1
|
Pietri JE, Laroche M. Invasive indoor pests under the microbiological lens: bacterial and viral diversity from local to global scales in bed bugs and cockroaches. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101344. [PMID: 39929276 PMCID: PMC12066223 DOI: 10.1016/j.cois.2025.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 02/19/2025]
Abstract
Essentially, all animal life interacts closely with an array of microorganisms, such as bacteria and viruses, which can have both beneficial and harmful effects. The advancement of high-throughput molecular biology approaches (DNA and RNA sequencing) has led to an ongoing boom in investigating the composition and functions of microbial communities (microbiota) associated with a wide range of animal taxa, including insects. As this area of investigation has blossomed, such research on indoor urban insect pests has lagged more widely studied species. However, over the last several years, significant strides have been made in understanding the diversity and biological roles of microbes associated with such insects. This review highlights and discusses recent key findings, focusing on bed bugs and cockroaches, two of the most prolific globally invasive indoor insect pests. Advances in this area of research have long-term implications for public health and for the development of novel pest control approaches.
Collapse
Affiliation(s)
- Jose E Pietri
- Purdue University, Department of Entomology, Center for Urban and Industrial Pest Management, West Lafayette, IN, USA; Purdue University, Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA; Purdue University, Department of Biological Sciences, West Lafayette, IN, USA; University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA.
| | - Maureen Laroche
- University of Texas Medical Branch, Department of Microbiology & Immunology, Galveston, TX, USA; University of Texas Medical Branch, Department of Global Health, Galveston, TX, USA; Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| |
Collapse
|
2
|
Kaltenpoth M, Flórez LV, Vigneron A, Dirksen P, Engl T. Origin and function of beneficial bacterial symbioses in insects. Nat Rev Microbiol 2025:10.1038/s41579-025-01164-z. [PMID: 40148601 DOI: 10.1038/s41579-025-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Beneficial bacterial symbionts are widespread in insects and affect the fitness of their hosts by contributing to nutrition, digestion, detoxification, communication or protection from abiotic stressors or natural enemies. Decades of research have formed our understanding of the identity, localization and functional benefits of insect symbionts, and the increasing availability of genome sequences spanning a diversity of pathogens and beneficial bacteria now enables comparative approaches of their metabolic features and their phylogenetic affiliations, shedding new light on the origin and function of beneficial symbioses in insects. In this Review, we explore the symbionts' metabolic traits that can provide benefits to insect hosts and discuss the evolutionary paths to the formation of host-beneficial symbiotic associations. Phylogenetic analyses and molecular studies reveal that extracellular symbioses colonizing cuticular organs or the digestive tract evolved from a broad diversity of bacterial partners, whereas intracellular beneficial symbionts appear to be restricted to a limited number of lineages within the Gram-negative bacteria and probably originated from parasitic ancestors. To unravel the general principles underlying host-symbiont interactions and recapitulate the early evolutionary steps leading towards beneficial symbioses, future efforts should aim to establish more symbiotic systems that are amenable to genetic manipulation and experimental evolution.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany.
| | - Laura V Flórez
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aurélien Vigneron
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Hu J, Bi R, Luo Y, Wu K, Jin S, Liu Z, Jia Y, Mao CX. The gut microbiome promotes locomotion of Drosophila larvae via octopamine signaling. INSECT SCIENCE 2025; 32:277-289. [PMID: 38643372 DOI: 10.1111/1744-7917.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
The gut microbiome is a key partner of animals, influencing various aspects of their physiology and behaviors. Among the diverse behaviors regulated by the gut microbiome, locomotion is vital for survival and reproduction, although the underlying mechanisms remain unclear. Here, we reveal that the gut microbiome modulates the locomotor behavior of Drosophila larvae via a specific neuronal type in the brain. The crawling speed of germ-free (GF) larvae was significantly reduced compared to the conventionally reared larvae, while feeding and excretion behaviors were unaffected. Recolonization with Acetobacter and Lactobacillus can fully and partially rescue the locomotor defects in GF larvae, respectively, probably due to the highest abundance of Acetobacter as a symbiotic bacterium in the larval gut, followed by Lactobacillus. Moreover, the gut microbiome promoted larval locomotion, not by nutrition, but rather by enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA). Overexpression of Tdc2 rescued locomotion ability in GF larvae. These findings together demonstrate that the gut microbiome specifically modulates larval locomotor behavior through the OA signaling pathway, revealing a new mechanism underlying larval locomotion regulated by the gut microbiome.
Collapse
Affiliation(s)
- Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ran Bi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuxuan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Kaihong Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shan Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yicong Jia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
4
|
Li X, Wang Z, Chen J, Teng H, Yang X, Ye L, Jiang Y, Chen H, Cheng D, Lu Y. Molecular module for glucose production influences sex pheromone synthesis in Bactrocera dorsalis. Cell Rep 2024; 43:115030. [PMID: 39616614 DOI: 10.1016/j.celrep.2024.115030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/13/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Some insects have evolved beneficial relationships with intestinal microbes for sex pheromone production to communicate with conspecifics effectively. However, it is not clear whether the sex pheromone synthesis activity of intestinal microbes can be controlled by the host, and the molecular mechanisms need to be further unraveled. In this study, we find that rectal gland Bacillus species of male Bactrocera dorsalis specifically produce sex pheromones in the evening, which is significantly associated with glucose levels. In vitro Bacillus culture assays show that glucose levels significantly influence the amount of sex pheromone produced. Comparative rectal gland transcriptome analysis reveals that the expressions of the alpha-galactosidase gene (GLA), a Bactrocera dorsalis transcription factor (BDTF), and a pigment-dispersing factor (PDF) are responsible for producing glucose. Our findings reveal that the PDF-BDTF-GLA module influences the intestinal-microbe-produced sex pheromone by regulating glucose levels and advance our understanding of interactions between insects and their intestinal microbes.
Collapse
Affiliation(s)
- Xinlian Li
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Zhenghao Wang
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Jingxiang Chen
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Hebo Teng
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Xiaorui Yang
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Long Ye
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Yanling Jiang
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Huimin Chen
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
5
|
Turner M, Van Hulzen L, Guse K, Agany D, Pietri JE. The gut microbiota confers resistance against Salmonella Typhimurium in cockroaches by modulating innate immunity. iScience 2024; 27:111293. [PMID: 39628558 PMCID: PMC11612784 DOI: 10.1016/j.isci.2024.111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Cockroaches exhibit unexplained intra- and interpopulation variation in susceptibility to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Here, we show that the gut microbiota has a protective effect against colonization by ingested S. Typhimurium in cockroaches. We further examine two potential mechanisms for this effect, showing that commensal bacteria present in the gut do not compete with S. Typhimurium during growth in cockroach feces, but rather prime expression of host antimicrobial peptide genes that suppress S. Typhimurium infection. Lastly, we determine that neither absolute abundance of the microbiota nor its overall diversity is linked to infection susceptibility. Instead, we identify several minority bacterial taxa that exhibit interindividual variation in abundance as key indicators of infection susceptibility among genetically similar individuals. These findings illuminate the potential of cockroaches as an invertebrate model for interspecies microbial interactions and provide insight into vector-borne Salmonella transmission, suggesting that the microbiota of cockroaches could be targeted to reduce pathogen transmission.
Collapse
Affiliation(s)
- Matthew Turner
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Landen Van Hulzen
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Kylene Guse
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Diing Agany
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
| | - Jose E. Pietri
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA
- Purdue University, Department of Entomology, Center for Urban and Industrial Pest Management, West Lafayette, IN, USA
- Purdue University, Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
- Purdue University, Department of Biological Sciences, West Lafayette, IN, USA
| |
Collapse
|
6
|
Delamotte P, Montagne J. Dietary Lipids and Their Metabolism in the Midgut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39565560 DOI: 10.1007/5584_2024_835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Animals use dietary lipids to sustain their growth and survival. Insects can synthesize fatty acids (FAs) and are autotroph for a number of lipids, but auxotroph for specific lipids classes (e.g. sterols, polyunsaturated FAs). Once ingested, lipids are hydrolysed in the intestinal lumen and taken up into intestinal cells within specific regions of the insect digestive tract. These lipids can be either stored in the intestinal cells or exported through the haemolymph circulation to specific organs. In this chapter, we describe the various lipids provided by insect diets, their extracellular hydrolysis in the gut lumen and their intake and metabolic fate in the intestinal cells. This chapter emphasizes the critical role of the digestive tract and its regionalization in processing dietary lipids prior to their transfer to the requiring tissues.
Collapse
Affiliation(s)
- Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Chen J, Jiang Y, Gao Z, Dai J, Jia C, Lu Y, Cheng D. The Sexual Dimorphism in Rectum and Protein Digestion Pathway Influence Sex Pheromone Synthesis in Male Bactrocera Dorsalis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407353. [PMID: 39377305 PMCID: PMC11600207 DOI: 10.1002/advs.202407353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Sexual dimorphism is a crucial aspect of mating and reproduction in many animals, yet the molecular mechanisms remain unclear. In Bactrocera dorsalis, sex pheromones trimethylpyrazine (TMP) and tetramethylpyrazine (TTMP) are specifically synthesized by Bacillus strains in the male rectum. In the female rectum, Bacillus strains are found, but TMP and TTMP are not, indicating sexually dimorphic differences in sex pheromone synthesis. Our anatomical observations and precursor measurements revealed significant differences in rectal structure and ammonium levels between sexes. In vitro and in vivo experiments reveal that ammonium is vital for sex pheromone synthesis in rectal Bacillus strains. Comparative transcriptome analysis identified ammonium-producing genes (carboxypeptidase B and peptide transporter) in the protein digestion pathway that show much higher expression in the male rectum than in the female rectum. Knocking down the expression of either carboxypeptidase B (or inhibiting enzyme activity) or peptide transporter decreases rectal ammonium levels significantly, resulting in the failure of sex pheromone synthesis in the male rectum. This study provides insights into the presence of sexual dimorphism in internal organs and their functionalities in male-specific sex pheromone synthesis and has significant implications for understanding the molecular mechanisms underlying sex pheromone synthesis by symbionts in insects.
Collapse
Affiliation(s)
- Jingxiang Chen
- Department of EntomologySouth China Agricultural UniversityGuangzhou510640China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern RegionShaoguan UniversityShaoguan512005China
| | - Yanling Jiang
- Department of EntomologySouth China Agricultural UniversityGuangzhou510640China
| | - Zijie Gao
- Department of EntomologySouth China Agricultural UniversityGuangzhou510640China
| | - Jiawang Dai
- Department of EntomologySouth China Agricultural UniversityGuangzhou510640China
| | - Chunsheng Jia
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern RegionShaoguan UniversityShaoguan512005China
| | - Yongyue Lu
- Department of EntomologySouth China Agricultural UniversityGuangzhou510640China
| | - Daifeng Cheng
- Department of EntomologySouth China Agricultural UniversityGuangzhou510640China
| |
Collapse
|
8
|
Marín-Miret J, Pérez-Cobas AE, Domínguez-Santos R, Pérez-Rocher B, Latorre A, Moya A. Adaptability of the gut microbiota of the German cockroach Blattella germanica to a periodic antibiotic treatment. Microbiol Res 2024; 287:127863. [PMID: 39106785 DOI: 10.1016/j.micres.2024.127863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
High-throughput sequencing studies have shown that diet or antimicrobial treatments impact animal gut microbiota equilibrium. However, properties related to the gut microbial ecosystem stability, such as resilience, resistance, or functional redundancy, must be better understood. To shed light on these ecological processes, we combined advanced statistical methods with 16 S rRNA gene sequencing, functional prediction, and fitness analyses in the gut microbiota of the cockroach Blattella germanica subject to three periodic pulses of the antibiotic (AB) kanamycin (n=512). We first confirmed that AB did not significantly affect cockroaches' biological fitness, and gut microbiota changes were not caused by insect physiology alterations. The sex variable was examined for the first time in this species, and no statistical differences in the gut microbiota diversity or composition were found. The comparison of the gut microbiota dynamics in control and treated populations revealed that (1) AB treatment decreases diversity and completely disrupts the co-occurrence networks between bacteria, significantly altering the gut community structure. (2) Although AB also affected the genetic composition, functional redundancy would explain a smaller effect on the functional potential than on the taxonomic composition. (3) As predicted by Taylor's law, AB generally affected the most abundant taxa to a lesser extent than the less abundant taxa. (4) Taxa follow different trends in response to ABs, highlighting "resistant taxa," which could be critical for community restoration. (5) The gut microbiota recovered faster after the three AB pulses, suggesting that gut microbiota adapts to repeated treatments.
Collapse
Affiliation(s)
- Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain; Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, Valencia 46020, Spain
| | - Ana Elena Pérez-Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain
| | - Benjamí Pérez-Rocher
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain; Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, Valencia 46020, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain; Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, Valencia 46020, Spain.
| |
Collapse
|
9
|
Mitaka Y, Helms AM, Vargo EL. Identification of a colony- and dose-dependent worker aggregation pheromone in the subterranean termite Reticulitermes virginicus. Sci Rep 2024; 14:22250. [PMID: 39333323 PMCID: PMC11437058 DOI: 10.1038/s41598-024-73310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Collective behaviors of social insects are often regulated by pheromones. In subterranean termites, some workers forage for and exploit decaying wood for new food resources while forming tunnels from their nest. Colonizing new food resources requires workers to build and disinfect tunnels and chambers inside the nest and ingest decaying wood; therefore subterranean termite colonies should have mechanisms to establish and maintain groups of workers to perform these functions. Recently, an aggregation pheromone was identified in workers of the termite Reticulitermes speratus, which induces quick attraction of nestmate workers and prolonged aggregation to the site of attraction. In this study, we extended this work to another species of Reticulitermes and identified a worker aggregation pheromone in the termite R. virginicus. GC-MS analysis and bioassays demonstrated that this pheromone consists of 3-octanone, 3-octanol, and palmitic acid and shows a colony-specific, dose-dependent attractant response but not an arrestant response. Furthermore, these pheromone components were most likely emitted from the surface of the body. This suggests that aggregation pheromone composition and function differ significantly among termite species, even within the same genus. This study advances our understanding of the regulatory mechanisms of termite aggregation behavior.
Collapse
Affiliation(s)
- Yuki Mitaka
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
- Applied Entomology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
10
|
Li K, Li WJ, Liang K, Li FF, Qin GQ, Liu JH, Zhang YL, Li XJ. Gut microorganisms of Locusta migratoria in various life stages and its possible influence on cellulose digestibility. mSystems 2024; 9:e0060024. [PMID: 38888356 PMCID: PMC11264664 DOI: 10.1128/msystems.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Locusta migratoria is an important phytophagous pest, and its gut microbial communities play an important role in cellulose degradation. In this study, the gut microbial and cellulose digestibility dynamics of Locusta migratoria were jointly analyzed using high-throughput sequencing and anthrone colorimetry. The results showed that the gut microbial diversity and cellulose digestibility across life stages were dynamically changing. The species richness of gut bacteria was significantly higher in eggs than in larvae and imago, the species richness and cellulose digestibility of gut bacteria were significantly higher in early larvae (first and second instars) than in late larvae (third to fifth instars), and the diversity of gut bacteria and cellulose digestibility were significantly higher in imago than in late larvae. There is a correlation between the dynamics of gut bacterial communities and cellulose digestibility. Enterobacter, Lactococcus, and Pseudomonas are the most abundant genera throughout all life stages. Six strains of highly efficient cellulolytic bacteria were screened, which were dominant gut bacteria. Carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) experiments revealed that Pseudomonas had the highest cellulase enzyme activity. This study provides a new way for the screening of cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors. IMPORTANCE Cellulose is the most abundant and cheapest renewable resource in nature, but its degradation is difficult, so finding efficient cellulose degradation methods is an urgent challenge. Locusta migratoria is a large group of agricultural pests, and the large number of microorganisms that inhabit their intestinal tracts play an important role in cellulose degradation. We analyzed the dynamics of Locusta migratoria gut microbial communities and cellulose digestibility using a combination of high-throughput sequencing technology and anthrone colorimetry. The results revealed that the gut microbial diversity and cellulose digestibility were dynamically changed at different life stages. In addition, we explored the intestinal bacterial community of Locusta migratoria across life stages and its correlation with cellulose digestibility. The dominant bacterial genera at different life stages of Locusta migratoria were uncovered and their carboxymethyl cellulase activity (CMCA) and filter paper activity (FPA) were determined. This study provides a new avenue for screening cellulolytic bacteria and lays the foundation for developing insects with significant biomass into cellulose-degrading bioreactors.
Collapse
Affiliation(s)
- Kai Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Wen-Jing Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Ke Liang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Fei-Fei Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guo-Qing Qin
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jia-Hao Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Yu-Long Zhang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xin-Jiang Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
11
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
12
|
Huang X, Li Q, Xu Y, Li A, Wang S, Chen Y, Zhang C, Zhang X, Wang H, Lv C, Sun B, Li S, Kang L, Chen B. A neural m 6A pathway regulates behavioral aggregation in migratory locusts. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1242-1254. [PMID: 38478296 DOI: 10.1007/s11427-023-2476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/07/2023] [Indexed: 06/07/2024]
Abstract
RNA N6-methyladenosine (m6A), as the most abundant modification of messenger RNA, can modulate insect behaviors, but its specific roles in aggregation behaviors remain unexplored. Here, we conducted a comprehensive molecular and physiological characterization of the individual components of the methyltransferase and demethylase in the migratory locust Locusta migratoria. Our results demonstrated that METTL3, METTL14 and ALKBH5 were dominantly expressed in the brain and exhibited remarkable responses to crowding or isolation. The individual knockdown of methyltransferases (i.e., METTL3 and METTL14) promoted locust movement and conspecific attraction, whereas ALKBH5 knockdown induced a behavioral shift toward the solitary phase. Furthermore, global transcriptome profiles revealed that m6A modification could regulate the orchestration of gene expression to fine tune the behavioral aggregation of locusts. In summary, our in vivo characterization of the m6A functions in migratory locusts clearly demonstrated the crucial roles of the m6A pathway in effectively modulating aggregation behaviors.
Collapse
Affiliation(s)
- Xianliang Huang
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Qing Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanan Xu
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ang Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanzheng Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yusheng Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunrui Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cong Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baofa Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaoqin Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Le Kang
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Chen
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
13
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
14
|
Guse K, Pietri JE. Endosymbiont and gut bacterial communities of the brown-banded cockroach, Supella longipalpa. PeerJ 2024; 12:e17095. [PMID: 38525276 PMCID: PMC10959106 DOI: 10.7717/peerj.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
The brown-banded cockroach (Supella longipalpa) is a widespread nuisance and public health pest. Like the German cockroach (Blattella germanica), this species is adapted to the indoor biome and completes the entirety of its life cycle in human-built structures. Recently, understanding the contributions of commensal and symbiotic microbes to the biology of cockroach pests, as well as the applications of targeting these microbes for pest control, have garnered significant scientific interest. However, relative to B. germanica, the biology of S. longipalpa, including its microbial associations, is understudied. Therefore, the goal of the present study was to quantitatively examine and characterize both the endosymbiont and gut bacterial communities of S. longipalpa for the first time. To do so, bacterial 16S rRNA gene amplicon sequencing was conducted on DNA extracts from whole adult females and males, early instar nymphs, and late instar nymphs. The results demonstrate that the gut microbiome is dominated by two genera of bacteria known to have beneficial probiotic effects in other organisms, namely Lactobacillus and Akkermansia. Furthermore, our data show a significant effect of nymphal development on diversity and variation in the gut microbiome. Lastly, we reveal significant negative correlations between the two intracellular endosymbionts, Blattabacterium and Wolbachia, as well as between Blattabacterium and the gut microbiome, suggesting that Blattabacterium endosymbionts could directly or indirectly influence the composition of other bacterial populations. These findings have implications for understanding the adaptation of S. longipalpa to the indoor biome, its divergence from other indoor cockroach pest species such as B. germanica, the development of novel control approaches that target the microbiome, and fundamental insect-microbe interactions more broadly.
Collapse
Affiliation(s)
- Kylene Guse
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, United States
| | - Jose E. Pietri
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
15
|
Cao Q, Zhao Y, Koski TM, Li H, Sun J. Effects of simulated gut pH environment on bacterial composition and pheromone production of Dendroctonus valens. INSECT SCIENCE 2024; 31:225-235. [PMID: 37221982 DOI: 10.1111/1744-7917.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Bark beetles are an economically and ecologically important insect group, with aggregation behavior and thus host colonization success depends on pheromone-mediated communication. For some species, such as the major invasive forest pest in China, red turpentine beetle (Dendroctonus valens), gut microbiota participates in pheromone production by converting tree monoterpenes into pheromone products. However, how variation in gut microenvironment, such as pH, affects the gut microbial composition, and consequently pheromone production, is unknown. In this study, we fed wild caught D. valens with 3 different pH media (main host diet with natural pH of 4.7; a mildly acidic diet with pH 6 mimicking the beetle gut pH; and highly acidic diet with pH 4), and measured their effects on the gut pH, bacterial community and production of the main aggregation and anti-aggregation pheromone (verbenone). We further tested the verbenone production capacity of 2 gut bacterial isolates in different pH environments (pH 6 and 4). Compared to natural state or main host diet, feeding on less acidic diet (pH 6) diluted the acidity of the gut, whereas feeding on highly acidic diet (pH 4) enhanced it. Both changes in gut pH reduced the abundance of dominant bacterial genera, resulting in decreased verbenone production. Similarly, the highest pheromone conversion rate of the bacterial isolates was observed in pH mimicking the acidity in beetle gut. Taken together, these results indicate that changes in gut pH can affect gut microbiota composition and pheromone production, and may therefore have the potential to affect host colonization behavior.
Collapse
Affiliation(s)
- Qingjie Cao
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Yu Zhao
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
| |
Collapse
|
16
|
Erban T, Sopko B, Klimov PB, Hubert J. Mixta mediterraneensis as a novel and abundant gut symbiont of the allergen-producing domestic mite Blomia tropicalis. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:161-181. [PMID: 38227156 DOI: 10.1007/s10493-023-00875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Blomia tropicalis is an allergen-producing mite in the human environment in tropical regions. The microbiome of B. tropicalis was described using the barcode sequencing region of V4 16S rDNA and genome assemblage. Mixta mediterraneensis, previously isolated from human skin swabs, was identified as a B. tropicalis gut symbiont based on genome assembly. The microbiome contains two bacteria, Staphylococcus and M. mediterraneensis. The number of M. mediterraneensis 16S DNA copies was 106 per mite and 109 per feces in the rearing chamber based on qPCR quantification. The profile of this bacterium reached 50% of reads in the mite gut and feces. Genomic analyses revealed that the bacterium has several metabolic pathways that suggest metabolic cooperation with the mite host in vitamin and amino acid synthesis, nitrogen recycling, and antimicrobial defense. Lysozyme is present in the symbiotic bacterium but absent in the mite. The B. tropicalis microbiome contained Staphylococcus, which accelerates mite population growth. Mites can digest Staphylococcus by using specific enzymes with hydrolytic functions against bacterial cell walls (chitinases and cathepsin D), leading to endocytosis of bacteria and their degradation in lysosomes and phagosomes. Gene expression analysis of B. tropicalis indicated that phagocytosis was mediated by the PI3-kinase/Akt pathway interacting with the invasins produced by M. mediterraneensis. Moreover, the symbiont had metabolic pathways that allowed it to recycle the mite metabolic waste product guanine, known as a mite attractant. The mite host symbiont enhances mite aggregation in the feces, and the fecal-oral transmission route is excepted.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Pavel B Klimov
- Purdue University, Lilly Hall of Life Sciences, G-225, 915 W State St, West Lafayette, IN, 47907, USA
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia.
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6 - Suchdol, Czechia.
| |
Collapse
|
17
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
18
|
Boné E, González-Audino P, Sfara V. The Response of Susceptible and Pyrethroid-Resistant Blattella germanica (Dyctioptera: Blattellidae) to Shelter-Associated Cues. NEOTROPICAL ENTOMOLOGY 2023; 52:848-859. [PMID: 37552458 DOI: 10.1007/s13744-023-01071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
In this work, it was studied the role of faeces in the location and permanence in a shelter in susceptible and pyrethroid-resistant individuals of Blattella germanica (Linnaeus 1767). Additionally, the effect of different concentrations of palmitic acid on the modulation of these behaviours was tested. A shelter constituted by a square cardboard structure was offered to susceptible as well as to resistant specimens. The shelter bases were treated with faecal extracts obtained from susceptible or resistant cockroaches, or with solutions of palmitic acid. The behaviour of susceptible as well as resistant specimens was analysed using infrared videography software. Susceptible's faecal extract attracted both specimens since the time spent by cockroaches to locate the treated shelters was lower, whereas the faecal extract from resistant insects did not elicit any effect on both strains. Faecal extracts showed an arrestant effect on both strains, suggested by the time spent inside the shelter that was significantly higher in their presence. On the other hand, treatment with palmitic acid produced an attractant or a repellent effect depending on the concentration and strain. The tested lower concentration was attractant to susceptible insects, but did not produce any effect on resistant ones. In addition, the higher concentrations did not produce any effect on susceptible individuals, but resulted repellent for resistant ones. Palmitic acid did not produce an arrestant effect on the strains as there was not an increase in time spent inside the shelter in the presence of this substance. An increase in the number of visits to the shelter and to the periphery was also observed in shelters treated with the faecal extract and with the lower concentration of palmitic acid. These results show that compounds of the susceptible faeces were attractant to cockroaches of both strains, while faecal extracts from resistant insects were not. Moreover, a dual effect of palmitic acid was observed, being attractant at low concentrations and repellent as concentration increased. Additionally, a difference in the concentration threshold at which the effect of this substance changes was observed between strains.
Collapse
Affiliation(s)
- Emiliano Boné
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat Y Sostenibilidad, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola González-Audino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Buenos Aires, Argentina
| | - Valeria Sfara
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat Y Sostenibilidad, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
19
|
Guo X, He H, Sun J, Kang L. Plasticity of aggregation pheromones in insects. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101098. [PMID: 37541387 DOI: 10.1016/j.cois.2023.101098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Pheromone plasticity is widely observed in insects and enhances their survival, adaptation, and reproductive success. Aggregation pheromones, which cause notable individual aggregation and consequently impact agriculture and human life, are renowned for their special function. Here, we present a review of research progress regarding pheromone plasticity in three typical aggregative insects: locusts, bark beetles, and cockroaches. These insects are major pest species with considerable impacts on the social economy and public health. Numerous studies have demonstrated the plasticity of aggregation pheromones in different populations of these insect species. Although pheromone chemicals and compositions vary across the three groups, the plasticity of aggregation pheromones is significantly impacted by population density, location, food resources, and gut symbiotic microorganisms, indicating the complexity of pheromone plasticity regulated by multiple factors. Finally, we discuss the potential application of pheromone plasticity in basic research and pest management.
Collapse
Affiliation(s)
- Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Helen He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- College of Life Science, Hebei University, Baoding, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China; College of Life Science, Hebei University, Baoding, China.
| |
Collapse
|
20
|
Cazzaniga M, Domínguez-Santos R, Marín-Miret J, Gil R, Latorre A, García-Ferris C. Exploring Gut Microbial Dynamics and Symbiotic Interaction in Blattella germanica Using Rifampicin. BIOLOGY 2023; 12:955. [PMID: 37508385 PMCID: PMC10376618 DOI: 10.3390/biology12070955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Blattella germanica harbours two cohabiting symbiotic systems: an obligate endosymbiont, Blattabacterium, located inside bacteriocytes and vertically transmitted, which is key in nitrogen metabolism, and abundant and complex gut microbiota acquired horizontally (mainly by coprophagy) that must play an important role in host physiology. In this work, we use rifampicin treatment to deepen the knowledge on the relationship between the host and the two systems. First, we analysed changes in microbiota composition in response to the presence and removal of the antibiotic with and without faeces in one generation. We found that, independently of faeces supply, rifampicin-sensitive bacteria are strongly affected at four days of treatment, and most taxa recover after treatment, although some did not reach control levels. Second, we tried to generate an aposymbiotic population, but individuals that reached the second generation were severely affected and no third generation was possible. Finally, we established a mixed population with quasi-aposymbiotic and control nymphs sharing an environment in a blind experiment. The analysis of the two symbiotic systems in each individual after reaching the adult stage revealed that endosymbiont's load does not affect the composition of the hindgut microbiota, suggesting that there is no interaction between the two symbiotic systems in Blattella germanica.
Collapse
Affiliation(s)
- Monica Cazzaniga
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
| | - Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, 46980 Paterna, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
21
|
Li H, Yu Y, Zhang J, Wang Y, Zhang L, Zhai J, Zhang Y. Gut microbiota influences feeding behavior via changes in olfactory receptor gene expression in Colorado potato beetles. Front Microbiol 2023; 14:1197700. [PMID: 37455752 PMCID: PMC10338844 DOI: 10.3389/fmicb.2023.1197700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
The Colorado potato beetle (CPB) is an internationally recognized plant quarantine pest that causes serious losses to potato agricultural production. The gut microbiota plays an important role in its growth and development, and the olfactory system plays an important role in insect feeding behavior. The gut microbiota is known to be capable of inducing changes in the olfactory systems of insects. However, the way these associated gut microbes influence the feeding-related behaviors of CPBs remains unclear. To explore the relationship between them, fresh potato leaves immersed in a mixture of five antibiotics (tetracycline, penicillin, ofloxacin, ciprofloxacin, and ampicillin) at specific concentrations for 1 h were fed to adult CPBs to reduce the abundance of gut microbes. We found that the feeding behavior of CPBs was significantly affected by the gut microbiota and that Pseudomonas was significantly higher in abundance in the control group than in the antibiotic group. We then used transcriptome sequencing to explore the differences in olfactory receptor genes in the heads of non-treatment and antibiotic-fed CPBs. Through Illumina Hiseq™ sequencing and screening of differential genes, we found that the olfactory receptor gene LdecOR9 was significantly upregulated and LdecOR17 was significantly downregulated after antibiotic feeding. A real-time polymerase chain reaction was used to verify the changes in olfactory receptor gene expression in the non-treatment groups and antibiotic-treated groups. The feeding behavior was partially rescued after CPBs were re-fed with intestinal bacteria. These results indicate that a certain amount of gut microbiota can result in the loss of the olfactory discrimination ability of CPBs to host plants. In summary, this study investigated the relationship between gut microbiota and olfactory genes, providing a reference for research on microbial control.
Collapse
Affiliation(s)
- Hongwei Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
- CAIQ Center for Biosafety in Sanya, Sanya, China
| | - Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Jian Zhang
- Technology Center of Suifenhe Customs District, Mudanjiang, China
| | | | - Liu Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junfeng Zhai
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yongjiang Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
22
|
Mond M, Pietri JE. Horizontal transmission of Salmonella Typhimurium among German cockroaches and its possible mechanisms. Ecol Evol 2023; 13:e10070. [PMID: 37181208 PMCID: PMC10166671 DOI: 10.1002/ece3.10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
German cockroaches (Blattella germanica) can be both mechanical and biological (amplifying) vectors of enteric pathogens, including Salmonella enterica serovar Typhimurium (S. Typhimurium), which they acquire by feeding upon contaminated substances. Blattella germanica is also a gregarious species that shelters in groups and partakes in unique feeding behaviors such as conspecific coprophagy, necrophagy, and emetophagy. These properties create an interphase for potential horizontal transmission of pathogens among cockroach populations through the fecal-oral route, which could in turn enhance transmission to humans and other animals. Here, we performed a series of experiments to determine: (1) whether horizontal transmission of S. Typhimurium infection takes place in B. germanica, (2) the prevalence of the phenomenon, and (3) the route(s) through which it may occur. We reveal that true horizontal transmission of S. Typhimurium occurs among B. germanica. That is, uninfected cockroaches acquire infection of the gut when co-housed with orally infected conspecifics, albeit at low frequency. Furthermore, we provide definitive evidence that coprophagy and necrophagy are routes of transmission but could not exclude sharing of food or water as contributing routes. On the contrary, transmission by emetophagy appears less likely as oral regurgitates from infected cockroaches contained S. Typhimurium for less than one day after ingesting the bacteria. Together, our data enhance current understanding of the ecology of vector-borne S. Typhimurium transmission by cockroaches, implicating conspecific horizontal transmission as a phenomenon that contributes to maintaining infected cockroach populations independently of contact with primary sources of the pathogen. Although the relative importance of horizontal transmission of pathogens in cockroaches in the field remains to be determined, these results also highlight the important role that food and water sources in the local environment may play in cockroach-borne pathogen transmission and emphasize the importance of sanitation for not only abating infestations but also mitigating pathogen transmission.
Collapse
Affiliation(s)
- Madison Mond
- Division of Basic Biomedical Sciences, Sanford School of MedicineUniversity of South DakotaVermillionSouth DakotaUSA
| | - Jose E. Pietri
- Division of Basic Biomedical Sciences, Sanford School of MedicineUniversity of South DakotaVermillionSouth DakotaUSA
| |
Collapse
|
23
|
Cao Q, Koski TM, Li H, Zhang C, Sun J. The effect of inactivation of aldehyde dehydrogenase on pheromone production by a gut bacterium of an invasive bark beetle, Dendroctonus valens. INSECT SCIENCE 2023; 30:459-472. [PMID: 36003004 DOI: 10.1111/1744-7917.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Semiochemical-based management strategies are important for controlling bark beetles, such as invasive Red Turpentine Beetle (Denroctonus valens), the causal agent for mass mortality of pine trees (Pinus spp.) in China. It has been previously shown that the pheromone verbenone regulates the attack density of this beetle in a dose-dependent manner and that the gut bacteria of D. valens are involved in verbenone production. However, molecular functional verification of the role of gut bacteria in the pheromone production of D. valens is still lacking. To better understand the molecular function of gut bacterial verbenone production, we chose a facultative anaerobic gut bacterium (Enterobacter xiangfangensis) of D. valens based on its strong ability to convert cis-verbenol to verbenone, as shown in our previous study, and investigated its transcriptomics in the presence or absence of cis-verbenol under anaerobic conditions (simulating the anoxic environment in the beetle's gut). Based on this transcriptome analysis, aldehyde dehydrogenase (ALDH1) was identified as a putative key gene responsible for verbenone production and was knocked-down by homologous recombination to obtain a mutant E. xiangfangensis strain. Our results show that these mutants had significantly decreased the ability to convert the monoterpene precursor to verbenone compared with the wild-type bacteria, indicating that ALDH1 is primarily responsible for verbenone conversion for this bacterium species. These findings provide further mechanistic evidence of bacterially mediated pheromone production by D. valens, add new perspective for functional studies of gut bacteria in general, and may aid the development of new gene silencing-based pest management strategies.
Collapse
Affiliation(s)
- Qingjie Cao
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Tuuli-Marjaana Koski
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Chi Zhang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianghua Sun
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Axenic and gnotobiotic insect technologies in research on host-microbiota interactions. Trends Microbiol 2023:S0966-842X(23)00055-0. [PMID: 36906503 DOI: 10.1016/j.tim.2023.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Insects are one of the most important animal life forms on earth. Symbiotic microbes are closely related to the growth and development of the host insects and can affect pathogen transmission. For decades, various axenic insect-rearing systems have been developed, allowing further manipulation of symbiotic microbiota composition. Here we review the historical development of axenic rearing systems and the latest progress in using axenic and gnotobiotic approaches to study insect-microbe interactions. We also discuss the challenges of these emerging technologies, possible solutions to address these challenges, and future research directions that can contribute to a more comprehensive understanding of insect-microbe interactions.
Collapse
|
25
|
Jiang RX, Shang F, Jiang HB, Dou W, Cernava T, Wang JJ. Candidatus Liberibacter asiaticus: An important factor affecting bacterial community composition and Wolbachia titers in Asian citrus psyllid. Front Microbiol 2023; 14:1109803. [PMID: 36825089 PMCID: PMC9941154 DOI: 10.3389/fmicb.2023.1109803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Endosymbionts play crucial roles in various physiological activities within insect hosts. The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an important vector for Candidatus Liberibacter asiaticus (CLas), a fatal pathogenic bacterial agent causing the disease Huanglongbing in the citrus industry. This study combines high-throughput sequencing of 16S ribosomal RNA amplicons to explore how CLas affects the bacterial community in different color morphs (blue, gray), genders, and tissues (cuticle, gut, mycetome, Malpighian tubule, ovary, and testis) of ACP. We found that there was no significant differences in the bacterial community diversity and CLas acquired ratio between the different color morphs and genders of ACP adults. However, acquiring CLas could promote the adult bacterial community's diversity and richness more than in the uninfected condition. The presence of CLas could increase the Wolbachia and unclassified_Enterobacteriaceae proportions more than in the uninfected condition. The bacterial community diversity in the CLas infected tissues of ovary and cuticle, was lower than the uninfected condition, but the richness of all tissues was not different between the infected and uninfected conditions. CLas could also change the bacterial structure in different tissues and make the bacterial relationship network simpler than it is in an uninfected condition. Furthermore, we used quantitative real-time PCR to assess the dynamic changes of Wolbachia in CLas uninfected and infected color morphs and tissues of ACP. The results showed that Wolbachia titers were significantly higher in CLas infected adults than in uninfected adults. In different tissues, the Wolbachia titers in the testis, ovary, and Malpighian tubule were higher than their uninfected counterparts. Our results provide essential knowledge for understanding the symbionts of the ACP and how CLas affects the bacterial community of the ACP.
Collapse
Affiliation(s)
- Rui-Xu Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China,*Correspondence: Jin-Jun Wang, ✉
| |
Collapse
|
26
|
Qi X, Li H, Wang B, Meng J, Wang X, Sun W, Pan B. Identification of guanine and hematin as arrestment pheromones of poultry red mites, Dermanyssus gallinae (Acari: Dermanyssidae) and their application in mite control. Vet Parasitol 2023; 313:109843. [DOI: 10.1016/j.vetpar.2022.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
|
27
|
Qi X, Li H, Liu X, Wang B, Meng J, Liu Q, Sun W, Pan B. Location of olfactory organs and architecture of gustatory organs in the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae). ZOOL ANZ 2023. [DOI: 10.1016/j.jcz.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiol Mol Biol Rev 2022; 86:e0012621. [PMID: 36301103 PMCID: PMC9769632 DOI: 10.1128/mmbr.00126-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beneficial associations with bacteria are widespread across animals, spanning a range of symbiont localizations, transmission routes, and functions. While some of these associations have evolved into obligate relationships with permanent symbiont localization within the host, the majority require colonization of every host generation from the environment or via maternal provisions. Across the broad diversity of host species and tissue types that beneficial bacteria can colonize, there are some highly specialized strategies for establishment yet also some common patterns in the molecular basis of colonization. This review focuses on the mechanisms underlying the early stage of beneficial bacterium-invertebrate associations, from initial contact to the establishment of the symbionts in a specific location of the host's body. We first reflect on general selective pressures that can drive the transition from a free-living to a host-associated lifestyle in bacteria. We then cover bacterial molecular factors for colonization in symbioses from both model and nonmodel invertebrate systems where these have been studied, including terrestrial and aquatic host taxa. Finally, we discuss how interactions between multiple colonizing bacteria and priority effects can influence colonization. Taking the bacterial perspective, we emphasize the importance of developing new experimentally tractable systems to derive general insights into the ecological factors and molecular adaptations underlying the origin and establishment of beneficial symbioses in animals.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C. Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Diet Influences the Gut Microbial Diversity and Olfactory Preference of the German Cockroach Blattella germanica. Curr Microbiol 2022; 80:23. [PMID: 36460931 DOI: 10.1007/s00284-022-03123-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
The gut microbiota of insects has been proven to play a role in the host's nutrition and foraging. The German cockroach, Blattella germanica, is an important vector of various pathogens and causes severe allergic reactions in humans. Food bait is an effective and frequently used method of controlling this omnivorous insect. Thus, understanding the relationships among diet, gut microbiota, and olfactory preferences could be useful for optimizing this management strategy. In this study, B. germanica was exposed to different foods, i.e., high-fat diet, high-protein diet, high-starch diet, and dog food (as control). Then their gut microbial and olfactory responses were investigated. 16S rRNA gene sequencing confirmed that the gut microbiota significantly differed across the four treatments, especially in relation to bacteria associated with the metabolism and digestion of essential components. Behavioral tests and the antenna electrophysiological responses showed that insects had a greater preference for other types of diets compared with their long-term domesticated diet. Moreover, continuously providing a single-type diet could change almost all the OR genes' expression of B. germanica, especially BgORco, which was significantly repressed compared to control. These results indicate that diet can shape the gut microbiota diversity and drive the olfactory preference of B. germanica. The association between gut microbiota profiles and diets can be utilized in managing B. germanica according to their olfactory preference.
Collapse
|
30
|
Ai S, Zhang Y, Chen Y, Zhang T, Zhong G, Yi X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. INSECTS 2022; 13:1094. [PMID: 36555004 PMCID: PMC9787996 DOI: 10.3390/insects13121094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays an essential role in various insect behaviors, including habitat selection, access to food, avoidance of predators, inter-species communication, aggregation, and reproduction. The olfactory process involves integrating multiple signals from external conditions and internal physiological states, including living environments, age, physiological conditions, and circadian rhythms. As microorganisms and insects form tight interactions, the behaviors of insects are constantly challenged by versatile microorganisms via olfactory cues. To better understand the microbial influences on insect behaviors via olfactory cues, this paper summarizes three different ways in which microorganisms modulate insect behaviors. Here, we deciphered three interesting aspects of microorganisms-contributed olfaction: (1) How do volatiles emitted by microorganisms affect the behaviors of insects? (2) How do microorganisms reshape the behaviors of insects by inducing changes in the synthesis of host volatiles? (3) How do symbiotic microorganisms act on insects by modulating behaviors?
Collapse
Affiliation(s)
- Shupei Ai
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhua Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
31
|
Wolfe ZM, Scharf ME. Microbe-mediated activation of indoxacarb in German cockroach (Blattella germanica L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105234. [PMID: 36464351 DOI: 10.1016/j.pestbp.2022.105234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
The German cockroach (Blattella germanica L.) is a major urban pest worldwide and is notorious for its ability to detoxify and resist insecticides. German cockroaches have generalist feeding habits that expose them to a range of potential hazardous substances and host a wide variety of unique microbial species, which may potentially facilitate unique detoxification capabilities. Since field German cockroach populations are routinely exposed to both bait and spray insecticide treatments, we hypothesized whether these unique gut microbes might play roles in toxicological processes of the host insect. The goals of this research were to understand the metabolic processes inside the German cockroach gut after treatment with kanamycin, a broad-ranging antibiotic, and indoxacarb, an oxadiazine pro-insecticide used in cockroach bait products. In these experiments, two resistant cockroach strains were obtained from field populations in Danville, IL and compared to a susceptible laboratory strain that had no previous exposure to insecticides (J-wax). Roaches provided kanamycin-infused water had lower median mortality to indoxacarb compared to the control treatment in feeding bioassays regardless of strain, but in vial (surface contact) bioassays, only susceptible cockroaches experienced a shift in mortality apparently due to their greater susceptibility. When frass extracts of indoxacarb-fed cockroaches were analyzed, less of the active, hydrolytic metabolite DCJW (N-decarbomethoxyllated JW062) was produced relative to the parent compound indoxacarb with the antibiotic KAN. This result was further corroborated by hydrolase activity assays of whole homogenized cockroach guts. Taken together these results provide novel evidence of microbe-mediated pro-insecticide activation in the cockroach gut.
Collapse
Affiliation(s)
- Zachery M Wolfe
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Deng B, Wang G, Yuan Q, Zhu J, Xu C, Zhang X, Wang P. Enrichment and speciation changes of Cu and Cd in black soldier fly (Hermetia illucens) larval compost and their effects on larval growth performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157299. [PMID: 35842144 DOI: 10.1016/j.scitotenv.2022.157299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Municipal sludge (MS), rainwater sludge (RS), and kitchen waste (KW) were used as nutritional supplements for black soldier fly larvae (BSFL). Cd (52.3 %) was more easily assimilated in the BSFL body than Cu (34.8 %). After biotransformation in BSFL, the weak acid-soluble fraction (F1) of Cu and Cd increased by an average of 29.0 % and 42.7 %, respectively, whereas the reducible fraction (F2) of Cu and Cd decreased by an average of 13.8 % and 56.4 %, respectively, in the BSFL sand (BSFL feces and waste residues). A significant correlation (P < 0.01) was found between pH and the speciation of Cu and Cd. The abundance of Bacteroides had a positive correlation (P < 0.05) with the F1 of Cu, an extremely significant negative correlation (P < 0.001) with the F2 of Cd, and an extremely significant positive correlation with the F1 of Cd (P < 0.001). In addition, Cu and Cd exposures significantly (P < 0.01) reduced larval weight by 67.7 % and 45.3 %, respectively, pupation rate by 46.3 % and 26.5 %, respectively, and eclosion rate by 35.5 % and 33.4 %, respectively. Exposure to high concentrations of Cu and Cd also prolonged the development cycle (1-12 days) of BSFL and led to the failure of BSFL to complete their metamorphosis.
Collapse
Affiliation(s)
- Bo Deng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoqing Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junyu Zhu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Panpan Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Gut bacteria induce oviposition preference through ovipositor recognition in fruit fly. Commun Biol 2022; 5:973. [PMID: 36109578 PMCID: PMC9477868 DOI: 10.1038/s42003-022-03947-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractGut bacteria play important roles in insect life cycle, and various routes can be used by insects to effectively transmit their gut bacteria. However, it is unclear if the gut bacteria can spread by actively attracting their insect hosts, and the recognition mechanisms of host insects are poorly understood. Here, we explore chemical interactions between Bactrocera dorsalis and its gut bacterium Citrobacter sp. (CF-BD). We found that CF-BD could affect the development of host ovaries and could be vertically transmitted via host oviposition. CF-BD could attract B. dorsalis to lay eggs by producing 3-hexenyl acetate (3-HA) in fruits that were hosts of B. dorsalis. Furthermore, we found that B. dorsalis could directly recognize CF-BD in fruits with their ovipositors in which olfactory genes were expressed to bind 3-HA. This work reports an important mechanism concerning the active spread of gut bacteria in their host insects.
Collapse
|
34
|
Keesey IW. Sensory neuroecology and multimodal evolution across the genus Drosophila. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neural basis and genetic mechanisms for sensory evolution are increasingly being explored in depth across many closely related members of the Drosophila genus. This has, in part, been achieved due to the immense efforts toward adapting gene-editing technologies for additional, non-model species. Studies targeting both peripheral sensory variations, as well as interspecies divergence in coding or neural connectivity, have generated numerous, tangible examples of how and where the evolution of sensory-driven animal behavior has occurred. Here, we review and discuss studies that each aim to identify the neurobiological and genetic components of sensory system evolution to provide a comparative overview of the types of functional variations observed across both perceptual input and behavioral output. In addition, we examined the roles neuroecology and neuroevolution play in speciation events, such as courtship and intraspecies communication, as well as those aspects related to behavioral divergence in host navigation or egg-laying preferences. Through the investigation of comparative, large-scale trends and correlations across diverse, yet closely related species within this highly ecologically variable genus of flies, we can begin to describe the underlying pressures, mechanisms, and constraints that have guided sensory and nervous system evolution within the natural environments of these organisms.
Collapse
|
35
|
Yi X, Cha M. Gut Dysbiosis Has the Potential to Reduce the Sexual Attractiveness of Mouse Female. Front Microbiol 2022; 13:916766. [PMID: 35677910 PMCID: PMC9169628 DOI: 10.3389/fmicb.2022.916766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has shown that the gut microbiome has significant effects on mate preferences of insects; however, whether gut microbiota composition affects sexual attractiveness and mate preference in mammals remains largely unknown. Here, we showed that antibiotic treatment significantly restructured the gut microbiota composition of both mouse males and females. Males, regardless of antibiotic treatment, exhibited a higher propensity to interact with the control females than the antibiotic-treated females. The data clearly showed that gut microbiota dysbiosis reduced the sexual attractiveness of females to males, implying that commensal gut microbiota influences female attractiveness to males. The reduced sexual attractiveness of the antibiotic-treated females may be beneficial to discriminating males by avoiding disorders of immunity and sociability in offspring that acquire maternal gut microbiota via vertical transmission. We suggest further work should be oriented to increase our understanding of the interactions between gut microbiota dysbiosis, sexual selection, and mate choice of wild animals at the population level.
Collapse
Affiliation(s)
- Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Muha Cha
- College of Life Sciences, Qufu Normal University, Qufu, China.,Academy of Agricultural Sciences, Chifeng University, Chifeng, China
| |
Collapse
|
36
|
Vera-Ponce de Leon A, Schneider MG, Jahnes BC, Sadowski V, Camuy-Vélez LA, Duan J, Sabree ZL. Genetic drift and host-adaptive features likely underlie cladogenesis of insect-associated Lachnospiraceae. Genome Biol Evol 2022; 14:evac086. [PMID: 35679131 PMCID: PMC9210297 DOI: 10.1093/gbe/evac086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
Phylogenetic and functional group analysis of the genomes of anaerobic bacteria isolated from Periplaneta americana digestive tracts suggest that they represent novel Lachnospiraceae genera. PAL113 and PAL227 isolate genomes encoded short-chain fatty acid biosynthetic pathways and plant fiber and chitin catabolism and other carbohydrate utilization genes common in related Lachnospiraceae species, yet the presence of operons containing flagellar assembly pathways were among several distinguishing features. In general, PAL113 and PAL227 isolates encode an array of gene products that would enable them to thrive in the insect gut environment and potentially play a role in host diet processing. We hypothesize that cladogenesis of these isolates could be due to their oxygen sensitivity, reliance upon the host for dispersal and genetic drift and not necessarily as a result of an ongoing mutualism.
Collapse
Affiliation(s)
- Arturo Vera-Ponce de Leon
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Mathias G Schneider
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Benjamin C Jahnes
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Victoria Sadowski
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | | | - Jun Duan
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Zakee L Sabree
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
37
|
Bacterial Isolates Derived from Nest Soil Affect the Attraction and Digging Behavior of Workers of the Red Imported Fire Ant, Solenopsis invicta Buren. INSECTS 2022; 13:insects13050444. [PMID: 35621779 PMCID: PMC9145412 DOI: 10.3390/insects13050444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Populations of the red imported fire ant (Solenopsis invicta) are found throughout the southern United States. Because these invasive ants sting and are highly territorial, they are hazardous to people and livestock and are detrimental to native ant populations. Control of this species generally relies on insecticidal baits that attract and kill the ant. The aim of our study was to determine if bacteria cultured from S. invicta nest soils affected worker ant behaviors and whether the bacteria were attractive or repellent to the ants. Bacterial isolates cultured from nest soils were used in binary choice bioassays that tested for effects of bacterial species and bacterial concentrations on worker ant digging and residing preferences. Arthrobacter woluwensis (Actinobacteria) attracted worker ants while bacteria identified as Firmicutes generally repelled ants. This study provides a basis for the identification of new biologically derived compounds that can be used to alter behaviors of the red imported fire ant and be implemented in novel control strategies. Abstract Populations of monogyne and polygyne red imported fire ants (RIFA), Solenopsis invicta Buren, are distributed throughout the southern United States. This ant species is hazardous to farm animals and workers, damages infrastructure, and depletes native arthropod populations. Colony expansion is affected by several biotic factors, but the effects of soil microbes on ant behavior related to soil excavation within nest sites have not been investigated. Consequently, we cultured bacteria from RIFA nest soils. The effects of individual bacterial isolates and bacterial cell densities on the choice of digging site as well as digging activity of monogyne and polygyne RIFA worker ants were evaluated in two-choice bioassays. Based on phylogenetic analysis, 17 isolates were selected and tested initially at 5 × 108 cells/mL and 20 workers per assay. Firmicutes (Bacillus, Paenibacillus, Brevibacillus) repelled the ants, but Arthrobacter woluwensis strongly attracted ants. Subsequently, the six isolates having the greatest positive or negative effects on ant behavior were evaluated at a lower bacterial cell and worker ant densities. Ant responses to these bacteria generally decreased as cell densities declined to 5 × 106 cells/mL. Observations of ant behavior during a three-hour, two-choice bioassay revealed that ants generally visited both control and bacteria-treated sand prior to making a digging site choice. Our research results indicate that soil bacteria may mediate ant nest expansion or relocation and foraging tunnel construction. Identification of bacterial metabolites that affect RIFA digging behavior merits additional research because these compounds may provide a basis for novel management strategies that repel RIFA away from sensitive infrastructure or attract fire ants to insecticidal baits.
Collapse
|
38
|
Seyedalmoosavi MM, Mielenz M, Veldkamp T, Daş G, Metges CC. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: a review. J Anim Sci Biotechnol 2022; 13:31. [PMID: 35509031 PMCID: PMC9069764 DOI: 10.1186/s40104-022-00682-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, interest in the larvae of black soldier fly (BSF) (Hermetia illucens) as a sustainable protein resource for livestock feed has increased considerably. However, knowledge on the nutritional and physiological aspects of this insect, especially compared to other conventional farmed animals is scarce. This review presents a critical comparison of data on the growth potential and efficiency of the BSF larvae (BSFL) compared to conventional monogastric livestock species. Advantages of BSFL over other monogastric livestock species includes their high growth rate and their ability to convert low-grade organic waste into high-quality protein and fat-rich biomass suitable for use in animal feed. Calculations using literature data suggest that BSFL are more efficient than broilers, pigs and fish in terms of conversion of substrate protein into body mass, but less efficient than broilers and fish in utilization of substrate gross energy to gain body mass. BSFL growth efficiency varies greatly depending on the nutrient quality of their dietary substrates. This might be associated with the function of their gastrointestinal tract, including the activity of digestive enzymes, the substrate particle characteristics, and their intestinal microbial community. The conceived advantage of BSFL having an environmental footprint better than conventional livestock is only true if BSFL is produced on low-grade organic waste and its protein would directly be used for human consumption. Therefore, their potential role as a new species to better close nutrient cycles in agro-ecological systems needs to be reconsidered, and we conclude that BSFL is a complementary livestock species efficiently utilizing organic waste that cannot be utilized by other livestock. In addition, we provide comparative insight into morpho-functional aspects of the gut, characterization of digestive enzymes, gut microbiota and fiber digestion. Finally, current knowledge on the nutritional utilization and requirements of BSFL in terms of macro- and micro-nutrients is reviewed and found to be rather limited. In addition, the research methods to determine nutritional requirements of conventional livestock are not applicable for BSFL. Thus, there is a great need for research on the nutrient requirements of BSFL.
Collapse
Affiliation(s)
- Mohammad M Seyedalmoosavi
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Manfred Mielenz
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Teun Veldkamp
- Wageningen UR, Livestock Research, P.O. Box 338, 6700AH, Wageningen, Netherlands
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany.
| |
Collapse
|
39
|
Deng B, Zhu J, Wang G, Xu C, Zhang X, Wang P, Yuan Q. Effects of three major nutrient contents, compost thickness and treatment time on larval weight, process performance and residue component in black soldier fly larvae (Hermetia illucens) composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114610. [PMID: 35093757 DOI: 10.1016/j.jenvman.2022.114610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The cellulose content in vegetable waste (VW) is high and cannot be directly digested by black soldier fly larvae (BSFL). In this study, in order to treat VW using BSFL composting, kitchen waste (KW) is used as the only nutritional supplement for VW to analyze the effects of the different contents of crude protein (CP), crude fat (EE), carbohydrate (3C), compost thickness (CT), and treatment time on the larval weight (LW), survival rate (SR), dry matter reduction rate (DMR), bioconversion rate (BCR), physical and chemical properties of BSFL sand and changes in the microbial community. Our results showed that when the average 3C content increased by 40%, the average LW increased by 47.6%, and the SR, DMR, BCR, and organic matter (OM) content increased by 16.82%, 8.5%, 4.77%, and 3.86%, respectively. In contrast, when the average compost thickness increased by 5 cm, the average weight of BSFL decreased by 22.64%, while the SR of larvae, DMR, BCR, OM, and total nutrients (TN + P2O5 + K2O) decreased by 5%, 5.2%, 4.42%, 9.6%, and 0.78%, respectively. Germination test showed that BSFL sand alone could not be used as soilless culture substrate. After BSFL treatment, we found that the dominant phyla in BSFL sand were Firmicutes (95.77%), Proteobacteria (2.54%), Actinobacteria (0.74%), and Chloroflexi (0.6%). Our results indicate that BSFL composting is an effective method of treating VW, and 3C content and CT have a significant effect on BSFL composting.
Collapse
Affiliation(s)
- Bo Deng
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid‒lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Junyu Zhu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid‒lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Guoqing Wang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid‒lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid‒lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid‒lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Panpan Wang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid‒lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid‒lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| |
Collapse
|
40
|
Green SJ, Nesvorna M, Hubert J. The Negative Effects of Feces-Associated Microorganisms on the Fitness of the Stored Product Mite Tyrophagus putrescentiae. Front Microbiol 2022; 13:756286. [PMID: 35359745 PMCID: PMC8961420 DOI: 10.3389/fmicb.2022.756286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Feces have been suggested as a major source of microorganisms for recolonization of the gut of stored product mites via coprophagy. The mites can host microorganisms that decrease their fitness, but their transmission is not known. To address the role of fecal microbiota on mite fitness, we performed an experimental study in which the surfaces of mite (Tyrophagus putrescentiae) eggs were sterilized. Mites eggs (15 per experimental box) were then hatched and grown on feedstock with and without feces. These experiments were conducted with four distinct T. putrescentiae populations (5L, 5K, 5N, and 5P), and mite population density after 21 day of cultivation was used to assess mite fitness and the impact of fecal microbiota on fitness. Population density was not affected by the presence of feces in two of the cultures (5L and 5K), while significant effects of feces were observed in the other cultures (5N and 5P). Mite culture microbial communities were analyzed using cultivation-independent next-generation amplicon sequencing of microbial 16S and 18S ribosomal RNA (rRNA) genes in the fitness influenced populations (5N and 5P). Several microbial taxa were associated with fecal treatments and reduced mite fitness, including Staphylococcus and Bartonella-like bacteria, and the fungal genera Yamadazyma, Candida, and Aspergillus. Although coprophagy is the transmission route mites used to obtain beneficial gut bacteria such as Bartonella-like organisms, the results of this study demonstrate that fecal-associated microorganisms can have negative effects on some populations of T. putrescentiae fitness, and this may counteract the positive effects of gut symbiont acquisition.
Collapse
Affiliation(s)
- Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States
| | | | - Jan Hubert
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Jan Hubert, ;
| |
Collapse
|
41
|
Of Cockroaches and Symbionts: Recent Advances in the Characterization of the Relationship between Blattella germanica and Its Dual Symbiotic System. Life (Basel) 2022; 12:life12020290. [PMID: 35207577 PMCID: PMC8878154 DOI: 10.3390/life12020290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Mutualistic stable symbioses are widespread in all groups of eukaryotes, especially in insects, where symbionts have played an essential role in their evolution. Many insects live in obligate relationship with different ecto- and endosymbiotic bacteria, which are needed to maintain their hosts’ fitness in their natural environment, to the point of even relying on them for survival. The case of cockroaches (Blattodea) is paradigmatic, as both symbiotic systems coexist in the same organism in two separated compartments: an intracellular endosymbiont (Blattabacterium) inside bacteriocytes located in the fat body, and a rich and complex microbiota in the hindgut. The German cockroach Blattella germanica is a good model for the study of symbiotic interactions, as it can be maintained in the laboratory in controlled populations, allowing the perturbations of the two symbiotic systems in order to study the communication and integration of the tripartite organization of the host–endosymbiont–microbiota, and to evaluate the role of symbiotic antimicrobial peptides (AMPs) in host control over their symbionts. The importance of cockroaches as reservoirs and transmission vectors of antibiotic resistance sequences, and their putative interest to search for AMPs to deal with the problem, is also discussed.
Collapse
|
42
|
Scharf ME, Wolfe ZM, Raje KR, Fardisi M, Thimmapuram J, Bhide K, Gondhalekar AD. Transcriptome Responses to Defined Insecticide Selection Pressures in the German Cockroach (Blattella germanica L.). Front Physiol 2022; 12:816675. [PMID: 35185605 PMCID: PMC8856671 DOI: 10.3389/fphys.2021.816675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Cockroaches are important global urban pests from aesthetic and health perspectives. Insecticides represent the most cost-effective way to control cockroaches and limit their impacts on human health. However, cockroaches readily develop insecticide resistance, which can quickly limit efficacy of even the newest and most effective insecticide products. The goal of this research was to understand whole-body physiological responses in German cockroaches, at the metatranscriptome level, to defined insecticide selection pressures. We used the insecticide indoxacarb as the selecting insecticide, which is an important bait active ingredient for cockroach control. Six generations of selection with indoxacarb bait produced a strain with substantial (>20×) resistance relative to inbred control lines originating from the same parental stock. Metatranscriptome sequencing revealed 1,123 significantly differentially expressed (DE) genes in ≥two of three statistical models (81 upregulated and 1,042 downregulated; FDR P < 0.001; log2FC of ±1). Upregulated DE genes represented many detoxification enzyme families including cytochrome-P450 oxidative enzymes, hydrolases and glutathione-S-transferases. Interestingly, the majority of downregulated DE genes were from microbial and viral origins, indicating that selection for resistance is also associated with elimination of commensal, pathogenic and/or parasitic microbes. These microbial impacts could result from: (i) direct effects of indoxacarb, (ii) indirect effects of antimicrobial preservatives included in the selecting bait matrix, or (iii) selection for general stress response mechanisms that confer both xenobiotic resistance and immunity. These results provide novel physiological insights into insecticide resistance evolution and mechanisms, as well as novel insights into parallel fitness benefits associated with selection for insecticide resistance.
Collapse
Affiliation(s)
- Michael E. Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Michael E. Scharf,
| | - Zachery M. Wolfe
- Department of Entomology, Purdue University, West Lafayette, IN, United States
| | - Kapil R. Raje
- Department of Entomology, Purdue University, West Lafayette, IN, United States
| | - Mahsa Fardisi
- Department of Entomology, Purdue University, West Lafayette, IN, United States
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, IN, United States
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
43
|
Genome-wide identification and expression pattern analysis of novel chemosensory genes in the German cockroach Blattella germanica. Genomics 2022; 114:110310. [DOI: 10.1016/j.ygeno.2022.110310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
|
44
|
Lavy O, Lewin‐Epstein O, Bendett Y, Gophna U, Gefen E, Hadany L, Ayali A. Microbiome‐related aspects of locust density‐dependent phase transition. Environ Microbiol 2022; 24:507-516. [DOI: 10.1111/1462-2920.15883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Omer Lavy
- School of Zoology Tel Aviv University Tel Aviv Israel
| | - Ohad Lewin‐Epstein
- Department of Molecular Biology and Ecology of Plants Tel Aviv University Tel Aviv Israel
| | - Yonatan Bendett
- Department of Molecular Biology and Ecology of Plants Tel Aviv University Tel Aviv Israel
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research Tel Aviv University Tel Aviv Israel
| | - Eran Gefen
- Department of Biology University of Haifa – Oranim Kiryat Tivon Israel
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants Tel Aviv University Tel Aviv Israel
| | - Amir Ayali
- School of Zoology Tel Aviv University Tel Aviv Israel
| |
Collapse
|
45
|
Potapov AM, Beaulieu F, Birkhofer K, Bluhm SL, Degtyarev MI, Devetter M, Goncharov AA, Gongalsky KB, Klarner B, Korobushkin DI, Liebke DF, Maraun M, Mc Donnell RJ, Pollierer MM, Schaefer I, Shrubovych J, Semenyuk II, Sendra A, Tuma J, Tůmová M, Vassilieva AB, Chen T, Geisen S, Schmidt O, Tiunov AV, Scheu S. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biol Rev Camb Philos Soc 2022; 97:1057-1117. [DOI: 10.1111/brv.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Frédéric Beaulieu
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri‐Food Canada Ottawa ON K1A 0C6 Canada
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Karl‐Wachsmann‐Allee 6 03046 Cottbus Germany
| | - Sarah L. Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Maxim I. Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anton A. Goncharov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Bernhard Klarner
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Daniil I. Korobushkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Dana F. Liebke
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Rory J. Mc Donnell
- Department of Crop and Soil Science Oregon State University Corvallis OR 97331 U.S.A
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Julia Shrubovych
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Institute of Systematics and Evolution of Animals PAS Slawkowska 17 Pl 31‐016 Krakow Poland
- State Museum Natural History of NAS of Ukraine Teatralna 18 79008 Lviv Ukraine
| | - Irina I. Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
- Joint Russian‐Vietnamese Tropical Center №3 Street 3 Thang 2, Q10 Ho Chi Minh City Vietnam
| | - Alberto Sendra
- Colecciones Entomológicas Torres‐Sala, Servei de Patrimoni Històric, Ajuntament de València València Spain
- Departament de Didàctica de les Cièncias Experimentals i Socials, Facultat de Magisteri Universitat de València València Spain
| | - Jiri Tuma
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Biology Centre CAS, Institute of Entomology Branisovska 1160/31 370 05 Ceske Budejovice Czech Republic
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anna B. Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Ting‐Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Stefan Geisen
- Department of Nematology Wageningen University & Research 6700ES Wageningen The Netherlands
| | - Olaf Schmidt
- UCD School of Agriculture and Food Science University College Dublin Belfield Dublin 4 Ireland
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 37077 Göttingen Germany
| |
Collapse
|
46
|
Wolfe ZM, Scharf ME. Differential microbial responses to antibiotic treatments by insecticide-resistant and susceptible cockroach strains (Blattella germanica L.). Sci Rep 2021; 11:24196. [PMID: 34921232 PMCID: PMC8683489 DOI: 10.1038/s41598-021-03695-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/08/2021] [Indexed: 01/24/2023] Open
Abstract
The German cockroach (Blattella germanica L.) is a major urban pest worldwide and is known for its ability to resist insecticides. Past research has shown that gut bacteria in other insects can metabolize xenobiotics, allowing the host to develop resistance. The research presented here determined differences in gut microbial composition between insecticide-resistant and susceptible German cockroaches and compared microbiome changes with antibiotic treatment. Cockroaches received either control diet or diet plus kanamycin (KAN) to quantify shifts in microbial composition. Additionally, both resistant and susceptible strains were challenged with diets containing the insecticides abamectin and fipronil in the presence and absence of antibiotic. In both strains, KAN treatment reduced feeding, leading to higher doses of abamectin and fipronil being tolerated. However, LC50 resistance ratios between resistant and susceptible strains decreased by half with KAN treatment, suggesting gut bacteria mediate resistance. Next, whole guts were isolated, bacterial DNA extracted, and 16S MiSeq was performed. Unlike most bacterial taxa, Stenotrophomonas increased in abundance in only the kanamycin-treated resistant strain and was the most indicative genus in classifying between control and kanamycin-treated cockroach guts. These findings provide unique insights into how the gut microbiome responds to stress and disturbance, and important new insights into microbiome-mediated insecticide resistance.
Collapse
Affiliation(s)
- Zachery M Wolfe
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
47
|
Singh S, Singh A, Baweja V, Roy A, Chakraborty A, Singh IK. Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism. Microorganisms 2021; 9:microorganisms9122422. [PMID: 34946024 PMCID: PMC8707026 DOI: 10.3390/microorganisms9122422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/27/2022] Open
Abstract
Insects nurture a panoply of microbial populations that are often obligatory and exist mutually with their hosts. Symbionts not only impact their host fitness but also shape the trajectory of their phenotype. This co-constructed niche successfully evolved long in the past to mark advanced ecological specialization. The resident microbes regulate insect nutrition by controlling their host plant specialization and immunity. It enhances the host fitness and performance by detoxifying toxins secreted by the predators and abstains them. The profound effect of a microbial population on insect physiology and behaviour is exploited to understand the host–microbial system in diverse taxa. Emergent research of insect-associated microbes has revealed their potential to modulate insect brain functions and, ultimately, control their behaviours, including social interactions. The revelation of the gut microbiota–brain axis has now unravelled insects as a cost-effective potential model to study neurodegenerative disorders and behavioural dysfunctions in humans. This article reviewed our knowledge about the insect–microbial system, an exquisite network of interactions operating between insects and microbes, its mechanistic insight that holds intricate multi-organismal systems in harmony, and its future perspectives. The demystification of molecular networks governing insect–microbial symbiosis will reveal the perplexing behaviours of insects that could be utilized in managing insect pests.
Collapse
Affiliation(s)
- Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Varsha Baweja
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Amit Roy
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Excelentní Tým pro Mitigaci (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Correspondence: (A.C.); (I.K.S.)
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
- Correspondence: (A.C.); (I.K.S.)
| |
Collapse
|
48
|
Effectiveness of Ethyl Formate as a Fumigant of Blattella germanica and Periplaneta americana (Blattodea: Ectobiidae, Blattidae) in Cross-Border Trade Transportation. INSECTS 2021; 12:insects12111010. [PMID: 34821811 PMCID: PMC8617852 DOI: 10.3390/insects12111010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary Fumigation is one effective cockroach control method. Ethyl formate (EF) has recently been employed as a grain fumigant and has been evaluated as relatively safer than other fumigants. In this experiment, the effects of an ethyl formate fumigant on two species of cockroaches were investigated. Cockroach nymphs and adults had 100% mortality, but the effect on egg hatching inhibition was weak. Therefore, ethyl formate could be used as a fumigant if the control period and its usage should be adjusted considering the developmental stage of the cockroach. Abstract Cockroaches cause problems as pests not only locally in residential areas but also internationally, as they can disperse across borders in transport vessels. We investigated the effects of the ethyl formate (EF) fumigant on all developmental stages of Blattella germanica and Periplaneta americana. For B. germanica eggs, the hatching inhibition rate increased directly proportionately with the increasing treatment concentration of EF, but the 100% control was not observed. P. americana eggs did not show any fumigation effect, even after exposure to 60 mg/L of fumigant in a 12 L desiccator. Adults and nymphs of the two species showed various fumigation effects dependent on the concentration in the 12 L desiccator. When EF was applied at the lethal concentration for 99% mortality (LCT99) values of 35 mg/L for 4 h (78.5 mg·h/L) and 60 mg/L for 2 h (70.8 mg·h/L), respectively, adults and nymphs of both species had 100% mortality in a 0.65 m3 fumigation chamber with a 20% loading ratio. However, no significant difference from the control was observed in the egg stage of either species of cockroach. The results of this experiment indicate that EF can be used as a fumigant for cross-border transport vessels if the control period occurs during the cockroach developmental stage and continuous refumigation is performed.
Collapse
|
49
|
Interactions of the Intracellular Bacterium Cardinium with Its Host, the House Dust Mite Dermatophagoides farinae, Based on Gene Expression Data. mSystems 2021; 6:e0091621. [PMID: 34726490 PMCID: PMC8562489 DOI: 10.1128/msystems.00916-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dermatophagoides farinae is inhabited by an intracellular bacterium, Cardinium. Using correlations between host and symbiont gene expression profiles, we identified several important molecular pathways that potentially regulate/facilitate their interactions. The expression of Cardinium genes collectively explained 95% of the variation in the expression of mite genes assigned to pathways for phagocytosis, apoptosis, the MAPK signaling cascade, endocytosis, the tumor necrosis factor (TNF) pathway, the transforming growth factor beta (TGF-β) pathway, lysozyme, and the Toll/Imd pathway. In addition, expression of mite genes explained 76% of the variability in Cardinium gene expression. In particular, the expression of the Cardinium genes encoding the signaling molecules BamD, LepA, SymE, and VirD4 was either positively or negatively correlated with the expression levels of mite genes involved in endocytosis, phagocytosis, and apoptosis. We also found that Cardinium possesses a complete biosynthetic pathway for lipoic acid and may provide lipoate, but not biotin, to mites. Cardinium gene expression collectively explained 84% of the variation in expression related to several core mite metabolic pathways, and, most notably, a negative correlation was observed between bacterial gene expression and expression of mite genes assigned to the glycolysis and citric acid cycle pathways. Furthermore, we showed that Cardinium gene expression is correlated with expression levels of genes associated with terpenoid backbone biosynthesis. This pathway is important for the synthesis of pheromones, thus providing an opportunity for Cardinium to influence mite reproductive behavior to facilitate transmission of the bacterium. Overall, our study provided correlational gene expression data that can be useful for future research on mite-Cardinium interactions. IMPORTANCE The molecular mechanisms of mite-symbiont interactions and their impacts on human health are largely unknown. Astigmatid mites, such as house dust and stored-product mites, are among the most significant allergen sources worldwide. Although mites themselves are the main allergen sources, recent studies have indicated that mite-associated microbiomes may have implications for allergen production and human health. The major medically important house dust mite, D. farinae, is known to harbor a highly abundant intracellular bacterium belonging to the genus Cardinium. Expression analysis of the mite and symbiont genes can identify key mite molecular pathways that facilitate interactions with this endosymbiont and possibly shed light on how this bacterium affects mite allergen production and physiology in general.
Collapse
|
50
|
Tinker KA, Ottesen EA. Differences in Gut Microbiome Composition Between Sympatric Wild and Allopatric Laboratory Populations of Omnivorous Cockroaches. Front Microbiol 2021; 12:703785. [PMID: 34394050 PMCID: PMC8355983 DOI: 10.3389/fmicb.2021.703785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Gut microbiome composition is determined by a complex interplay of host genetics, founder’s effects, and host environment. We are using omnivorous cockroaches as a model to disentangle the relative contribution of these factors. Cockroaches are a useful model for host–gut microbiome interactions due to their rich hindgut microbial community, omnivorous diet, and gregarious lifestyle. In this study, we used 16S rRNA sequencing to compare the gut microbial community of allopatric laboratory populations of Periplaneta americana as well as sympatric, wild-caught populations of P. americana and Periplaneta fuliginosa, before and after a 14 day period of acclimatization to a common laboratory environment. Our results showed that the gut microbiome of cockroaches differed by both species and rearing environment. The gut microbiome from the sympatric population of wild-captured cockroaches showed strong separation based on host species. Laboratory-reared and wild-captured cockroaches from the same species also exhibited distinct gut microbiome profiles. Each group of cockroaches had a unique signature of differentially abundant uncharacterized taxa still present after laboratory cultivation. Transition to the laboratory environment resulted in decreased microbiome diversity for both species of wild-caught insects. Interestingly, although laboratory cultivation resulted in similar losses of microbial diversity for both species, it did not cause the gut microbiome of those species to become substantially more similar. These results demonstrate how competing factors impact the gut microbiome and highlight the need for a greater understanding of host–microbiome interactions.
Collapse
Affiliation(s)
- Kara A Tinker
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Elizabeth A Ottesen
- Department of Microbiology, University of Georgia, Athens, GA, United States
| |
Collapse
|