1
|
Hu Q, Liu Z, Liu Y, Qiu J, Zhang X, Sun J, Zhang B, Shi H. SIAH2 suppresses c-JUN pathway by promoting the polyubiquitination and degradation of HBx in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18484. [PMID: 38842124 PMCID: PMC11154841 DOI: 10.1111/jcmm.18484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
As an important protein encoded by hepatitis B virus (HBV), HBV X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). It has been shown that seven in absentia homologue 1 (SIAH1) could regulates the degradation of HBx through the ubiquitin-proteasome pathway. However, as a member of SIAH family, the regulatory effects of SIAH2 on HBx remain unclear. In this study, we first confirmed that SIAH2 could reduce the protein levels of HBx depending on its E3 ligase activity. Moreover, SIAH2 interacted with HBx and induced its K48-linked polyubiquitination and proteasomal degradation. Furthermore, we provided evidence that SIAH2 inhibits HBx-associated HCC cells proliferation by regulating HBx. In conclusion, our study identified a novel role for SIAH2 in promoting HBx degradation and SIAH2 exerts an inhibitory effect in the proliferation of HBx-associated HCC through inducing the degradation of HBx. Our study provides a new idea for the targeted degradation of HBx and may have great huge significance into providing novel evidence for the targeted therapy of HBV-infected HCC.
Collapse
Affiliation(s)
- Qinghe Hu
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Zhiyi Liu
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Yao Liu
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Jie Qiu
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Xue Zhang
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Jun Sun
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Bin Zhang
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Hengliang Shi
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Central LaboratoryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
2
|
Zhou S, Li X, Liang F, Ji G, Lv K, Yuan Y, Zhao Y, Yan N, Zhang C, Cai S, Zhang S, Liu X, Song B, Qu L. Mitophagy Regulates the Circadian Rhythms by Degrading NR1D1 in Simulated Microgravity and Isolation Environments. Int J Mol Sci 2024; 25:4853. [PMID: 38732079 PMCID: PMC11084518 DOI: 10.3390/ijms25094853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.
Collapse
Affiliation(s)
- Sihai Zhou
- Department of Pathology and Forensics, Dalian Medical University, Dalian 116044, China;
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Xiaopeng Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Fengji Liang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Guohua Ji
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Ke Lv
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Yanhong Yuan
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Yujie Zhao
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Na Yan
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Chuanjie Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Shiou Cai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Shuhui Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Xu Liu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| | - Bo Song
- Department of Pathology and Forensics, Dalian Medical University, Dalian 116044, China;
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (X.L.); (F.L.); (G.J.); (K.L.); (Y.Y.); (Y.Z.); (N.Y.); (C.Z.); (S.C.); (X.L.)
| |
Collapse
|
3
|
Sun C, Zhang H, Li Y, Yu Y, Liu J, Liu R, Sun C. Elucidation of clinical implications Arising from circadian rhythm and insights into the tumor immune landscape in breast cancer. Heliyon 2024; 10:e27356. [PMID: 38500978 PMCID: PMC10945177 DOI: 10.1016/j.heliyon.2024.e27356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Background Circadian rhythm is an internal timing system generated by circadian-related genes (CRGs). Disruption in this rhythm has been associated with a heightened risk of breast cancer (BC) and regulation of the immune microenvironment of tumors. This study aimed to investigate the clinical significance of CRGs in BC and the immune microenvironment. Methods CRGs were identified using the GeneCards and MSigDB databases. Through unsupervised clustering, we identified two circadian-related subtypes in patients with BC. We constructed a prognostic model and nomogram for circadian-related risk scores using LASSO and Cox regression analyses. Using multi-omics analysis, the mutation profile and immunological microenvironment of tumors were investigated, and the immunotherapy response in different groups of patients was predicted based on their risk strata. Results The two circadian-related subtypes of BC that were identified differed significantly in their prognoses, clinical characteristics, and tumor immune microenvironments. Subsequently, we constructed a circadian-related risk score (CRRS) model containing eight signatures (SIAH2, EZR, GSN, TAGLN2, PRDX1, MCM4, EIF4EBP1, and CD248) and a nomogram. High-risk individuals had a greater burden of tumor mutations, richer immune cell infiltration, and higher expression of immune checkpoint genes, than low-risk individuals, indicating a "hot tumor" immune phenotype and a more favorable treatment outcome. Conclusions Two circadian-related subtypes of BC were identified and used to establish a CRRS prognostic model and nomogram. These will be valuable in providing guidance for forecasting prognosis and developing personalized treatment plans for BC.
Collapse
Affiliation(s)
- Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong, China
| | - Hanyun Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Taipa, 999078, China
| | - Yang Yu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Taipa, 999078, China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Taipa, 999078, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053 Shandong, China
| |
Collapse
|
4
|
Suen TC, DeBruyne JP. Lysine-independent ubiquitination and degradation of REV-ERBα involves a bi-functional degradation control sequence at its N-terminus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538963. [PMID: 37205588 PMCID: PMC10187254 DOI: 10.1101/2023.05.01.538963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
REV-ERBα and REV-ERBβ proteins play crucial roles in linking the circadian system to overt daily rhythms in mammalian physiology and behavior. In most tissues, REV-ERBα protein robustly cycles such that it is detected only within a tight interval of 4-6 hours each day, suggesting both its synthesis and degradation are tightly controlled. Several ubiquitin ligases are known to drive REV-ERBα degradation, but how they interact with REV-ERBα and which lysine residues they ubiquitinate to promote degradation are unknown. In this study, we attempted to identify both ubiquitin-ligase-binding and ubiquitination sites within REV-ERBα required for its degradation. Surprisingly, mutating all lysine residues, the common sites for ubiquitin conjugation, in REV-ERBα to arginines (K20R), did very little to impair its degradation in cells. K20R were degraded much faster by co-expression of two E3 ligases, SIAH2 or SPSB4, suggesting possible N-terminal ubiquitination. To explore this, we examined if small deletions at the N-terminus of REV-ERBα would alter its degradation. Interestingly, deletion of amino acid (AA) residues 2 to 9 (delAA2-9) clearly resulted in a less stable REV-ERBα. We found that it was the length (i.e. 8 AA), and not the specific sequence, that confers stability in this region. Simultaneously, we also mapped the interaction site of the E3 ligase SPSB4 to this same region, specifically requiring AA4-9 of REV-ERBα. Thus, the first 9 AA of REV-ERBα has two opposing roles in regulating REV-ERBα turnover. Further, deleting eight additional AAs (delAA2-17) from the N-terminus strongly prevents REV-ERBα degradation. Combined, these results suggest that complex interactions within the first 25AAs potentially act as an endogenous 'switch' that allows REV-ERBα to exist in a stabilized conformation in order to accumulate at one time of day, but then rapidly shifts to a destabilized form, to enhance its removal at the end of its daily cycle.
Collapse
|
5
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Vinod M, Berthier A, Maréchal X, Gheeraert C, Boutry R, Delhaye S, Annicotte JS, Duez H, Hovasse A, Cianférani S, Montaigne D, Eeckhoute J, Staels B, Lefebvre P. Timed use of digoxin prevents heart ischemia-reperfusion injury through a REV-ERBα-UPS signaling pathway. NATURE CARDIOVASCULAR RESEARCH 2022; 1:990-1005. [PMID: 38229609 PMCID: PMC7615528 DOI: 10.1038/s44161-022-00148-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) induces life-threatening damages to the cardiac tissue and pharmacological means to achieve cardioprotection are sorely needed. MIRI severity varies along the day-night cycle and is molecularly linked to components of the cellular clock including the nuclear receptor REV-ERBα, a transcriptional repressor. Here we show that digoxin administration in mice is cardioprotective when timed to trigger REV-ERBα protein degradation. In cardiomyocytes, digoxin increases REV-ERBα ubiquitinylation and proteasomal degradation, which depend on REV-ERBα ability to bind its natural ligand, heme. Inhibition of the membrane-bound Src tyrosine-kinase partially alleviated digoxin-induced REV-ERBα degradation. In untreated cardiomyocytes, REV-ERBα proteolysis is controlled by known (HUWE1, FBXW7, SIAH2) or novel (CBL, UBE4B) E3 ubiquitin ligases and the proteasome subunit PSMB5. Only SIAH2 and PSMB5 contributed to digoxin-induced degradation of REV-ERBα. Thus, controlling REV-ERBα proteostasis through the ubiquitin-proteasome system is an appealing cardioprotective strategy. Our data support the timed use of clinically-approved cardiotonic steroids in prophylactic cardioprotection.
Collapse
Affiliation(s)
- Manjula Vinod
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Xavier Maréchal
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Raphaёl Boutry
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Stéphane Delhaye
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Hélène Duez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Agnès Hovasse
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, F-67087 Strasbourg, France
| | - David Montaigne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| |
Collapse
|
7
|
Wang HJ, Evans RM. Timed use of cardiac glycoside protects the heart. NATURE CARDIOVASCULAR RESEARCH 2022; 1:973-975. [PMID: 39195909 DOI: 10.1038/s44161-022-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Hui J Wang
- Gene Expression Laboratory, Salk Institute, La Jolla, CA, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, CA, USA.
| |
Collapse
|
8
|
Baba K, Suen TC, Goyal V, Stowie A, Davidson A, DeBruyne J, Tosini G. The circadian clock mediates the response to oxidative stress in a cone photoreceptor‒like (661W) cell line via regulation of glutathione peroxidase activity. F1000Res 2022; 11:1072. [PMID: 36405557 PMCID: PMC9639596 DOI: 10.12688/f1000research.125133.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 06/26/2024] Open
Abstract
Background: The mammalian retina contains an autonomous circadian clock that controls many physiological functions within this tissue. Our previous studies have indicated that disruption of this circadian clock by removing Bmal1 from the retina affects the visual function, retinal circuitry, and cone photoreceptor viability during aging. In the present study, we employed a mouse-derived cone photoreceptor‒like cell, 661W, to investigate which molecular mechanisms of the circadian clock may modulate cone photoreceptor viability during aging. Methods: Bmal1 knockout (BKO) cells were generated from 661W cells using the CRISPR/Cas9 gene editing tool. Deletion of Bmal1 from 661W was verified by western blot and monitoring Per2-luc bioluminescence circadian rhythms. To investigate the effect of Bmal1 removal on an oxidative stress challenge, cells were treated with hydrogen peroxide (H 2O 2,1 mM) for two hours and then cell viability was assessed. Cells were also cultured and harvested for gene expression analysis and antioxidant assay. Results: Our data indicated that 661W cells contain a functional circadian clock that mediates the response to an oxidative stress challenge in vitro and that such a response is no longer present in the BKO cell. We also hypothesized that the effect was due to the circadian regulation of the intracellular antioxidant defense mechanism. Our results indicated that in 661W cells, the antioxidant defense mechanism is under circadian control, whereas in BKO cells, there is an overall reduction in this antioxidant defense mechanism, and it is no longer under circadian control. Conclusions: Our work supported the notion that the presence of a functional circadian clock and its ability to modulate the response to an oxidative stress is the underlying mechanism that may protect cones during aging.
Collapse
Affiliation(s)
- Kenkichi Baba
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Ting-Chung Suen
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Varunika Goyal
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Adam Stowie
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Alec Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Jason DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| |
Collapse
|
9
|
Baba K, Suen TC, Goyal V, Stowie A, Davidson A, DeBruyne J, Tosini G. The circadian clock mediates the response to oxidative stress in a cone photoreceptor‒like (661W) cell line via regulation of glutathione peroxidase activity. F1000Res 2022; 11:1072. [PMID: 36405557 PMCID: PMC9639596 DOI: 10.12688/f1000research.125133.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background: The mammalian retina contains an autonomous circadian clock that controls many physiological functions within this tissue. Our previous studies have indicated that disruption of this circadian clock by removing Bmal1 from the retina affects the visual function, retinal circuitry, and cone photoreceptor viability during aging. In the present study, we employed a mouse-derived cone photoreceptor‒like cell, 661W, to investigate which molecular mechanisms of the circadian clock may modulate cone photoreceptor viability during aging. Methods: Bmal1 knockout (BKO) cells were generated from 661W cells using the CRISPR/Cas9 gene editing tool. Deletion of Bmal1 from 661W was verified by western blot and monitoring Per2-luc bioluminescence circadian rhythms. To investigate the effect of Bmal1 removal on an oxidative stress challenge, cells were treated with hydrogen peroxide (H 2O 2,1 mM) for two hours and then cell viability was assessed. Cells were also cultured and harvested for gene expression analysis and antioxidant assay. Results: Our data indicated that 661W cells contain a functional circadian clock that mediates the response to an oxidative stress challenge in vitro and that such a response is no longer present in the BKO cell. We also hypothesized that the effect was due to the circadian regulation of the intracellular antioxidant defense mechanism. Our results revealed that in 661W cells, the antioxidant defense mechanism showed time dependent variation , whereas in BKO cells, there was an overall reduction in this antioxidant defense mechanism, and it no longer showed time dependent variation. Conclusions: Our work supported the notion that the presence of a functional circadian clock and its ability to modulate the response to an oxidative stress is the underlying mechanism that may protect cones during aging.
Collapse
Affiliation(s)
- Kenkichi Baba
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Ting-Chung Suen
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Varunika Goyal
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Adam Stowie
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Alec Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Jason DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310, USA
| |
Collapse
|
10
|
Abdalla OHMH, Mascarenhas B, Cheng HYM. Death of a Protein: The Role of E3 Ubiquitin Ligases in Circadian Rhythms of Mice and Flies. Int J Mol Sci 2022; 23:ijms231810569. [PMID: 36142478 PMCID: PMC9502492 DOI: 10.3390/ijms231810569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian clocks evolved to enable organisms to anticipate and prepare for periodic environmental changes driven by the day–night cycle. This internal timekeeping mechanism is built on autoregulatory transcription–translation feedback loops that control the rhythmic expression of core clock genes and their protein products. The levels of clock proteins rise and ebb throughout a 24-h period through their rhythmic synthesis and destruction. In the ubiquitin–proteasome system, the process of polyubiquitination, or the covalent attachment of a ubiquitin chain, marks a protein for degradation by the 26S proteasome. The process is regulated by E3 ubiquitin ligases, which recognize specific substrates for ubiquitination. In this review, we summarize the roles that known E3 ubiquitin ligases play in the circadian clocks of two popular model organisms: mice and fruit flies. We also discuss emerging evidence that implicates the N-degron pathway, an alternative proteolytic system, in the regulation of circadian rhythms. We conclude the review with our perspectives on the potential for the proteolytic and non-proteolytic functions of E3 ubiquitin ligases within the circadian clock system.
Collapse
Affiliation(s)
- Osama Hasan Mustafa Hasan Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Brittany Mascarenhas
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence:
| |
Collapse
|
11
|
Mekbib T, Suen TC, Rollins-Hairston A, Smith K, Armstrong A, Gray C, Owino S, Baba K, Baggs JE, Ehlen JC, Tosini G, DeBruyne JP. "The ubiquitin ligase SIAH2 is a female-specific regulator of circadian rhythms and metabolism". PLoS Genet 2022; 18:e1010305. [PMID: 35789210 PMCID: PMC9286287 DOI: 10.1371/journal.pgen.1010305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Circadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used SIAH2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of SIAH2-deficiency on the regulation of rhythmically expressed genes in the liver. The absence of SIAH2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic transcriptome in the liver by increasing the number of day-time expressed genes, and flipping the rhythmic expression from nighttime expressed genes to the daytime. These effects are not readily explained by effects on known sexually dimorphic pathways in females. Moreover, loss of SIAH2 in females, not males, preferentially altered the expression of transcription factors and genes involved in regulating lipid and lipoprotein metabolism. Consequently, SIAH2-deficient females, but not males, displayed disrupted daily lipid and lipoprotein patterns, increased adiposity and impaired metabolic homeostasis. Overall, these data suggest that SIAH2 may be a key component of a female-specific circadian transcriptional output circuit that directs the circadian timing of gene expression to regulate physiological rhythms, at least in the liver. In turn, our findings imply that sex-specific transcriptional mechanisms may closely interact with the circadian clock to tailor overt rhythms for sex-specific needs.
Collapse
Affiliation(s)
- Tsedey Mekbib
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ting-Chung Suen
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Aisha Rollins-Hairston
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kiandra Smith
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ariel Armstrong
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Cloe Gray
- Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Sharon Owino
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kenkichi Baba
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Julie E. Baggs
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - J. Christopher Ehlen
- Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Gianluca Tosini
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jason P. DeBruyne
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
12
|
|
13
|
Juste YR, Kaushik S, Bourdenx M, Aflakpui R, Bandyopadhyay S, Garcia F, Diaz A, Lindenau K, Tu V, Krause GJ, Jafari M, Singh R, Muñoz J, Macian F, Cuervo AM. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat Cell Biol 2021; 23:1255-1270. [PMID: 34876687 PMCID: PMC8688252 DOI: 10.1038/s41556-021-00800-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2021] [Indexed: 01/02/2023]
Abstract
Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.
Collapse
Affiliation(s)
- Yves R Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranee Aflakpui
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Fernando Garcia
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maryam Jafari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Javier Muñoz
- Proteomic Unit, Spanish National Cancer Research Center (CNIO) Proteored-ISCIII, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Fernando Macian
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
14
|
Vanderheyden WM, Fang B, Flores CC, Jager J, Gerstner JR. The transcriptional repressor Rev-erbα regulates circadian expression of the astrocyte Fabp7 mRNA. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 34056625 PMCID: PMC8162199 DOI: 10.1016/j.crneur.2021.100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The astrocyte brain-type fatty-acid binding protein (Fabp7) circadian gene expression is synchronized in the same temporal phase throughout mammalian brain. Cellular and molecular mechanisms that contribute to this coordinated expression are not completely understood, but likely involve the nuclear receptor Rev-erbα (NR1D1), a transcriptional repressor. We performed ChIP-seq on ventral tegmental area (VTA) and identified gene targets of Rev-erbα, including Fabp7. We confirmed that Rev-erbα binds to the Fabp7 promoter in multiple brain areas, including hippocampus, hypothalamus, and VTA, and showed that Fabp7 gene expression is upregulated in Rev-erbα knock-out mice. Compared to Fabp7 mRNA levels, Fabp3 and Fabp5 mRNA were unaffected by Rev-erbα depletion in hippocampus, suggesting that these effects are specific to Fabp7. To determine whether these effects of Rev-erbα depletion occur broadly throughout the brain, we also evaluated Fabp mRNA expression levels in multiple brain areas, including cerebellum, cortex, hypothalamus, striatum, and VTA in Rev-erbα knock-out mice. While small but significant changes in Fabp5 mRNA expression exist in some of these areas, the magnitude of these effects are minimal to that of Fabp7 mRNA expression, which was over 6-fold across all brain regions. These studies suggest that Rev-erbα is a transcriptional repressor of Fabp7 gene expression throughout mammalian brain. The transcriptional repressor Rev-erbα binds to the Fabp7 promoter across brain areas. Multiple Rev-erbα response element binding sites exist on the Fabp7 promoter. Rev-erbα is required for Fabp7 transcriptional repression and circadian expression. Rev-erbα depletion does not affect other Fabp-type gene expression in brain.
Collapse
Affiliation(s)
- William M Vanderheyden
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA. 99202, USA
| | - Bin Fang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Dr, San Diego, CA 92121
| | - Carlos C Flores
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA
| | - Jennifer Jager
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Jason R Gerstner
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA. 99202, USA.,Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA. 99202, USA
| |
Collapse
|
15
|
Ma Q, Mo G, Tan Y. Micro RNAs and the biological clock: a target for diseases associated with a loss of circadian regulation. Afr Health Sci 2020; 20:1887-1894. [PMID: 34394254 PMCID: PMC8351835 DOI: 10.4314/ahs.v20i4.46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Circadian clocks are self-sustaining oscillators that coordinate behavior and physiology over a 24 hour period, achieving time-dependent homeostasis with the external environment. The molecular clocks driving circadian rhythmic changes are based on intertwined transcriptional/translational feedback loops that combine with a range of environmental and metabolic stimuli to generate daily internal programing. Understanding how biological rhythms are generated throughout the body and the reasons for their dysregulation can provide avenues for temporally directed therapeutics. Summary In recent years, microRNAs have been shown to play important roles in the regulation of the circadian clock, particularly in Drosophila, but also in some small animal and human studies. This review will summarize our current understanding of the role of miRNAs during clock regulation, with a particular focus on the control of clock regulated gene expression.
Collapse
Affiliation(s)
- Qianwen Ma
- Gynecology department, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, China
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Genlin Mo
- Advanced manufacturing institution, Jiangsu University, Zhenjiang, China
| | - Yong Tan
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Bedont JL, Iascone DM, Sehgal A. The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annu Rev Cell Dev Biol 2020; 36:469-509. [PMID: 33021821 PMCID: PMC10826104 DOI: 10.1146/annurev-cellbio-100818-125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling. We propose that both the precursor module and the TTFL module constrain cellular identity when they are active during development, and that the emergence of these modules themselves is a key lineage marker. Here we review the component pathways underlying these ideas; how proliferation, specification, and differentiation decisions in both developmental and adult stem cell populations are or are not regulated by the classical TTFL; and emerging evidence that we propose implies a primordial clock that precedes the classical TTFL and influences early developmental decisions.
Collapse
Affiliation(s)
- Joseph Lewis Bedont
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Daniel Maxim Iascone
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- The Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
17
|
Srikanta SB, Cermakian N. To Ub or not to Ub: Regulation of circadian clocks by ubiquitination and deubiquitination. J Neurochem 2020; 157:11-30. [PMID: 32717140 DOI: 10.1111/jnc.15132] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Circadian clocks are internal timing systems that enable organisms to adjust their behavioral and physiological rhythms to the daily changes of their environment. These clocks generate self-sustained oscillations at the cellular, tissue, and behavioral level. The rhythm-generating mechanism is based on a gene expression network with a delayed negative feedback loop that causes the transcripts to oscillate with a period of approximately 24 hr. This oscillatory nature of the proteins involved in this network necessitates that they are intrinsically unstable, with a short half-life. Hence, post-translational modifications (PTMs) are important to precisely time the presence, absence, and interactions of these proteins at appropriate times of the day. Ubiquitination and deubiquitination are counter-balancing PTMs which play a key role in this regulatory process. In this review, we take a comprehensive look at the roles played by the processes of ubiquitination and deubiquitination in the clock machinery of the most commonly studied eukaryotic models of the circadian clock: plants, fungi, fruit flies, and mammals. We present the effects exerted by ubiquitinating and deubiquitinating enzymes on the stability, but also the activity, localization, and interactions of clock proteins. Overall, these PTMs have key roles in regulating not only the pace of the circadian clocks but also their response to external cues and their control of cellular functions.
Collapse
Affiliation(s)
- Shashank Bangalore Srikanta
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Laboratory of Molecular Chronobiology, Douglas Research Centre, Montréal, QC, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montréal, QC, Canada.,Department of Psychiatry, McGill University, Montréal, QC, Canada
| |
Collapse
|
18
|
Morris AR, Stanton DL, Roman D, Liu AC. Systems Level Understanding of Circadian Integration with Cell Physiology. J Mol Biol 2020; 432:3547-3564. [PMID: 32061938 DOI: 10.1016/j.jmb.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
The mammalian circadian clock regulates a wide variety of physiological and behavioral processes. In turn, its disruption is associated with sleep deficiency, metabolic syndrome, neurological and psychiatric disorders, and cancer. At the turn of the century, the circadian clock was determined to be regulated by a transcriptional negative feedback mechanism composed of a dozen core clock genes. More recently, large-scale genomic studies have expanded the clock into a complex network composed of thousands of gene outputs and inputs. A major task of circadian research is to utilize systems biological approaches to uncover the governing principles underlying cellular oscillatory behavior and advance understanding of biological functions at the genomic level with spatiotemporal resolution. This review focuses on the genes and pathways that provide inputs to the circadian clock. Several emerging examples include AMP-activated protein kinase AMPK, nutrient/energy sensor mTOR, NAD+-dependent deacetylase SIRT1, hypoxia-inducible factor HIF1α, oxidative stress-inducible factor NRF2, and the proinflammatory factor NF-κB. Among others that continue to be revealed, these input pathways reflect the extensive interplay between the clock and cell physiology through the regulation of core clock genes and proteins. While the scope of this crosstalk is well-recognized, precise molecular links are scarce, and the underlying regulatory mechanisms are not well understood. Future research must leverage genetic and genomic tools and technologies, network analysis, and computational modeling to characterize additional modifiers and input pathways. This systems-based framework promises to advance understanding of the circadian timekeeping system and may enable the enhancement of circadian functions through related input pathways.
Collapse
Affiliation(s)
- Andrew R Morris
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Daniel L Stanton
- Department of Animal Sciences, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, United States of America
| | - Destino Roman
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America.
| |
Collapse
|
19
|
Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2019; 21:67-84. [PMID: 31768006 DOI: 10.1038/s41580-019-0179-2] [Citation(s) in RCA: 728] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.
Collapse
|
20
|
Mekbib T, Suen TC, Rollins-Hairston A, DeBruyne JP. The E3 Ligases Spsb1 and Spsb4 Regulate RevErbα Degradation and Circadian Period. J Biol Rhythms 2019; 34:610-621. [PMID: 31607207 DOI: 10.1177/0748730419878036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The time-dependent degradation of core circadian clock proteins is essential for the proper functioning of circadian timekeeping mechanisms that drive daily rhythms in gene expression and, ultimately, an organism's physiology. The ubiquitin proteasome system plays a critical role in regulating the stability of most proteins, including the core clock components. Our laboratory developed a cell-based functional screen to identify ubiquitin ligases that degrade any protein of interest and have started screening for those ligases that degrade circadian clock proteins. This screen identified Spsb4 as a putative novel E3 ligase for RevErbα. In this article, we further investigate the role of Spsb4 and its paralogs in RevErbα stability and circadian rhythmicity. Our results indicate that the paralogs Spsb1 and Spsb4, but not Spsb2 and Spsb3, can interact with and facilitate RevErbα ubiquitination and degradation and regulate circadian clock periodicity.
Collapse
Affiliation(s)
- Tsedey Mekbib
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| | - Ting-Chung Suen
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| | - Aisha Rollins-Hairston
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| | - Jason P DeBruyne
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
21
|
Liu J, Zou X, Gotoh T, Brown AM, Jiang L, Wisdom EL, Kim JK, Finkielstein CV. Distinct control of PERIOD2 degradation and circadian rhythms by the oncoprotein and ubiquitin ligase MDM2. Sci Signal 2018; 11:11/556/eaau0715. [PMID: 30425162 DOI: 10.1126/scisignal.aau0715] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circadian clock relies on posttranslational modifications to set the timing for degradation of core regulatory components, which drives clock progression. Ubiquitin-modifying enzymes that target clock components for degradation mainly recognize phosphorylated substrates. Degradation of the circadian clock component PERIOD 2 (PER2) is mediated by its phospho-specific recognition by β-transducin repeat-containing proteins (β-TrCPs), which are F-box-containing proteins that function as substrate recognition subunits of the SCFβ-TRCP ubiquitin ligase complex. However, this mode of regulating PER2 stability falls short of explaining the persistent oscillatory phenotypes reported in biological systems lacking functional elements of the phospho-dependent PER2 degradation machinery. We identified PER2 as a previously uncharacterized substrate for the ubiquitin ligase mouse double minute 2 homolog (MDM2) and found that MDM2 targeted PER2 for degradation in a manner independent of PER2 phosphorylation. Deregulation of MDM2 plays a major role in oncogenesis by contributing to the accumulation of genomic and epigenomic alterations that favor tumor development. MDM2-mediated PER2 turnover was important for defining the circadian period length in mammalian cells, a finding that emphasizes the connection between the circadian clock and cancer. Our results not only broaden the range of specific substrates of MDM2 beyond the cell cycle to include circadian components but also identify a previously unknown regulator of the clock as a druggable node that is often found to be deregulated during tumorigenesis.
Collapse
Affiliation(s)
- JingJing Liu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Xianlin Zou
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Anne M Brown
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA, USA
| | - Liang Jiang
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Esther L Wisdom
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Canaple L, Gréchez-Cassiau A, Delaunay F, Dkhissi-Benyahya O, Samarut J. Maternal eating behavior is a major synchronizer of fetal and postnatal peripheral clocks in mice. Cell Mol Life Sci 2018; 75:3991-4005. [PMID: 29804258 PMCID: PMC11105238 DOI: 10.1007/s00018-018-2845-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Most living organisms show circadian rhythms in physiology and behavior. These oscillations are generated by endogenous circadian clocks, present in virtually all cells where they control key biological processes. To study peripheral clocks in vivo, we developed an original model, the Rev-Luc mouse to follow noninvasively and longitudinally Rev-Luc oscillations in peripheral clocks using in vivo bioluminescence imaging. We found in vitro and in vivo a robust diurnal rhythm of Rev-Luc, mainly in liver, intestine, kidney and adipose tissues. We further confirmed in vivo that Rev-Luc peripheral tissues are food-entrainable oscillators, not affected by age or sex. These data strongly support the relevance of the Rev-Luc model for circadian studies, especially to investigate in vivo the establishment and the entrainment of the rhythm throughout ontogenesis. We then showed that Rev-Luc expression develops dynamically and gradually, both in amplitude and in phase, during fetal and postnatal development. We also demonstrate for the first time that the immature peripheral circadian system of offspring in utero is mainly entrained by maternal cues from feeding regimen. The prenatal entrainment will also differentially determine the Rev-Luc expression in pups before weaning underlining the importance of the maternal chrononutrition on the circadian system entrainment of the offspring.
Collapse
Affiliation(s)
- Laurence Canaple
- Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon; CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, 69364, Lyon, France.
| | - Aline Gréchez-Cassiau
- Université Côte d'Azur, CNRS UMR7277, INSERM U1091, Institut de Biologie Valrose, Bâtiment de Sciences Naturelles, 28 Avenue Valrose, 06108, Nice Cedex 2, France
| | - Franck Delaunay
- Université Côte d'Azur, CNRS UMR7277, INSERM U1091, Institut de Biologie Valrose, Bâtiment de Sciences Naturelles, 28 Avenue Valrose, 06108, Nice Cedex 2, France
| | - Ouria Dkhissi-Benyahya
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Jacques Samarut
- Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon; CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, 69364, Lyon, France.
| |
Collapse
|
23
|
Chen S, Yang J, Yang L, Zhang Y, Zhou L, Liu Q, Duan C, Mieres CA, Zhou G, Xu G. Ubiquitin ligase
TRAF
2 attenuates the transcriptional activity of the core clock protein
BMAL
1 and affects the maximal
Per1
mRNA
level of the circadian clock in cells. FEBS J 2018; 285:2987-3001. [DOI: 10.1111/febs.14595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Lu Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Chunyan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Crystal A. Mieres
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - Guanghai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
- Institute of Cardiovascular Endocrinology Key Laboratory of Atherosclerosis in Universities of Shandong Taishan Medical University Tai'an Shandong China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| |
Collapse
|
24
|
Zhang Y, Duan C, Yang J, Chen S, Liu Q, Zhou L, Huang Z, Xu Y, Xu G. Deubiquitinating enzyme USP9X regulates cellular clock function by modulating the ubiquitination and degradation of a core circadian protein BMAL1. Biochem J 2018; 475:1507-1522. [PMID: 29626158 DOI: 10.1042/bcj20180005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/12/2023]
Abstract
Living organisms on the earth maintain a roughly 24 h circadian rhythm, which is regulated by circadian clock genes and their protein products. Post-translational modifications of core clock proteins could affect the circadian behavior. Although ubiquitination of core clock proteins was studied extensively, the reverse process, deubiquitination, has only begun to unfold and the role of this regulation on circadian function is not completely understood. Here, we use affinity purification and mass spectrometry analysis to identify probable ubiquitin carboxyl-terminal hydrolase FAF-X (USP9X) as an interacting protein of the core clock protein aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL or BMAL1). Through biochemical experiments, we discover that USP9X reduces BMAL1 ubiquitination, enhances its stability, and increases its protein level, leading to the elevated transcriptional activity. Bioluminescence measurement reveals that USP9X knockdown decreases the amplitude of the cellular circadian rhythm but the period and phase are not affected. Our experiments find a new regulator for circadian clock at the post-translational level and demonstrate a different regulatory function for the circadian clock through the deubiquitination and the up-regulation of the core clock protein BMAL1 in the positive limb of the transcription-translation feedback loop.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chunyan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhengyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
25
|
Ohba Y, Tei H. Phosphorylation of N-terminal regions of REV-ERBs regulates their intracellular localization. Genes Cells 2018; 23:285-293. [DOI: 10.1111/gtc.12571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 01/17/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Ohba
- Graduate School of Natural Science and Technology; Kanazawa University Kakuma-machi; Kanazawa Ishikawa Japan
| | - Hajime Tei
- Graduate School of Natural Science and Technology; Kanazawa University Kakuma-machi; Kanazawa Ishikawa Japan
| |
Collapse
|
26
|
Mayeuf-Louchart A, Zecchin M, Staels B, Duez H. Circadian control of metabolism and pathological consequences of clock perturbations. Biochimie 2017; 143:42-50. [DOI: 10.1016/j.biochi.2017.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
|
27
|
Jin S, Tan B, Teng X, Meng R, Jiao X, Tian D, Xiao L, Xue H, Guo Q, Duan X, Wu Y. Diurnal Fluctuations in Plasma Hydrogen Sulfide of the Mice. Front Pharmacol 2017; 8:682. [PMID: 29056911 PMCID: PMC5635436 DOI: 10.3389/fphar.2017.00682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Circadian rhythms are essential in a myriad of physiological processes to maintain homeostasis, especially the redox homeostasis. However, little is known about whether plasma H2S exhibits the physiological diurnal variation. The present study was performed to investigate the diurnal fluctuations of plasma H2S and explore the potential mechanisms. We found that the plasma H2S of the C57BL/6J mice was significantly higher at 19 o’clock than those at 7 o’clock which was not affected by the blood-collecting sequence and the concentrations of plasma cysteine (a precursor of H2S). No significant differences in mRNA or protein expression of the CSE, CBS, or MPST were observed between 7: 00 and 19: 00. There were also no significant differences in the CSE and CBS activities, while the activities of MPST in tissues were significantly higher at 19 o’clock. After treatment with AOAA (a CBS inhibitor) or PPG (a CSE inhibitor) for 14 days, plasma H2S concentrations at 19 o’clock were still significantly higher than those at 7 o’clock, although they were both significantly decreased as compared with controls. Identical findings were also observed in CSE KO mice. We also found the plasma H2O2 concentrations were significantly higher at 19 o’clock than those at 7 o’clock. However, H2O2 concentrations were significantly decreased at 19 o’clock than those at 7 o’clock when mice were exposed to continuous light for 24 h. Meanwhile, the diurnal fluctuations of plasma H2S levels and MPST activities in tissues were disappeared. After treatment with DTT for 14 days, there was no significant difference in plasma H2O2 concentrations between 7 o’clock and 19 o’clock. Meanwhile, the diurnal fluctuations of plasma H2S levels and MPST activities in tissues were disappeared. Identical findings were also observed in SOD2+/- mice. When heart tissues were incubated with increasing concentrations of H2O2in vitro, H2O2 could dose-dependently increase the activity of MPST within a certain concentration range. In conclusion, our studies revealed that plasma H2S concentration and tissue MPST activity exhibited diurnal fluctuations. Modulated by plasma H2O2 concentration, changes of MPST activity probably led to the diurnal fluctuations of plasma H2S.
Collapse
Affiliation(s)
- Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ruoni Meng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xin Jiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xiaocui Duan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Vascular Medicine of Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
28
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system-resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|
29
|
Riede SJ, van der Vinne V, Hut RA. The flexible clock: predictive and reactive homeostasis, energy balance and the circadian regulation of sleep–wake timing. J Exp Biol 2017; 220:738-749. [DOI: 10.1242/jeb.130757] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
The Darwinian fitness of mammals living in a rhythmic environment depends on endogenous daily (circadian) rhythms in behavior and physiology. Here, we discuss the mechanisms underlying the circadian regulation of physiology and behavior in mammals. We also review recent efforts to understand circadian flexibility, such as how the phase of activity and rest is altered depending on the encountered environment. We explain why shifting activity to the day is an adaptive strategy to cope with energetic challenges and show how this can reduce thermoregulatory costs. A framework is provided to make predictions about the optimal timing of activity and rest of non-model species for a wide range of habitats. This Review illustrates how the timing of daily rhythms is reciprocally linked to energy homeostasis, and it highlights the importance of this link in understanding daily rhythms in physiology and behavior.
Collapse
Affiliation(s)
- Sjaak J. Riede
- Groningen Institute for Evolutionary Life Sciences, Chronobiology Unit, University of Groningen, Groningen 9747AG, The Netherlands
| | - Vincent van der Vinne
- Groningen Institute for Evolutionary Life Sciences, Chronobiology Unit, University of Groningen, Groningen 9747AG, The Netherlands
| | - Roelof A. Hut
- Groningen Institute for Evolutionary Life Sciences, Chronobiology Unit, University of Groningen, Groningen 9747AG, The Netherlands
| |
Collapse
|
30
|
|
31
|
Zhao X, Hirota T, Han X, Cho H, Chong LW, Lamia K, Liu S, Atkins AR, Banayo E, Liddle C, Yu RT, Yates JR, Kay SA, Downes M, Evans RM. Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation. Cell 2016; 165:1644-1657. [PMID: 27238018 PMCID: PMC4912445 DOI: 10.1016/j.cell.2016.05.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 03/07/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022]
Abstract
Defects in circadian rhythm influence physiology and behavior with implications for the treatment of sleep disorders, metabolic disease, and cancer. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms underpinning amplitude is limited. Here, we show that REV-ERBα, a core inhibitory component of clock transcription, is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7. By relieving REV-ERBα-dependent repression, FBXW7 provides an unrecognized mechanism for enhancing the amplitude of clock gene transcription. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of REV-ERBα is necessary for FBXW7 recognition. Moreover, targeted hepatic disruption of FBXW7 alters circadian expression of core clock genes and perturbs whole-body lipid and glucose levels. This CDK1-FBXW7 pathway controlling REV-ERBα repression defines an unexpected molecular mechanism for re-engaging the positive transcriptional arm of the clock, as well as a potential route to manipulate clock amplitude via small molecule CDK1 inhibition.
Collapse
Affiliation(s)
- Xuan Zhao
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; PRESTO, Japan Science and Technology Agency, Nagoya 464-8601, Japan
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Han Cho
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ling-Wa Chong
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katja Lamia
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sihao Liu
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ester Banayo
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steve A Kay
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Choudhary MK, Nomura Y, Shi H, Nakagami H, Somers DE. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE. FRONTIERS IN PLANT SCIENCE 2016; 7:1007. [PMID: 27462335 PMCID: PMC4940426 DOI: 10.3389/fpls.2016.01007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Clock-generated biological rhythms provide an adaptive advantage to an organism, resulting in increased fitness and survival. To better elucidate the plant response to the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under constant light. Using large-scale two-dimensional difference in gel electrophoresis (2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly resolved quantified and profiled across a circadian time series. A comparison between phenol-extracted samples and RuBisCO-depleted extracts identified 71 and 40 rhythmically-expressed proteins, respectively, and between 30 and 40% of these derive from non-rhythmic transcripts. These included proteins influencing transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones, and stress-mediated responses. The phasing of maximum expression for the cyclic proteins was similar for both datasets, with a nearly even distribution of peak phases across the time series. STRING clustering analysis identified two interaction networks with a notable number of oscillating proteins: plastid-based and cytosolic chaperones and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor, PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence that intimately ties ABA signaling to the circadian system. Taken together, this study provides new insights into the importance of post-transcriptional circadian control of plant physiology and metabolism.
Collapse
Affiliation(s)
- Mani K. Choudhary
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and TechnologyPohang, South Korea
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Hua Shi
- Department of Molecular Genetics, Ohio State UniversityColumbus, OH, USA
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - David E. Somers
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and TechnologyPohang, South Korea
- Department of Molecular Genetics, Ohio State UniversityColumbus, OH, USA
- *Correspondence: David E. Somers
| |
Collapse
|