1
|
Liao Y, Wang S, Tang T, Li C, Yang C, Ma L, Ye J, Wang J, Yang D, Qiao Z, Ma Z, Liu Z. USP1 inhibits influenza A and B virus replication in MDCK cells by mediating RIG-I deubiquitination. Cell Mol Life Sci 2025; 82:200. [PMID: 40369332 PMCID: PMC12078747 DOI: 10.1007/s00018-025-05733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/28/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
The post-translational modification and stability regulation of RIG-I play critical roles in promoting IFN-I production and maintaining immune homeostasis. In this study, we found that ubiquitin-specific peptidase 1 (USP1) promotes RIG-I protein stability through deubiquitination, which in turn enhances antiviral immunity through the production of inflammatory cytokines, and inhibits the replication of influenza virus in MDCK cells. In contrast, USP1 knockdown inhibited the deubiquitination of RIG-I, decreased the RIG-I protein level, and significantly increased the influenza virus titer. Meanwhile, inhibition of USP1 expression did not have a significant effect on the proliferation of MDCK cells, suggesting that USP1 could be used as a target gene to establish a vaccine-producing MDCK cell line. The above results provide a more comprehensive understanding of the function of USP1 and the antiviral response mechanism, and provide a theoretical and methodological basis for the screening of target genes for the artificial establishment of high-yield MDCK cell lines for vaccine production.
Collapse
Affiliation(s)
- Yuejiao Liao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Tian Tang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Chengfan Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Chenhao Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Liyuan Ma
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Jin Ye
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Department of Experiment & Teaching, Northwest Minzu University, Lanzhou, 730030, China
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China.
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Du L, Chen J, Du C, Chen J, Wang Z, Bao B, Zhonglin LV, Xing C, Liang M, Wang L, Xie S, Li Y, Wang Z, Li G, Zhang J, Han G. Tim-3 promotes viral infection by suppressing the USP25-TRAF3-IRF7 signaling pathway. Cell Immunol 2025; 409-410:104930. [PMID: 39946759 DOI: 10.1016/j.cellimm.2025.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 03/15/2025]
Abstract
Tim-3, an immune checkpoint inhibitor, plays key roles in maintaining immune homeostasis and is involved in viral evasion. However, the precise role of Tim-3 in viral infection remains to be determined. USP25 is a deubiquitinating enzyme that initiates antiviral immunity by deubiquitinating TRAF3 and triggering the antiviral signaling pathway. Here we found that Tim-3-specific knockout in myeloid cells leads to enhanced antiviral immunity in mice with vesicular stomatitis virus (VSV) encephalitis by increasing the type I interferon response. Mechanistically, Tim-3 inhibits the expression of USP25 via STAT1 and interacts with USP25 but does not regulate its posttranslational modification; as a result, Tim-3 inhibits USP25-mediated deubiquitination of TRAF3, promotes K48-linked ubiquitination and degradation of TRAF3, inhibits the phosphorylation of IRF7, and ultimately downregulates the interferon response. These findings provide new insights into the function of Tim-3 in antiviral immunity and its related clinical significance.
Collapse
Affiliation(s)
- Lin Du
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Jinjie Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Chunxiao Du
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Junrui Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhaoxiang Wang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bing Bao
- Department of Medical Information Data Service, The General Hospital of Western Theater Command, Chengdu, China
| | - L V Zhonglin
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Meng Liang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lanying Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Shun Xie
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhiding Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jun Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Fu Y, Yang X, Ling Q, Huang Y, You X, Nie D, Sheng J, Chen Y, Wen Q, Zhou X, Zhou C, Hu S, Ma L. USP25 Promotes the Antimycobacterial Response of Macrophages Through Stabilizing B-Raf and C-Raf. J Infect Dis 2025; 231:366-377. [PMID: 39110031 DOI: 10.1093/infdis/jiae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 02/21/2025] Open
Abstract
Ubiquitin-specific peptidase 25 (USP25) is one of the best-characterized deubiquitinating enzymes and plays a vital regulatory role in various biological processes, especially in cancer development and immune regulation. However, the exact role of USP25 and its underlying mechanisms in macrophage activation and immunogenicity during Mycobacterium tuberculosis infection remain unclear. In this study, we found that M tuberculosis infection induced USP25 expression in human and mouse macrophages. In particular, USP25 expression is elevated in multiple cell types, especially monocytes, in patients with tuberculosis. Additionally, USP25 deficiency in macrophages and mice resulted in compromised immunity against M tuberculosis infection, accompanied by reduced expressions of various proinflammatory cytokines and chemokines. Mechanistically, USP25 in macrophages promoted the activation of the ERK signaling pathway through deubiquitination and stabilization of B-Raf and C-Raf. These findings collectively suggest the critical roles of USP25 in M tuberculosis infection and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Xiaodan Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Qiao Ling
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Xiaolong You
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Dingnai Nie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Yitian Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| |
Collapse
|
4
|
Yang C, Li HX, Gan H, Shuai X, Dong C, Wang W, Lin D, Zhong B. KRAS4B oncogenic mutants promote non-small cell lung cancer progression via the interaction of deubiquitinase USP25 with RNF31. Dev Cell 2025:S1534-5807(25)00035-8. [PMID: 39952242 DOI: 10.1016/j.devcel.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogenic mutations are genetic drivers in various cancers, including non-small cell lung cancer (NSCLC). However, the regulatory mechanisms underlying the progression of NSCLC driven by oncogenic KRAS mutants are incompletely understood. Here, we show that ubiquitin specific peptidase 25 (USP25) impedes ring finger protein 31 (RNF31)-mediated linear ubiquitination of KRAS oncogenic mutants (KRASmuts) independently of its deubiquitinase activity, which facilitates the plasma membrane (PM) localization and the downstream oncogenic signaling of KRASmuts. Importantly, knockout (KO) of USP25 effectively suppresses tumor growth and RAS signaling in KRASmuts-driven autochthonous NSCLC mouse models and xenograft models, which is restored by additional deletion or inhibition of RNF31. Notably, knockin of USP25C178A in KRasG12D-driven NSCLC models fails to inhibit cancer progression and reconstitution of USP25C178A into USP25 KO A549 cells restores tumor growth. These findings identify previously uncharacterized roles of USP25 and RNF31 in oncogenic KRAS-driven NSCLC progression and provide potential therapeutic targets for KRASmuts-related cancers.
Collapse
Affiliation(s)
- Ci Yang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hong-Xu Li
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hu Gan
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China
| | - Chen Dong
- School of Medicine, Westlake University, Hangzhou 310024, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
5
|
Ye B, Xu D, Zhong L, Wang Y, Wang W, Xu H, Han X, Min J, Wu G, Huang W, Liang G. Ubiquitin-specific protease 25 improves myocardial ischemia-reperfusion injury by deubiquitinating NLRP3 and negatively regulating NLRP3 inflammasome activity in cardiomyocytes. Clin Transl Med 2025; 15:e70243. [PMID: 39985261 PMCID: PMC11845855 DOI: 10.1002/ctm2.70243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/21/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Myocardial ischemia/reperfusion injury (MI/RI) restricts the effect of myocardial reperfusion therapy and lacks effective prevention and treatment methods. Deubiquitinating enzymes (DUBs), especially members of the ubiquitin-specific protease (USP) family of DUBs, are key proteins in the ubiquitination modification process and play a vital role in MI/RI. Therefore, we aimed to investigate the role of USP25, as a member of the USP family, in MI/RI and its molecular mechanism. METHODS Transcriptome sequencing was applied to evaluate the differential expression of USP families during hypoxia/reoxygenation (H/R) and validated in human and mouse heart samples and cardiomyocytes by performing quantitative polymerase chain reaction. Wild-type or USP25-/- mice were used to develop the MI/RI model. Co-immunoprecipitation (Co-IP) combined with liquid chromatography-tandem mass spectrometry analysis was used to screen the potential substrate protein of USP25 in H/R-induced cardiomyocyte injury. TUNEL and Hoechst/propidium iodide staining and western blot were used to detect the level of pyroptosis. In addition, cardiomyocyte-specific USP25 overexpression in NLRP3-/- mice with AAV9 vectors was used to validate the biological function of USP25 and NLRP3 interaction. RESULTS We found that the expression level of USP25 was significantly decreased in I/R-induced mouse heart tissues and primary cardiomyocytes in a time-dependent manner. USP25 deficiency exacerbated MI/RI and aggravated I/R-induced cardiac remodelling in mice. Mechanistically, USP25 directly binds to NLRP3 protein and K63-linkedly deubiquitinates NLRP3 at residue K243 via its active site C178, thus hindering NLRP3-ASC interaction and ASC oligomerization to inhibit NLRP3 activation and pyroptosis in cardiomyocytes. We further showed that the overexpression of USP25 in cardiomyocytes ameliorated MI/RI in mice, whereas this protective effect disappeared when NLRP3 is knocked out. CONCLUSIONS Our study demonstrated that USP25 ameliorates MI/RI by regulating NLRP3 activation and its mediated pyroptosis. This finding extends the protective role of USP25 in cardiovascular disease and provides an experimental basis for future USP25-based drug development for the treatment of MI/RI. KEY POINTS The deubiquitinating enzyme USP25 was down-regulated both in myocardial ischemia/reperfusion injury (MI/RI) myocardium tissues. The deficiency of USP25 worsened exacerbated MI/RI in mice, whereas the overexpression of USP25 in cardiomyocytes mitigated this pathological phenotype. USP25 directly interacts with the NLRP3 protein and deubiquitinates it via K63 linkage at residue K243 through its active site C178, thus affecting NLRP3-ASC interaction and ASC oligomerization to inhibit NLRP3 activation and pyroptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Bozhi Ye
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Diyun Xu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lingfeng Zhong
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yi Wang
- School of Pharmaceutical SciencesHangzhou Normal UniversityHangzhouZhejiangChina
| | - Wei Wang
- Affiliated Yongkang First People's HospitalHangzhou Medical CollegeYongkangZhejiangChina
| | - Haowen Xu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xue Han
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Julian Min
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Gaojun Wu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wenhai Huang
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
6
|
Jin L, Zhu W, Hu X, Ye L, Lou S, Zhang Q, Wang M, Ye B, Min J, Wang Y, Huang L, Luo W, Liang G. USP25 directly interacts with and deubiquitinates PPARα to increase PPARα stability in hepatocytes and attenuate high-fat diet-induced MASLD in mice. Cell Death Differ 2025:10.1038/s41418-025-01444-4. [PMID: 39827322 DOI: 10.1038/s41418-025-01444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/08/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Recent studies have implicated altered ubiquitination/de-ubiquitination pathway in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we investigated the potential role of a deubiquitinase, ubiquitin-specific peptidase 25 (USP25), in MASLD. Analysis of mRNA profiling data showed that both human and mouse MASLD are associated with reduced expression of USP25 in hepatocytes. Usp25 deficiency exacerbated HFD-induced liver lipid accumulation and MASLD in mice. Rescue experiments with USP25 induction in hepatocytes protected mice against HFD-induced MASLD. Through comprehensive transcriptome sequence and pulldown-LC-MS/MS analysis, we identified that peroxisome proliferator-activated receptor α (PPARα) is involved in USP25's protective actions and may be the substrate protein of USP25. Cell-based experiments show that USP25 interacts with PPARα directly via its USP domain and the histidine at position 608 of USP25 exerts deubiquitination to increase protein stability by removing the K48 ubiquitin chain at PPARα's lysine at position 429. USP25 reduces palmitate (PA)-induced lipid accumulation in hepatocytes via increasing PPARα. Finally, we show that the protective effects of Usp25 induction are nullified in Ppara-deficient mice with HFD. In summary, this study presents a new USP25-PPARα axis in hepatocytes and highlights a novel function of USP25 in MASLD, suggesting that it may be targeted to combat the disease.
Collapse
Affiliation(s)
- Leiming Jin
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weiwei Zhu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lin Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuaijie Lou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianhui Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bozhi Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Julian Min
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Yi Wang
- The Affiliated Xiangshan Hospital, Wenzhou Medical University, Xiangshan, Zhejiang, 315799, China
- School of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310000, China
| | - Lijiang Huang
- The Affiliated Xiangshan Hospital, Wenzhou Medical University, Xiangshan, Zhejiang, 315799, China.
| | - Wu Luo
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
7
|
Xu R, Huang F, Liu Q, Lv Y, Hu L, Zhang Q. USP25 attenuates anti-GBM nephritis in mice by negative feedback regulation of Th17 cell differentiation. Ren Fail 2024; 46:2338932. [PMID: 38616174 PMCID: PMC11018034 DOI: 10.1080/0886022x.2024.2338932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/30/2024] [Indexed: 04/16/2024] Open
Abstract
PURPOSE This study aimed to elucidate the role of USP25 in a mouse model of anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). METHODS USP25-deficient anti-GBM GN mice were generated, and their nephritis progression was monitored. Naïve CD4+ T cells were isolated from spleen lymphocytes and stimulated to differentiate into Th1, Th2, and Th17 cells. This approach was used to investigate the impact of USP25 on CD4+ T lymphocyte differentiation in vitro. Furthermore, changes in USP25 expression were monitored during Th17 differentiation, both in vivo and in vitro. RESULTS USP25-/- mice with anti-GBM GN exhibited accelerated renal function deterioration, increased infiltration of Th1 and Th17 cells, and elevated RORγt transcription. In vitro experiments demonstrated that USP25-/- CD4+ T lymphocytes had a higher proportion for Th17 cell differentiation and exhibited higher RORγt levels upon stimulation. Wild-type mice with anti-GBM GN showed higher USP25 levels compared to healthy mice, and a positive correlation was observed between USP25 levels and Th17 cell counts. Similar trends were observed in vitro. CONCLUSION USP25 plays a crucial role in mitigating renal histopathological and functional damage during anti-GBM GN in mice. This protective effect is primarily attributed to USP25's ability to inhibit the differentiation of naïve CD4+ T cells into Th17 cells. The underlying mechanism may involve the downregulation of RORγt. Additionally, during increased inflammatory responses or Th17 cell differentiation, USP25 expression is activated, forming a negative feedback regulatory loop that attenuates immune activation.
Collapse
Affiliation(s)
- Ranran Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Fei Huang
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yongman Lv
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Health Management Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Liu Hu
- Health Management Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qian Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
8
|
Liu P, Song X, Chen Q, Cen L, Tang C, Yu C, Xu C. Ubiquitin-specific peptidase 25 ameliorates hepatic steatosis by stabilizing peroxisome proliferator-activated receptor alpha. J Biol Chem 2024; 300:107876. [PMID: 39395794 PMCID: PMC11570943 DOI: 10.1016/j.jbc.2024.107876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Ubiquitin-specific peptidase 25 (USP25) in adipocytes has been proven to be involved in insulin resistance, a noteworthy characteristic of NAFLD. However, the roles of USP25 in NAFLD remain unclear. In this study, we aimed to elucidate the role of USP25 in NAFLD. Hepatic USP25 protein levels were measured in NAFLD patients and models. USP25 expression was manipulated in both mice and cells to evaluate its role in NAFLD. A downstream target of USP25 in NAFLD progression was identified through proteomic profiling analyses and confirmed. Additionally, a USP25 inhibitor was used to determine whether USP25 could be a viable treatment target for NAFLD. We found that USP25 protein levels were significantly decreased in the livers of NAFLD patients and NAFLD model mice. USP25 protein levels were also decreased in both mouse primary hepatocytes and Huh7 cells treated with free fatty acids (FFAs). We also found that Usp25 knockout mice presented much more severe hepatic steatosis when they were fed a high-fat diet. Similarly, knocking down USP25 in Huh7 cell lines aggravated FFA-induced steatosis, whereas USP25 overexpression ameliorated FFA-induced steatosis in Huh7 cell lines. Further proteomic profiling revealed that the peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was a downstream target of USP25, which was confirmed in both mice and cell lines. Moreover, USP25 could stabilize PPARα by promoting its deubiquitination. Finally, a USP25 inhibitor exacerbated diet-induced steatosis in mice. In conclusion, USP25 may play a role in NAFLD through the PPARα signaling pathway and could be a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, China
| | - Xin Song
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingxia Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Shen K, Zhang Q. Literature review: nuclear factor kappa B (NF-κB) regulation in human cancers mediated by ubiquitin-specific proteases (USPs). ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:90. [PMID: 39507445 PMCID: PMC11534757 DOI: 10.21037/atm-24-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 11/08/2024]
Abstract
Background and Objective The nuclear factor kappa B (NF-κB) consists of a group of transcription factors of which its dysregulation is responsible for diseases such as inflammation and cancer. Ubiquitin-specific proteases (USPs) are the most prominent group among the deubiquitinases (DUBs). Their functions include control of protein stability and regulation of signaling transduction. The association between NF-κB activity and human cancer progression is evident. Still, the role of USPs in the NF-κB regulation in human cancers, especially prostate cancer, is not well understood. This review discusses on the role of USP-mediated regulation of the canonical NF-κB signaling pathway in human cancers and provides a prospect of future studies in prostate cancers. Methods Within the biomedical literature database, PubMed, our review team searched for keywords including USP, NF-κB signaling pathway, cancer, prostate cancer, and specific USPs such as USP1, USP2, USP3, etc. These keywords were used individually or in combinations. After screening, only mechanistic studies and articles reporting the subsequent changes in cellular behaviors were included for full-text review. Key Content and Findings Most USPs function primarily as DUBs to regulate the canonical NF-κB signaling pathway. The typical K48- and K63-linked DUB activities of USPs are the best understood. These USPs are positive and negative regulators of the NF-κB activity. However, their DUB activities against polyubiquitin chains with atypical linkages have not yet been extensively studied. Furthermore, some USPs can regulate the canonical NF-κB signaling pathway via ubiquitin-independent mechanisms. Conclusions In the regulation of the canonical NF-κB pathway, the USPs function primarily as DUBs, but they also regulate the p65/p50 by ubiquitin-independent mechanisms. Generally, in human cancer models, USP-mediated elevation and suppression of p65/p50 activity lead to more or less malignant cellular behaviors, respectively. Given the currently unbalanced focus on K48- and K63-linked DUB activities and the context-dependent function of USPs, future research of USP-mediated NF-κB regulation in human cancers should invest more in the DUB activities against the atypical polyubiquitin chains and test known mechanisms in different cancer models.
Collapse
Affiliation(s)
- Keyi Shen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qiuyang Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Center for Aging, Tulane University, New Orleans, LA, USA
- Tulane Cancer Center and Louisiana Cancer Research Center, Tulane University, New Orleans, LA, USA
| |
Collapse
|
10
|
Fan CX, Liu XR, Mei DQ, Li BM, Li WB, Xie HC, Wang J, Shen NX, Ye ZL, You QL, Li LY, Qu XC, Chen LZ, Liang JJ, Zhang MR, He N, Li J, Gao JY, Deng WY, Liu WZ, Wang WT, Liao WP, Chen Q, Shi YW. Heterozygous variants in USP25 cause genetic generalized epilepsy. Brain 2024; 147:3442-3457. [PMID: 38875478 DOI: 10.1093/brain/awae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
USP25 encodes ubiquitin-specific protease 25, a key member of the deubiquitinating enzyme family that is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown aetiology. Five heterozygous USP25 variants, including two de novo and three co-segregated variants, were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared with the East Asian population and all populations in the gnomAD database. The mean age at onset of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom, except that one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was expressed ubiquitously in mouse brain with two peaks, on embryonic Days 14-16 and postnatal Day 21, respectively. In human brain, likewise, USP25 is expressed in the fetus/early childhood stage and with a second peak at ∼12-20 years old, consistent with the seizure onset age in patients during infancy and in juveniles. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knockout mice, which showed increased seizure susceptibility compared with wild-type mice in a pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we used multiple functional detections. In HEK293 T cells, the variant associated with a severe phenotype (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed stable truncated dimers with an increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del variants increased neuronal excitability in mouse brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating that USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play an epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have a profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.
Collapse
Affiliation(s)
- Cui-Xia Fan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Dao-Qi Mei
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Huan-Cheng Xie
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Nan-Xiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiang-Long You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ling-Ying Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Li-Zhi Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jin-Jie Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ming-Rui Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jia Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jun-Ying Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Yi Deng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Zhe Liu
- Department of Stomatology of the second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Ting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qian Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
11
|
Sheng CL, Jiang BD, Zhang CQ, Huang JH, Wang Z, Xu C. USP26 suppresses type I interferon signaling by targeting TRAF3 for deubiquitination. PLoS One 2024; 19:e0307776. [PMID: 39058724 PMCID: PMC11280224 DOI: 10.1371/journal.pone.0307776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) play a pivotal role in regulating the antiviral immune response by targeting members of the RLR signaling pathway. As a pivotal member of the RLR pathway, TRAF3 is essential for activating the MAVS/TBK-1/IRF3 signaling pathway in response to viral infection. Despite its importance, the function of DUBs in the TRAF3-mediated antiviral response is poorly understood. Ubiquitin-specific protease 26 (USP26) regulates the RLR signaling pathway to modulate the antiviral immune response. The results demonstrate that EV71 infection upregulates the expression of USP26. Knockdown of USP26 significantly enhances EV71-induced expression of IFN-β and downstream interferon-stimulated genes (ISGs). Deficiency of USP26 not only inhibits EV71 replication but also weakens the host's resistance to EV71 infection. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. Conversely, knockdown of USP26 leads to an increase in the K63-linked polyubiquitination of TRAF3. These findings unequivocally establish the essential role of USP26 in RLR signaling and significantly contribute to the understanding of deubiquitination-mediated regulation of innate antiviral responses.
Collapse
Affiliation(s)
- Cheng-Lan Sheng
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Bang-Dong Jiang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Chun-Qiu Zhang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jin-Hua Huang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Zi Wang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Chao Xu
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
12
|
Patzke JV, Sauer F, Nair RK, Endres E, Proschak E, Hernandez-Olmos V, Sotriffer C, Kisker C. Structural basis for the bi-specificity of USP25 and USP28 inhibitors. EMBO Rep 2024; 25:2950-2973. [PMID: 38816515 PMCID: PMC11239673 DOI: 10.1038/s44319-024-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
The development of cancer therapeutics is often hindered by the fact that specific oncogenes cannot be directly pharmaceutically addressed. Targeting deubiquitylases that stabilize these oncogenes provides a promising alternative. USP28 and USP25 have been identified as such target deubiquitylases, and several small-molecule inhibitors indiscriminately inhibiting both enzymes have been developed. To obtain insights into their mode of inhibition, we structurally and functionally characterized USP28 in the presence of the three different inhibitors AZ1, Vismodegib and FT206. The compounds bind into a common pocket acting as a molecular sink. Our analysis provides an explanation why the two enzymes are inhibited with similar potency while other deubiquitylases are not affected. Furthermore, a key glutamate residue at position 366/373 in USP28/USP25 plays a central structural role for pocket stability and thereby for inhibition and activity. Obstructing the inhibitor-binding pocket by mutation of this glutamate may provide a tool to accelerate future drug development efforts for selective inhibitors of either USP28 or USP25 targeting distinct binding pockets.
Collapse
Affiliation(s)
- Jonathan Vincent Patzke
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Radhika Karal Nair
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Erik Endres
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Li Y, Li L, Wang X, Zhao F, Yang Y, Zhou Y, Zhang J, Wang L, Jiang Z, Zhang Y, Chen Y, Wu C, Li K, Zhang T, Wang P, Mao Z, Zhu W, Xu X, Liang S, Lou Z, Yuan J. USP25 Elevates SHLD2-Mediated DNA Double-Strand Break Repair and Regulates Chemoresponse in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403485. [PMID: 38803048 PMCID: PMC11267380 DOI: 10.1002/advs.202403485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 05/29/2024]
Abstract
DNA damage plays a significant role in the tumorigenesis and progression of the disease. Abnormal DNA repair affects the therapy and prognosis of cancer. In this study, it is demonstrated that the deubiquitinase USP25 promotes non-homologous end joining (NHEJ), which in turn contributes to chemoresistance in cancer. It is shown that USP25 deubiquitinates SHLD2 at the K64 site, which enhances its binding with REV7 and promotes NHEJ. Furthermore, USP25 deficiency impairs NHEJ-mediated DNA repair and reduces class switch recombination (CSR) in USP25-deficient mice. USP25 is overexpressed in a subset of colon cancers. Depletion of USP25 sensitizes colon cancer cells to IR, 5-Fu, and cisplatin. TRIM25 is also identified, an E3 ligase, as the enzyme responsible for degrading USP25. Downregulation of TRIM25 leads to an increase in USP25 levels, which in turn induces chemoresistance in colon cancer cells. Finally, a peptide that disrupts the USP25-SHLD2 interaction is successfully identified, impairing NHEJ and increasing sensitivity to chemotherapy in PDX model. Overall, these findings reveal USP25 as a critical effector of SHLD2 in regulating the NHEJ repair pathway and suggest its potential as a therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yunhui Li
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Lei Li
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
| | - Xinshu Wang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Fei Zhao
- College of BiologyHunan UniversityChangsha410082China
| | - Yuntong Yang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Yujuan Zhou
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Jiyuan Zhang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Li Wang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Zeshan Jiang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Yuanyuan Zhang
- Department of General Surgery and Colorectal SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yuping Chen
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200080China
| | - Chenming Wu
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Ping Wang
- Tongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineShanghai200072China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal‐Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalFrontier Science Center for Stem Cell ResearchTongji University School of MedicineShanghai200040China
| | - Weiguo Zhu
- International Cancer CenterGuangdong Key Laboratory of Genome Instability and Human Disease PreventionMarshall Laboratory of Biomedical EngineeringDepartment of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhen518037China
| | - Xingzhi Xu
- The Sixth Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Genome Stability and Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University School of MedicineShenzhen518055China
| | - Shikang Liang
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong Kong SAR999077Hong Kong
| | - Zhenkun Lou
- Department of OncologyMayo ClinicRochesterMNUSA
| | - Jian Yuan
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| |
Collapse
|
14
|
Gu J, Chen C, He P, Du Y, Zhu B. Unraveling the Immune Regulatory Functions of USP5: Implications for Disease Therapy. Biomolecules 2024; 14:683. [PMID: 38927085 PMCID: PMC11201890 DOI: 10.3390/biom14060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5) belongs to the ubiquitin-specific protease (USP) family, which uniquely recognizes unanchored polyubiquitin chains to maintain the homeostasis of monoubiquitin chains. USP5 participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. In the process of immune regulation, USP5 affects important cellular signaling pathways, such as NF-κB, Wnt/β-catenin, and IFN, by regulating ubiquitin-dependent protein degradation. These pathways play important roles in immune regulation and inflammatory responses. In addition, USP5 regulates the activity and function of immunomodulatory signaling pathways via the deubiquitination of key proteins, thereby affecting the activity of immune cells and the regulation of immune responses. In the present review, the structure and function of USP5, its role in immune regulation, and the mechanism by which USP5 affects the development of diseases by regulating immune signaling pathways are comprehensively overviewed. In addition, we also introduce the latest research progress of targeting USP5 in the treatment of related diseases, calling for an interdisciplinary approach to explore the therapeutic potential of targeting USP5 in immune regulation.
Collapse
Affiliation(s)
- Jinyi Gu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
- Clinical Laboratory, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Pu He
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Bingdong Zhu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| |
Collapse
|
15
|
Rezabakhsh A, Sadaie MR, Ala A, Roosta Y, Habtemariam S, Sahebnasagh A, Khezri MR. STING agonists as promising vaccine adjuvants to boost immunogenicity against SARS-related coronavirus derived infection: possible role of autophagy. Cell Commun Signal 2024; 22:305. [PMID: 38831299 PMCID: PMC11145937 DOI: 10.1186/s12964-024-01680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
As a major component of innate immunity and a positive regulator of interferons, the Stimulator of interferon gene (STING) has an immunotherapy potential to govern a variety of infectious diseases. Despite the recent advances regarding vaccines against COVID-19, nontoxic novel adjuvants with the potential to enhance vaccine efficacy are urgently desired. In this connection, it has been well-documented that STING agonists are applied to combat COVID-19. This approach is of major significance for boosting immune responses most likely through an autophagy-dependent manner in susceptible individuals against infection induced by severe acute respiratory syndrome Coronavirus (SARS‑CoV‑2). Given that STING agonists exert substantial immunomodulatory impacts under a wide array of pathologic conditions, these agents could be considered novel adjuvants for enhancing immunogenicity against the SARS-related coronavirus. Here, we intend to discuss the recent advances in STING agonists' recruitment to boost innate immune responses upon vaccination against SARS-related coronavirus infections. In light of the primordial role of autophagy modulation, the potential of being an antiviral vaccine adjuvant was also explored.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Reza Sadaie
- NovoMed Consulting, Biomedical Sciences, Germantown, Maryland, USA
| | - Alireza Ala
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Roosta
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research and Herbal Analysis Services UK, University of Greenwich, Kent, UK
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, 5715799313, Iran.
| |
Collapse
|
16
|
Guo YY, Gao Y, Zhao YL, Xie C, Gan H, Cheng X, Yang LP, Hu J, Shu HB, Zhong B, Lin D, Yao J. Viral infection and spread are inhibited by the polyubiquitination and downregulation of TRPV2 channel by the interferon-stimulated gene TRIM21. Cell Rep 2024; 43:114095. [PMID: 38613787 DOI: 10.1016/j.celrep.2024.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
Interferon (IFN) contributes to the host's antiviral response by inducing IFN-stimulated genes (ISGs). However, their functional targets and the mechanism of action remain elusive. Here, we report that one such ISG, TRIM21, interacts with and degrades the TRPV2 channel in myeloid cells, reducing its expression and providing host protection against viral infections. Moreover, viral infection upregulates TRIM21 in paracrine and autocrine manners, downregulating TRPV2 in neighboring cells to prevent viral spread to uninfected cells. Consistently, the Trim21-/- mice are more susceptible to HSV-1 and VSV infection than the Trim21+/+ littermates, in which viral susceptibility is rescued by inhibition or deletion of TRPV2. Mechanistically, TRIM21 catalyzes the K48-linked ubiquitination of TRPV2 at Lys295. TRPV2K295R is resistant to viral-infection-induced TRIM21-dependent ubiquitination and degradation, promoting viral infection more profoundly than wild-type TRPV2 when reconstituted into Lyz2-Cre;Trpv2fl/fl myeloid cells. These findings characterize targeting the TRIM21-TRPV2 axis as a conducive strategy to control viral spread to bystander cells.
Collapse
Affiliation(s)
- Yu-Yao Guo
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Yue Gao
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Yun-Lin Zhao
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Chang Xie
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Hu Gan
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Xufeng Cheng
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Li-Ping Yang
- Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Junyan Hu
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Hong-Bing Shu
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Bo Zhong
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China; Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, Hubei, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China.
| | - Jing Yao
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
17
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
18
|
Wang P, Li Y, Sun Y, Xu T. EFHD2 cooperates with E3 ubiquitin ligase Smurf1 to facilitate virus infection by promoting the degradation of TRAF6 in teleost fish. J Virol 2024; 98:e0117623. [PMID: 38054609 PMCID: PMC10805015 DOI: 10.1128/jvi.01176-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
The ubiquitin-proteasome system is one of the most important protein stability regulation systems. It can precisely regulate host immune responses by targeting signaling proteins. TRAF6 is a crucial E3 ubiquitin ligase in host antiviral signaling pathway. Here, we discovered that EF-hand domain-containing protein D2 (EFHD2) collaborated with the E3 ubiquitin ligase Smurf1 to potentiate the degradation of TRAF6, hence facilitating RNA virus Siniperca chuatsi rhabdovirus infection. The mechanism analysis revealed that EFHD2 interacted with Smurf1 and enhanced its protein stability by impairing K48-linked polyubiquitination of Smurf1, thereby promoting Smurf1-catalyzed degradation of TRAF6. This study initially demonstrated a novel mechanism by which viruses utilize host EFHD2 to achieve immune escape and provided a new perspective on the exploration of mammalian innate immunity.IMPORTANCEViruses induce host cells to activate several antiviral signaling pathways. TNF receptor-associated factor 6 (TRAF6) plays an essential role in these pathways. Numerous studies have been done on the mechanisms of TRAF6-mediated resistance to viral invasion. However, little is known about the strategies that viruses employ to antagonize TRAF6-mediated antiviral signaling pathway. Here, we discovered that EFHD2 functions as a host factor to promote viral replication. Mechanistically, EFHD2 potentiates Smurf1 to catalyze the ubiquitin-proteasomal degradation of TRAF6 by promoting the deubiquitination and stability of Smurf1, which in turn inhibits the production of proinflammatory cytokines and interferons. Our study also provides a new perspective on mammalian resistance to viral invasion.
Collapse
Affiliation(s)
- Pengfei Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ye Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
19
|
Jiang W, Li M, Peng S, Hu T, Long Y, Zhang J, Peng D, Shen Y. Ubiquitin ligase enzymes and de-ubiquitinating enzymes regulate innate immunity in the TLR, NLR, RLR, and cGAS-STING pathways. Immunol Res 2023; 71:800-813. [PMID: 37291329 DOI: 10.1007/s12026-023-09400-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitination (or ubiquitylation) and de-ubiquitination, which are both post-translational modifications (PTMs) of proteins, have become a research hotspot in recent years. Some ubiquitinated or de-ubiquitinated signaling proteins have been found to promote or suppress innate immunity through Toll-like receptor (TLR), RIG-like receptor (RIG-I-like receptor, RLR), NOD-like receptor (NLR), and the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-STING pathway. This article aimed to provide a review on the role of ubiquitination and de-ubiquitination, especially ubiquitin ligase enzymes and de-ubiquitinating enzymes, in the above four pathways. We hope that our work can contribute to the research and development of treatment strategies for innate immunity-related diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Wang Jiang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Mengling Li
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Siyuan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Tian Hu
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yan Long
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Jiayi Zhang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Dan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China.
| |
Collapse
|
20
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
21
|
Teo QW, Wong HH, Heunis T, Stancheva V, Hachim A, Lv H, Siu L, Ho J, Lan Y, Mok CKP, Ulferts R, Sanyal S. Usp25-Erlin1/2 activity limits cholesterol flux to restrict virus infection. Dev Cell 2023; 58:2495-2509.e6. [PMID: 37683630 PMCID: PMC10914638 DOI: 10.1016/j.devcel.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/20/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Reprogramming lipid metabolic pathways is a critical feature of activating immune responses to infection. However, how these reconfigurations occur is poorly understood. Our previous screen to identify cellular deubiquitylases (DUBs) activated during influenza virus infection revealed Usp25 as a prominent hit. Here, we show that Usp25-deleted human lung epithelial A549 cells display a >10-fold increase in pathogenic influenza virus production, which was rescued upon reconstitution with the wild type but not the catalytically deficient (C178S) variant. Proteomic analysis of Usp25 interactors revealed a strong association with Erlin1/2, which we confirmed as its substrate. Newly synthesized Erlin1/2 were degraded in Usp25-/- or Usp25C178S cells, activating Srebp2, with increased cholesterol flux and attenuated TLR3-dependent responses. Our study therefore defines the function of a deubiquitylase that serves to restrict a range of viruses by reprogramming lipid biosynthetic flux to install appropriate inflammatory responses.
Collapse
Affiliation(s)
- Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ho Him Wong
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Viktoriya Stancheva
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Asmaa Hachim
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lewis Siu
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Julian Ho
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yun Lan
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris Ka Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
22
|
Liu B, Miao X, Shen J, Lou L, Chen K, Mei F, Chen M, Su X, Du X, Zhu Z, Song W, Wang X. USP25 ameliorates diabetic nephropathy by inhibiting TRAF6-mediated inflammatory responses. Int Immunopharmacol 2023; 124:110877. [PMID: 37657242 DOI: 10.1016/j.intimp.2023.110877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetic vascular complication affecting nearly 40% of patients with diabetes. The lack of efficacious therapy for DKD necessitates the in-depth investigation of the molecular mechanisms underlying the pathogenesis and progression of DKD, which remain incompletely understood. Here, we discovered that the expression of USP25, a deubiquitinating enzyme, was significantly upregulated in the kidney of diabetic mice. Ablation of USP25 had no influence on glycemic control in type 1 diabetes but significantly aggravated diabetes-induced renal dysfunction and fibrosis by exacerbating inflammation in the kidney. In DKD, USP25 was mainly expressed in glomerular mesangial cells and kidney-infiltrating macrophages. Upon stimulation with advanced glycation end-products (AGEs), USP25 markedly inhibited the production of proinflammatory cytokines in these two cell populations by downregulating AGEs-induced activation of NF-κB and MAPK pathways. Mechanistically, USP25 interacted with TRAF6 and inhibited its K63 polyubiquitination induced by AGEs. Collectively, these findings identify USP25 as a novel regulator of DKD.
Collapse
Affiliation(s)
- Baohua Liu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xiaomin Miao
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Jiangyun Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Liyan Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Kangmin Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Fuqi Mei
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Meng Chen
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xian Su
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Xue Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Zhenhu Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Weihong Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
23
|
Li Z, Liu B, Lambertsen KL, Clausen BH, Zhu Z, Du X, Xu Y, Poulsen FR, Halle B, Bonde C, Chen M, Wang X, Schlüter D, Huang J, Waisman A, Song W, Wang X. USP25 Inhibits Neuroinflammatory Responses After Cerebral Ischemic Stroke by Deubiquitinating TAB2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301641. [PMID: 37587766 PMCID: PMC10558664 DOI: 10.1002/advs.202301641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Cerebral ischemic stroke is a leading cause of morbidity and mortality globally. However, the mechanisms underlying ischemic stroke injury remain poorly understood. Here, it is found that deficiency of the ubiquitin-specific protease USP25 significantly aggravate ischemic stroke injury in mice. USP25 has no impact on neuronal death under hypoxic conditions, but reduced ischemic stroke-induced neuronal loss and neurological deficits by inhibiting microglia-mediated neuroinflammation. Mechanistically, USP25 restricts the activation of NF-κB and MAPK signaling by regulating TAB2. As a deubiquitinating enzyme, USP25 removeds K63-specific polyubiquitin chains from TAB2. AAV9-mediated TAB2 knockdown ameliorates ischemic stroke injury and abolishes the effect of USP25 deletion. In both mouse and human brains, USP25 is markedly upregulated in microglia in the ischemic penumbra, implying a clinical relevance of USP25 in ischemic stroke. Collectively, USP25 is identified as a critical inhibitor of ischemic stroke injury and this data suggest USP25 may serve as a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Zhongding Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Baohua Liu
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Kate Lykke Lambertsen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense C5000Denmark
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurologyOdense University HospitalOdense C5000Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense C5000Denmark
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
| | - Zhenhu Zhu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xue Du
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Yanqi Xu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Frantz Rom Poulsen
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurosurgeryOdense University HospitalOdense C5000Denmark
| | - Bo Halle
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurosurgeryOdense University HospitalOdense C5000Denmark
| | - Christian Bonde
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurosurgeryOdense University HospitalOdense C5000Denmark
| | - Meng Chen
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xue Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical School30625HannoverGermany
| | - Jingyong Huang
- Department of Vascular SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325015China
| | - Ari Waisman
- Institute for Molecular MedicineJohannes Gutenberg University Mainz55131MainzGermany
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceInstitute of AgingWenzhou Medical UniversityWenzhou325035China
| | - Xu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceInstitute of AgingWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
24
|
Sun N, Zhang J, Zhang C, Xie T, Zhang Z, Wang X, Li W, Zhang Y, Chen Z, Zheng J, Fang L, Wang G. Inhibition of human adenovirus replication by TRIM35-mediated degradation of E1A. J Virol 2023; 97:e0070023. [PMID: 37578239 PMCID: PMC10506487 DOI: 10.1128/jvi.00700-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Human adenovirus (HAdV) is ubiquitous in the human population, constituting a significant burden of global respiratory diseases. Children and individuals with low immunity are at risk of developing severe infections without approved antiviral treatment for HAdV. Our study demonstrated that TRIM35 inhibited HAdV-C5 early gene transcription, early protein expression, genome replication, and infectious virus progeny production. Furthermore, TRIM35 was found to inhibit HAdV replication by attenuating E1A expression. Mechanistically, TRIM35 interacts with and degrades E1A by promoting its K48-linked ubiquitination. Additionally, K253 and K285 are the key sites necessary for TRIM35 degradation. Moreover, an oncolytic adenovirus carrying shTRIM35 was constructed and observed to exhibit improved oncolysis in vivo, providing new ideas for clinical tumor treatment. Our results expand the broad antiviral activity of TRIM35 and mechanically support its application as a HAdV replication inhibitor. IMPORTANCE E1A is an essential human adenovirus (HAdV) protein responsible for the early replication of adenovirus while interacting with multiple host proteins. Understanding the interaction between HAdV E1A and TRIM35 helps identify effective antiviral therapeutic targets. The viral E1A protein is a crucial activator and regulator of viral transcription during the early infection stages. We first reported that TRIM35 interacts with E1A to resist adenovirus infection. Our study demonstrated that TRIM35 targets E1A to resist adenovirus, indicating the applicability of targeting virus-dependent host factors as a suitable antiviral strategy.
Collapse
Affiliation(s)
- Nan Sun
- Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Chen Zhang
- Xuzhou Medical University, Xuzhou, China
| | - Tan Xie
- Xuzhou Medical University, Xuzhou, China
| | - Zeyu Zhang
- Xuzhou Medical University, Xuzhou, China
| | | | - Wanjing Li
- Xuzhou Medical University, Xuzhou, China
| | - Yi Zhang
- Xuzhou Medical University, Xuzhou, China
| | | | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Cai C, Ma H, Peng J, Shen X, Zhen X, Yu C, Zhang P, Ji F, Wang J. USP25 regulates KEAP1-NRF2 anti-oxidation axis and its inactivation protects acetaminophen-induced liver injury in male mice. Nat Commun 2023; 14:3648. [PMID: 37339955 PMCID: PMC10282087 DOI: 10.1038/s41467-023-39412-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor responsible for mounting an anti-oxidation gene expression program to counter oxidative stress. Under unstressed conditions, Kelch-like ECH-associated protein 1 (KEAP1), an adaptor protein for CUL3 E3 ubiquitin ligase, mediates NRF2 ubiquitination and degradation. We show here that the deubiquitinase USP25 directly binds to KEAP1 and prevents KEAP1's own ubiquitination and degradation. In the absence of Usp25 or if the DUB is inhibited, KEAP1 is downregulated and NRF2 is stabilized, allowing the cells to respond to oxidative stress more readily. In acetaminophen (APAP) overdose-induced oxidative liver damage in male mice, the inactivation of Usp25, either genetically or pharmacologically, greatly attenuates liver injury and reduces the mortality rates resulted from lethal doses of APAP.
Collapse
Affiliation(s)
- Changzhou Cai
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Huailu Ma
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jin Peng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Xiang Shen
- Chaser Therapeutics, Inc., Hangzhou, Zhejiang, 310018, China
| | - Xinghua Zhen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Pumin Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Jiewei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
26
|
Chen HY, Tang RC, Liang JW, Zhao W, Yu SS, Yao RR, Xu R, Zhang A, Geng S, Sun XY, Ge Q, Zhang J. Deubiquitinase USP47 attenuates virus-induced type I interferon signaling. Int Immunopharmacol 2023; 118:110040. [PMID: 37001379 DOI: 10.1016/j.intimp.2023.110040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/31/2023]
Abstract
The innate immune responses are tightly regulated to ensure effective clearance of invading pathogens and avoid excessive inflammation. Ubiquitination and deubiquitination are important post-translational modifications in antiviral immune responses. Here, we discovered deubiquitinase USP47 as a novel negative immune system regulator. Overexpression of USP47 repressed Sendai virus, poly(I:C) and poly(dA:dT)-induced ISRE and IFN-β activation, along with reduced IFNB1 transcription and enhanced viral replication. Knockdown of USP47 expression had the opposite effects. Dual-luciferase and phosphorylation assays showed that USP47 targeted downstream of MAVS and upstream of TBK1. Additional co-immunoprecipitation assays suggested that USP47 interacted with TRAF3 and TRAF6. Importantly, USP47 removed K63-linked polyubiquitin chains from TRAF3 and TRAF6. Hence, we describe a novel modulator of the antiviral innate immune response, USP47, which removes K63-linked polyubiquitins from TRAF3 and TRAF6, leading to reduced type I IFN signaling.
Collapse
Affiliation(s)
- Hong-Yan Chen
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Rong-Chun Tang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Jia-Wei Liang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Weijia Zhao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Shuang-Shuang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Ran-Ran Yao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Rui Xu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Ao Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Shijin Geng
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Xiu-Yuan Sun
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology(Peking University), Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
27
|
Xu Y, Ritchie SC, Liang Y, Timmers PRHJ, Pietzner M, Lannelongue L, Lambert SA, Tahir UA, May-Wilson S, Foguet C, Johansson Å, Surendran P, Nath AP, Persyn E, Peters JE, Oliver-Williams C, Deng S, Prins B, Luan J, Bomba L, Soranzo N, Di Angelantonio E, Pirastu N, Tai ES, van Dam RM, Parkinson H, Davenport EE, Paul DS, Yau C, Gerszten RE, Mälarstig A, Danesh J, Sim X, Langenberg C, Wilson JF, Butterworth AS, Inouye M. An atlas of genetic scores to predict multi-omic traits. Nature 2023; 616:123-131. [PMID: 36991119 PMCID: PMC10323211 DOI: 10.1038/s41586-023-05844-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/15/2023] [Indexed: 03/30/2023]
Abstract
The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.
Collapse
Affiliation(s)
- Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Yujian Liang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Loïc Lannelongue
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Carles Foguet
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Artika P Nath
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Elodie Persyn
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - James E Peters
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Clare Oliver-Williams
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bram Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Lorenzo Bomba
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- BioMarin Pharmaceutical, Novato, CA, USA
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Science Research Centre, Human Technopole, Milan, Italy
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Christopher Yau
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Health Data Research UK, London, UK
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- The Alan Turing Institute, London, UK.
| |
Collapse
|
28
|
Yang Y, Zhan X, Zhang C, Shi J, Wu J, Deng X, Hong Y, Li Q, Ge S, Xu G, He F. USP25-PKM2-glycolysis axis contributes to ischemia reperfusion-induced acute kidney injury by promoting M1-like macrophage polarization and proinflammatory response. Clin Immunol 2023; 251:109279. [PMID: 36894047 DOI: 10.1016/j.clim.2023.109279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
M1-like macrophages have been reported to play critical roles in acute kidney injury (AKI). Here, we elucidated the role of ubiquitin-specific protease 25 (USP25) in M1-like macrophages polarization and AKI. High USP25 expression was correlated with a decline in renal function in patients with acute kidney tubular injury and in mice with AKI. In contrast, USP25 knockout reduced M1-like macrophage infiltration, suppressed M1-like polarization, and improved AKI in mice, indicating that USP25 was necessary for M1-like polarization and proinflammatory response. Immunoprecipitation assay and liquid chromatography-tandem mass spectrometry showed that the M2 isoform of pyruvate kinase, muscle (PKM2) was a target substrate of USP25. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated the USP25 regulated aerobic glycolysis and lactate production during M1-like polarization via PKM2. Further analysis showed that the USP25-PKM2-aerobic glycolysis axis positively regulated M1-like polarization and exacerbated AKI in mice, providing potential therapeutic targets for AKI treatment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cailin Zhang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Shi
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianliang Wu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Hong
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
29
|
Li J, Wang J, Pan T, Zhou X, Yang H, Wang L, Huang G, Dai C, Yang B, Zhang B, Zhao Y, Lan P, Chen Z. USP25 deficiency promotes T cell dysfunction and transplant acceptance via mitochondrial dynamics. Int Immunopharmacol 2023; 117:109917. [PMID: 36822087 DOI: 10.1016/j.intimp.2023.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND During organ transplantation, pharmacologic drugs targeting T cell activation signal to inhibit T cell-mediated allo-rejection are insufficient and not durable to suppress chronic rejection. Recent advances highlight an exhausted or dysfunctional status of T cells, which favor transplant acceptance. METHODS The models of MHC-mismatched (BALB/c to C57BL/6 or USP25 KO mice) heterotopic heart transplantation and skin transplantation were utilized to evaluate the regulatory effects of ubiquitin-specific protease 25(USP25) deficiency in vivo. The consequences of USP25 deficiency on murine T-cell proliferation, activation, cytokine secretion, mixed lymphocyte reaction (MLR) and energy metabolism were investigated in vitro. The signaling pathway of T cells in knock out mice was detected by Western blotting and Co-IP. RESULTS We found T cells were dysfunctional inUSP25KO mice. Due to T cell dysfunction, skin and heart graft had a longer survival. In these dysfunctional T cells, mitochondria number and cristae condensation were decreased. Impaired mitochondrial mass and function favored to allo-graft acceptance. Furthermore, USP25 interacted with ATP5A and ATP5B to promote their stability. CONCLUSIONS Our data suggest that USP25 is a potential target to induce T cell dysfunction and allo-graft tolerance. And USP25 mediated mitochondrial homeostasis may contribute to reverse T cell exhaustion or dysfunction in tumor and chronic infection.
Collapse
Affiliation(s)
- Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jingzeng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Tianhui Pan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Huifang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
30
|
Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, Han J, Han X, Huang W, Wu G, Wang X, Liang G. USP25 Ameliorates Pathological Cardiac Hypertrophy by Stabilizing SERCA2a in Cardiomyocytes. Circ Res 2023; 132:465-480. [PMID: 36722348 DOI: 10.1161/circresaha.122.321849] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy. METHODS The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction. RESULTS We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25-/- mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25. CONCLUSIONS We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a.
Collapse
Affiliation(s)
- Bozhi Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Hao Zhou
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Yanghao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Wante Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Ying Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (X.H., G.L.)
| | - Weijian Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Xu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences (X.W.), Wenzhou Medical University, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (X.H., G.L.)
| |
Collapse
|
31
|
The Roles of TRAF3 in Immune Responses. DISEASE MARKERS 2023; 2023:7787803. [PMID: 36845015 PMCID: PMC9949957 DOI: 10.1155/2023/7787803] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
Seven tumor necrosis factor receptor- (TNFR-) associated factors (TRAFs) have been found in mammals, which are primarily involved in the signal translation of the TNFR superfamily, the Toll-like receptor (TLR) family, and the retinoic acid-inducible gene I- (RIG-I-) like receptor (RLR) family. TRAF3 is one of the most diverse members of the TRAF family. It can positively regulate type I interferon production while negatively regulating signaling pathways of classical nuclear factor-κB, nonclassical nuclear factor-κB, and mitogen-activated protein kinase (MAPK). This review summarizes the roles of TRAF3 signaling and the related immune receptors (e.g., TLRs) in several preclinical and clinical diseases and focuses on the roles of TRAF3 in immune responses, the regulatory mechanisms, and its role in disease.
Collapse
|
32
|
Kim DK, Weller B, Lin CW, Sheykhkarimli D, Knapp JJ, Dugied G, Zanzoni A, Pons C, Tofaute MJ, Maseko SB, Spirohn K, Laval F, Lambourne L, Kishore N, Rayhan A, Sauer M, Young V, Halder H, la Rosa NMD, Pogoutse O, Strobel A, Schwehn P, Li R, Rothballer ST, Altmann M, Cassonnet P, Coté AG, Vergara LE, Hazelwood I, Liu BB, Nguyen M, Pandiarajan R, Dohai B, Coloma PAR, Poirson J, Giuliana P, Willems L, Taipale M, Jacob Y, Hao T, Hill DE, Brun C, Twizere JC, Krappmann D, Heinig M, Falter C, Aloy P, Demeret C, Vidal M, Calderwood MA, Roth FP, Falter-Braun P. A proteome-scale map of the SARS-CoV-2-human contactome. Nat Biotechnol 2023; 41:140-149. [PMID: 36217029 PMCID: PMC9849141 DOI: 10.1038/s41587-022-01475-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/15/2022] [Indexed: 01/22/2023]
Abstract
Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.
Collapse
Affiliation(s)
- Dae-Kyum Kim
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.240614.50000 0001 2181 8635Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Benjamin Weller
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Chung-Wen Lin
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Dayag Sheykhkarimli
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Jennifer J. Knapp
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Guillaume Dugied
- grid.428999.70000 0001 2353 6535Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Institut Pasteur, Paris, France ,grid.4444.00000 0001 2112 9282UMR3569, Centre National de la Recherche Scientifique, Paris, France ,grid.5842.b0000 0001 2171 2558Université de Paris, Paris, France
| | - Andreas Zanzoni
- grid.5399.60000 0001 2176 4817Aix-Marseille Université, Inserm, TAGC, Marseille, France
| | - Carles Pons
- grid.7722.00000 0001 1811 6966Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Marie J. Tofaute
- grid.4567.00000 0004 0483 2525Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Sibusiso B. Maseko
- grid.4861.b0000 0001 0805 7253Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Kerstin Spirohn
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Florent Laval
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.4861.b0000 0001 0805 7253Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.4861.b0000 0001 0805 7253TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium ,grid.4861.b0000 0001 0805 7253Laboratory of Molecular and Cellular Epigenetics, GIGA Institute, University of Liège, Liège, Belgium
| | - Luke Lambourne
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Nishka Kishore
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Ashyad Rayhan
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Mayra Sauer
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Veronika Young
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Hridi Halder
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Nora Marín-de la Rosa
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Oxana Pogoutse
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Alexandra Strobel
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Patrick Schwehn
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Roujia Li
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Simin T. Rothballer
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Melina Altmann
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Patricia Cassonnet
- grid.428999.70000 0001 2353 6535Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Institut Pasteur, Paris, France ,grid.4444.00000 0001 2112 9282UMR3569, Centre National de la Recherche Scientifique, Paris, France ,grid.5842.b0000 0001 2171 2558Université de Paris, Paris, France
| | - Atina G. Coté
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Lena Elorduy Vergara
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Isaiah Hazelwood
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Betty B. Liu
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Maria Nguyen
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Ramakrishnan Pandiarajan
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Bushra Dohai
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Patricia A. Rodriguez Coloma
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Juline Poirson
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.440050.50000 0004 0408 2525Molecular Architecture of Life Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON Canada
| | - Paolo Giuliana
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Luc Willems
- grid.4861.b0000 0001 0805 7253TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium ,grid.4861.b0000 0001 0805 7253Laboratory of Molecular and Cellular Epigenetics, GIGA Institute, University of Liège, Liège, Belgium
| | - Mikko Taipale
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.4861.b0000 0001 0805 7253Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Yves Jacob
- grid.428999.70000 0001 2353 6535Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Institut Pasteur, Paris, France ,grid.4444.00000 0001 2112 9282UMR3569, Centre National de la Recherche Scientifique, Paris, France ,grid.5842.b0000 0001 2171 2558Université de Paris, Paris, France
| | - Tong Hao
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - David E. Hill
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Christine Brun
- grid.5399.60000 0001 2176 4817Aix-Marseille Université, Inserm, TAGC, Marseille, France ,grid.4444.00000 0001 2112 9282CNRS, Marseille, France
| | - Jean-Claude Twizere
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.4861.b0000 0001 0805 7253Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium ,grid.4861.b0000 0001 0805 7253TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Daniel Krappmann
- grid.4567.00000 0004 0483 2525Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Matthias Heinig
- grid.4567.00000 0004 0483 2525Institute of Computational Biology (ICB), Computational Health Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany ,grid.6936.a0000000123222966Department of Informatics, Technische Universität München, Munich, Germany
| | - Claudia Falter
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Patrick Aloy
- grid.7722.00000 0001 1811 6966Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca I Estudis Avaçats (ICREA), Barcelona, Spain
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Institut Pasteur, Paris, France. .,UMR3569, Centre National de la Recherche Scientifique, Paris, France. .,Université de Paris, Paris, France.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Michael A. Calderwood
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Frederick P. Roth
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, Toronto, Ontario Canada
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany. .,Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Germany.
| |
Collapse
|
33
|
Wang M, Han X, Yu T, Wang M, Luo W, Zou C, Li X, Li G, Wu G, Wang Y, Liang G. OTUD1 promotes pathological cardiac remodeling and heart failure by targeting STAT3 in cardiomyocytes. Theranostics 2023; 13:2263-2280. [PMID: 37153745 PMCID: PMC10157730 DOI: 10.7150/thno.83340] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Rationale: Understanding the molecular mechanisms of deleterious cardiac remodeling is important for the development of treatments for heart failure. Recent studies have highlighted a role of deubiquitinating enzymes in cardiac pathophysiology. In the present study, we screened for alteration of deubiquitinating enzymes in experimental models of cardiac remodeling, which indicated a potential role of OTU Domain-Containing Protein 1 (OTUD1). Methods: Wide-type or OTUD1 knockout mice with chronic angiotensin II infusion and transverse aortic constriction (TAC) were utilized to develop cardiac remodeling and heart failure. We also overexpressed OTUD1 in mouse heart with AAV9 vector to validate the function of OTUD1. LC-MS/MS analysis combined with Co-IP was used to identify the interacting proteins and substrates of OTUD1. Results: We found that OTUD1 is elevated in mouse heart tissues following chronic angiotensin II administration. OTUD1 knockout mice were significantly protected against angiotensin II-induced cardiac dysfunction, hypertrophy, fibrosis and inflammatory response. Similar results were obtained in the TAC model. Mechanistically, OTUD1 bounds to the SH2 domain of STAT3 and causes deubiquitination of STAT3. Cysteine at position 320 of OTUD1 exerts K63 deubiquitination to promote STAT3 phosphorylation and nuclear translocation, thereby increasing STAT3 activity to induce inflammatory responses, fibrosis, and hypertrophy in cardiomyocytes. Finally, OTUD1 overexpression by AAV9 vector increases Ang II-induced cardiac remodeling in mice and OTUD1-regulated responses can be inhibited by blocking STAT3. Conclusion: Cardiomyocyte OTUD1 promotes pathological cardiac remodeling and dysfunction by deubiquitinating STAT3. These studies have highlighted a novel role of OTUD1 in hypertensive heart failure and identified STAT3 as a target of OTUD1 in mediating these actions.
Collapse
Affiliation(s)
- Mengyang Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tianxiang Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wu Luo
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiuyun Li
- Department of Ultrasonography, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- ✉ Corresponding authors: Guang Liang, Ph.D., Professor, Address: Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; E-mail: . Yi Wang, Ph.D., Professor; Address: Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; E-mail:
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- ✉ Corresponding authors: Guang Liang, Ph.D., Professor, Address: Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; E-mail: . Yi Wang, Ph.D., Professor; Address: Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; E-mail:
| |
Collapse
|
34
|
Lv H, Liu X, Zhou H. USP25 UPREGULATION BOOSTS GSDMD -MEDIATED PYROPTOSIS OF ACINAR CELLS IN ACUTE PANCREATITIS. Shock 2022; 58:408-416. [PMID: 36155610 DOI: 10.1097/shk.0000000000001992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Acute pancreatitis (AP) is an inflammation-associated disorder in the digestive system. Ubiquitin-specific peptidase 25 ( USP25 ) can modulate inflammation in diseases. This study expounded on the role of USP25 in pyroptosis of acinar cells in AP. Acinar cells were treated with lipopolysaccharide (LPS) and caerulein (CRE) to induce AP. Afterward, the expression patterns of USP25 , microRNA (miR)-10a-5p, and Krüppel-like factor 4 ( KLF4 ) in acinar cells were examined. Then, acinar cell viability and levels of NLR family pyrin-domain containing 3 (NLRP3), cleaved caspase-1, cleaved N -terminal gasdermin D ( GSDMD - N ), interleukin (IL)-1β, and IL-18 were determined. We observed that USP25 was highly expressed in AP models, and silencing USP25 increased cell viability and inhibited pyroptosis of AP acinar cells. The bindings of USP25 to KLF4 and miR-10a-5p to KLF4 and the GSDMD 3'UTR sequence were validated. We found that USP25 binding to KLF4 inhibited ubiquitination degradation of KLF4 , KLF4 transcriptionally decreased miR-10a-5p expression, and miR-10a-5p targeted GSDMD expression. Finally, rescue experiments proved that KLF4 overexpression or miR-10a-5p suppression enhanced pyroptosis of AP acinar cells. Overall, USP25 stabilized KLF4 expression through deubiquitination, limited miR-10a-5p expression, and increased GSDMD expression, finally promoting pyroptosis of acinar cells in AP.
Collapse
Affiliation(s)
- Hui Lv
- Department of Gastroenterology, The Central Hospital of Zhoukou, Zhoukou, China
| | | | | |
Collapse
|
35
|
Liu X, Luo W, Chen J, Hu C, Mutsinze RN, Wang X, Zhang Y, Huang L, Zuo W, Liang G, Wang Y. USP25 Deficiency Exacerbates Acute Pancreatitis via Up-Regulating TBK1-NF-κB Signaling in Macrophages. Cell Mol Gastroenterol Hepatol 2022; 14:1103-1122. [PMID: 35934222 PMCID: PMC9490099 DOI: 10.1016/j.jcmgh.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Severe acute pancreatitis can easily lead to systemic inflammatory response syndrome and death. Macrophages are known to be involved in the pathophysiology of acute pancreatitis (AP), and macrophage activation correlates with disease severity. In this study, we examined the role of ubiquitin-specific protease 25, a deubiquitinating enzyme and known regulator of macrophages, in the pathogenesis of AP. METHODS We used L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP in Usp25-/- mice and wild-type mice. We also generated bone marrow Usp25-/- chimeric mice and initiated L-arginine-mediated AP. Primary acinar cells and bone marrow-derived macrophages were isolated from wild-type and Usp25-/- mice to dissect molecular mechanisms. RESULTS Our results show that Usp25 deficiency exacerbates pancreatic and lung injury, neutrophil and macrophage infiltration, and systemic inflammatory responses in L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP. Bone marrow Usp25-/- chimeric mice challenged with L-arginine show that Usp25 deficiency in macrophages exaggerates AP by up-regulating the TANK-binding kinase 1 (TBK1)-nuclear factor-κB (NF-κB) signaling pathway. Similarly, in vitro data confirm that Usp25 deficiency enhances the TBK1-NF-κB pathway, leading to increased expression of inflammatory cytokines in bone marrow-derived macrophages. CONCLUSIONS Usp25 deficiency in macrophages enhances TBK1-NF-κB signaling, and the induction of inflammatory chemokines and type I interferon-related genes exacerbates pancreatic and lung injury in AP.
Collapse
Affiliation(s)
- Xin Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Medical Research Center, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rumbidzai N. Mutsinze
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China,Correspondence Address correspondence to: Yi Wang, PhD, Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. fax: (86) 577 85773060
| |
Collapse
|
36
|
Morgado-Palacin L. Bo Zhong: Captive by the viral immune escape. J Cell Biol 2022; 221:e202202057. [PMID: 35195660 PMCID: PMC8932527 DOI: 10.1083/jcb.202202057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bo Zhong studies the regulation of the antiviral innate immunity, inflammation, and tumorigenesis by the protein ubiquitination system.
Collapse
|
37
|
Xu S, Han L, Wei Y, Zhang B, Wang Q, Liu J, Liu M, Chen Z, Wang Z, Chen H, Zhu Q. MicroRNA-200c-targeted contactin 1 facilitates the replication of influenza A virus by accelerating the degradation of MAVS. PLoS Pathog 2022; 18:e1010299. [PMID: 35171955 PMCID: PMC8849533 DOI: 10.1371/journal.ppat.1010299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
Influenza A viruses (IAVs) continuously challenge the poultry industry and human health. Elucidation of the host factors that modulate the IAV lifecycle is vital for developing antiviral drugs and vaccines. In this study, we infected A549 cells with IAVs and found that host protein contactin-1 (CNTN1), a member of the immunoglobulin superfamily, enhanced viral replication. Bioinformatic prediction and experimental validation indicated that the expression of CNTN1 was reduced by microRNA-200c (miR-200c) through directly targeting. We further showed that CNTN1-modulated viral replication in A549 cells is dependent on type I interferon signaling. Co-immunoprecipitation experiments revealed that CNTN1 specifically interacts with MAVS and promotes its proteasomal degradation by removing its K63-linked ubiquitination. Moreover, we discovered that the deubiquitinase USP25 is recruited by CNTN1 to catalyze the deubiquitination of K63-linked MAVS. Consequently, the CNTN1-induced degradation cascade of MAVS blocked RIG-I-MAVS-mediated interferon signaling, leading to enhanced viral replication. Taken together, our data reveal novel roles of CNTN1 in the type I interferon pathway and regulatory mechanism of IAV replication.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Lu Han
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Yanli Wei
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Bo Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qian Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Junwen Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Minxuan Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Zhaoshan Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| |
Collapse
|
38
|
Zhang Y, Huang L, Gao X, Qin Q, Huang X, Huang Y. Grouper USP12 exerts antiviral activity against nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:332-341. [PMID: 35032679 DOI: 10.1016/j.fsi.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitin-specific proteases (USPs) have attracted particular attention due to their multiple functions in different biological processes. USP12, a member of the USP family, has been demonstrated to exert critical roles in diverse cellular processes, including cell death, cancer and antiviral immunity. Here, we cloned a USP12 homolog from orange spotted grouper (Epinephelus coioides, E. coioides), and its roles in fish RNA virus replication were investigated. EcUSP12 contained a 1119-bp open reading frame (ORF) encoding a 372-amino acid polypeptide, which shared 100.00% and 91.32% identity with USP12 homolog of Etheostoma cragini and Homo sapiens, respectively. Sequence analysis indicated that EcUSP12 contained a conserved peptidase-C19G domain (aa 40-369). qPCR analysis showed that EcUSP12 transcript was most abundant in head kidney and spleen of grouper E. coioides. The expression of EcUSP12 was significantly upregulated in grouper spleen (GS) cells in response to red-spotted grouper nervous necrosis virus (RGNNV) infection. Subcellular localization analysis showed that EcUSP12 was evenly distributed throughout the cytoplasm, and mainly co-localized with endoplasmic reticulum (ER). Interestingly, during RGNNV infection, the endogenous distribution of EcUSP12 was obviously altered, and mostly overlapped with viral coat protein (CP). Co-Immunoprecipitation (Co-IP) assay indicated that EcUSP12 interacted with viral CP. In addition, overexpression of EcUSP12 significantly inhibited the replication of RGNNV in vitro, as evidenced by the decrease in viral gene transcription and protein synthesis during infection. Consistently, knockdown of EcUSP12 by small interfering RNA (siRNA) promoted the replication of RGNNV. Furthermore, EcUSP12 overexpression also increased the transcription level of inflammatory factors and interferon-related genes, including tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, interferon regulatory factor 3 (IRF3), and IRF7. Taken together, our results demonstrated that EcUSP12, as a positive regulator of IFN signaling, interacted with viral CP to inhibit virus infection.
Collapse
Affiliation(s)
- Ya Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liwei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolin Gao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Xiaohong Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Youhua Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Shen J, Fu B, Wu Y, Yang Y, Lin X, Lin H, Liu H, Huang W. USP25 Expression in Peripheral Blood Mononuclear Cells Is Associated With Bone Mineral Density in Women. Front Cell Dev Biol 2022; 9:811611. [PMID: 35141233 PMCID: PMC8819182 DOI: 10.3389/fcell.2021.811611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is the most common metabolic bone disease in postmenopausal women. As precursors of osteoclasts, peripheral blood mononuclear cells are accessible and considered suitable models for studying osteoporosis pathology. Ubiquitination is a crucial protein degradation system in bone metabolism. The aim of this study was to identify potential ubiquitination-related genes in PBMCs that are related to osteoporosis pathogenesis. Therefore, we performed an integrated analysis of osteoporosis-related microarray datasets. With the obtained ubiquitination-related gene set, weighted gene coexpression network analysis was performed. The results showed that genes in the turquoise module were correlated with menopause, and 48 genes were identified as hub genes. A differential expression analysis revealed 43 differentially expressed genes between pre- and postmenopausal samples. After integrating the information on differentially expressed menopause-related genes, we found that several members of the ubiquitin-specific protease (USP) family (USP1, USP7, USP9X, USP16, and USP25) were highly expressed in samples from postmenopausal female and that, USP25 expression was significantly higher in low-BMD samples than in high-BMD samples among samples from premenopausal subjects (p = 0.0013) and among all samples (p = 0.013). Finally, we verified the protein expression of USP25 in PBMCs by performing Western blot analysis, which yielded results consistent with the aforementioned results. Moreover, by assessing GTEx datasets, we found that USP25 expression was highly correlated with TRAF6 expression in whole blood (p < 0.001). We also tested the protein expression levels of TRAF6 in PBMCs and found that it was positively correlated with USP25 expression (p = 0.036). Our results reveal that the ubiquitin-specific protease family may play important roles in menopause and that USP25 is related to osteoporosis pathogenesis.
Collapse
Affiliation(s)
- Jianlin Shen
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Bowen Fu
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanjiao Wu
- Department of Orthopedics, Shunde Hospital of Southern Medical University, Guangzhou, China
| | - Yang Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoning Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
- *Correspondence: Haibin Lin, ; Huan Liu, ; Wenhua Huang,
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- *Correspondence: Haibin Lin, ; Huan Liu, ; Wenhua Huang,
| | - Wenhua Huang
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- *Correspondence: Haibin Lin, ; Huan Liu, ; Wenhua Huang,
| |
Collapse
|
40
|
Liu Z, Qi M, Tian S, Yang Q, Liu J, Wang S, Ji M, Yu R, Zeng S, Li J, Wei Y, Dong W. Ubiquitin-Specific Protease 25 Aggravates Acute Pancreatitis and Acute Pancreatitis-Related Multiple Organ Injury by Destroying Tight Junctions Through Activation of The STAT3 Pathway. Front Cell Dev Biol 2022; 9:806850. [PMID: 35096833 PMCID: PMC8793747 DOI: 10.3389/fcell.2021.806850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin-specific protease 25 (USP25) plays an important role in inflammation and immunity. However, the role of USP25 in acute pancreatitis (AP) is still unclear. To evaluate the role of USP25 in AP, we conducted research on clinical AP patients, USP25wild-type(WT)/USP25 knockout (USP25-/-) mice, and pancreatic acinar cells. Our results showed that serum USP25 concentration was higher in AP patients than in healthy controls and was positively correlated with disease severity. AP patients' serum USP25 levels after treatment were significantly lower than that at the onset of AP. Moreover, USP25 expression was upregulated in cerulein-induced AP in mice, while USP25 deficiency attenuates AP and AP-related multiple organ injury. In vivo and in vitro studies showed that USP25 exacerbates AP by promoting the release of pro-inflammatory factors and destroying tight junctions of the pancreas. We showed that USP25 aggravates AP and AP-related multiple organ injury by activating the signal transducer and activator of transcription 3 (STAT3) pathway. Targeting the action of USP25 may present a potential therapeutic option for treating AP.
Collapse
|
41
|
Soh SM, Kim YJ, Kim HH, Lee HR. Modulation of Ubiquitin Signaling in Innate Immune Response by Herpesviruses. Int J Mol Sci 2022; 23:ijms23010492. [PMID: 35008917 PMCID: PMC8745310 DOI: 10.3390/ijms23010492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is a protein degradation machinery that is crucial for cellular homeostasis in eukaryotes. Therefore, it is not surprising that the UPS coordinates almost all host cellular processes, including host-pathogen interactions. This protein degradation machinery acts predominantly by tagging substrate proteins designated for degradation with a ubiquitin molecule. These ubiquitin tags have been involved at various steps of the innate immune response. Hence, herpesviruses have evolved ways to antagonize the host defense mechanisms by targeting UPS components such as ubiquitin E3 ligases and deubiquitinases (DUBs) that establish a productive infection. This review delineates how herpesviruses usurp the critical roles of ubiquitin E3 ligases and DUBs in innate immune response to escape host-antiviral immune response, with particular focus on retinoic acid-inducible gene I (RIG-I)-like receptors (RLR), cyclic-GMP-AMP (cGAMP) synthase (cGAS), stimulator of interferon (IFN) genes (STING) pathways, and inflammasome signaling.
Collapse
Affiliation(s)
- Sandrine-M. Soh
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
| | - Yeong-Jun Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
| | - Hong-Hee Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea; (S.-M.S.); (Y.-J.K.); (H.-H.K.)
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 136-701, Korea
- Correspondence: ; Tel.: +82-44-860-1831
| |
Collapse
|
42
|
Gao Y, Chen J, Ji R, Ding J, Zhang Y, Yang J. USP25 Regulates the Proliferation and Apoptosis of Ovarian Granulosa Cells in Polycystic Ovary Syndrome by Modulating the PI3K/AKT Pathway via Deubiquitinating PTEN. Front Cell Dev Biol 2021; 9:779718. [PMID: 34805185 PMCID: PMC8599287 DOI: 10.3389/fcell.2021.779718] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Polycystic ovarian syndrome (PCOS) is an endocrine-related disease related to abnormal folliculogenesis and is a leading cause of infertility worldwide. Inhibition of granulosa cells (GCs) proliferation and increased GCs apoptosis have been identified as the major factors in aberrant follicle maturation. Methods: USP25 and PTEN expression in GCs from women with and without PCOS was analyzed using Western blotting. A PCOS-like mouse model was constructed using USP25 knockout and wild-type mice to explore the role of USP25 in PCOS. The human granular cell line KGN was cultured for proliferation and apoptosis assays, and the effect of USP25 on PTEN was investigated after transfection with shRNA-USP25 lentivirus. Results: USP25 expression was found to be elevated in patients and mice with PCOS. With mouse model, we observed a reduction in PCOS symptoms in mice after USP25 deletion. Increased proliferation, reduced apoptosis, activation of the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and decreased PTEN expression were found in KGN cells after USP25 knockdown. Finally, we verified that USP25 could deubiquitinate PTEN in KGN cells. Conclusions: In this study, we investigated that USP25 can regulate the PI3K/AKT signaling pathway by deubiquitinating PTEN, thus affecting the proliferation and apoptosis of GCs and contributing to the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Yue Gao
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
43
|
Qian G, Zhu L, Li G, Liu Y, Zhang Z, Pan J, Lv H. An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Front Immunol 2021; 12:742542. [PMID: 34707613 PMCID: PMC8542838 DOI: 10.3389/fimmu.2021.742542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infectious diseases pose a great challenge to human health around the world. Type I interferons (IFN-Is) function as the first line of host defense and thus play critical roles during virus infection by mediating the transcriptional induction of hundreds of genes. Nevertheless, overactive cytokine immune responses also cause autoimmune diseases, and thus, tight regulation of the innate immune response is needed to achieve viral clearance without causing excessive immune responses. Emerging studies have recently uncovered that the ubiquitin system, particularly deubiquitinating enzymes (DUBs), plays a critical role in regulating innate immune responses. In this review, we highlight recent advances on the diverse mechanisms of human DUBs implicated in IFN-I signaling. These DUBs function dynamically to calibrate host defenses against various virus infections by targeting hub proteins in the IFN-I signaling transduction pathway. We also present a future perspective on the roles of DUB-substrate interaction networks in innate antiviral activities, discuss the promises and challenges of DUB-based drug development, and identify the open questions that remain to be clarified. Our review provides a comprehensive description of DUBs, particularly their differential mechanisms that have evolved in the host to regulate IFN-I-signaling-mediated antiviral responses.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
44
|
Lei H, Wang J, Hu J, Zhu Q, Wu Y. Deubiquitinases in hematological malignancies. Biomark Res 2021; 9:66. [PMID: 34454635 PMCID: PMC8401176 DOI: 10.1186/s40364-021-00320-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models, and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the occurrence and development of hematological malignancies. We summarize the DUBs involved in different categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.
Collapse
Affiliation(s)
- Hu Lei
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiaqi Wang
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiacheng Hu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
45
|
Taher I, Almaeen A, Ghazy A, Abu-Farha M, Mohamed Channanath A, Elsa John S, Hebbar P, Arefanian H, Abubaker J, Al-Mulla F, Alphonse Thanaraj T. Relevance Between COVID-19 and Host Genetics of Immune Response. Saudi J Biol Sci 2021; 28:6645-6652. [PMID: 34305429 PMCID: PMC8285220 DOI: 10.1016/j.sjbs.2021.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/09/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP’s can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA’s and ERAP’s. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA’s and ERAP’s leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.
Collapse
Affiliation(s)
- Ibrahim Taher
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Abdulrahman Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amany Ghazy
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia.,Departments of Microbiology & Medical Immunology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Hossein Arefanian
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | |
Collapse
|
46
|
Zhu W, Zheng D, Wang D, Yang L, Zhao C, Huang X. Emerging Roles of Ubiquitin-Specific Protease 25 in Diseases. Front Cell Dev Biol 2021; 9:698751. [PMID: 34249948 PMCID: PMC8262611 DOI: 10.3389/fcell.2021.698751] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
The balance of ubiquitination and deubiquitination plays diverse roles in regulating protein stability and cellular homeostasis. Deubiquitinating enzymes catalyze the hydrolysis and removal of ubiquitin chains from target proteins and play critical roles in various disease processes, including cancer, immune responses to viral infections and neurodegeneration. This article aims to summarize roles of the deubiquitinating enzyme ubiquitin-specific protease 25 (USP25) in disease onset and progression. Previous studies have focused on the role of USP25 in antiviral immunity and neurodegenerative diseases. Recently, however, as the structural similarities and differences between USP25 and its homolog USP28 have become clear, mechanisms of action of USP25 in cancer and other diseases have been gradually revealed.
Collapse
Affiliation(s)
- Wenjing Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
47
|
Iyori M, Ogawa R, Emran TB, Tanbo S, Yoshida S. Characterization of the Gene Expression Patterns in the Murine Liver Following Intramuscular Administration of Baculovirus. Gene Expr 2021; 20:147-155. [PMID: 33115550 PMCID: PMC8201657 DOI: 10.3727/105221620x16039045978676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intramuscular administration of wild-type baculovirus is able to both protect against Plasmodium sporozoite challenge and eliminate liver-stage parasites via a Toll-like receptor 9-independent pathway. To investigate its effector mechanism(s), the gene expression profile in the liver of baculovirus-administered mice was characterized by cDNA microarray analysis. The ingenuity pathway analysis gene ontology module revealed that the major gene subsets induced by baculovirus were immune-related signaling, such as interferon signaling. A total of 40 genes commonly upregulated in a Toll-like receptor 9-independent manner were included as possible candidates for parasite elimination. This gene subset consisted of NT5C3, LOC105246895, BTC, APOL9a/b, G3BP3, SLC6A6, USP25, TRIM14, and PSMB8 as the top 10 candidates according to the special unit. These findings provide new insight into effector molecules responsible for liver-stage parasite killing and, possibly, the development of a new baculovirus-mediated prophylactic and therapeutic biopharmaceutical for malaria.
Collapse
Affiliation(s)
- Mitsuhiro Iyori
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Ryohei Ogawa
- †Department of Radiological Sciences, University of Toyama, Toyama, Japan
| | - Talha Bin Emran
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Shuta Tanbo
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Shigeto Yoshida
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| |
Collapse
|
48
|
Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Front Pharmacol 2021; 12:685011. [PMID: 34177595 PMCID: PMC8224227 DOI: 10.3389/fphar.2021.685011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications such as ubiquitination play important regulatory roles in several biological processes in eukaryotes. This process could be reversed by deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated. Dysregulation of DUBs can cause dramatic physiological consequences and a variety of disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple factors, such as transcription and translation of associated genes, and the presence of accessory domains, binding proteins, and inhibitors have been implicated in several aspects of DUB regulation. Beyond this level of regulation, emerging studies show that the function of DUBs can be regulated by a variety of post-translational modifications, which significantly affect the abundance, localization, and catalytic activity of DUBs. The most extensively studied post-translational modification of DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation, acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we summarize the current knowledge on the regulatory effects of post-translational modifications of DUBs.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
49
|
Appelbaum T, Murgiano L, Becker D, Santana E, Aguirre GD. Candidate Genetic Modifiers for RPGR Retinal Degeneration. Invest Ophthalmol Vis Sci 2021; 61:20. [PMID: 33326016 PMCID: PMC7745631 DOI: 10.1167/iovs.61.14.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose To define genetic variants associated with variable severity of X-linked progressive retinal atrophy 1 (XLPRA1) caused by a five-nucleotide deletion in canine RPGR exon ORF15. Methods A genome-wide association study (GWAS) was performed in XLPRA1 phenotype informative pedigree. Whole genome sequencing (WGS) was used for mutational analysis of genes within the candidate genomic region. Retinas of normal and mutant dogs were used for gene expression, gene structure, and RNA duplex analyses. Results GWAS followed by haplotype phasing identified an approximately 4.6 Mb candidate genomic interval on CFA31 containing seven protein-coding genes expressed in retina (ROBO1, ROBO2, RBM11, NRIP1, HSPA13, SAMSN1, and USP25). Furthermore, we identified and characterized two novel lncRNAs, ROBO1-AS and ROBO2-AS, that display overlapping gene organization with axon guidance pathway genes ROBO1 and ROBO2, respectively, producing sense-antisense gene pairs. Notably, ROBO1-AS and ROBO2-AS act in cis to form lncRNA/mRNA duplexes with ROBO1 and ROBO2, respectively, suggesting important roles for these lncRNAs in the ROBO regulatory network. A subsequent WGS identified candidate genes within the genomic region on CFA31 that might be implicated in modifying severity of XLPRA1. This approach led to discovery of genetic variants in ROBO1, ROBO1-AS, ROBO2-AS, and USP25 that are strongly associated with the XLPRA1 moderate phenotype. Conclusions The study provides new insights into the genetic basis of phenotypic variation in severity of RPGRorf15-associated retinal degeneration. Our findings suggest an important role for ROBO pathways in disease progression further expanding on our previously reported changes of ROBO1 expression in XLPRA1 retinas.
Collapse
Affiliation(s)
- Tatyana Appelbaum
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Leonardo Murgiano
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Doreen Becker
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.,Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Evelyn Santana
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gustavo D Aguirre
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
50
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|