for expressing regulons of DosR and Fe-S-containing transcription factors, WhiB3 and SufR. Unlike wild-type Mtb, MtbΔiscS could not enter a stable persistent state, continued replicating in mice, and showed hypervirulence. The suf operon was overexpressed in MtbΔiscS during infection in a NO-dependent manner. Suppressing suf expression in MtbΔiscS either by CRISPR interference or upon infection in inducible NO-deficient mice arrests hypervirulence. Together, Mtb redesigned the ISC system to "fine-tune" the expression of SUF machinery for establishing persistence without causing detrimental disease in the host.
Collapse
Affiliation(s)
- Mayashree Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
- School of Chemical and Biotechnology, (SASTRA)-Deemed to be University, Thanjavur 613401, India
| | - Somnath Shee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nitish Malhotra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Meghna Nandy
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sakshi Kohli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
MacGillivray KA, Ng SL, Wiesenfeld S, Guest RL, Jubery T, Silhavy TJ, Ratcliff WC, Hammer BK. Trade-offs constrain adaptive pathways to the type VI secretion system survival. iScience 2023; 26:108332. [PMID: 38025790 PMCID: PMC10679819 DOI: 10.1016/j.isci.2023.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
The Type VI Secretion System (T6SS) is a nano-harpoon used by many bacteria to inject toxins into neighboring cells. While much is understood about mechanisms of T6SS-mediated toxicity, less is known about the ways that competitors can defend themselves against this attack, especially in the absence of their own T6SS. Here we subjected eight replicate populations of Escherichia coli to T6SS attack by Vibrio cholerae. Over ∼500 generations of competition, isolates of the E. coli populations evolved to survive T6SS attack an average of 27-fold better, through two convergently evolved pathways: apaH was mutated in six of the eight replicate populations, while the other two populations each had mutations in both yejM and yjeP. However, the mutations we identified are pleiotropic, reducing cellular growth rates, and increasing susceptibility to antibiotics and elevated pH. These trade-offs help us understand how the T6SS shapes the evolution of bacterial interactions.
Collapse
Affiliation(s)
- Kathryn A. MacGillivray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sophia Wiesenfeld
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Randi L. Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Tahrima Jubery
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
19
|
He Z, Li Q, Xu Y, Zhang D, Pan X. Production of extracellular superoxide radical in microorganisms and its environmental implications: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122563. [PMID: 37717891 DOI: 10.1016/j.envpol.2023.122563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Extracellular superoxide radical (O2•-) is ubiquitous in microbial environments and has significant implications for pollutant transformation. Microbial extracellular O2•- can be produced through multiple pathways, including electron leakage from the respiratory electron transport chain (ETC), NADPH oxidation by the transmembrane NADPH oxidase (NOX), and extracellular reactions. Extracellular O2•- significantly influences the geochemical processes of various substances, including toxic metals and refractory organic pollutants. On one hand, extracellular O2•- can react with variable-valence metals and detoxify certain highly toxic metals, such as As(III), Cr(VI), and Hg(II). On the other hand, extracellular O2•- can directly or indirectly (via Bio-Fenton) degrade many organic pollutants, including a variety of emerging contaminants. In this work, we summarize the production mechanisms of microbial extracellular O2•-, review its roles in the transformation of environmental pollutants, and discuss the potential applications, limiting factors, and future research directions in this field.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qunqun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
20
|
Barrero-Canosa J, Wang L, Oyugi A, Klaes S, Fischer P, Adrian L, Szewzyk U, Cooper M. Characterization of phage vB_EcoS-EE09 infecting E. coli DSM613 Isolated from Wastewater Treatment Plant Effluent and Comparative Proteomics of the Infected and Non-Infected Host. Microorganisms 2023; 11:2688. [PMID: 38004701 PMCID: PMC10673088 DOI: 10.3390/microorganisms11112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Phages influence microbial communities, can be applied in phage therapy, or may serve as bioindicators, e.g., in (waste)water management. We here characterized the Escherichia phage vB_EcoS-EE09 isolated from an urban wastewater treatment plant effluent. Phage vB_EcoS-EE09 belongs to the genus Dhillonvirus, class Caudoviricetes. It has an icosahedral capsid with a long non-contractile tail and a dsDNA genome with an approximate size of 44 kb and a 54.6% GC content. Phage vB_EcoS-EE09 infected 12 out of the 17 E. coli strains tested. We identified 16 structural phage proteins, including the major capsid protein, in cell-free lysates by protein mass spectrometry. Comparative proteomics of protein extracts of infected E. coli cells revealed that proteins involved in amino acid and protein metabolism were more abundant in infected compared to non-infected cells. Among the proteins involved in the stress response, 74% were less abundant in the infected cultures compared to the non-infected controls, with six proteins showing significant less abundance. Repressing the expression of these proteins may be a phage strategy to evade host defense mechanisms. Our results contribute to diversifying phage collections, identifying structural proteins to enable better reliability in annotating taxonomically related phage genomes, and understanding phage-host interactions at the protein level.
Collapse
Affiliation(s)
- Jimena Barrero-Canosa
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Luyao Wang
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Angelah Oyugi
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Simon Klaes
- Institute of Biotechnology, Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (S.K.)
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Pascal Fischer
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Lorenz Adrian
- Institute of Biotechnology, Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (S.K.)
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ulrich Szewzyk
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Myriel Cooper
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| |
Collapse
|
21
|
Svet L, Parijs I, Isphording S, Lories B, Marchal K, Steenackers HP. Competitive interactions facilitate resistance development against antimicrobials. Appl Environ Microbiol 2023; 89:e0115523. [PMID: 37819078 PMCID: PMC10617502 DOI: 10.1128/aem.01155-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 10/13/2023] Open
Abstract
While the evolution of antimicrobial resistance is well studied in free-living bacteria, information on resistance development in dense and diverse biofilm communities is largely lacking. Therefore, we explored how the social interactions in a duo-species biofilm composed of the brewery isolates Pseudomonas rhodesiae and Raoultella terrigena influence the adaptation to the broad-spectrum antimicrobial sulfathiazole. Previously, we showed that the competition between these brewery isolates enhances the antimicrobial tolerance of P. rhodesiae. Here, we found that this enhanced tolerance in duo-species biofilms is associated with a strongly increased antimicrobial resistance development in P. rhodesiae. Whereas P. rhodesiae was not able to evolve resistance against sulfathiazole in monospecies conditions, it rapidly evolved resistance in the majority of the duo-species communities. Although the initial presence of R. terrigena was thus required for P. rhodesiae to acquire resistance, the resistance mechanisms did not depend on the presence of R. terrigena. Whole genome sequencing of resistant P. rhodesiae clones showed no clear mutational hot spots. This indicates that the acquired resistance phenotype depends on complex interactions between low-frequency mutations in the genetic background of the strains. We hypothesize that the increased tolerance in duo-species conditions promotes resistance by enhancing the selection of partially resistant mutants and opening up novel evolutionary trajectories that enable such genetic interactions. This hypothesis is reinforced by experimentally excluding potential effects of increased initial population size, enhanced mutation rate, and horizontal gene transfer. Altogether, our observations suggest that the community mode of life and the social interactions therein strongly affect the accessible evolutionary pathways toward antimicrobial resistance.IMPORTANCEAntimicrobial resistance is one of the most studied bacterial properties due to its enormous clinical and industrial relevance; however, most research focuses on resistance development of a single species in isolation. In the present study, we showed that resistance evolution of brewery isolates can differ greatly between single- and mixed-species conditions. Specifically, we observed that the development of antimicrobial resistance in certain species can be significantly enhanced in co-culture as compared to the single-species conditions. Overall, the current study emphasizes the need of considering the within bacterial interactions in microbial communities when evaluating antimicrobial treatments and resistance evolution.
Collapse
Affiliation(s)
- Luka Svet
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), Leuven, Belgium
| | - Ilse Parijs
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), Leuven, Belgium
| | - Simon Isphording
- Department of Plant Biotechnology and Bioinformatics, Data Integration and Biological Networks, UGent, Technologiepark 15, Gent, Belgium
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), Leuven, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Data Integration and Biological Networks, UGent, Technologiepark 15, Gent, Belgium
| | - Hans P. Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), Leuven, Belgium
| |
Collapse
|
22
|
Schami A, Islam MN, Belisle JT, Torrelles JB. Drug-resistant strains of Mycobacterium tuberculosis: cell envelope profiles and interactions with the host. Front Cell Infect Microbiol 2023; 13:1274175. [PMID: 38029252 PMCID: PMC10664572 DOI: 10.3389/fcimb.2023.1274175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
In the past few decades, drug-resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), have become increasingly prevalent and pose a threat to worldwide public health. These strains range from multi (MDR) to extensively (XDR) drug-resistant, making them very difficult to treat. Further, the current and future impact of the Coronavirus Disease 2019 (COVID-19) pandemic on the development of DR-TB is still unknown. Although exhaustive studies have been conducted depicting the uniqueness of the M.tb cell envelope, little is known about how its composition changes in relation to drug resistance acquisition. This knowledge is critical to understanding the capacity of DR-M.tb strains to resist anti-TB drugs, and to inform us on the future design of anti-TB drugs to combat these difficult-to-treat strains. In this review, we discuss the complexities of the M.tb cell envelope along with recent studies investigating how M.tb structurally and biochemically changes in relation to drug resistance. Further, we will describe what is currently known about the influence of M.tb drug resistance on infection outcomes, focusing on its impact on fitness, persister-bacteria, and subclinical TB.
Collapse
Affiliation(s)
- Alyssa Schami
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - M. Nurul Islam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research & Education, International Center for the Advancement of Research & Education, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
23
|
Mathew B, Aoyagi KL, Fisher MA. Antibacterial activity of Xenopsylla cheopis attacins against Yersinia pestis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554949. [PMID: 38469151 PMCID: PMC10926665 DOI: 10.1101/2023.08.26.554949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Antimicrobial peptide resistance has been proposed to play a major role in the flea-borne transmission of Yersinia pestis . However, the antimicrobial peptide response in fleas and their interaction with Y. pestis is largely unknown. Attacins are one of the most abundantly expressed antimicrobial peptides within the first hours after Y. pestis infection of Xenopsylla cheopis , a major vector of plague. In this study, we report the cloning, expression, and purification of two X. cheopis attacin peptides and describe their interactions with and antimicrobial activities against Y. pestis . These flea attacins were shown to bind lipopolysaccharides and have potent activity against Y. pestis , however the mechanism of killing does not involve extensive membrane damage. Treatment with attacins rapidly inhibits Y. pestis colony formation and results in oxidative stress, yet live-cell imaging revealed that bacteria continue to grow and divide for several hours in the presence of attacins before undergoing morphological changes and subsequent lysis. This data provides insights into an early battle between vector and pathogen that may impact transmission of one of the most virulent diseases known to man.
Collapse
|
24
|
Hong S, Su S, Gao Q, Chen M, Xiao L, Cui R, Guo Y, Xue Y, Wang D, Niu J, Huang H, Zhao X. Enhancement of β-Lactam-Mediated Killing of Gram-Negative Bacteria by Lysine Hydrochloride. Microbiol Spectr 2023; 11:e0119823. [PMID: 37310274 PMCID: PMC10434284 DOI: 10.1128/spectrum.01198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Widespread bacterial resistance among Gram-negative bacteria is rapidly depleting our antimicrobial arsenal. Adjuvants that enhance the bactericidal activity of existing antibiotics provide a way to alleviate the resistance crisis, as new antimicrobials are becoming increasingly difficult to develop. The present work with Escherichia coli revealed that neutralized lysine (lysine hydrochloride) enhances the bactericidal activity of β-lactams in addition to increasing bacteriostatic activity. When combined, lysine hydrochloride and β-lactam increased expression of genes involved in the tricarboxylic acid (TCA) cycle and raised reactive oxygen species (ROS) levels; as expected, agents known to mitigate bactericidal effects of ROS reduced lethality from the combination treatment. Lysine hydrochloride had no enhancing effect on the lethal action of fluoroquinolones or aminoglycosides. Characterization of a tolerant mutant indicated involvement of the FtsH/HflkC membrane-embedded protease complex in lethality enhancement. The tolerant mutant, which carried a V86F substitution in FtsH, exhibited decreased lipopolysaccharide levels, reduced expression of TCA cycle genes, and reduced levels of ROS. Lethality enhancement by lysine hydrochloride was abolished by treating cultures with Ca2+ or Mg2+, cations known to stabilize the outer membrane. These data, plus damage observed by scanning electron microscopy, indicate that lysine stimulates β-lactam lethality by disrupting the outer membrane. Lethality enhancement of β-lactams by lysine hydrochloride was also observed with Acinetobacter baumannii and Pseudomonas aeruginosa, thereby suggesting that the phenomenon is common among Gram-negative bacteria. Arginine hydrochloride behaved in a similar way. Overall, the combination of lysine or arginine hydrochloride and β-lactam offers a new way to increase β-lactam lethality with Gram-negative pathogens. IMPORTANCE Antibiotic resistance among Gram-negative pathogens is a serious medical problem. The present work describes a new study in which a nontoxic nutrient increases the lethal action of clinically important β-lactams. Elevated lethality is expected to reduce the emergence of resistant mutants. The effects were observed with significant pathogens (Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa), indicating widespread applicability. Examination of tolerant mutants and biochemical measurements revealed involvement of endogenous reactive oxygen species in response to outer membrane perturbation. These lysine hydrochloride-β-lactam data support the hypothesis that lethal stressors can stimulate the accumulation of ROS. Genetic and biochemical work also revealed how an alteration in a membrane protease, FtsH, abolishes lysine stimulation of β-lactam lethality. Overall, the work presents a method for antimicrobial enhancement that should be safe, easy to administer, and likely to apply to other nutrients, such as arginine.
Collapse
Affiliation(s)
- Shouqiang Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Shaopeng Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Qiong Gao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Miaomiao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Lisheng Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Runbo Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Yinli Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Yunxin Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Haihui Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
25
|
Liu H, Wei Z, Li J, Liu X, Zhu L, Wang Y, Wang T, Li C, Shen X. A Yersinia T6SS Effector YezP Engages the Hemin Uptake Receptor HmuR and ZnuABC for Zn 2+ Acquisition. Appl Environ Microbiol 2023; 89:e0024023. [PMID: 37338394 PMCID: PMC10370319 DOI: 10.1128/aem.00240-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
Metal ions are essential nutrients for all life forms, and restriction of metal ion availability is an effective host defense against bacterial infection. Meanwhile, bacterial pathogens have developed equally effective means to secure their metal ion supply. The enteric pathogen Yersinia pseudotuberculosis was found to uptake zinc using the T6SS4 effector YezP, which is essential for Zn2+ acquisition and bacterial survival under oxidative stress. However, the mechanism of this zinc uptake pathway has not been fully elucidated. Here, we identified the hemin uptake receptor HmuR for YezP, which can mediate import of Zn2+ into the periplasm by the YezP-Zn2+ complex and demonstrated that YezP functions extracellularly. This study also confirmed that the ZnuCB transporter is the inner membrane transporter for Zn2+ from the periplasm to cytoplasm. Overall, our results reveal the complete T6SS/YezP/HmuR/ZnuABC pathway, wherein multiple systems are coupled to support zinc uptake by Y. pseudotuberculosis under oxidative stress. IMPORTANCE Identifying the transporters involved in import of metal ions under normal physiological growth conditions in bacterial pathogens will clarify its pathogenic mechanism. Y. pseudotuberculosis YPIII, a common foodborne pathogen that infects animals and humans, uptake zinc via the T6SS4 effector YezP. However, the outer and inner transports involved in Zn2+ acquisition remain unknown. The important outcomes of this study are the identification of the hemin uptake receptor HmuR and inner membrane transporter ZnuCB that import Zn2+ into the cytoplasm via the YezP-Zn2+ complex, and elucidation of the complete Zn2+ acquisition pathway consisting of T6SS, HmuRSTUV, and ZnuABC, thereby providing a comprehensive view of T6SS-mediated ion transport and its functions.
Collapse
Affiliation(s)
- Hai Liu
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, Gansu, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingyu Liu
- State Key Laboratory of Geological Processes and Mineral Resources, Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Shin J, Rychel K, Palsson BO. Systems biology of competency in Vibrio natriegens is revealed by applying novel data analytics to the transcriptome. Cell Rep 2023; 42:112619. [PMID: 37285268 DOI: 10.1016/j.celrep.2023.112619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Vibrio natriegens regulates natural competence through the TfoX and QstR transcription factors, which are involved in external DNA capture and transport. However, the extensive genetic and transcriptional regulatory basis for competency remains unknown. We used a machine-learning approach to decompose Vibrio natriegens's transcriptome into 45 groups of independently modulated sets of genes (iModulons). Our findings show that competency is associated with the repression of two housekeeping iModulons (iron metabolism and translation) and the activation of six iModulons; including TfoX and QstR, a novel iModulon of unknown function, and three housekeeping iModulons (representing motility, polycations, and reactive oxygen species [ROS] responses). Phenotypic screening of 83 gene deletion strains demonstrates that loss of iModulon function reduces or eliminates competency. This database-iModulon-discovery cycle unveils the transcriptomic basis for competency and its relationship to housekeeping functions. These results provide the genetic basis for systems biology of competency in this organism.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
Trotta KL, Hayes BM, Schneider JP, Wang J, Todor H, Rockefeller Grimes P, Zhao Z, Hatleberg WL, Silvis MR, Kim R, Koo BM, Basler M, Chou S. Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin. PLoS Pathog 2023; 19:e1011454. [PMID: 37363922 PMCID: PMC10328246 DOI: 10.1371/journal.ppat.1011454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the functional basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli (Eco) genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa, Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, lipopolysaccharide, that modulate Tae1 toxicity in vivo. Disruption of genes in early lipopolysaccharide biosynthesis provided Eco with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study reveals the complex functional underpinnings of susceptibility to Tae1 and T6SS which regulate the impact of toxin-substrate interactions in vivo.
Collapse
Affiliation(s)
- Kristine L. Trotta
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | - Beth M. Hayes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | | | - Jing Wang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Horia Todor
- Department of Cell and Tissue Biology, University of California–San Francisco, San Francisco, California, United States of America
| | - Patrick Rockefeller Grimes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | - Ziyi Zhao
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | | | - Melanie R. Silvis
- Department of Cell and Tissue Biology, University of California–San Francisco, San Francisco, California, United States of America
| | - Rachel Kim
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| | - Byoung Mo Koo
- Department of Cell and Tissue Biology, University of California–San Francisco, San Francisco, California, United States of America
| | - Marek Basler
- Biozentrum, University of Basel, Basel, Switzerland
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
28
|
Trotta KL, Hayes BM, Schneider JP, Wang J, Todor H, Grimes PR, Zhao Z, Hatleberg WL, Silvis MR, Kim R, Koo BM, Basler M, Chou S. Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524922. [PMID: 36747731 PMCID: PMC9900751 DOI: 10.1101/2023.01.20.524922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the molecular basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa , Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, surface lipopolysaccharide, that modulate Tae1 toxicity in vivo . Disruption of lipopolysaccharide synthesis provided Escherichia coli (Eco) with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study highlights the consequences of co-regulating essential pathways on recipient fitness during interbacterial competition, and how antibacterial toxins leverage cellular vulnerabilities that are both direct and indirect to their specific targets in vivo .
Collapse
Affiliation(s)
- Kristine L Trotta
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Beth M Hayes
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Johannes P Schneider
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland
| | - Jing Wang
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland
| | - Horia Todor
- Department of Cell and Tissue Biology, University of California – San Francisco, San Francisco, CA, USA
| | - Patrick Rockefeller Grimes
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Ziyi Zhao
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | | | - Melanie R Silvis
- Department of Cell and Tissue Biology, University of California – San Francisco, San Francisco, CA, USA
| | - Rachel Kim
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| | - Byoung Mo Koo
- Department of Cell and Tissue Biology, University of California – San Francisco, San Francisco, CA, USA
| | - Marek Basler
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California – San Francisco, San Francisco, CA, USA
| |
Collapse
|
29
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
30
|
Choudhary D, Lagage V, Foster KR, Uphoff S. Phenotypic heterogeneity in the bacterial oxidative stress response is driven by cell-cell interactions. Cell Rep 2023; 42:112168. [PMID: 36848288 PMCID: PMC10935545 DOI: 10.1016/j.celrep.2023.112168] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Genetically identical bacterial cells commonly display different phenotypes. This phenotypic heterogeneity is well known for stress responses, where it is often explained as bet hedging against unpredictable environmental threats. Here, we explore phenotypic heterogeneity in a major stress response of Escherichia coli and find it has a fundamentally different basis. We characterize the response of cells exposed to hydrogen peroxide (H2O2) stress in a microfluidic device under constant growth conditions. A machine-learning model reveals that phenotypic heterogeneity arises from a precise and rapid feedback between each cell and its immediate environment. Moreover, we find that the heterogeneity rests upon cell-cell interaction, whereby cells shield each other from H2O2 via their individual stress responses. Our work shows how phenotypic heterogeneity in bacterial stress responses can emerge from short-range cell-cell interactions and result in a collective phenotype that protects a large proportion of the population.
Collapse
Affiliation(s)
- Divya Choudhary
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Kevin R Foster
- Department of Biochemistry, University of Oxford, Oxford, UK; Department of Biology, University of Oxford, Oxford, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Liang X, Zheng HY, Zhao YJ, Zhang YQ, Pei TT, Cui Y, Tang MX, Xu P, Dong T. VgrG Spike Dictates PAAR Requirement for the Assembly of the Type VI Secretion System. J Bacteriol 2023; 205:e0035622. [PMID: 36655996 PMCID: PMC9945574 DOI: 10.1128/jb.00356-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Widely employed by Gram-negative pathogens for competition and pathogenesis, the type six protein secretion system (T6SS) can inject toxic effectors into neighboring cells through the penetration of a spear-like structure comprising a long Hcp tube and a VgrG-PAAR spike complex. The cone-shaped PAAR is believed to sharpen the T6SS spear for penetration but it remains unclear why PAAR is required for T6SS functions in some bacteria but dispensable in others. Here, we report the conditional requirement of PAAR for T6SS functions in Aeromonas dhakensis, an emerging human pathogen that may cause severe bacteremia. By deleting the two PAAR paralogs, we show that PAAR is not required for T6SS secretion, bacterial killing, or specific effector delivery in A. dhakensis. By constructing combinatorial PAAR and vgrG deletions, we demonstrate that deletion of individual PAAR moderately reduced T6SS functions but double or triple deletions of PAAR in the vgrG deletion mutants severely impaired T6SS functions. Notably, the auxiliary-cluster-encoded PAAR2 and VgrG3 are less critical than the main-cluster-encoded PAAR1 and VgrG1&2 proteins to T6SS functions. In addition, PAAR1 but not PAAR2 contributes to antieukaryotic virulence in amoeba. Our data suggest that, for a multi-PAAR T6SS, the variable role of PAAR paralogs correlates with the VgrG-spike composition that collectively dictates T6SS assembly. IMPORTANCE Gram-negative bacteria often encode multiple paralogs of the cone-shaped PAAR that sits atop the VgrG-spike and is thought to sharpen the spear-like T6SS puncturing device. However, it is unclear why PAAR is required for the assembly of some but not all T6SSs and why there are multiple PAARs if they are not required. Our data delineate a VgrG-mediated conditional requirement for PAAR and suggest a core-auxiliary relationship among different PAAR-VgrG modules that may have been acquired sequentially by the T6SS during evolution.
Collapse
Affiliation(s)
- Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jie Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qiu Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Xuan Tang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
32
|
Li J, Wu Z, Hou Y, Zhang YA, Zhou Y. Fur functions as an activator of T6SS-mediated bacterial dominance and virulence in Aeromonas hydrophila. Front Microbiol 2023; 13:1099611. [PMID: 36845974 PMCID: PMC9944043 DOI: 10.3389/fmicb.2022.1099611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Aeromonas hydrophila, a ubiquitous bacterium in aquatic habitats with broad host ranges, has earned the nickname of a 'Jack-of-all-trades'. However, there is still a limited understanding of the mechanism of how this bacterium fit the competition with other species in dynamic surroundings. The type VI secretion system (T6SS) is macromolecular machinery found in Gram-negative bacteria's cell envelope that is responsible for bacterial killing and/or pathogenicity toward different host cells. In this study, the depression of A. hydrophila T6SS under iron-limiting conditions was detected. The ferric uptake regulator (Fur) was then found to act as an activator of T6SS by directly binding to the Fur box region in vipA promoter in the T6SS gene cluster. The transcription of vipA was repressed in Δfur. Moreover, the inactivation of Fur resulted in considerable defects in the interbacterial competition activity and pathogenicity of A. hydrophila in vitro and in vivo. These findings provide the first direct evidence that Fur positively regulates the expression and functional activity of T6SS in Gram-negative bacteria and will help to understand the fascinating mechanism of competitive advantage for A. hydrophila in different ecological niches.
Collapse
Affiliation(s)
- Jihong Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuting Hou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Hubei Hongshan Laboratory, Wuhan, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,*Correspondence: Yong-An Zhang,
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China,Yang Zhou,
| |
Collapse
|
33
|
Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: Essential adaptors and attractive targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119387. [PMID: 36336206 DOI: 10.1016/j.bbamcr.2022.119387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kat Pick
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
34
|
Singh D, Rehman N, Pandey A. Nanotechnology: the Alternative and Efficient Solution to Biofouling in the Aquaculture Industry. Appl Biochem Biotechnol 2023:10.1007/s12010-022-04274-z. [PMID: 36689156 DOI: 10.1007/s12010-022-04274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
Biofouling is a global issue in aquaculture industries. It adversely affects marine infrastructure (ship's hulls, mariculture cages and nets, underwater pipes and filters, building materials, probes, and sensor devices). The estimated cost of managing marine biofouling accounts for 5-10% of production cost. Non-toxic foul-release coating and biocide-based coating are the two current approaches. Recent innovation and development of a surface coating with nanoparticles such as photocatalytic zinc oxide nanocoating on fishing nets, copper oxide nanocoating on the water-cooling system, and silver nanoparticle coating to inhibit microalgal adhesion on submerged surfaces under natural light (photoperiod) could present meaningful anti-biofouling application. Nanocoating of zinc, copper, and silver oxide is an environmentally friendly surface coating strategy that avoid surface adhesion of bacteria, diatoms, algal, protozoans, and fungal species. Such nanocoating could also provide a solution to strains tolerant to Cu, Zn, and Ag. This draft of the special issue demonstrates the anti-biofouling potential of various metal and metal oxide nanoparticle coating to combat aquaculture industry biofouling problems.
Collapse
Affiliation(s)
- Divya Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nahid Rehman
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
35
|
Liu M, Wang H, Liu Y, Tian M, Wang Z, Shu RD, Zhao MY, Chen WD, Wang H, Wang H, Fu Y. The phospholipase effector Tle1 Vc promotes Vibrio cholerae virulence by killing competitors and impacting gene expression. Gut Microbes 2023; 15:2241204. [PMID: 37526354 PMCID: PMC10395195 DOI: 10.1080/19490976.2023.2241204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Vibrio cholerae utilizes the Type VI secretion system (T6SS) to gain an advantage in interbacterial competition by delivering anti-prokaryotic effectors in a contact-dependent manner. However, the impact of T6SS and its secreted effectors on physiological behavior remains poorly understood. In this study, we present Tle1Vc, a phospholipase effector in atypical pathogenic V. cholerae E1 that is secreted by T6SS via its interaction with VgrG1E1. Tle1Vc contains a DUF2235 domain and belongs to the Tle1 (type VI lipase effector) family. Bacterial toxicity assays, lipase activity assays and site-directed mutagenesis revealed that Tle1Vc possessed phospholipase A1 activity and phospholipase A2 activity, and that Tle1Vc-induced toxicity required a serine residue (S356) and two aspartic acid residues (D417 and D496). Cells intoxication with Tle1Vc lead to membrane depolarization and alter membrane permeability. Tli1tox-, a cognate immunity protein, directly interacts with Tle1Vc to neutralize its toxicity. Moreover, Tle1Vc can kill multiple microorganisms by T6SS and promote in vivo fitness of V. cholerae through mediating antibacterial activity. Tle1Vc induces bacterial motility by increasing the expression of flagellar-related genes independently of functional T6SS and the tit-for-tat (TFT) response, where Pseudomonas aeruginosa uses its T6SS-H1 cluster to counterattack other offensive attackers. Our study also demonstrated that the physical puncture of E1 T6SS can induce a moderate TFT response, which is essential to the Tle1Vc-mediated strong TFT response, maximizing effector functions. Overall, our study characterized the antibacterial mechanism of phospholipase effector Tle1Vc and its multiple physiological significance.
Collapse
Affiliation(s)
- Ming Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Heng Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ying Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Run-Dong Shu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yu Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wei-Di Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hui Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
36
|
Lagage V, Chen V, Uphoff S. Adaptation delay causes a burst of mutations in bacteria responding to oxidative stress. EMBO Rep 2022; 24:e55640. [PMID: 36397732 PMCID: PMC9827559 DOI: 10.15252/embr.202255640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the interplay between phenotypic and genetic adaptation is a focus of evolutionary biology. In bacteria, the oxidative stress response prevents mutagenesis by reactive oxygen species (ROS). We hypothesise that the stress response dynamics can therefore affect the timing of the mutation supply that fuels genetic adaptation to oxidative stress. We uncover that sudden hydrogen peroxide stress causes a burst of mutations. By developing single-molecule and single-cell microscopy methods, we determine how these mutation dynamics arise from phenotypic adaptation mechanisms. H2 O2 signalling by the transcription factor OxyR rapidly induces ROS-scavenging enzymes. However, an adaptation delay leaves cells vulnerable to the mutagenic and toxic effects of hydroxyl radicals generated by the Fenton reaction. Resulting DNA damage is counteracted by a spike in DNA repair activities during the adaptation delay. Absence of a mutation burst in cells with prior stress exposure or constitutive OxyR activation shows that the timing of phenotypic adaptation directly controls stress-induced mutagenesis. Similar observations for alkylation stress show that mutation bursts are a general phenomenon associated with adaptation delays.
Collapse
Affiliation(s)
| | - Victor Chen
- Department of BiochemistryUniversity of OxfordOxfordUK
| | | |
Collapse
|
37
|
Qu CC, Liang YT, Wang XQ, Gao S, He ZZ, Sun XY. Gallium-Based Liquid Metal Materials for Antimicrobial Applications. Bioengineering (Basel) 2022; 9:416. [PMID: 36134962 PMCID: PMC9495447 DOI: 10.3390/bioengineering9090416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
- Hainan Institute of China Agricultural University, China Agricultural University, Sanya 572000, China
| | - Yu-Tong Liang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xi-Qing Wang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
| | - Shang Gao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xu-Yang Sun
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
38
|
A Quorum Sensing-Regulated Type VI Secretion System Containing Multiple Nonredundant VgrG Proteins Is Required for Interbacterial Competition in Chromobacterium violaceum. Microbiol Spectr 2022; 10:e0157622. [PMID: 35876575 PMCID: PMC9430734 DOI: 10.1128/spectrum.01576-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental pathogenic bacterium Chromobacterium violaceum kills Gram-positive bacteria by delivering violacein packed into outer membrane vesicles, but nothing is known about its contact-dependent competition mechanisms. In this work, we demonstrate that C. violaceum utilizes a type VI secretion system (T6SS) containing multiple VgrG proteins primarily for interbacterial competition. The single T6SS of C. violaceum contains six vgrG genes, which are located in the main T6SS cluster and four vgrG islands. Using T6SS core component-null mutant strains, Western blotting, fluorescence microscopy, and competition assays, we showed that the C. violaceum T6SS is active and required for competition against Gram-negative bacteria such as Pseudomonas aeruginosa but dispensable for C. violaceum infection in mice. Characterization of single and multiple vgrG mutants revealed that, despite having high sequence similarity, the six VgrGs show little functional redundancy, with VgrG3 showing a major role in T6SS function. Our coimmunoprecipitation data support a model of VgrG3 interacting directly with the other VgrGs. Moreover, we determined that the promoter activities of T6SS genes increased at high cell density, but the produced Hcp protein was not secreted under such condition. This T6SS growth phase-dependent regulation was dependent on CviR but not on CviI, the components of a C. violaceum quorum sensing (QS) system. Indeed, a ΔcviR but not a ΔcviI mutant was completely defective in Hcp secretion, T6SS activity, and interbacterial competition. Overall, our data reveal that C. violaceum relies on a QS-regulated T6SS to outcompete other bacteria and expand our knowledge about the redundancy of multiple VgrGs. IMPORTANCE The type VI secretion system (T6SS) is a contractile nanomachine used by many Gram-negative bacteria to inject toxic effectors into adjacent cells. The delivered effectors are bound to the components of a puncturing apparatus containing the protein VgrG. The T6SS has been implicated in pathogenesis and, more commonly, in competition among bacteria. Chromobacterium violaceum is an environmental bacterium that causes deadly infections in humans. In this work, we characterized the single T6SS of C. violaceum ATCC 12472, including its six VgrG proteins, regarding its function and regulation. This previously undescribed C. violaceum T6SS is active, regulated by QS, and required for interbacterial competition instead of acute infection in mice. Among the VgrGs, VgrG3, encoded outside the main T6SS cluster, showed a major contribution to T6SS function. These results shed light on a key contact-dependent killing mechanism used by C. violaceum to antagonize other bacteria.
Collapse
|
39
|
Qian C, Jin L, Zhu L, Zhou Y, Chen J, Yang D, Xu X, Ding P, Li R, Zhao Z. Metabolomics-Driven Exploration of the Antibacterial Activity and Mechanism of 2-Methoxycinnamaldehyde. Front Microbiol 2022; 13:864246. [PMID: 35875567 PMCID: PMC9301309 DOI: 10.3389/fmicb.2022.864246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus epidermidis (MRSE) is one of the most commonly found pathogens that may cause uncontrollable infections in immunocompromised and hospitalized patients. Compounds isolated from cinnamon such as cinnamaldehyde and cinnamic acid showed promising anti-oxidant, anti-tumor, and immunoregulatory effects; more importantly, these compounds also possess promising broad-spectrum antibacterial activity. In this study, the potential antibacterial activity of 2-methoxycinnamaldehyde (MCA), another compound in cinnamon, against MRSE was investigated. Combining the broth microdilution test, live/dead assay, and biofilm formation assay, we found MCA was able to inhibit the proliferation, as well as the biofilm formation of MRSE, indicating MCA could not only affect the growth of MRSE but also inhibit the pathogenic potential of this bacterium. Additionally, the results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that MCA caused morphological changes and the leakage of DNA, RNA, and cellular contents of MRSE. Due to the close relationship between cell wall synthesis, ROS formation, and cell metabolism, the ROS level and metabolic profile of MRSE were explored. Our study showed MCA significantly increased the ROS production in MRSE, and the following metabolomics analysis showed that the increased ROS production may partially be due to the increased metabolic flux through the TCA cycle. In addition, we noticed the metabolic flux through the pentose phosphate pathway (PPP) was upregulated accompanied by elevated ROS production. Therefore, the alterations in cell metabolism and increased ROS production could lead to the damage of the cell wall, which in turn decreased the proliferation of MRSE. In conclusion, MCA seemed to be a promising alternative antimicrobial agent to control MRSE infections.
Collapse
Affiliation(s)
- Chunguo Qian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Longping Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Yang Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Jing Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Xinjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Ping Ding
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runnan Li
- Deqing County Dexin Agricultural Development Co., Ltd., Zhaoqing, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
- *Correspondence: Zhimin Zhao,
| |
Collapse
|
40
|
Tang MX, Pei TT, Xiang Q, Wang ZH, Luo H, Wang XY, Fu Y, Dong T. Abiotic factors modulate interspecies competition mediated by the type VI secretion system effectors in Vibrio cholerae. THE ISME JOURNAL 2022; 16:1765-1775. [PMID: 35354946 PMCID: PMC9213406 DOI: 10.1038/s41396-022-01228-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 05/06/2023]
Abstract
Vibrio cholerae, the etiological pathogen of cholera, employs its type VI secretion system (T6SS) as an effective weapon to survive in highly competitive communities. Antibacterial and anti-eukaryotic functions of the T6SS depend on its secreted effectors that target multiple cellular processes. However, the mechanisms that account for effector diversity and different effectiveness during interspecies competition remain elusive. Here we report that environmental cations and temperature play a key role in dictating cellular response and effector effectiveness during interspecies competition mediated by the T6SS of V. cholerae. We found that V. cholerae could employ its cell-wall-targeting effector TseH to outcompete the otherwise resistant Escherichia coli and the V. cholerae immunity deletion mutant ∆tsiH when Mg2+ or Ca2+ was supplemented. Transcriptome and genetic analyses demonstrate that the metal-sensing PhoPQ two-component system is important for Mg2+-dependent sensitivity. Competition analysis in infant mice shows that TseH was active under in vivo conditions. Using a panel of V. cholerae single-effector active mutants, we further show that E. coli also exhibited variable susceptibilities to other T6SS effectors depending on cations and temperatures, respectively. Lastly, V. cholerae effector VasX could sensitize Pseudomonas aeruginosa to its intrinsically resistant antibiotic irgasan in a temperature-dependent manner. Collectively, these findings suggest that abiotic factors, that V. cholerae frequently encounters in natural and host environments, could modulate cellular responses and dictate the competitive fitness conferred by the T6SS effectors in complex multispecies communities.
Collapse
Affiliation(s)
- Ming-Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Yu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
41
|
Jin K, Tian N, da Silva Ferreira JF, Sandhu D, Xiao L, Gu M, Luo Y, Zhang X, Liu G, Liu Z, Huang J, Liu S. Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules 2022; 12:688. [PMID: 35625616 PMCID: PMC9138961 DOI: 10.3390/biom12050688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tea (Camellia sinensis L.), an important economic crop, is recalcitrant to Agrobacterium-mediated transformation (AMT), which has seriously hindered the progress of molecular research on this species. The mechanisms leading to low efficiency of AMT in tea plants, related to the morphology, growth, and gene expression of Agrobacterium tumefaciens during tea-leaf explant infection, were compared to AMT of Nicotiana benthamiana leaves in the present work. Scanning electron microscopy (SEM) images showed that tea leaves induced significant morphological aberrations on bacterial cells and affected pathogen-plant attachment, the initial step of a successful AMT. RNA sequencing and transcriptomic analysis on Agrobacterium at 0, 3 and 4 days after leaf post-inoculation resulted in 762, 1923 and 1656 differentially expressed genes (DEGs) between the tea group and the tobacco group, respectively. The expressions of genes involved in bacterial fundamental metabolic processes, ATP-binding cassette (ABC) transporters, two-component systems (TCSs), secretion systems, and quorum sensing (QS) systems were severely affected in response to the tea-leaf phylloplane. Collectively, these results suggest that compounds in tea leaves, especially gamma-aminobutyrate (GABA) and catechins, interfered with plant-pathogen attachment, essential minerals (iron and potassium) acquisition, and quorum quenching (QQ) induction, which may have been major contributing factors to hinder AMT efficiency of the tea plant.
Collapse
Affiliation(s)
- Ke Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jorge Freire da Silva Ferreira
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Yiping Luo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Xiangqin Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| |
Collapse
|
42
|
Nath A, Chakrabarti P, Sen S, Barui A. Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function. Stem Cell Rev Rep 2022; 18:2328-2350. [DOI: 10.1007/s12015-022-10377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
43
|
Li QC, Wang B, Zeng YH, Cai ZH, Zhou J. The Microbial Mechanisms of a Novel Photosensitive Material (Treated Rape Pollen) in Anti-Biofilm Process under Marine Environment. Int J Mol Sci 2022; 23:ijms23073837. [PMID: 35409199 PMCID: PMC8998240 DOI: 10.3390/ijms23073837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose−lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.
Collapse
Affiliation(s)
- Qing-Chao Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
- Correspondence:
| |
Collapse
|
44
|
Lee YR, Lee WH, Lee SY, Lee J, Kim MS, Moon M, Park GW, Kim HS, Kim JI, Lee JS, Lee S. Regulation of Reactive Oxygen Species Promotes Growth and Carotenoid Production Under Autotrophic Conditions in Rhodobacter sphaeroides. Front Microbiol 2022; 13:847757. [PMID: 35295297 PMCID: PMC8920488 DOI: 10.3389/fmicb.2022.847757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Industrial demand for capture and utilization using microorganisms to reduce CO2, a major cause of global warming, is significantly increasing. Rhodobacter sphaeroides is a suitable strain for the process of converting CO2 into high-value materials because it can accept CO2 and has various metabolic pathways. However, it has been mainly studied for heterotrophic growth that uses sugars and organic acids as carbon sources, not autotrophic growth. Here, we report that the regulation of reactive oxygen species is critical for growth when using CO2 as a sole carbon source in R. sphaeroides. In general, the growth rate is much slower under autotrophic conditions compared to heterotrophic conditions. To improve this, we performed random mutagenesis using N-methyl-N’-nitro-N-nitrosoguanidine (NTG). As a result, we selected the YR-1 strain with a maximum specific growth rate (μ) 1.44 day–1 in the early growth phase, which has a 110% faster growth rate compared to the wild-type. Based on the transcriptome analysis, it was confirmed that the growth was more sensitive to reactive oxygen species under autotrophic conditions. In the YR-1 mutant, the endogenous contents of H2O2 levels and oxidative damage were reduced by 33.3 and 42.7% in the cells, respectively. Furthermore, we measured that concentrations of carotenoids, which are important antioxidants. The total carotenoid is produced 9.63 g/L in the YR-1 mutant, suggesting that the production is 1.7-fold higher than wild-type. Taken together, our observations indicate that controlling ROS promotes cell growth and carotenoid production under autotrophic conditions.
Collapse
Affiliation(s)
- Yu Rim Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Won-Heong Lee
- Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, South Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Hui Su Kim
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- Department of Advanced Chemicals and Engineering, Chonnam National University, Gwangju, South Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- *Correspondence: Sangmin Lee,
| |
Collapse
|
45
|
Chen H, Yang N, Yang Y, Zheng Y, Xu M, Zhang H, Liu Y, Shen W, Li J. Doxofylline Protects Gram-Negative Pathogens against Antibiotic-Mediated Killing. ACS Infect Dis 2021; 7:3241-3253. [PMID: 34851627 DOI: 10.1021/acsinfecdis.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Given the growing rate of Gram-negative bacterial infections, antibiotics are now frequently prescribed for various respiratory diseases. Doxofylline is a newer generation xanthine with both bronchodilating and anti-inflammatory activities, but its influence on antibiotics remains poorly understood. Here, we first report the discovery of doxofylline-induced high minimum inhibitory concentrations of antibiotics. We also showed that doxofylline blocked antimicrobial-mediated killing for Gram-negative pathogens in vitro and in murine lung infection models in vivo. By combining efflux pump inhibition tests, gene expression analyses, and using the gene tolC knockout strain, we found that doxofylline positively regulated gene expression of the AcrAB-TolC efflux pump and attenuated the effect of doxofylline on antibacterial activities in ΔtolC mutants. Notably, doxofylline-mediated protection correlated with decreased reactive oxygen species (ROS) production. Collectively, our study indicates that doxofylline protects Gram-negative bacteria from antimicrobial lethality by regulating the AcrAB-TolC efflux pump in a TolC-dependent manner and suppressing antibiotic-induced ROS accumulation. These results suggest caution when using antibiotics alongside doxofylline in clinical treatment.
Collapse
Affiliation(s)
- Haoran Chen
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ning Yang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yi Yang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yahong Zheng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Mengran Xu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Hui Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui 230022, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui 230022, China
| | - Weihua Shen
- Department of Special Clinic, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Department of Molecular Biology, Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui 230022, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui 230022, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
46
|
Zhang MK, Zhang MY, Liu SB, Yang YY, Zhai YJ, He DD, Wu H, Pan YS, Liu JH, Yuan L, Hu GZ. Double deletion of cpxR and tolC significantly increases the susceptibility of Salmonella enterica serovar Typhimurium to colistin. J Antimicrob Chemother 2021; 76:3168-3174. [PMID: 34499729 DOI: 10.1093/jac/dkab332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The increasing use of colistin causes a serious breach in our last line of defence against MDR Gram-negative pathogens. Our previous study showed that CpxR overexpression increases the susceptibility of acrB and cpxR double-deleted Salmonella enterica serovar Typhimurium to colistin. OBJECTIVES To identify the mechanism of CpxAR and efflux pumps that synergistically enhance the susceptibility of S. Typhimurium to colistin. METHODS A series of cpxR- and tolC-deleted mutants and a cpxR-complemented strain from a multidrug-susceptible standard strain of S. Typhimurium (JS) were generated in our previous study. Herein, we investigated the susceptibility of these strains to colistin through the broth microdilution method, time-kill curves and survival assays. Growth curves were measured by OD600 in LB broth, tryptone-soy broth (TSB) and M9-glucose (0.2%) minimal media. Finally, molecular mechanisms underlying the mode of action were elucidated by transcriptomic analysis. RESULTS We found that in contrast to JS (0.8 mg/L), the MIC of colistin for JSΔtolC::kan showed a 16-fold decrease (0.05 mg/L). Notably, JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR were associated with a 256-fold decrease (0.0031 mg/L) compared with JS. Growth curves identified that JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR displayed a markedly lower growth rate and poorer adaptability. In addition, time-kill curves and survival assays showed that JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR were more susceptible to colistin. Lastly, double deletion of cpxR and tolC enhanced oxidative damage through promoting oxidative phosphorylation, the tricarboxylic acid (TCA) cycle and trimethylamine N-oxide (TMAO) respiration. CONCLUSIONS Our findings revealed that double deletion of cpxR and tolC significantly increases the susceptibility of S. Typhimurium to colistin.
Collapse
Affiliation(s)
- Meng-Ke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng-Yao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuo-Bo Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ying-Ying Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ya-Jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jian-Hua Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
47
|
Defending against the Type Six Secretion System: beyond Immunity Genes. Cell Rep 2021; 33:108259. [PMID: 33053336 DOI: 10.1016/j.celrep.2020.108259] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial type six secretion system (T6SS) delivers toxic effector proteins into neighboring cells, but bacteria must protect themselves against their own T6SS. Immunity genes are the best-characterized defenses, protecting against specific cognate effectors. However, the prevalence of the T6SS and the coexistence of species with heterologous T6SSs suggest evolutionary pressure selecting for additional defenses against it. Here we review defenses against the T6SS beyond self-associated immunity genes, such as diverse stress responses that can recognize T6SS-inflicted damage and coordinate induction of molecular armor, repair pathways, and overall survival. Some of these stress responses are required for full survival even in the presence of immunity genes. Finally, we propose that immunity gene-independent protection is, mechanistically, bacterial innate immunity and that such defenses and the T6SS have co-evolved and continue to shape one another in polymicrobial communities.
Collapse
|
48
|
Liu Y, Liu B, Xu T, Wang Q, Li W, Wu J, Zheng X, Liu B, Liu R, Liu X, Guo X, Feng L, Wang L. A fructose/H + symporter controlled by a LacI-type regulator promotes survival of pandemic Vibrio cholerae in seawater. Nat Commun 2021; 12:4649. [PMID: 34330925 PMCID: PMC8324912 DOI: 10.1038/s41467-021-24971-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterium Vibrio cholerae can colonize the human intestine and cause cholera, but spends much of its life cycle in seawater. The pathogen must adapt to substantial environmental changes when moving between seawater and the human intestine, including different availability of carbon sources such as fructose. Here, we use in vitro experiments as well as mouse intestinal colonization assays to study the mechanisms used by pandemic V. cholerae to adapt to these environmental changes. We show that a LacI-type regulator (FruI) and a fructose/H+ symporter (FruT) are important for fructose uptake at low fructose concentrations, as those found in seawater. FruT is downregulated by FruI, which is upregulated when O2 concentrations are low (as in the intestine) by ArcAB, a two-component system known to respond to changes in oxygen levels. As a result, the bacteria predominantly use FruT for fructose uptake under seawater conditions (low fructose, high O2), and use a known fructose phosphotransferase system (PTS, Fpr) for fructose uptake under conditions found in the intestine. PTS activity leads to reduced levels of intracellular cAMP, which in turn upregulate virulence genes. Our results indicate that the FruT/FruI system may be important for survival of pandemic V. cholerae in seawater.
Collapse
Affiliation(s)
- Yutao Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Tingting Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, P. R. China
| | - Qian Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Wendi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Jialin Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xiaoyu Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Ruiying Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xingmei Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
| | - Lei Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
49
|
Aerobic Conditions and Endogenous Reactive Oxygen Species Reduce the Production of Infectious MS2 Phage by Escherichia coli. Viruses 2021; 13:v13071376. [PMID: 34372580 PMCID: PMC8310082 DOI: 10.3390/v13071376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Most of the defective/non-infectious enteric phages and viruses that end up in wastewater originate in human feces. Some of the causes of this high level of inactivity at the host stage are unknown. There is a significant gap between how enteric phages are environmentally transmitted and how we might design molecular tools that would only detect infectious ones. Thus, there is a need to explain the low proportion of infectious viral particles once replicated. By analyzing lysis plaque content, we were able to confirm that, under aerobic conditions, Escherichia coli produce low numbers of infectious MS2 phages (I) than the total number of phages indicated by the genome copies (G) with an I/G ratio of around 2%. Anaerobic conditions of replication and ROS inhibition increase the I/G ratio to 8 and 25%, respectively. These data cannot only be explained by variations in the total numbers of MS2 phages produced or in the metabolism of E. coli. We therefore suggest that oxidative damage impacts the molecular replication and assembly of MS2 phages.
Collapse
|
50
|
Li C, Pan D, Li M, Wang Y, Song L, Yu D, Zuo Y, Wang K, Liu Y, Wei Z, Lu Z, Zhu L, Shen X. Aerobactin-Mediated Iron Acquisition Enhances Biofilm Formation, Oxidative Stress Resistance, and Virulence of Yersinia pseudotuberculosis. Front Microbiol 2021; 12:699913. [PMID: 34335534 PMCID: PMC8319957 DOI: 10.3389/fmicb.2021.699913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Aerobactin is a citrate-hydroxamate siderophore that is critical for the virulence of pathogenic enteric bacteria. However, although the aerobactin-producing iucABCD-iutA operon is distributed widely in the genomes of Yersinia species, none of the pathogenic Yersinia spp. was found to produce aerobactin. Here, we showed that the iucABCD-iutA operon in the food-borne enteric pathogen Yersinia pseudotuberculosis YPIII is a functional siderophore system involved in iron acquisition. The expression of the operon was found to be directly repressed by the ferric uptake regulator (Fur) in an iron concentration-dependent manner. In addition, we demonstrated that the aerobactin-mediated iron acquisition contributes to bacterial growth under iron-limited conditions. Moreover, we provided evidence that aerobactin plays important roles in biofilm formation, resistance to oxidative stress, ROS removal, and virulence of Y. pseudotuberculosis. Overall, our study not only uncovered a novel strategy of iron acquisition in Y. pseudotuberculosis but also highlighted the importance of aerobactin in the pathogenesis of Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Damin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Luting Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Danyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kenan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|