1
|
Wang G, Li G, Song A, Zhao Y, Yu J, Wang Y, Dai W, Salas M, Qin H, Medrano L, Dow J, Li A, Armstrong B, Fueger PT, Yu H, Zhu Y, Shao M, Wu X, Jiang L, Campisi J, Yang X, Wang QA. Distinct adipose progenitor cells emerging with age drive active adipogenesis. Science 2025; 388:eadj0430. [PMID: 40273250 DOI: 10.1126/science.adj0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/30/2024] [Accepted: 02/05/2025] [Indexed: 04/26/2025]
Abstract
Starting at middle age, adults often suffer from visceral adiposity and associated adverse metabolic disorders. Lineage tracing in mice revealed that adipose progenitor cells (APCs) in visceral fat undergo extensive adipogenesis during middle age. Thus, despite the low turnover rate of adipocytes in young adults, adipogenesis is unlocked during middle age. Transplantations quantitatively showed that APCs in middle-aged mice exhibited high adipogenic capacity cell-autonomously. Single-cell RNA sequencing identified a distinct APC population, the committed preadipocyte, age-enriched (CP-A), emerging at this age. CP-As demonstrated elevated proliferation and adipogenesis activity. Pharmacological and genetic manipulations indicated that leukemia inhibitory factor receptor signaling was indispensable for CP-A adipogenesis and visceral fat expansion. These findings uncover a fundamental mechanism of age-dependent adipose remodeling, offering critical insights into age-related metabolic diseases.
Collapse
Affiliation(s)
- Guan Wang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Gaoyan Li
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anying Song
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yutian Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiayu Yu
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yifan Wang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Wenting Dai
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Martha Salas
- Light Microscopy Core, City of Hope Medical Center, Duarte, CA, USA
| | - Hanjun Qin
- The Integrative Genomics Core, City of Hope Medical Center, Duarte, CA, USA
| | - Leonard Medrano
- Division of Developmental and Translational Diabetes and Endocrinology Research, City of Hope Medical Center, Duarte, CA, USA
| | - Joan Dow
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Comprehensive Metabolic Phenotyping Core, City of Hope Medical Center, Duarte, CA, USA
| | - Aimin Li
- Pathology Core of Shared Resources, City of Hope Medical Center, Duarte, CA, USA
| | - Brian Armstrong
- Light Microscopy Core, City of Hope Medical Center, Duarte, CA, USA
| | - Patrick T Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Comprehensive Metabolic Phenotyping Core, City of Hope Medical Center, Duarte, CA, USA
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Hua Yu
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yi Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengle Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xiwei Wu
- The Integrative Genomics Core, City of Hope Medical Center, Duarte, CA, USA
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | | | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qiong A Wang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
2
|
Datta S, Koka S, Boini KM. Understanding the Role of Adipokines in Cardiometabolic Dysfunction: A Review of Current Knowledge. Biomolecules 2025; 15:612. [PMID: 40427505 PMCID: PMC12109550 DOI: 10.3390/biom15050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiometabolic risk and associated dysfunctions contribute largely to the recent rise in mortality globally. Advancements in multi-omics in recent years promise a better understanding of potential biomarkers that enable an early diagnosis of cardiometabolic dysfunction. However, the molecular mechanisms driving the onset and progression of cardiometabolic disorders remain poorly understood. Adipokines are adipocyte-specific cytokines that are central to deleterious cardiometabolic alterations. They exhibit both pro-inflammatory and anti-inflammatory effects, complicating their association with cardiometabolic disturbances. Thus, understanding the cardiometabolic association of adipokines from a molecular and signaling perspective assumes great importance. This review presents a comprehensive outline of the most prominent adipokines exhibiting pro-inflammatory and/or anti-inflammatory functions in cardiometabolic dysfunction. The review also presents an insight into the pathophysiological implications of such adipokines in different cardiometabolic dysfunction conditions, the status of adipokine druggability, and future studies that can be undertaken to address the existing scientific gap. A clear understanding of the functional and mechanistic role of adipokines can potentially improve our understanding of cardiovascular disease pathophysiology and enhance our current therapeutic regimen in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University, Kingsville, TX 78363, USA
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| |
Collapse
|
3
|
Li Y, Wang B, Wang Z, Wen J, Zhou T, Tang J, Li Z. The Effect of G0S2 Gene Knockout on the Proliferation, Apoptosis, and Differentiation of Chicken Preadipocytes. Animals (Basel) 2025; 15:951. [PMID: 40218345 PMCID: PMC11988036 DOI: 10.3390/ani15070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
The G0/G1 switch gene 2 (G0S2) has been shown to be involved in cell proliferation, apoptosis, and differentiation in mammals. However, its function in poultry is not fully understood, especially in preadipocytes of chickens. This study aimed to establish a G0S2 knockout preadipocyte cell line in chickens through CRISPR/Cas9 technology and to thoroughly investigate the impact of G0S2 on chicken preadipocyte proliferation, apoptosis, and differentiation. To explore the involvement of G0S2 in chicken preadipocyte growth and development, transcriptome sequencing was performed. The results demonstrated that G0S2 was successfully deleted using the CRISPR/Cas9 system. G0S2 knockout significantly inhibited the differentiation of chicken preadipocytes while promoting their proliferation. Additionally, although G0S2 knockout exhibited a pro-apoptotic effect, it was relatively mild, primarily reflected in an increased proportion of early apoptotic cells. G0S2 deletion significantly affected the expression of important genes related to lipid metabolism, cell cycle control, and signaling pathways, based on transcriptomic analysis. In conclusion, our findings suggest that G0S2 performs a critical role in regulating chicken preadipocyte differentiation, proliferation, and apoptosis. This research offers valuable new insights into the molecular mechanisms and control of G0S2 in the growth and development of chicken preadipocytes.
Collapse
Affiliation(s)
- Yantao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Boyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhaochuan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jintian Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Tianle Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhenhui Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (B.W.); (Z.W.); (J.W.); (T.Z.); (J.T.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Yang J, Wang Y, Wang G, Guo Z, Li X, Lu J, Tu H, Li S, Wan J, Guan G, Chen L. Leptin A deficiency affecting the mitochondrial dynamics of aged oocytes in medaka (Oryzias latipes). Mol Cell Endocrinol 2024; 593:112345. [PMID: 39153543 DOI: 10.1016/j.mce.2024.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Mitochondrial dysfunction and metabolic disorder have been associated to age-related subfertility, however, the precise molecular mechanism controlling the development of fertile oocytes in aging females remains elusive. Leptin plays an important role in the maintenance of energy homeostasis, as both excessive or insufficient levels can affect the body weight and fertility of mice. Here, we report that leptin A deficiency affects growth and shortens reproductive lifespan by reducing fertility in medaka (Oryzias latipes). Targeted disruption of lepa (lepa-/-) females reduced their egg laying and fertility compared to normal 3-month-old females (lepa+/+ sexual maturity), with symptoms worsening progressively at the age of 6 months and beyond. Transcriptomic analysis showed that differentially expressed genes involved in metabolic and mitochondrial pathways were significantly altered in lepa-/- ovaries compared with the normal ovaries at over 6 months old. The expression levels of the autophagy-promoting genes ulk1a, atg7 and atg12 were significantly differentiated between normal and lepa-/- ovaries, which were further confirmed by quantitative polymerase chain reaction analysis, indicating abnormal autophagy activation and mitochondrial dysfunction in oocyte development lacking lepa. Transmission electron microscopy observations further confirmed these mitochondrial disorders in lepa-deficient oocytes. In summary, these research findings provide novel insights into how leptin influences female fertility through mitochondrial-mediated oocyte development.
Collapse
Affiliation(s)
- Jihui Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Ying Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Guangxing Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Zhenhua Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Xinwen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Jigang Lu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Huaming Tu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Shilin Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Jinming Wan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Guijun Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China.
| | - Liangbiao Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China.
| |
Collapse
|
5
|
Dedic B, Westerberg L, Mosqueda Solís A, Dumont KD, Ruas JL, Thorell A, Näslund E, Spalding KL. Senescence detection using reflected light. Aging Cell 2024; 23:e14295. [PMID: 39102872 PMCID: PMC11561700 DOI: 10.1111/acel.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Senescence is an important cellular program occurring in development, tissue repair, cancer, and aging. Increased senescence is also associated with disease states, including obesity and Type 2 diabetes (T2D). Characterizing and quantifying senescent cells at a single cell level has been challenging and particularly difficult in large primary cells, such as human adipocytes. In this study, we present a novel approach that utilizes reflected light for accurate senescence-associated beta-galactosidase (SABG) staining measurements, which can be integrated with immunofluorescence and is compatible with primary mature adipocytes from both human and mouse, as well as with differentiated 3T3-L1 cells. This technique provides a more comprehensive classification of a cell's senescent state by incorporating multiple criteria, including robust sample-specific pH controls. By leveraging the precision of confocal microscopy to detect X-gal crystals using reflected light, we achieved superior sensitivity over traditional brightfield techniques. This strategy allows for the capture of all X-gal precipitates in SABG-stained samples, revealing diverse X-gal staining patterns and improved detection sensitivity. Additionally, we demonstrate that reflected light outperforms western blot analysis for the detection and quantification of senescence in mature human adipocytes, as it offers a more accurate representation of SABG activity. This detection strategy enables a more thorough investigation of senescent cell characteristics and specifically a deeper look at the relationship between adipocyte senescence and obesity associated disorders, such as T2D.
Collapse
Affiliation(s)
- Benjamin Dedic
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Leo Westerberg
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Andrea Mosqueda Solís
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Kyle D. Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Pharmacology and Stanley and Judith Frankel Institute for Heart and Brain HealthUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Anders Thorell
- Department of Clinical SciencesDanderyd Hospital, Karolinska Institutet and Department of Surgery, Ersta Hospital, Karolinska InstitutetStockholmSweden
| | - Erik Näslund
- Department of Clinical SciencesDanderyd Hospital, Karolinska InstitutetStockholmSweden
| | - Kirsty L. Spalding
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Behtaj D, Ghorbani A, Eslamian G, Malekpour Alamdari N, Abbasi M, Zand H, Shakery A, Shimi G, Sohouli MH, Fazeli Taherian S. Ex vivo Anti-Senescence Activity of N-Acetylcysteine in Visceral Adipose Tissue of Obese Volunteers. Obes Facts 2024; 17:355-363. [PMID: 38718763 PMCID: PMC11299969 DOI: 10.1159/000539255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/06/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Excessive visceral adiposity is known to drive the onset of metabolic derangements, mostly involving oxidative stress, prolonged inflammation, and cellular senescence. N-acetylcysteine (NAC) is a synthetic form of l-cysteine with potential antioxidant, anti-inflammatory, and anti-senescence properties. This ex-vivo study aimed to determine the effect of NAC on some markers of senescence including β-galactosidase activity and p16, p53, p21, IL-6, and TNF-α gene expressions in visceral adipose tissue in obese adults. METHODS This ex-vivo experimental study involved 10 obese participants who were candidates for bariatric surgery. Duplicate biopsies from the abdominal visceral adipose tissue were obtained from the omentum. The biopsies were treated with or without NAC (5 and 10 mm). To evaluate adipose tissue senescence, beta-galactosidase (β-gal) activity and the expression of P16, P21, P53, IL-6, and TNF-α were determined. ANOVA test was employed to analyze the varying markers of cellular senescence and inflammation between treatment groups. RESULTS The NAC at concentrations of 5 mm and 10 mm resulted in a noteworthy reduction β-gal activity compared to the control group (p < 0.001). Additionally, the expression of P16, P21, and IL-6 was significantly reduced following treatment with NAC (5 mm) and NAC (10 mm) compared to the control group (All p < 0.001). DISCUSSION/CONCLUSION Taken together, these data suggest the senotherapeutic effect of NAC, as it effectively reduces the activity of SA-β-gal and the expression of IL-6, P16, and P21 genes in the visceral adipose tissue of obese individuals.
Collapse
Affiliation(s)
- Diba Behtaj
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Malekpour Alamdari
- School of Medicine, Department of General Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- School of Medicine, Department of General Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Shakery
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Sohouli
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Fazeli Taherian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Nguyen TT, Corvera S. Adipose tissue as a linchpin of organismal ageing. Nat Metab 2024; 6:793-807. [PMID: 38783156 PMCID: PMC11238912 DOI: 10.1038/s42255-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Ageing is a conserved biological process, modulated by intrinsic and extrinsic factors, that leads to changes in life expectancy. In humans, ageing is characterized by greatly increased prevalence of cardiometabolic disease, type 2 diabetes and disorders associated with impaired immune surveillance. Adipose tissue displays species-conserved, temporal changes with ageing, including redistribution from peripheral to central depots, loss of thermogenic capacity and expansion within the bone marrow. Adipose tissue is localized to discrete depots, and also diffusely distributed within multiple organs and tissues in direct proximity to specialized cells. Thus, through their potent endocrine properties, adipocytes are capable of modulating tissue and organ function throughout the body. In addition to adipocytes, multipotent progenitor/stem cells in adipose tissue play a crucial role in maintenance and repair of tissues throughout the lifetime. Adipose tissue may therefore be a central driver for organismal ageing and age-associated diseases. Here we review the features of adipose tissue during ageing, and discuss potential mechanisms by which these changes affect whole-body metabolism, immunity and longevity. We also explore the potential of adipose tissue-targeted therapies to ameliorate age-associated disease burdens.
Collapse
Affiliation(s)
- Tammy T Nguyen
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center, Worcester, MA, USA
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA
| | - Silvia Corvera
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA.
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Yu A, Yu R, Liu H, Ge C, Dang W. SIRT1 safeguards adipogenic differentiation by orchestrating anti-oxidative responses and suppressing cellular senescence. GeroScience 2024; 46:1107-1127. [PMID: 37420111 PMCID: PMC10828476 DOI: 10.1007/s11357-023-00863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Adipose tissue is an important endocrine organ that regulates metabolism, immune response and aging in mammals. Healthy adipocytes promote tissue homeostasis and longevity. SIRT1, a conserved NAD+-dependent deacetylase, negatively regulates adipogenic differentiation by deacetylating and inhibiting PPAR-γ. However, knocking out SIRT1 in mesenchymal stem cells (MSCs) in mice not only causes defects in osteogenesis, but also results in the loss of adipose tissues, suggesting that SIRT1 is also important for adipogenic differentiation.Here, we report that severe impairment of SIRT1 function in MSCs caused significant defects and cellular senescence during adipogenic differentiation. These were observed only when inhibiting SIRT1 during adipogenesis, not when SIRT1 inhibition was imposed before or after adipogenic differentiation. Cells generate high levels of reactive oxygen species (ROS) during adipogenic differentiation. Inhibiting SIRT1 during differentiation resulted in impaired oxidative stress response. Increased oxidative stress with H2O2 or SOD2 knockdown phenocopied SIRT1 inhibition. Consistent with these observations, we found increased p16 levels and senescence associated β-galactosidase activities in the inguinal adipose tissue of MSC-specific SIRT1 knockout mice. Furthermore, previously identified SIRT1 targets involved in oxidative stress response, FOXO3 and SUV39H1 were both required for healthy adipocyte formation during differentiation. Finally, senescent adipocytes produced by SIRT1 inhibition showed decreased Akt phosphorylation in response to insulin, a lack of response to adipocytes browning signals, and increased survival for cancer cells under chemotherapy drug treatments. These findings suggest a novel safeguard function for SIRT1 in regulating MSC adipogenic differentiation, distinct from its roles in suppressing adipogenic differentiation.
Collapse
Affiliation(s)
- An Yu
- Yunnan Key Laboratory for Basic Research On Bone and Joint Diseases &, Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, 650214, Yunnan, China
- Baylor College of Medicine, Huffington Center On Aging, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ruofan Yu
- Baylor College of Medicine, Huffington Center On Aging, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Haiying Liu
- Baylor College of Medicine, Huffington Center On Aging, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Chenliang Ge
- Yunnan Key Laboratory for Basic Research On Bone and Joint Diseases &, Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, 650214, Yunnan, China
| | - Weiwei Dang
- Baylor College of Medicine, Huffington Center On Aging, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Kruczkowska W, Gałęziewska J, Kciuk M, Gielecińska A, Płuciennik E, Pasieka Z, Zhao LY, Yu YJ, Kołat D, Kałuzińska-Kołat Ż. Senescent adipocytes and type 2 diabetes - current knowledge and perspective concepts. Biomol Concepts 2024; 15:bmc-2022-0046. [PMID: 38530804 DOI: 10.1515/bmc-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Among civilization diseases, the number of individuals suffering from type 2 diabetes (T2DM) is expected to increase to more than a billion in less than 20 years, which is associated with, e.g., populational aging, poor diet, sedentary lifestyle, genetic predispositions, and immunological factors. T2DM affects many organs and is characterized by insulin resistance, high glucose levels, and adipocyte dysfunction, which are related to senescence. Although this type of cellular aging has beneficial biological functions, it can also act unfavorable since senescent adipocytes resist apoptosis, enhance cytokine secretion, downregulate cell identity genes, and acquire the senescence-associated secretory phenotype that renders a more oxidative environment. Opposing T2DM is possible via a wide variety of senotherapies, including senolytics and senomorphics; nevertheless, further research is advised to expand therapeutic possibilities and benefits. Consequences that ought to be deeply researched include secretory phenotype, chronic inflammation, increasing insulin resistance, as well as impairment of adipogenesis and functioning of adipocyte cells. Herein, despite reviewing T2DM and fat tissue senescence, we summarized the latest adipocyte-related anti-diabetes solutions and suggested further research directions.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Julia Gałęziewska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Jin Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
10
|
Colak DK, Coskun Yazici ZM, Bolkent S. Chronic administration of delta9-tetrahydrocannabinol protects hyperinsulinemic gastric tissue in rats. Cell Biochem Funct 2023; 41:1543-1551. [PMID: 38032085 DOI: 10.1002/cbf.3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Hyperinsulinemia (HI) can result from some reasons such as an increase in basal/fasting circulating insulin and/or potentiation of postprandial insulin production. Diabetes mellitus (DM) is indirectly related to HI since it both causes and results from insulin resistance. Understanding the causes of HI and treating this is crucial for preventing DM. Previous research has shown that delta9-tetrahydrocannabinol (THC) has medicinal benefits. In light of this, the relationship between THC and oxidative stress, DNA repair mechanism, apoptosis, and its regulatory impact on appetite hormones in the gastric tissue of hyperinsulinemic rats has been investigated for the first time. Male rats (Spraque-Dawley, total = 32) were used, and they were randomly divided into the following groups (n = 8 in each group): control (CTRL), HI, THC administered control (THC, 1.5 mg/kg/day, during 4 weeks), and THC administered HI (HI + THC) groups. The number of poly (ADP-ribose) polymerase-1 and proliferating cell nuclear antigen (PCNA) and caspase-3 immunopositive cells in the HI group was significantly reduced compared to the CTRL group. The number of PCNA and caspase-9 immunopositive cells was significantly increased in the HI + THC group compared to the HI group. Obestatin immunopositive cell numbers in the HI + THC group were higher than in the HI and CTRL groups. The results show that THC administration may affect the regulation of appetite hormones and regeneration in the fundus of rats with HI. Glutathione (GSH) levels were higher in the HI + THC group than in the HI group. Both immunohistochemical and biochemical analyses revealed that THC promotes regeneration and regulates appetite hormones in hyperinsulinemic gastric tissues.
Collapse
Affiliation(s)
- Dilara Kamer Colak
- Department of Medical Biology, Faculty of Cerrahpaşa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Zeynep Mine Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpaşa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
11
|
Nerstedt A, Smith U. The impact of cellular senescence in human adipose tissue. J Cell Commun Signal 2023; 17:563-573. [PMID: 37195383 PMCID: PMC10409694 DOI: 10.1007/s12079-023-00769-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023] Open
Abstract
In the last decades the prevalence of obesity has increased dramatically, and the worldwide epidemic of obesity and related metabolic diseases has contributed to an increased interest for the adipose tissue (AT), the primary site for storage of lipids, as a metabolically dynamic and endocrine organ. Subcutaneous AT is the depot with the largest capacity to store excess energy and when its limit for storage is reached hypertrophic obesity, local inflammation, insulin resistance and ultimately type 2 diabetes (T2D) will develop. Hypertrophic AT is also associated with a dysfunctional adipogenesis, depending on the inability to recruit and differentiate new mature adipose cells. Lately, cellular senescence (CS), an aging mechanism defined as an irreversible growth arrest that occurs in response to various cellular stressors, such as telomere shortening, DNA damage and oxidative stress, has gained a lot of attention as a regulator of metabolic tissues and aging-associated conditions. The abundance of senescent cells increases not only with aging but also in hypertrophic obesity independent of age. Senescent AT is characterized by dysfunctional cells, increased inflammation, decreased insulin sensitivity and lipid storage. AT resident cells, such as progenitor cells (APC), non-proliferating mature cells and microvascular endothelial cells are affected with an increased senescence burden. Dysfunctional APC have both an impaired adipogenic and proliferative capacity. Interestingly, human mature adipose cells from obese hyperinsulinemic individuals have been shown to re-enter the cell cycle and senesce, which indicates an increased endoreplication. CS was also found to be more pronounced in mature cells from T2D individuals, compared to matched non-diabetic individuals, with decreased insulin sensitivity and adipogenic capacity. Factors associated with cellular senescence in human adipose tissue.
Collapse
Affiliation(s)
- Annika Nerstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, SE-413 45, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, SE-413 45, Gothenburg, Sweden.
| |
Collapse
|
12
|
Iwasaki K, Abarca C, Aguayo-Mazzucato C. Regulation of Cellular Senescence in Type 2 Diabetes Mellitus: From Mechanisms to Clinical Applications. Diabetes Metab J 2023; 47:441-453. [PMID: 36872059 PMCID: PMC10404529 DOI: 10.4093/dmj.2022.0416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
Cellular senescence is accelerated by hyperglycemia through multiple pathways. Therefore, senescence is an important cellular mechanism to consider in the pathophysiology of type 2 diabetes mellitus (T2DM) and an additional therapeutic target. The use of drugs that remove senescent cells has led to improvements in blood glucose levels and diabetic complications in animal studies. Although the removal of senescent cells is a promising approach for the treatment of T2DM, two main challenges limit its clinical application: the molecular basis of cellular senescence in each organ is yet to be understood, and the specific effect of removing senescent cells in each organ has to be determined. This review aims to discuss future applications of targeting senescence as a therapeutic option in T2DM and elucidate the characteristics of cellular senescence and senescence-associated secretory phenotype in the tissues important for regulating glucose levels: pancreas, liver, adipocytes, and skeletal muscle.
Collapse
Affiliation(s)
- Kanako Iwasaki
- Joslin Diabetes Center, Harvard Medical School, Boston, MA,
USA
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka,
Japan
| | - Cristian Abarca
- Joslin Diabetes Center, Harvard Medical School, Boston, MA,
USA
| | | |
Collapse
|
13
|
Spinelli R, Baboota RK, Gogg S, Beguinot F, Blüher M, Nerstedt A, Smith U. Increased cell senescence in human metabolic disorders. J Clin Invest 2023; 133:e169922. [PMID: 37317964 DOI: 10.1172/jci169922] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Cell senescence (CS) is at the nexus between aging and associated chronic disorders, and aging increases the burden of CS in all major metabolic tissues. However, CS is also increased in adult obesity, type 2 diabetes (T2D), and nonalcoholic fatty liver disease independent of aging. Senescent tissues are characterized by dysfunctional cells and increased inflammation, and both progenitor cells and mature, fully differentiated and nonproliferating cells are afflicted. Recent studies have shown that hyperinsulinemia and associated insulin resistance (IR) promote CS in both human adipose and liver cells. Similarly, increased CS promotes cellular IR, showing their interdependence. Furthermore, the increased adipose CS in T2D is independent of age, BMI, and degree of hyperinsulinemia, suggesting premature aging. These results suggest that senomorphic/senolytic therapy may become important for treating these common metabolic disorders.
Collapse
Affiliation(s)
- Rosa Spinelli
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ritesh Kumar Baboota
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Evotec International GmbH, Göttingen, Germany
| | - Silvia Gogg
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Beguinot
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Annika Nerstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Zhou Z, Zhang H, Tao Y, Jie H, Zhao J, Zang J, Li H, Wang Y, Wang T, Zhao H, Li Y, Guo C, Zhu F, Mao H, Zhang L, Liu F, Wang Q. CX3CR1 hi macrophages sustain metabolic adaptation by relieving adipose-derived stem cell senescence in visceral adipose tissue. Cell Rep 2023; 42:112424. [PMID: 37086405 DOI: 10.1016/j.celrep.2023.112424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/20/2022] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Adipose-derived stem cells (ASCs) drive healthy visceral adipose tissue (VAT) expansion via adipocyte hyperplasia. Obesity induces ASC senescence that causes VAT dysfunction and metabolic disorders. It is challenging to restrain this process by biological intervention, as mechanisms of controlling VAT ASC senescence remain unclear. We demonstrate that a population of CX3CR1hi macrophages is maintained in mouse VAT during short-term energy surplus, which sustains ASCs by restraining their senescence, driving adaptive VAT expansion and metabolic health. Long-term overnutrition induces diminishment of CX3CR1hi macrophages in mouse VAT accompanied by ASC senescence and exhaustion, while transferring CX3CR1hi macrophages restores ASC reservoir and triggers VAT beiging to alleviate the metabolic maladaptation. Mechanistically, visceral ASCs attract macrophages via MCP-1 and shape their CX3CR1hi phenotype via exosomes; these macrophages relieve ASC senescence by promoting the arginase1-eIF5A hypusination axis. These findings identify VAT CX3CR1hi macrophages as ASC supporters and unravel their therapeutic potential for metabolic maladaptation to obesity.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huiying Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yan Tao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haipeng Jie
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jingyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinhao Zang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huijie Li
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yalin Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tianci Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yuan Li
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengming Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
15
|
Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:13. [PMID: 37138165 PMCID: PMC10156890 DOI: 10.1186/s13619-023-00157-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 05/05/2023]
Abstract
Adipose tissues are essential for actively regulating systemic energy balance, glucose homeostasis, immune responses, reproduction, and longevity. Adipocytes maintain dynamic metabolic needs and possess heterogeneity in energy storage and supply. Overexpansion of adipose tissue, especially the visceral type, is a high risk for diabetes and other metabolic diseases. Changes in adipocytes, hypertrophy or hyperplasia, contribute to the remodeling of obese adipose tissues, accompanied by abundant immune cell accumulation, decreased angiogenesis, and aberrant extracellular matrix deposition. The process and mechanism of adipogenesis are well known, however, adipose precursors and their fate decision are only being defined with recent information available to decipher how adipose tissues generate, maintain, and remodel. Here, we discuss the key findings that identify adipose precursors phenotypically, with special emphasis on the intrinsic and extrinsic signals in instructing and regulating the fate of adipose precursors under pathophysiological conditions. We hope that the information in this review lead to novel therapeutic strategies to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yong Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
16
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
17
|
Lino CA, de Oliveira-Silva T, Lunardon G, Balbino-Silva C, Lima VM, Huang ZP, Donato J, Takano APC, Barreto-Chaves ML, Wang DZ, Diniz GP. Ablation of miRNA-22 protects against obesity-induced adipocyte senescence and ameliorates metabolic disorders in middle-aged mice. Mech Ageing Dev 2023; 210:111775. [PMID: 36641038 DOI: 10.1016/j.mad.2023.111775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
High-fat diet (HFD) promotes obesity-related metabolic complications by activating cellular senescence in white adipose tissue (WAT). Growing evidence supports the importance of microRNA-22 (miR-22) in metabolic disorders and cellular senescence. Recently, we showed that miR-22 deletion attenuates obesity-related metabolic abnormalities. However, whether miR-22 mediates HFD-induced cellular senescence of WAT remains unknown. Here, we uncovered that obese mice displayed increased pri-miR-22 levels and cellular senescence in WAT. However, miR-22 ablation protected mice against HFD-induced WAT senescence. In addition, in vitro studies showed that miR-22 deletion prevented preadipocyte senescence in response to Doxorubicin (Doxo). Loss-of-function studies in vitro and in vivo revealed that miR-22 increases H2ax mRNA and γH2ax levels in preadipocytes and WAT without inducing DNA damage. Intriguingly, miR-22 ablation prevented HFD-induced increase in γH2ax levels and DNA damage in WAT. Similarly, miR-22 deletion prevented Doxo-induced increase in γH2ax levels in preadipocytes. Adipose miR-22 levels were enhanced in middle-aged mice fed a HFD than those found in young mice. Furthermore, miR-22 deletion attenuated fat mass gain and glucose imbalance induced by HFD in middle-aged mice. Overall, our findings indicate that miR-22 is a key regulator of obesity-induced WAT senescence and metabolic disorders in middle-aged mice.
Collapse
Affiliation(s)
- Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila Balbino-Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa M Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Zhan-Peng Huang
- Center for Translational Medicine, The First Affiliated Hospital, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Paula C Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Geng L, Zhang B, Liu H, Wang S, Cai Y, Yang K, Zou Z, Jiang X, Liu Z, Li W, Wu Z, Liu X, Chu Q, Liu GH, Qu J, Zhang W. A comparative study of metformin and nicotinamide riboside in alleviating tissue aging in rats. LIFE MEDICINE 2023; 2:lnac045. [PMID: 39872949 PMCID: PMC11749560 DOI: 10.1093/lifemedi/lnac045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 01/30/2025]
Abstract
Metformin (MET) and nicotinamide riboside (NR) have both been reported to exert geroprotective effects in multiple species. However, the mechanism by which MET and NR regulate the aging program and delay aging in multiple tissues remains unclear. Here, we demonstrated that MET and NR attenuate aging features in human mesenchymal stem cells. Moreover, by systematically investigating the pathophysiological changes in different tissues from aged rats after oral administration of MET and NR, we showed that both MET and NR treatment alleviated various aging-related characteristics in multiple tissues, including inflammation, fibrosis, and protein aggregates. Consistently, MET or NR treatment partially rescued aging-related gene expression changes in aged rats. Collectively, we report that both MET and NR attenuate senescence phenotypes in human stem cells in vitro and in a variety of rodent tissues in vivo, thus providing a valuable resource and foundation for further evaluation of these two compounds against aging.
Collapse
Affiliation(s)
- Lingling Geng
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Bin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Haisong Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Zhiran Zou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
19
|
Arabi T, Shafqat A, Sabbah BN, Ashraf N, Shah H, Abdulkader H, Razak A, Sabbah AN, Arabi Z. Obesity-related kidney disease: Beyond hypertension and insulin-resistance. Front Endocrinol (Lausanne) 2023; 13:1095211. [PMID: 36726470 PMCID: PMC9884830 DOI: 10.3389/fendo.2022.1095211] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease (CKD) causes considerable morbidity, mortality, and health expenditures worldwide. Obesity is a significant risk factor for CKD development, partially explained by the high prevalence of diabetes mellitus and hypertension in obese patients. However, adipocytes also possess potent endocrine functions, secreting a myriad of cytokines and adipokines that contribute to insulin resistance and induce a chronic low-grade inflammatory state thereby damaging the kidney. CKD development itself is associated with various metabolic alterations that exacerbate adipose tissue dysfunction and insulin resistance. This adipose-renal axis is a major focus of current research, given the rising incidence of CKD and obesity. Cellular senescence is a biologic hallmark of aging, and age is another significant risk factor for obesity and CKD. An elevated senescent cell burden in adipose tissue predicts renal dysfunction in animal models, and senotherapies may alleviate these phenotypes. In this review, we discuss the direct mechanisms by which adipose tissue contributes to CKD development, emphasizing the potential clinical importance of such pathways in augmenting the care of CKD.
Collapse
Affiliation(s)
- Tarek Arabi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Nader Ashraf
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hassan Shah
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Adhil Razak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Ziad Arabi
- Division of Nephrology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Eckert KA. Nontraditional Roles of DNA Polymerase Eta Support Genome Duplication and Stability. Genes (Basel) 2023; 14:genes14010175. [PMID: 36672916 PMCID: PMC9858799 DOI: 10.3390/genes14010175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
DNA polymerase eta (Pol η) is a Y-family polymerase and the product of the POLH gene. Autosomal recessive inheritance of POLH mutations is the cause of the xeroderma pigmentosum variant, a cancer predisposition syndrome. This review summarizes mounting evidence for expanded Pol η cellular functions in addition to DNA lesion bypass that are critical for maintaining genome stability. In vitro, Pol η displays efficient DNA synthesis through difficult-to-replicate sequences, catalyzes D-loop extensions, and utilizes RNA-DNA hybrid templates. Human Pol η is constitutively present at the replication fork. In response to replication stress, Pol η is upregulated at the transcriptional and protein levels, and post-translational modifications regulate its localization to chromatin. Numerous studies show that Pol η is required for efficient common fragile site replication and stability. Additionally, Pol η can be recruited to stalled replication forks through protein-protein interactions, suggesting a broader role in replication fork recovery. During somatic hypermutations, Pol η is recruited by mismatch repair proteins and is essential for VH gene A:T basepair mutagenesis. Within the global context of repeat-dense genomes, the recruitment of Pol η to perform specialized functions during replication could promote genome stability by interrupting pure repeat arrays with base substitutions. Alternatively, not engaging Pol η in genome duplication is costly, as the absence of Pol η leads to incomplete replication and increased chromosomal instability.
Collapse
Affiliation(s)
- Kristin A Eckert
- Gittlen Cancer Research Laboratories, Department of Pathology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17036, USA
| |
Collapse
|
21
|
Chowdhury SG, Misra S, Karmakar P. Understanding the Impact of Obesity on Ageing in the Radiance of DNA Metabolism. J Nutr Health Aging 2023; 27:314-328. [PMID: 37248755 DOI: 10.1007/s12603-023-1912-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 05/31/2023]
Abstract
Ageing is a multi-factorial phenomenon which is considered as a major risk factor for the development of neurodegeneration, osteoporosis, cardiovascular disease, dementia, cancer, and other chronic diseases. Phenotypically, ageing is related with a combination of molecular, cellular, and physiological levels like genomic and epi-genomic alterations, loss of proteostasis, deregulation of cellular and subcellular function and mitochondrial dysfunction. Though, no single molecular mechanism accounts for the functional decline of different organ systems in older humans but accumulation of DNA damage or mutations is a dominant theory which contributes largely to the development of ageing and age-related diseases. However, mechanistic, and hierarchical order of these features of ageing has not been clarified yet. Scientific community now focus on the effect of obesity on accelerated ageing process. Obesity is a complex chronic disease that affects multiple organs and tissues. It can not only lead to various health conditions such as diabetes, cancer, and cardiovascular disease but also can decrease life expectancy which shows similar phenotype of ageing. Higher loads of DNA damage were also observed in the genome of obese people. Thus, inability of DNA damage repair may contribute to both ageing and obesity apart from cancer predisposition. The present review emphasizes on the involvement of molecular phenomenon of DNA metabolism in development of obesity and how it accelerates ageing in mammals.
Collapse
Affiliation(s)
- S G Chowdhury
- Parimal Karmakar, Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India.
| | | | | |
Collapse
|
22
|
Palmer AK, Tchkonia T, Kirkland JL. Targeting cellular senescence in metabolic disease. Mol Metab 2022; 66:101601. [PMID: 36116755 PMCID: PMC9520013 DOI: 10.1016/j.molmet.2022.101601] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is a cell fate involving cell cycle arrest, resistance against apoptosis, and the development of a secretome that can be pro-inflammatory. In aging and obesity, senescent cells accumulate in many tissues, including adipose tissue, brain, kidney, pancreas, and liver. These senescent cells and their downstream effects appear to perpetuate inflammation and have been implicated in the pathogenesis of metabolic dysfunction. Senescent cells are cleared in part by the immune system, a process that is diminished in obesity and aging, likely due in part to senescence of immune cells themselves. Targeting senescent cells or their products improves metabolic function in both aging and in animal models of obesity. Novel therapeutics to target senescent cells are on the horizon and are currently being investigated in clinical trials in humans for multiple diseases. Early evidence suggests that senolytic drugs, which transiently disarm the anti-apoptotic defenses of pro-inflammatory senescent cells, are effective in causing depletion of senescent cells in humans. Senescence-targeting therapeutics, including senolytic drugs and strategies to increase immune clearance of senescent cells, hold significant promise for treating metabolic dysfunction in multiple tissues and disease states.
Collapse
Affiliation(s)
- Allyson K Palmer
- Division of Hospital Internal Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA; Division of General Internal Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
23
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
24
|
Narasimhan A, Flores RR, Camell CD, Bernlohr DA, Robbins PD, Niedernhofer LJ. Cellular Senescence in Obesity and Associated Complications: a New Therapeutic Target. Curr Diab Rep 2022; 22:537-548. [PMID: 36239841 PMCID: PMC10123542 DOI: 10.1007/s11892-022-01493-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Obesity has increased worldwide recently and represents a major global health challenge. This review focuses on the obesity-associated cellular senescence in various organs and the role of these senescent cells (SnCs) in driving complications associated with obesity. Also, the ability to target SnCs pharmacologically with drugs termed senotherapeutics as a therapy for these complications is discussed. RECENT FINDINGS Several studies have shown a positive correlation between obesity and SnC burden in organs such as adipose tissue, liver, and pancreatic-β-cells. These SnCs produce several secretory factors which affect other cells and tissues in a paracrine manner resulting in organ dysfunction. The accumulation of SnCs in adipocytes affects their lipid storage and impairs adipogenesis. The inflammatory senescence-associated secretory phenotype (SASP) of SnCs downregulates the antioxidant capacity and mitochondrial function in tissues. Senescent hepatocytes cannot oxidize fatty acids, which leads to lipid deposition and senescence in β-cells decrease function. These and other adverse effects of SnCs contribute to insulin resistance and type-2 diabetes. The reduction in the SnC burden genetically or pharmacologically improves the complications associated with obesity. The accumulation of SnCs with age and disease accelerates aging. Obesity is a key driver of SnC accumulation, and the complications associated with obesity can be controlled by reducing the SnC burden. Thus, senotherapeutic drugs have the potential to be an effective therapeutic option.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - Rafael R Flores
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - Christina D Camell
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - David A Bernlohr
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA.
| | - Laura J Niedernhofer
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
25
|
Wahlmueller M, Narzt MS, Missfeldt K, Arminger V, Krasensky A, Lämmermann I, Schaedl B, Mairhofer M, Suessner S, Wolbank S, Priglinger E. Establishment of In Vitro Models by Stress-Induced Premature Senescence for Characterizing the Stromal Vascular Niche in Human Adipose Tissue. Life (Basel) 2022; 12:life12101459. [PMID: 36294893 PMCID: PMC9605485 DOI: 10.3390/life12101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Acting as the largest energy reservoir in the body, adipose tissue is involved in longevity and progression of age-related metabolic dysfunction. Here, cellular senescence plays a central role in the generation of a pro-inflammatory environment and in the evolution of chronic diseases. Within the complexity of a tissue, identification and targeting of senescent cells is hampered by their heterogeneity. In this study, we generated stress-induced premature senescence 2D and 3D in vitro models for the stromal vascular niche of human adipose tissue. We established treatment conditions for senescence induction using Doxorubicin (Dox), starting from adipose-derived stromal/stem cells (ASCs), which we adapted to freshly isolated microtissue-stromal vascular fraction (MT-SVF), where cells are embedded within their native extracellular matrix. Senescence hallmarks for the established in vitro models were verified on different cellular levels, including morphology, cell cycle arrest, senescence-associated β-galactosidase activity (SA-βgal) and gene expression. Two subsequent exposures with 200 nM Dox for six days were suitable to induce senescence in our in vitro models. We demonstrated induction of senescence in the 2D in vitro models through SA-βgal activity, at the mRNA level (LMNB1, CDK1, p21) and additionally by G2/M phase cell cycle arrest in ASCs. Significant differences in Lamin B1 and p21 protein expression confirmed senescence in our MT-SVF 3D model. MT-SVF 3D cultures were composed of multiple cell types, including CD31, CD34 and CD68 positive cells, while cell death remained unaltered upon senescence induction. As heterogeneity and complexity of adipose tissue senescence is given by multiple cell types, our established senescence models that represent the perivascular niche embedded within its native extracellular matrix are highly relevant for future clinical studies.
Collapse
Affiliation(s)
- Marlene Wahlmueller
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
| | - Marie-Sophie Narzt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
| | - Karin Missfeldt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Verena Arminger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Anna Krasensky
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- Rockfish Bio AG, 1010 Vienna, Austria
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Mario Mairhofer
- Department of Hematology and Internal Oncology, Johannes Kepler University, 4020 Linz, Austria
| | - Susanne Suessner
- Austrian Red Cross Blood Transfusion Service for Upper Austria, 4020 Linz, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
- Correspondence:
| |
Collapse
|
26
|
Arvanitaki ES, Stratigi K, Garinis GA. DNA damage, inflammation and aging: Insights from mice. FRONTIERS IN AGING 2022; 3:973781. [PMID: 36160606 PMCID: PMC9490123 DOI: 10.3389/fragi.2022.973781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Persistent DNA lesions build up with aging triggering inflammation, the body’s first line of immune defense strategy against foreign pathogens and irritants. Once established, DNA damage-driven inflammation takes on a momentum of its own, due to the amplification and feedback loops of the immune system leading to cellular malfunction, tissue degenerative changes and metabolic complications. Here, we discuss the use of murine models with inborn defects in genome maintenance and the DNA damage response for understanding how irreparable DNA lesions are functionally linked to innate immune signaling highlighting their relevance for developing novel therapeutic strategies against the premature onset of aging-associated diseases.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | | | - George A. Garinis
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- *Correspondence: George A. Garinis,
| |
Collapse
|
27
|
Tang F, Wang Y, Gao Z, Guo S, Wang Y. Polymerase η Recruits DHX9 Helicase to Promote Replication across Guanine Quadruplex Structures. J Am Chem Soc 2022; 144:14016-14020. [PMID: 35905379 PMCID: PMC9378570 DOI: 10.1021/jacs.2c05312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DNA polymerase η (Pol η) catalyzes accurate bypass of ultraviolet light-induced cyclobutane pyrimidine dimers, and it also functions in several other related processes, including bypassing DNA with unusual structures. Here, we performed unbiased proteome-wide profiling of Pol η-interacting proteins by using two independent approaches, i.e., proximity labeling and affinity pull-down followed by LC-MS/MS analysis. We identified several helicases, including DHX9, as novel Pol η-interacting proteins. Additionally, ChIP-Seq analysis showed that Pol η is enriched at guanine quadruplex (G4) structure sites in chromatin. Moreover, Pol η promotes the recruitment of DHX9 to G4 structure loci in chromatin and facilitates DHX9-mediated unwinding of G4 structures. Deficiency in Pol η or DHX9 leads to attenuated replication across G4 regions in genomic DNA. Together, we unveiled the interaction between Pol η and DHX9 and demonstrated that the interaction promotes the replicative bypass of G4 structures in chromatin.
Collapse
Affiliation(s)
- Feng Tang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinan Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Zi Gao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Shiyuan Guo
- Genetics, Genomics and Bioinformatics Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- Genetics, Genomics and Bioinformatics Graduate Program, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
28
|
Lin H, Chen X, Pan J, Ke J, Zhang A, Liu Y, Wang C, Chang ACY, Gu J. Secretion of miRNA-326-3p by senescent adipose exacerbates myocardial metabolism in diabetic mice. J Transl Med 2022; 20:278. [PMID: 35729559 PMCID: PMC9210699 DOI: 10.1186/s12967-022-03484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Adipose tissue homeostasis is at the heart of many metabolic syndromes such as diabetes. Previously it has been demonstrated that adipose tissues from diabetic patients are senescent but whether this contributes to diabetic cardiomyopathy (DCM) remains to be elucidated. METHODS The streptozotocin (STZ) type 1 diabetic mice were established as animal model, and adult mouse ventricular myocytes (AMVMs) isolated by langendorff perfusion as well as neonatal mouse ventricular myocytes (NMVMs) were used as cell models. Senescent associated β galactosidase (SA-β-gal) staining and RT-qPCR were used to identify the presence of adipose senescence in diabetic adipose tissue. Senescent adipose were removed either by surgery or by senolytic treatment. Large extracellular vesicles (LEVs) derived from adipose tissue and circulation were separated by ultracentrifugation. Cardiac systolic and diastolic function was evaluated through cardiac ultrasound. Cardiomyocytes contraction function was evaluated by the Ionoptix HTS system and live cell imaging, mitochondrial morphology and functions were evaluated by transmission electron microscope, live cell fluorescent probe and seahorse analysis. RNA-seq for AMVMs and miRNA-seq for LEVs were performed, and bioinformatic analysis combined with RT-qPCR and Western blot were used to elucidate underlying mechanism that senescent adipose derives LEVs exacerbates myocardial metabolism. RESULTS SA-β-gal staining and RT-qPCR identified the presence of adipose tissue senescence in STZ mice. Through surgical as well as pharmacological means we show that senescent adipose tissue participates in the pathogenesis of DCM in STZ mice by exacerbates myocardial metabolism through secretion of LEVs. Specifically, expression of miRNA-326-3p was up-regulated in LEVs isolated from senescent adipose tissue, circulation, and cardiomyocytes of STZ mice. Up-regulation of miRNA-326-3p coincided with myocardial transcriptomic changes in metabolism. Functionally, we demonstrate that miRNA-326-3p inhibited the expression of Rictor and resulted in impaired mitochondrial and contractile function in cardiomyocytes. CONCLUSION We demonstrate for the first time that senescent adipose derived LEVs exacerbates myocardial metabolism through up-regulated miRNA-326-3p which inhibits Rictor in cardiomyocytes. Furthermore, reducing senescence burden in adipose tissue is capable of relieving myocardial metabolism disorder in diabetes mellitus.
Collapse
Affiliation(s)
- Hao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaonan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianan Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jiahan Ke
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yangyang Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alex Chia Yu Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
MDM2 Aggravates Adipose Tissue Dysfunction through Ubiquitin-mediated STEAP4 Degradation. iScience 2022; 25:104544. [PMID: 35747386 PMCID: PMC9209722 DOI: 10.1016/j.isci.2022.104544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Healthy adipose tissue is crucial to maintain normal energy homeostasis. Little is known about the role of murine double minute 2 (MDM2), an E3 ubiquitin ligase and has been highlighted in oncopathology, in adipose tissue. Our results indicated that MDM2 expression was associated with nutritional status. Mdm2 adipocyte-specific knock-in (Mdm2-AKI) mice exhibited exacerbated weight gain, insulin resistance, and decreased energy expenditure. Meanwhile, chronic high-fat diet (HFD) exposure caused obvious epididymal white adipose tissue (eWAT) dysfunction, such as senescence, apoptosis, and chronic inflammation, thereby leading to hepatic steatosis in Mdm2-AKI mice. Mechanically, MDM2 could interact with six-transmembrane epithelial antigen of prostate 4 (STEAP4) and inhibit STEAP4 expression through ubiquitin-mediated STEAP4 degradation. Thereinto, the K18 and K161 sites of STEAP4 were ubiquitin-modificated by MDM2. Finally, STEAP4 restoration in eWAT of Mdm2-AKI mice on a HFD rescued MDM2-induced adipose dysfunction, insulin resistance, and hepatic steatosis. Summary, the MDM2-STEAP4 axis in eWAT plays an important role in maintaining healthy adipose tissue function and improving hepatic steatosis. Murine double minute 2 (MDM2) overexpression intensifies high-fat diet-induced adipose tissue dysfunction Adipocyte MDM2 overexpression aggravates insulin resistance and hepatosteatosis MDM2 decreases six-transmembrane epithelial antigen of prostate 4 (STEAP4) expression by ubiquitin-dependent STEAP4 degradation STEAP4 overexpression in eWAT alleviates MDM2-induced metabolic disorder
Collapse
|
30
|
De Fano M, Bartolini D, Tortoioli C, Vermigli C, Malara M, Galli F, Murdolo G. Adipose Tissue Plasticity in Response to Pathophysiological Cues: A Connecting Link between Obesity and Its Associated Comorbidities. Int J Mol Sci 2022; 23:ijms23105511. [PMID: 35628322 PMCID: PMC9141504 DOI: 10.3390/ijms23105511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
Adipose tissue (AT) is a remarkably plastic and active organ with functional pleiotropism and high remodeling capacity. Although the expansion of fat mass, by definition, represents the hallmark of obesity, the dysregulation of the adipose organ emerges as the forefront of the link between adiposity and its associated metabolic and cardiovascular complications. The dysfunctional fat displays distinct biological signatures, which include enlarged fat cells, low-grade inflammation, impaired redox homeostasis, and cellular senescence. While these events are orchestrated in a cell-type, context-dependent and temporal manner, the failure of the adipose precursor cells to form new adipocytes appears to be the main instigator of the adipose dysregulation, which, ultimately, poses a deleterious milieu either by promoting ectopic lipid overspill in non-adipose targets (i.e., lipotoxicity) or by inducing an altered secretion of different adipose-derived hormones (i.e., adipokines and lipokines). This “adipocentric view” extends the previous “expandability hypothesis”, which implies a reduced plasticity of the adipose organ at the nexus between unhealthy fat expansion and the development of obesity-associated comorbidities. In this review, we will briefly summarize the potential mechanisms by which adaptive changes to variations of energy balance may impair adipose plasticity and promote fat organ dysfunction. We will also highlight the conundrum with the perturbation of the adipose microenvironment and the development of cardio-metabolic complications by focusing on adipose lipoxidation, inflammation and cellular senescence as a novel triad orchestrating the conspiracy to adipose dysfunction. Finally, we discuss the scientific rationale for proposing adipose organ plasticity as a target to curb/prevent adiposity-linked cardio-metabolic complications.
Collapse
Affiliation(s)
- Michelatonio De Fano
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Desirèe Bartolini
- Department of Pharmaceutical Sciences, Human Anatomy Laboratory, University of Perugia, 06132 Perugia, Italy; (D.B.); (F.G.)
| | - Cristina Tortoioli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Cristiana Vermigli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Massimo Malara
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Human Anatomy Laboratory, University of Perugia, 06132 Perugia, Italy; (D.B.); (F.G.)
| | - Giuseppe Murdolo
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
- Correspondence: ; Tel.: +39-(0)75-578-3301; Fax: +39-75-573-0855
| |
Collapse
|
31
|
In Het Panhuis W, Tsaalbi-Shtylik A, Schönke M, van Harmelen V, Pronk ACM, Streefland TCM, Sips HCM, Afkir S, Willems van Dijk K, Rensen PCN, de Wind N, Kooijman S. Rev1 deficiency induces replication stress to cause metabolic dysfunction differently in males and females. Am J Physiol Endocrinol Metab 2022; 322:E319-E329. [PMID: 35156394 DOI: 10.1152/ajpendo.00357.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA damage responses compete for cellular resources with metabolic pathways, but little is known about the metabolic consequences of impaired DNA replication, a process called replication stress. Here we characterized the metabolic consequences of DNA replication stress at endogenous DNA lesions by using mice with a disruption of Rev1, a translesion DNA polymerase specialized in the mutagenic replication of damaged DNA. Male and female Rev1 knockout (KO) mice were compared with wild-type (WT) mice and followed over time to study the natural course of body weight gain and glucose tolerance. Follow-up measurements were performed in female mice for in-depth metabolic characterization. Body weight and fat mass were only increased in female KO mice versus WT mice, whereas glucose intolerance and a reduction in lean mass were observed in both sexes. Female KO mice showed reduced locomotor activity while male KO mice showed increased activity as compared with their WT littermates. Further characterization of female mice revealed that lipid handling was unaffected by Rev1 deletion. An increased respiratory exchange ratio, combined with elevated plasma lactate levels and increased hepatic gluconeogenesis indicated problems with aerobic oxidation and increased reliance on anaerobic glycolysis. Supplementation with the NAD+ precursor nicotinamide riboside to stimulate aerobic respiration failed to restore the metabolic phenotype. In conclusion, replication stress at endogenous DNA lesions induces a complex metabolic phenotype, most likely initiated by muscular metabolic dysfunction and increased dependence on anaerobic glycolysis. Nicotinamide riboside supplementation after the onset of the metabolic impairment did not rescue this phenotype.NEW & NOTEWORTHY An increasing number of DNA lesions interferes with cellular replication leading to metabolic inflexibility. We utilized Rev1 knockout mice as a model for replication stress, and show a sex-dependent metabolic phenotype, with a pronounced reduction of lean mass and glucose tolerance. These data indicate that in obesity, we may end up in an infinite loop where metabolic disturbance promotes the formation of DNA lesions, which in turn interferes with cellular replication causing further metabolic disturbances.
Collapse
Affiliation(s)
- Wietse In Het Panhuis
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa van Harmelen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Trea C M Streefland
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty C M Sips
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Salwa Afkir
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Luo H, Chen L, Cui Z, Du J, Yang H, Qiu W, Zhai L, Liang H, Tang H. Poly(ADP-ribose)polymerase-1 affects hydroquinone-induced aberrant cell cycle and apoptosis through activation of p16/pRb signaling pathway in TK6 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113259. [PMID: 35121258 DOI: 10.1016/j.ecoenv.2022.113259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Hydroquinone (HQ), a key metabolite of benzene, affects cell cycle and apoptosis. Poly (ADP-ribose) polymerase-1 (PARP-1) plays an important role in DNA damage repair. To explore whether PARP-1 is involved in HQ-induced cell cycle and apoptosis, we assessed the effect of PARP-1 suppression and overexpression on induction of cell cycle and apoptosis analyzed by flow cytometry analysis. We observed that HQ induced aberrant cell cycle progression and apoptosis. We further confirmed that PARP-1 suppression accelerated the cell cycle progression and inhibited cell apoptosis via inhibiting p16/pRb signal pathway after acute HQ exposure, while overexpression of PARP-1 displayed the opposite results. Therefore, we concluded that HQ-induced cell cycle and apoptosis were regulated by PARP-1 through activation of p16/pRb signaling pathway.
Collapse
Affiliation(s)
- Hao Luo
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lin Chen
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zheming Cui
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinlin Du
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lu Zhai
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
33
|
Translesion polymerase eta both facilitates DNA replication and promotes increased human genetic variation at common fragile sites. Proc Natl Acad Sci U S A 2021; 118:2106477118. [PMID: 34815340 PMCID: PMC8640788 DOI: 10.1073/pnas.2106477118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 01/23/2023] Open
Abstract
Common fragile sites (CFSs) are difficult-to-replicate genomic regions that form gaps and breaks on metaphase chromosomes under replication stress. They are hotspots for chromosomal instability in cancer. Repetitive sequences located at CFS loci are inefficiently copied by replicative DNA polymerase (Pol) delta. However, translesion synthesis Pol eta has been shown to efficiently polymerize CFS-associated repetitive sequences in vitro and facilitate CFS stability by a mechanism that is not fully understood. Here, by locus-specific, single-molecule replication analysis, we identified a crucial role for Pol eta (encoded by the gene POLH) in the in vivo replication of CFSs, even without exogenous stress. We find that Pol eta deficiency induces replication pausing, increases initiation events, and alters the direction of replication-fork progression at CFS-FRA16D in both lymphoblasts and fibroblasts. Furthermore, certain replication pause sites at CFS-FRA16D were associated with the presence of non-B DNA-forming motifs, implying that non-B DNA structures could increase replication hindrance in the absence of Pol eta. Further, in Pol eta-deficient fibroblasts, there was an increase in fork pausing at fibroblast-specific CFSs. Importantly, while not all pause sites were associated with non-B DNA structures, they were embedded within regions of increased genetic variation in the healthy human population, with mutational spectra consistent with Pol eta activity. From these findings, we propose that Pol eta replicating through CFSs may result in genetic variations found in the human population at these sites.
Collapse
|
34
|
Bima A, Eldakhakhny B, Nuwaylati D, Alnami A, Ajabnoor M, Elsamanoudy A. The Interplay of Vitamin D Deficiency and Cellular Senescence in The Pathogenesis of Obesity-Related Co-Morbidities. Nutrients 2021; 13:nu13114127. [PMID: 34836382 PMCID: PMC8618094 DOI: 10.3390/nu13114127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
This scoping review aims to clarify the interplay between obesity, vitamin D deficiency, cellular senescence, and obesity-related metabolic consequences, mainly subclinical atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). Obesity is a significant global health problem that involves cellular, environmental, behavioral, and genetic elements. The fundamental cause of obesity throughout all life stages is an energy imbalance, and its consequences are countless and, foremost, very common. Obesity has been comprehensively studied in the literature given its association with low serum vitamin D, with many proposed mechanisms linking the two conditions. Moreover, markers of exaggerated cellular senescence have been proven to accumulate in obese individuals. Subclinical atherosclerosis initiates an early stage that ends in serious cardiac events, and obesity, low vitamin D, and senescent cells largely contribute to its associated chronic low-grade inflammation. Furthermore, NAFLD signifies the hepatic manifestation of metabolic syndrome, and studies have highlighted the important role of obesity, vitamin D deficiency, and cellular senescence in its development. Therefore, we outlined the most important mechanisms tying these conditions to one another.
Collapse
Affiliation(s)
- Abdulhadi Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
| | - Basmah Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
| | - Dina Nuwaylati
- Department of Clinical Biochemistry, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Abrar Alnami
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
| | - Mohammed Ajabnoor
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
| | - Ayman Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +966-59-506-2375
| |
Collapse
|
35
|
Li Q, Hagberg CE, Silva Cascales H, Lang S, Hyvönen MT, Salehzadeh F, Chen P, Alexandersson I, Terezaki E, Harms MJ, Kutschke M, Arifen N, Krämer N, Aouadi M, Knibbe C, Boucher J, Thorell A, Spalding KL. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat Med 2021; 27:1941-1953. [PMID: 34608330 DOI: 10.1038/s41591-021-01501-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.
Collapse
Affiliation(s)
- Qian Li
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carolina E Hagberg
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular Medicine Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helena Silva Cascales
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Shuai Lang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mervi T Hyvönen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Firoozeh Salehzadeh
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ping Chen
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Stockolm, Sweden
| | - Ida Alexandersson
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eleni Terezaki
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Matthew J Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Kutschke
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nahida Arifen
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niels Krämer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Myriam Aouadi
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Stockolm, Sweden
| | - Carole Knibbe
- CarMeN Laboratory, Lyon University, INRIA, INSA Lyon, Lyon, France
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet and Department of Surgery, Ersta Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden. .,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Muhamedejevs R, Živković L, Dzintare M, Sjakste N. DNA-binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders. Chem Biol Interact 2021; 348:109638. [PMID: 34508711 DOI: 10.1016/j.cbi.2021.109638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
The DNA-binding activities of compounds used as remedies can display DNA-protection, but also damaging effects in biological systems. The current review compiles literature data on DNA-binding activities of drugs widely used as remedies with different therapeutic indications. The compounds are classified according their mechanism of action: enzyme inhibitors, ion channel inhibitors, inhibitors of viral RNA replication and HIV protease and receptor agonists. DNA binding was reported for such widely used drugs as paracetamol, aspirin, metformin, statins and many others. The capability of the drug to bind DNA is sometimes coupled to genotoxic effects, but in some cases - to genome protection. Data on atoms and chemical groups involved in the drug-DNA interactions are also presented. In many cases the same atoms are involved in both interactions of the compounds with proteins and DNA.
Collapse
Affiliation(s)
- Ruslans Muhamedejevs
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga, LV-1006, Latvia
| | - Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Maija Dzintare
- Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and Informatics, Latvian Academy of Sport Education, Brivibas gatve 333, Riga, LV-1006, Latvia
| | - Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, Jelgavas Street 1, Riga, LV-1004, Latvia.
| |
Collapse
|
37
|
Palmer AK, Tchkonia T, Kirkland JL. Senolytics: Potential for Alleviating Diabetes and Its Complications. Endocrinology 2021; 162:6168435. [PMID: 33705532 PMCID: PMC8234500 DOI: 10.1210/endocr/bqab058] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/28/2022]
Abstract
Therapeutics that target cellular senescence, including novel "senolytic" compounds, hold significant promise for treating or preventing obesity-induced metabolic dysfunction, type 2 diabetes, and the multiple complications of diabetes and obesity. Senolytics selectively clear senescent cells, which accumulate with aging and obesity and represent a fundamental mechanism of aging that contributes to metabolic dysfunction and diabetes pathogenesis. In addition to improving metabolic function, targeting senescent cells holds promise as a preventive strategy to reduce the incidence and severity of diabetes complications. The intermittent administration schedule used for senolytic therapy may confer benefits in terms of improving adherence and limiting adverse effects. It is necessary to design effective clinical trials that will safely translate discoveries from preclinical models into human studies that may pave the way for a novel therapeutic class for treating obesity, diabetes, and their complications. In this review, we outline what is known regarding the role of cellular senescence in the pathogenesis of type 2 diabetes and its complications, present evidence from preclinical models that targeting cellular senescence is beneficial, review senolytic drugs, and outline the features of clinical trials investigating the role of targeting senescent cells for diabetes.
Collapse
Affiliation(s)
- Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
- Correspondence: James L. Kirkland, MD, PhD, Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| |
Collapse
|
38
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
39
|
Tsao WC, Buj R, Aird KM, Sidorova JM, Eckert KA. Overexpression of oncogenic H-Ras in hTERT-immortalized and SV40-transformed human cells targets replicative and specialized DNA polymerases for depletion. PLoS One 2021; 16:e0251188. [PMID: 33961649 PMCID: PMC8104423 DOI: 10.1371/journal.pone.0251188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
DNA polymerases play essential functions in replication fork progression and genome maintenance. DNA lesions and drug-induced replication stress result in up-regulation and re-localization of specialized DNA polymerases η and κ. Although oncogene activation significantly alters DNA replication dynamics, causing replication stress and genome instability, little is known about DNA polymerase expression and regulation in response to oncogene activation. Here, we investigated the consequences of mutant H-RASG12V overexpression on the regulation of DNA polymerases in h-TERT immortalized and SV40-transformed human cells. Focusing on DNA polymerases associated with the replication fork, we demonstrate that DNA polymerases are depleted in a temporal manner in response to H-RASG12V overexpression. The polymerases targeted for depletion, as cells display markers of senescence, include the Pol α catalytic subunit (POLA1), Pol δ catalytic and p68 subunits (POLD1 and POLD3), Pol η, and Pol κ. Both transcriptional and post-transcriptional mechanisms mediate this response. Pol η (POLH) depletion is sufficient to induce a senescence-like growth arrest in human foreskin fibroblast BJ5a cells, and is associated with decreased Pol α expression. Using an SV-40 transformed cell model, we observed cell cycle checkpoint signaling differences in cells with H-RasG12V-induced polymerase depletion, as compared to Pol η-deficient cells. Our findings contribute to our understanding of cellular events following oncogene activation and cellular transformation.
Collapse
Affiliation(s)
- Wei-chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Raquel Buj
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Katherine M. Aird
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Julia M. Sidorova
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kristin A. Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Sjakste N, Riekstiņa U. DNA damage and repair in differentiation of stem cells and cells of connective cell lineages: A trigger or a complication? Eur J Histochem 2021; 65. [PMID: 33942598 PMCID: PMC8116775 DOI: 10.4081/ejh.2021.3236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
The review summarizes literature data on the role of DNA breaks and DNA repair in the differentiation of pluripotent stem cells (PSC) and connective cell lineages. PSC, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC), are rapidly dividing cells with highly active DNA damage response (DDR) mechanisms to ensure the stability and integrity of the DNA. In PSCs, the most common DDR mechanism is error-free homologous recombination (HR) that is primarily active during the S phase of the cell cycle, whereas in quiescent, slow-dividing or non-dividing tissue progenitors and terminally differentiated cells, errorprone non-homologous end joining (NHEJ) mechanism of the double-strand break (DSB) repair is dominating. Thus, it seems that reprogramming and differentiation induce DNA strand breaks in stem cells which itself may trigger the differentiation process. Somatic cell reprogramming to iPSCs is preceded by a transient increase of the DSBs induced presumably by the caspase-dependent DNase or reactive oxygen species. In general, pluripotent stem cells possess stronger DNA repair systems compared to differentiated cells. Nonetheless, during a prolonged cell culture propagation, DNA breaks can accumulate due to the DNA polymerase stalling. Consequently, the DNA damage might trigger the differentiation of stem cells or replicative senescence of somatic cells. The differentiation process per se is often accompanied by a decrease in the DNA repair capacity. Thus, the differentiation might be triggered by DNA breaks, alternatively, the breaks can be a consequence of the decay in the DNA repair capacity of differentiated cells.
Collapse
|
41
|
Cellular senescence and its role in white adipose tissue. Int J Obes (Lond) 2021; 45:934-943. [PMID: 33510393 DOI: 10.1038/s41366-021-00757-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Cell senescence is defined as a state of irreversible cell cycle arrest combined with DNA damage and the induction of a senescence-associated secretory phenotype (SASP). This includes increased secretion of many inflammatory agents, proteases, miRNA's, and others. Cell senescence has been widely studied in oncogenesis and has generally been considered to be protective, due to cell cycle arrest and the inhibition of proliferation. Cell senescence is also associated with ageing and extensive experimental data support its role in generating the ageing-associated phenotype. Senescent cells can also influence proximal "healthy" cells through SASPs and, e.g., inhibit normal development of progenitor/stem cells, thereby preventing tissue replacement of dying cells and reducing organ functions. Recent evidence demonstrates that SASPs may also play important roles in several chronic diseases including diabetes and cardiovascular disease. White adipose tissue (WAT) cells are highly susceptible to becoming senescent both with ageing but also with obesity and type 2 diabetes, independently of chronological age. WAT senescence is associated with inappropriate expansion (hypertrophy) of adipocytes, insulin resistance, and dyslipidemia. Major efforts have been made to identify approaches to delete senescent cells including the use of "senolytic" compounds. The most established senolytic treatment to date is the combination of dasatinib, an antagonist of the SRC family of kinases, and the antioxidant quercetin. This combination reduces cell senescence and improves chronic disorders in experimental animal models. Although only small and short-term studies have been performed in man, no severe adverse effects have been reported. Hopefully, these or other senolytic agents may provide novel ways to prevent and treat different chronic diseases in man. Here we review the current knowledge on cellular senescence in both murine and human studies. We also discuss the pathophysiological role of this process and the potential therapeutic relevance of targeting senescence selectively in WAT.
Collapse
|
42
|
Bima AI, Mahdi AS, Al Fayez FF, Khawaja TM, Abo El-Khair SM, Elsamanoudy AZ. Cellular Senescence and Vitamin D Deficiency Play a Role in the Pathogenesis of Obesity-Associated Subclinical Atherosclerosis: Study of the Potential Protective Role of Vitamin D Supplementation. Cells 2021; 10:920. [PMID: 33923622 PMCID: PMC8073712 DOI: 10.3390/cells10040920] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
The exact link between obesity, vitamin D deficiency, and their relation to cellular senescence in the pathogenesis of subclinical atherosclerosis is still under debate. Therefore, the current study aims to verify the possible role of vitamin D deficiency and cellular senescence in the pathogenesis of obesity-related subclinical atherosclerosis. Moreover, it aims to investigate the possible protective role of vitamin D supplementation. Fifty-seven male albino rats were enrolled in the study and classified into four groups: negative (10) and positive control groups (10), an obese model group (24), and a vitamin-D-supplemented obese group (13). Aortic tissue samples and fasting blood samples were collected. The following biochemical investigations were performed: serum cholesterol, triglycerides, HDL-C, LDL-C, ALT, AST, CPK, CK-MB, and hs-cTnt. HOMA-IR was calculated. Moreover, serum SMP-30, 25 (OH)Vitamin D3, and eNOS were determined by the ELISA technique. Aortic gene expression of eNOS, SMP-30, and P53 was estimated by real-time qRT-PCR. Serum 25(OH) D3 and SMP-30 were lower in the obese group. In addition, the obese group showed higher serum lipid profile, HOMA-IR, eNOS, ALT, AST, CPK, CK-MB, and hs-cTnt than the control groups, while decreased levels were found in the vitamin-D-treated obese group. Gene expression of eNOS and SMP-30 were in accordance with their serum levels. A positive correlation was found between vitamin D level and SMP-30. In conclusion, obesity is associated with vitamin D deficiency and enhanced cellular senescence. They could play a role in the pathogenesis of obesity-associated subclinical atherosclerosis and endothelial dysfunction. Vitamin D supplements could play a protective role against such obesity-related comorbidity.
Collapse
Affiliation(s)
- Abdulhadi I. Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.S.M.); (F.F.A.F.); tagreed2009-@hotmail.com (T.M.K.)
| | - Abdullah S. Mahdi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.S.M.); (F.F.A.F.); tagreed2009-@hotmail.com (T.M.K.)
| | - Fayza F. Al Fayez
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.S.M.); (F.F.A.F.); tagreed2009-@hotmail.com (T.M.K.)
| | - Taghreed M. Khawaja
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.S.M.); (F.F.A.F.); tagreed2009-@hotmail.com (T.M.K.)
| | - Salwa M. Abo El-Khair
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Ayman Z. Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.S.M.); (F.F.A.F.); tagreed2009-@hotmail.com (T.M.K.)
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
43
|
Huerta Guevara AP, McGowan SJ, Kazantzis M, Stallons TR, Sano T, Mulder NL, Jurdzinski A, van Dijk TH, Eggen BJL, Jonker JW, Niedernhofer LJ, Kruit JK. Increased insulin sensitivity and diminished pancreatic beta-cell function in DNA repair deficient Ercc1 d/- mice. Metabolism 2021; 117:154711. [PMID: 33493548 PMCID: PMC8625516 DOI: 10.1016/j.metabol.2021.154711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Type 2 diabetes (T2DM) is an age-associated disease characterized by hyperglycemia due to insulin resistance and decreased beta-cell function. DNA damage accumulation has been associated with T2DM, but whether DNA damage plays a role in the pathogenesis of the disease is unclear. Here, we used mice deficient for the DNA excision-repair gene Ercc1 to study the impact of persistent endogenous DNA damage accumulation on energy metabolism, glucose homeostasis and beta-cell function. METHODS ERCC1-XPF is an endonuclease required for multiple DNA repair pathways and reduced expression of ERCC1-XPF causes accelerated accumulation of unrepaired endogenous DNA damage and accelerated aging in humans and mice. In this study, energy metabolism, glucose metabolism, beta-cell function and insulin sensitivity were studied in Ercc1d/- mice, which model a human progeroid syndrome. RESULTS Ercc1d/- mice displayed suppression of the somatotropic axis and altered energy metabolism. Insulin sensitivity was increased, whereas, plasma insulin levels were decreased in Ercc1d/- mice. Fasting induced hypoglycemia in Ercc1d/- mice, which was the result of increased glucose disposal. Ercc1d/- mice exhibit a significantly reduced beta-cell area, even compared to control mice of similar weight. Glucose-stimulated insulin secretion in vivo was decreased in Ercc1d/- mice. Islets isolated from Ercc1d/- mice showed increased DNA damage markers, decreased glucose-stimulated insulin secretion and increased susceptibility to apoptosis. CONCLUSION Spontaneous DNA damage accumulation triggers an adaptive response resulting in improved insulin sensitivity. Loss of DNA repair, however, does negatively impacts beta-cell survival and function in Ercc1d/- mice.
Collapse
Affiliation(s)
- Ana P Huerta Guevara
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Sara J McGowan
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA; Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | - Tokio Sano
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL 33458, USA
| | - Niels L Mulder
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Angelika Jurdzinski
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Theo H van Dijk
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA; Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL 33458, USA
| | - Janine K Kruit
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
44
|
Abstract
Significance: Cell senescence was originally defined by an acute loss of replicative capacity and thus believed to be restricted to proliferation-competent cells. More recently, senescence has been recognized as a cellular stress and damage response encompassing multiple pathways or senescence domains, namely DNA damage response, cell cycle arrest, senescence-associated secretory phenotype, senescence-associated mitochondrial dysfunction, autophagy/mitophagy dysfunction, nutrient and stress signaling, and epigenetic reprogramming. Each of these domains is activated during senescence, and all appear to interact with each other. Cell senescence has been identified as an important driver of mammalian aging. Recent Advances: Activation of all these senescence domains has now also been observed in a wide range of post-mitotic cells, suggesting that senescence as a stress response can occur in nondividing cells temporally uncoupled from cell cycle arrest. Here, we review recent evidence for post-mitotic cell senescence and speculate about its possible relevance for mammalian aging. Critical Issues: Although a majority of senescence domains has been found to be activated in a range of post-mitotic cells during aging, independent confirmation of these results is still lacking for most of them. Future Directions: To define whether post-mitotic senescence plays a significant role as a driver of aging phenotypes in tissues such as brain, muscle, heart, and others. Antioxid. Redox Signal. 34, 308-323.
Collapse
Affiliation(s)
- Thomas von Zglinicki
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Molecular Biology and Genetics, Arts and Sciences Faculty, Near East University, Nicosia, Turkey
| | - Tengfei Wan
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
45
|
D'Amico AM, Vasquez KM. The multifaceted roles of DNA repair and replication proteins in aging and obesity. DNA Repair (Amst) 2021; 99:103049. [PMID: 33529944 DOI: 10.1016/j.dnarep.2021.103049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Efficient mechanisms for genomic maintenance (i.e., DNA repair and DNA replication) are crucial for cell survival. Aging and obesity can lead to the dysregulation of genomic maintenance proteins/pathways and are significant risk factors for the development of cancer, metabolic disorders, and other genetic diseases. Mutations in genes that code for proteins involved in DNA repair and DNA replication can also exacerbate aging- and obesity-related disorders and lead to the development of progeroid diseases. In this review, we will discuss the roles of various DNA repair and replication proteins in aging and obesity as well as investigate the possible mechanisms by which aging and obesity can lead to the dysregulation of these proteins and pathways.
Collapse
Affiliation(s)
- Alexandra M D'Amico
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA.
| |
Collapse
|
46
|
Qian S, Tang Y, Tang QQ. Adipose tissue plasticity and the pleiotropic roles of BMP signaling. J Biol Chem 2021; 296:100678. [PMID: 33872596 PMCID: PMC8131923 DOI: 10.1016/j.jbc.2021.100678] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissues, including white, beige, and brown adipose tissue, have evolved to be highly dynamic organs. Adipose tissues undergo profound changes during development and regeneration and readily undergo remodeling to meet the demands of an everchanging metabolic landscape. The dynamics are determined by the high plasticity of adipose tissues, which contain various cell types: adipocytes, immune cells, endothelial cells, nerves, and fibroblasts. There are numerous proteins that participate in regulating the plasticity of adipose tissues. Among these, bone morphogenetic proteins (BMPs) were initially found to regulate the differentiation of adipocytes, and they are being reported to have pleiotropic functions by emerging studies. Here, in the first half of the article, we summarize the plasticity of adipocytes and macrophages, which are two groups of cells targeted by BMP signaling in adipose tissues. We then review how BMPs regulate the differentiation, death, and lipid metabolism of adipocytes. In addition, the potential role of BMPs in regulating adipose tissue macrophages is considered. Finally, the expression of BMPs in adipose tissues and their metabolic relevance are discussed.
Collapse
Affiliation(s)
- Shuwen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Marcheggiani F, Cirilli I, Ziqubu K, Shabalala SC, Johnson R, Louw J, Damiani E, Tiano L. N-Acetyl Cysteine Targets Hepatic Lipid Accumulation to Curb Oxidative Stress and Inflammation in NAFLD: A Comprehensive Analysis of the Literature. Antioxidants (Basel) 2020; 9:E1283. [PMID: 33339155 PMCID: PMC7765616 DOI: 10.3390/antiox9121283] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1β, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Samukelisiwe C. Shabalala
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| |
Collapse
|
48
|
Wueest S, Lucchini FC, Haim Y, Rudich A, Konrad D. Depletion of ASK1 blunts stress-induced senescence in adipocytes. Adipocyte 2020; 9:535-541. [PMID: 32930631 PMCID: PMC7714422 DOI: 10.1080/21623945.2020.1815977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Increasing energy expenditure via induction of browning in white adipose tissue has emerged as a potential strategy to treat obesity and associated metabolic complications. We previously reported that ASK1 inhibition in adipocytes protected from high-fat diet (HFD) or lipopolysaccharide (LPS)-mediated downregulation of UCP1 both in vitro and in vivo. Conversely, adipocyte-specific ASK1 overexpression attenuated cold-induction of UCP-1 in inguinal fat. Herein, we provide evidence that both TNFα-mediated and HFD-induced activation of p38 MAPK in white adipocytes are ASK1-dependent. Moreover, expression of senescence markers was reduced in HFD-fed adipocyte-specific ASK1 knockout mice. Similarly, LPS-induced upregulation of senescence markers was blunted in ASK1-depleted adipocytes. Thus, our study identifies a previously unknown role for ASK1 in the induction of stress-induced senescence.
Collapse
Affiliation(s)
- Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Fabrizio C. Lucchini
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clin Sci (Lond) 2020; 134:315-330. [PMID: 31998947 DOI: 10.1042/cs20190966] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
Adipose tissue as the largest energy reservoir and endocrine organ is essential for maintenance of systemic glucose, lipid and energy homeostasis, but these metabolic functions decline with ageing and obesity. Adipose tissue senescence is one of the common features in obesity and ageing. Although cellular senescence is a defensive mechanism preventing tumorigenesis, its occurrence in adipose tissue causatively induces defective adipogenesis, inflammation, aberrant adipocytokines production and insulin resistance, leading to adipose tissue dysfunction. In addition to these paracrine effects, adipose tissue senescence also triggers systemic inflammation and senescence as well as insulin resistance in the distal metabolic organs, resulting in Type 2 diabetes and other premature physiological declines. Multiple cell types including mature adipocytes, immune cells, endothelial cells and progenitor cells gradually senesce at different levels in different fat depots with ageing and obesity, highlighting the heterogeneity and complexity of adipose tissue senescence. In this review, we discuss the causes and consequences of adipose tissue senescence, and the major cell types responsible for adipose tissue senescence in ageing and obesity. In addition, we summarize the pharmacological approaches and lifestyle intervention targeting adipose tissue senescence for the treatment of obesity- and ageing-related metabolic diseases.
Collapse
|
50
|
Feng J, Xu H, Pan F, Hu J, Wu Y, Lin N, Zhang X, Ji C, Hu Y, Zhong H, Yan L, Zhong T, Cui X. An Integrated Analysis of mRNA and lncRNA Expression Profiles Indicates Their Potential Contribution to Brown Fat Dysfunction With Aging. Front Endocrinol (Lausanne) 2020; 11:46. [PMID: 32127793 PMCID: PMC7039067 DOI: 10.3389/fendo.2020.00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Brown adipose tissue (BAT) can convert fatty acids and glucose into heat, exhibiting the potential to combat obesity and diabetes. The mass and activity of BAT gradually diminishes with aging. As a newly found regulator of gene expression, long non-coding RNAs (lncRNAs) exhibit a wide range of functions in life processes. However, whether long non-coding RNA (lncRNA) involves in BAT dysfunction with aging is still unclear. Here, using RNA-sequencing technology, we identified 3237 messenger RNAs (mRNAs) and 1312 lncRNAs as differentially expressed in BAT of 10-months-old mice compared with 6- to 8-week-old. The protein-protein interaction network and k-score analysis revealed that the core mRNAs were associated with two important aging-related pathways, including cell cycle and p53 signaling pathway. Gene set enrichment analysis indicated that these mRNAs might participate in lipid metabolism and brown fat dysfunction. Functional enrichment analyses demonstrated that dysregulated lncRNAs were associated with mitochondria, regulation of cellular senescence, cell cycle, metabolic and p53 signaling pathways. Moreover, we revealed that two lncRNAs (NONMMUT024512 and n281160) may involve in the regulation of their adjacent gene peroxisome proliferator-activated receptor alpha (Pparα), a thermogenesis regulator. Collectively, these results lay a foundation for extensive studies on the role of lncRNAs in age-related thermogenic degradation.
Collapse
Affiliation(s)
- Jie Feng
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Institute of Planned Parenthood Research, Nanjing, China
| | - Haoqin Xu
- Jiangsu Institute of Planned Parenthood Research, Nanjing, China
| | - Fenghui Pan
- Department of Geriatrics, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Jiaojiao Hu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yulin Wu
- Jiangsu Institute of Planned Parenthood Research, Nanjing, China
| | - Ning Lin
- Jiangsu Institute of Planned Parenthood Research, Nanjing, China
| | - Xiaoxiao Zhang
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Hu
- Department of Geriatrics, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Hong Zhong
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Linping Yan
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Tianying Zhong
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Tianying Zhong
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
- Xianwei Cui
| |
Collapse
|