1
|
Klebl DP, McMillan SN, Risi C, Forgacs E, Virok B, Atherton JL, Harris SA, Stofella M, Winkelmann DA, Sobott F, Galkin VE, Knight PJ, Muench SP, Scarff CA, White HD. Swinging lever mechanism of myosin directly shown by time-resolved cryo-EM. Nature 2025; 642:519-526. [PMID: 40205053 PMCID: PMC12158783 DOI: 10.1038/s41586-025-08876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025]
Abstract
Myosins produce force and movement in cells through interactions with F-actin1. Generation of movement is thought to arise through actin-catalysed conversion of myosin from an ATP-generated primed (pre-powerstroke) state to a post-powerstroke state, accompanied by myosin lever swing2,3. However, the initial, primed actomyosin state has never been observed, and the mechanism by which actin catalyses myosin ATPase activity is unclear. Here, to address these issues, we performed time-resolved cryogenic electron microscopy (cryo-EM)4 of a myosin-5 mutant having slow hydrolysis product release5,6. Primed actomyosin was predominantly captured 10 ms after mixing primed myosin with F-actin, whereas post-powerstroke actomyosin predominated at 120 ms, with no abundant intermediate states detected. For detailed interpretation, cryo-EM maps were fitted with pseudo-atomic models. Small but critical changes accompany the primed motor binding to actin through its lower 50-kDa subdomain, with the actin-binding cleft open and phosphate release prohibited. Amino-terminal actin interactions with myosin promote rotation of the upper 50-kDa subdomain, closing the actin-binding cleft, and enabling phosphate release. The formation of interactions between the upper 50-kDa subdomain and actin creates the strong-binding interface needed for effective force production. The myosin-5 lever swings through 93°, predominantly along the actin axis, with little twisting. The magnitude of lever swing matches the typical step length of myosin-5 along actin7. These time-resolved structures demonstrate the swinging lever mechanism, elucidate structural transitions of the power stroke, and resolve decades of conjecture on how myosins generate movement.
Collapse
Affiliation(s)
- David P Klebl
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sean N McMillan
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Cristina Risi
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA, USA
| | - Eva Forgacs
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA, USA
| | - Betty Virok
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA, USA
| | - Jennifer L Atherton
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA, USA
| | - Sarah A Harris
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - Michele Stofella
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Donald A Winkelmann
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Vitold E Galkin
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA, USA
| | - Peter J Knight
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - Charlotte A Scarff
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| | - Howard D White
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
2
|
Marang CP, Petersen DJ, Scott BD, Walcott S, Debold EP. Characterizing the concentration and load dependence of phosphate binding to rabbit fast skeletal actomyosin. Proc Natl Acad Sci U S A 2025; 122:e2504758122. [PMID: 40359046 PMCID: PMC12107134 DOI: 10.1073/pnas.2504758122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
Intensely contracting fast skeletal muscle rapidly loses the ability to generate force, due in part to the accumulation of phosphate (Pi) inhibiting myosin's force-generating capacity, in a process that is strain dependent. Crucial aspects of the mechanism underlying this inhibition remain unclear. Therefore, we directly determined the effects of increasing [Pi] on rabbit psoas muscle myosin's ability to generate force against progressively higher resistive loads in a laser trap assay, with the requisite spatial and temporal resolution to discern the mechanism of inhibition. Myosin's force-generating capacity decreased with increasing [Pi], an effect that became more pronounced at higher resistive loads. The decrease in force resulted from myosin's accelerated detachment from actin, which also increased at higher resistive forces. These data are well fit by a cross-bridge model in which Pi rebinds to actomyosin in a postpowerstroke, ADP-bound state before accelerating myosin's detachment from actin. Thus, these findings provide important molecular insight into the mechanism underlying the Pi-induced loss of force during muscle fatigue from intense contractile activity.
Collapse
Affiliation(s)
| | - Daniel J. Petersen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA01609
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA01609
- Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA01609
| | - Brent D. Scott
- Department of Kinesiology, University of Massachusetts, Amherst, MA01003
| | - Sam Walcott
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA01609
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA01609
- Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA01609
| | - Edward P. Debold
- Department of Kinesiology, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
3
|
Jani VP, Ma W. Thick-Filament-Based Regulation and the Determinants of Force Generation. Biomedicines 2025; 13:703. [PMID: 40149679 PMCID: PMC11939844 DOI: 10.3390/biomedicines13030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Thick-filament-based regulation in muscle is generally conceived as processes that modulate the number of myosin heads capable of force generation. It has been generally assumed that biochemical and structural assays of myosin active and inactive states provide equivalent measures of myosin recruitment, but recent studies indicate that this may not always be the case. Here, we studied the steady-state and dynamic mechanical changes in skinned porcine myocardium before and after treatment with omecamtiv mecarbil (OM) or piperine to help decipher how the biochemical and structural states of myosin separately affect contractile force. Methods: Force-Ca2+ relationships were obtained from skinned cardiomyocytes isolated from porcine myocardium before and after exposure to 1 μM OM and 7 μM piperine. Crossbridge kinetics were acquired using a step response stretch activation protocol allowing myosin attachment and detachment rates to be calculated. Results: OM augmented calcium-activated force at submaximal calcium levels that can be attributed to increased thick filament recruitment, increases in calcium sensitivity, an increased duty ratio, and from decelerated crossbridge detachment resulting in slowed crossbridge cycling kinetics. Piperine, in contrast, was able to increase activated force at submaximal calcium levels without appreciably affecting crossbridge cycling kinetics. Conclusions: Our study supports the notion that thick filament activation is primarily a process of myosin recruitment that is not necessarily coupled with the chemo-cycling of crossbridges. These new insights into thick filament activation mechanisms will need to be considered in the design of sarcomere-based therapies for treatment of myopathies.
Collapse
Affiliation(s)
- Vivek P. Jani
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weikang Ma
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60016, USA
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL 60016, USA
| |
Collapse
|
4
|
Stehle R. Phosphate rebinding induces force reversal via slow backward cycling of cross-bridges. Front Physiol 2025; 15:1476876. [PMID: 39839531 PMCID: PMC11747208 DOI: 10.3389/fphys.2024.1476876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/28/2024] [Indexed: 01/23/2025] Open
Abstract
Objective Previous studies on muscle fibers, myofibrils, and myosin revealed that the release of inorganic phosphate (Pi) and the force-generating step(s) are reversible, with cross-bridges also cycling backward through these steps by reversing force-generating steps and rebinding Pi. The aim was to explore the significance of force redevelopment kinetics (rate constant k TR) in cardiac myofibrils for the coupling between the Pi binding induced force reversal and the rate-limiting transition f - for backward cycling of cross-bridges from force-generating to non-force-generating states. Methods k TR and force generation of cardiac myofibrils from guinea pigs were investigated at 0.015-20 mM Pi. The observed force-[Pi], force-log [Pi], k TR-[Pi], and k TR-force relations were assessed with various single-pathway models of the cross-bridge cycle that differed in sequence and kinetics of reversible Pi release, reversible force-generating step and reversible rate-limiting transition. Based on the interpretation that k TR reflects the sum of rate-limiting transitions in the cross-bridge cycle, an indicator, the coupling strength, was defined to quantify the contribution of Pi binding induced force reversal to the rate-limiting transition f - from the [Pi]-modulated k TR-force relation. Results Increasing [Pi] decreased force by a bi-linear force-log [Pi] relation, increased k TR in a slightly downward curved dependence with [Pi], and altered k TR almost reciprocally to force reflected by the k TR-force relation. Force-[Pi] and force-log [Pi] relations provided less selectivity for the exclusion of models than the k TR-[Pi] and k TR-force relations. The k TR-force relation observed in experiments with cardiac myofibrils yielded the coupling strength +0.84 ± 0.08 close to 1, the maximum coupling strength expected for the reciprocal k TR-force relationship. Single pathway models consisting of fast reversible force generation before or after rapid reversible Pi release failed to describe the observed k TR-force relation. Single pathway models consistent with the observed k TR-force relation had either slow Pi binding or slow force reversal, i.e., in the consistent single pathway models, f - was assigned to the rate of either Pi binding or force reversal. Conclusion Backward flux of cross-bridges from force-generating to non-force-generating states is limited by the rates of Pi binding or force reversal ruling out other rate-limiting steps uncoupled from Pi binding induced force reversal.
Collapse
Affiliation(s)
- Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| |
Collapse
|
5
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Goluguri RR, Guhathakurta P, Nandwani N, Dawood A, Yakota S, Roopnarine O, Thomas DD, Spudich JA, Ruppel KM. A FRET assay to quantitate levels of the human β-cardiac myosin interacting heads motif based on its near-atomic resolution structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626936. [PMID: 39713291 PMCID: PMC11661104 DOI: 10.1101/2024.12.05.626936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In cardiac muscle, many myosin molecules are in a resting or "OFF" state with their catalytic heads in a folded structure known as the interacting heads motif (IHM). Many mutations in the human β-cardiac myosin gene that cause hypertrophic cardiomyopathy (HCM) are thought to destabilize (decrease the population of) the IHM state. The effects of pathogenic mutations on the IHM structural state are often studied using indirect assays, including a single-ATP turnover assay that detects the super-relaxed (SRX) biochemical state of myosin functionally. Here we develop and use a fluorescence resonance energy transfer (FRET) based sensor for direct quantification of the IHM state in solution. The FRET sensor was able to quantify destabilization of the IHM state in solution, induced by (a) increasing salt concentration, (b) altering proximal S2 tail length, or (c) introducing the HCM mutation P710R, as well as stabilization of the IHM state by introducing a dilated cardiomyopathy-causing mutation (E525K). Our FRET sensor conclusively showed that these perturbations indeed alter the structural IHM state. These results establish that the structural IHM state is one of the structural correlates of the biochemical SRX state in solution.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Aminah Dawood
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Seiji Yakota
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
7
|
Berg A, Velayuthan LP, Tågerud S, Ušaj M, Månsson A. Probing actin-activated ATP turnover kinetics of human cardiac myosin II by single molecule fluorescence. Cytoskeleton (Hoboken) 2024; 81:883-901. [PMID: 38623952 PMCID: PMC11615843 DOI: 10.1002/cm.21858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Mechanistic insights into myosin II energy transduction in striated muscle in health and disease would benefit from functional studies of a wide range of point-mutants. This approach is, however, hampered by the slow turnaround of myosin II expression that usually relies on adenoviruses for gene transfer. A recently developed virus-free method is more time effective but would yield too small amounts of myosin for standard biochemical analyses. However, if the fluorescent adenosine triphosphate (ATP) and single molecule (sm) total internal reflection fluorescence microscopy previously used to analyze basal ATP turnover by myosin alone, can be expanded to actin-activated ATP turnover, it would appreciably reduce the required amount of myosin. To that end, we here describe zero-length cross-linking of human cardiac myosin II motor fragments (sub-fragment 1 long [S1L]) to surface-immobilized actin filaments in a configuration with maintained actin-activated ATP turnover. After optimizing the analysis of sm fluorescence events, we show that the amount of myosin produced from C2C12 cells in one 60 mm cell culture plate is sufficient to obtain both the basal myosin ATP turnover rate and the maximum actin-activated rate constant (k cat). Our analysis of many single binding events of fluorescent ATP to many S1L motor fragments revealed processes reflecting basal and actin-activated ATPase, but also a third exponential process consistent with non-specific ATP-binding outside the active site.
Collapse
Affiliation(s)
- Albin Berg
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life ScienceLinnaeus UniversityKalmarSweden
| | - Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life ScienceLinnaeus UniversityKalmarSweden
| | - Sven Tågerud
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life ScienceLinnaeus UniversityKalmarSweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life ScienceLinnaeus UniversityKalmarSweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life ScienceLinnaeus UniversityKalmarSweden
| |
Collapse
|
8
|
Wang T, Nayak A, Kraft T, Amrute‐Nayak M. Single-Molecule Investigation of Load-Dependent Actomyosin Dissociation Kinetics for Cardiac and Slow Skeletal Myosin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406865. [PMID: 39374027 PMCID: PMC11657034 DOI: 10.1002/smll.202406865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Myosins are ATP-powered, force-generating motor proteins involved in cardiac and muscle contraction. The external load experienced by the myosins modulates and coordinates their function in vivo. Here, this study investigates the tension-sensing mechanisms of rabbit native β-cardiac myosin (βM-II) and slow skeletal myosins (SolM-II) that perform in different physiological settings. Using mobile optical tweezers with a square wave-scanning mode, a range of external assisting and resisting loads from 0 to 15 pN is exerted on single myosin molecules as they interact with the actin filament. Influenced of load on specific strongly-bound states in the cross-bridge cycle is examined by adjusting the [ATP]. The results implies that the detachment kinetics of actomyosin ADP.Pi strongly-bound force-generating state are load sensitive. Low assisting load accelerates, while the resisting load hinders the actomyosin detachment, presumably, by slowing both the Pi and ADP release. However, under both high assisting and resisting load, the rate of actomyosin dissociation decelerates. The transition from actomyosin ADP.Pi to ADP state appears to occur with a higher probability for βM-II than SolM-II. This study interpret that dissociation of at least three strongly-bound actomyosin states are load-sensitive and may contribute to functional diversity among different myosins.
Collapse
Affiliation(s)
- Tianbang Wang
- Institute of Molecular and Cell PhysiologyHannover Medical School30625HannoverGermany
| | - Arnab Nayak
- Institute of Molecular and Cell PhysiologyHannover Medical School30625HannoverGermany
| | - Theresia Kraft
- Institute of Molecular and Cell PhysiologyHannover Medical School30625HannoverGermany
| | - Mamta Amrute‐Nayak
- Institute of Molecular and Cell PhysiologyHannover Medical School30625HannoverGermany
| |
Collapse
|
9
|
Hart RG, Kota D, Li F, Zhang M, Ramallo D, Price AJ, Otterpohl KL, Smith SJ, Dunn AR, Huising MO, Liu J, Chandrasekar I. Myosin II tension sensors visualize force generation within the actin cytoskeleton in living cells. J Cell Sci 2024; 137:jcs262281. [PMID: 39369303 PMCID: PMC11698044 DOI: 10.1242/jcs.262281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Nonmuscle myosin II (NMII) generates cytoskeletal forces that drive cell division, embryogenesis, muscle contraction and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here, we describe a Förster resonance energy transfer (FRET)-based tension sensor that can detect myosin-associated force along the filamentous actin network. Fluorescence lifetime imaging microscopy (FLIM)-FRET measurements indicate that the forces generated by NMII isoform B (NMIIB) exhibit significant spatial and temporal heterogeneity as a function of donor lifetime and fluorophore energy exchange. These measurements provide a proxy for inferred forces that vary widely along the actin cytoskeleton. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.
Collapse
Affiliation(s)
- Ryan G. Hart
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Divya Kota
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Fangjia Li
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Mengdi Zhang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Diego Ramallo
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Andrew J. Price
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Karla L. Otterpohl
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Steve J. Smith
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Alexander R. Dunn
- Department of Chemical Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Jing Liu
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 46907
| | - Indra Chandrasekar
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
10
|
Debold EP, Westerblad H. New insights into the cellular and molecular mechanisms of skeletal muscle fatigue: the Marion J. Siegman Award Lectureships. Am J Physiol Cell Physiol 2024; 327:C946-C958. [PMID: 39069825 DOI: 10.1152/ajpcell.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle fibers need to have mechanisms to decrease energy consumption during intense physical exercise to avoid devastatingly low ATP levels, with the formation of rigor cross bridges and defective ion pumping. These protective mechanisms inevitably lead to declining contractile function in response to intense exercise, characterizing fatigue. Through our work, we have gained insights into cellular and molecular mechanisms underlying the decline in contractile function during acute fatigue. Key mechanistic insights have been gained from studies performed on intact and skinned single muscle fibers and more recently from studies performed and single myosin molecules. Studies on intact single fibers revealed several mechanisms of impaired sarcoplasmic reticulum Ca2+ release and experiments on single myosin molecules provide direct evidence of how putative agents of fatigue impact myosin's ability to generate force and motion. We conclude that changes in metabolites due to an increased dependency on anaerobic metabolism (e.g., accumulation of inorganic phosphate ions and H+) act to directly and indirectly (via decreased Ca2+ activation) inhibit myosin's force and motion-generating capacity. These insights into the acute mechanisms of fatigue may help improve endurance training strategies and reveal potential targets for therapies to attenuate fatigue in chronic diseases.
Collapse
Affiliation(s)
- Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Schmidt AA, Grosberg AY, Grosberg A. A novel kinetic model to demonstrate the independent effects of ATP and ADP/Pi concentrations on sarcomere function. PLoS Comput Biol 2024; 20:e1012321. [PMID: 39102392 PMCID: PMC11326600 DOI: 10.1371/journal.pcbi.1012321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/15/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Understanding muscle contraction mechanisms is a standing challenge, and one of the approaches has been to create models of the sarcomere-the basic contractile unit of striated muscle. While these models have been successful in elucidating many aspects of muscle contraction, they fall short in explaining the energetics of functional phenomena, such as rigor, and in particular, their dependence on the concentrations of the biomolecules involved in the cross-bridge cycle. Our hypothesis posits that the stochastic time delay between ATP adsorption and ADP/Pi release in the cross-bridge cycle necessitates a modeling approach where the rates of these two reaction steps are controlled by two independent parts of the total free energy change of the hydrolysis reaction. To test this hypothesis, we built a two-filament, stochastic-mechanical half-sarcomere model that separates the energetic roles of ATP and ADP/Pi in the cross-bridge cycle's free energy landscape. Our results clearly demonstrate that there is a nontrivial dependence of the cross-bridge cycle's kinetics on the independent concentrations of ATP, ADP, and Pi. The simplicity of the proposed model allows for analytical solutions of the more basic systems, which provide novel insight into the dominant mechanisms driving some of the experimentally observed contractile phenomena.
Collapse
Affiliation(s)
- Andrew A Schmidt
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, Irvine, California, United States of America
| | - Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York, United States of America
| | - Anna Grosberg
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, Irvine, California, United States of America
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research and Sue and Bill Gross Stem Cell Research Center and Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
12
|
Rebbeck RT, Svensson B, Zhang J, Samsó M, Thomas DD, Bers DM, Cornea RL. Kinetics and mapping of Ca-driven calmodulin conformations on skeletal and cardiac muscle ryanodine receptors. Nat Commun 2024; 15:5120. [PMID: 38879623 PMCID: PMC11180167 DOI: 10.1038/s41467-024-48951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/16/2024] [Indexed: 06/19/2024] Open
Abstract
Calmodulin transduces [Ca2+] information regulating the rhythmic Ca2+ cycling between the sarcoplasmic reticulum and cytoplasm during contraction and relaxation in cardiac and skeletal muscle. However, the structural dynamics by which calmodulin modulates the sarcoplasmic reticulum Ca2+ release channel, the ryanodine receptor, at physiologically relevant [Ca2+] is unknown. Using fluorescence lifetime FRET, we resolve different structural states of calmodulin and Ca2+-driven shifts in the conformation of calmodulin bound to ryanodine receptor. Skeletal and cardiac ryanodine receptor isoforms show different calmodulin-ryanodine receptor conformations, as well as binding and structural kinetics with 0.2-ms resolution, which reflect different functional roles of calmodulin. These FRET methods provide insight into the physiological calmodulin-ryanodine receptor structural states, revealing additional distinct structural states that complement cryo-EM models that are based on less physiological conditions. This technology will drive future studies on pathological calmodulin-ryanodine receptor interactions and dynamics with other important ryanodine receptor bound modulators.
Collapse
Affiliation(s)
- Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jingyan Zhang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Donald M Bers
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Freedman H, Tuszynski JA. Study of the Myosin Relay Helix Peptide by Molecular Dynamics Simulations, Pump-Probe and 2D Infrared Spectroscopy. Int J Mol Sci 2024; 25:6406. [PMID: 38928112 PMCID: PMC11203622 DOI: 10.3390/ijms25126406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The Davydov model was conjectured to describe how an amide I excitation created during ATP hydrolysis in myosin might be significant in providing energy to drive myosin's chemomechanical cycle. The free energy surfaces of the myosin relay helix peptide dissolved in 2,2,2-trifluoroethanol (TFE), determined by metadynamics simulations, demonstrate local minima differing in free energy by only ~2 kT, corresponding to broken and stabilized hydrogen bonds, respectively. Experimental pump-probe and 2D infrared spectroscopy were performed on the peptide dissolved in TFE. The relative heights of two peaks seen in the pump-probe data and the corresponding relative volumes of diagonal peaks seen in the 2D-IR spectra at time delays between 0.5 ps and 1 ps differ noticeably from what is seen at earlier or later time delays or in the linear spectrum, indicating that a vibrational excitation may influence the conformational state of this helix. Thus, it is possible that the presence of an amide I excitation may be a direct factor in the conformational state taken on by the myosin relay helix following ATP hydrolysis in myosin.
Collapse
Affiliation(s)
- Holly Freedman
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 306, Salt Lake City, UT 84112, USA
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada;
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
14
|
Sergeeva KV, Tyganov SA, Zaripova KA, Bokov RO, Nikitina LV, Konstantinova TS, Kalamkarov GR, Shenkman BS. Mechanical and signaling responses of unloaded rat soleus muscle to chronically elevated β-myosin activity. Arch Biochem Biophys 2024; 754:109961. [PMID: 38492659 DOI: 10.1016/j.abb.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
It has been reported that muscle functional unloading is accompanied by an increase in motoneuronal excitability despite the elimination of afferent input. Thus, we hypothesized that pharmacological potentiation of spontaneous contractile soleus muscle activity during hindlimb unloading could activate anabolic signaling pathways and prevent the loss of muscle mass and strength. To investigate these aspects and underlying molecular mechanisms, we used β-myosin allosteric effector Omecamtiv Mekarbil (OM). We found that OM partially prevented the loss of isometric strength and intrinsic stiffness of the soleus muscle after two weeks of disuse. Notably, OM was able to attenuate the unloading-induced decrease in the rate of muscle protein synthesis (MPS). At the same time, the use of drug neither prevented the reduction in the markers of translational capacity (18S and 28S rRNA) nor activation of the ubiquitin-proteosomal system, which is evidenced by a decrease in the cross-sectional area of fast and slow muscle fibers. These results suggest that chemically-induced increase in low-intensity spontaneous contractions of the soleus muscle during functional unloading creates prerequisites for protein synthesis. At the same time, it should be assumed that the use of OM is advisable with pharmacological drugs that inhibit the expression of ubiquitin ligases.
Collapse
Affiliation(s)
- K V Sergeeva
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia.
| | - S A Tyganov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - K A Zaripova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - R O Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - L V Nikitina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - T S Konstantinova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - G R Kalamkarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - B S Shenkman
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Blanc FEC, Houdusse A, Cecchini M. A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis. PLoS Comput Biol 2024; 20:e1012005. [PMID: 38662764 PMCID: PMC11086841 DOI: 10.1371/journal.pcbi.1012005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/10/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Myosin motors use the energy of ATP to produce force and directed movement on actin by a swing of the lever-arm. ATP is hydrolysed during the off-actin re-priming transition termed recovery stroke. To provide an understanding of chemo-mechanical transduction by myosin, it is critical to determine how the reverse swing of the lever-arm and ATP hydrolysis are coupled. Previous studies concluded that the recovery stroke of myosin II is initiated by closure of the Switch II loop in the nucleotide-binding site. Recently, we proposed that the recovery stroke of myosin VI starts with the spontaneous re-priming of the converter domain to a putative pre-transition state (PTS) intermediate that precedes Switch II closing and ATPase activation. Here, we investigate the transition from the pre-recovery, post-rigor (PR) state to PTS in myosin VI using geometric free energy simulations and the string method. First, our calculations rediscover the PTS state agnostically and show that it is accessible from PR via a low free energy transition path. Second, separate path calculations using the string method illuminate the mechanism of the PR to PTS transition with atomic resolution. In this mechanism, the initiating event is a large movement of the converter/lever-arm region that triggers rearrangements in the Relay-SH1 region and the formation of the kink in the Relay helix with no coupling to the active site. Analysis of the free-energy barriers along the path suggests that the converter-initiated mechanism is much faster than the one initiated by Switch II closure, which supports the biological relevance of PTS as a major on-pathway intermediate of the recovery stroke in myosin VI. Our analysis suggests that lever-arm re-priming and ATP hydrolysis are only weakly coupled, so that the myosin recovery stroke is initiated by thermal fluctuations and stabilised by nucleotide consumption via a ratchet-like mechanism.
Collapse
Affiliation(s)
- Florian E. C. Blanc
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg, France
- Structural Motility, Institut Curie, CNRS, UMR144, PSL Research University, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, CNRS, UMR144, PSL Research University, Paris, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Månsson A, Ušaj M, Moretto L, Matusovsky O, Velayuthan LP, Friedman R, Rassier DE. New paradigms in actomyosin energy transduction: Critical evaluation of non-traditional models for orthophosphate release. Bioessays 2023; 45:e2300040. [PMID: 37366639 DOI: 10.1002/bies.202300040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Release of the ATP hydrolysis product ortophosphate (Pi) from the active site of myosin is central in chemo-mechanical energy transduction and closely associated with the main force-generating structural change, the power-stroke. Despite intense investigations, the relative timing between Pi-release and the power-stroke remains poorly understood. This hampers in depth understanding of force production by myosin in health and disease and our understanding of myosin-active drugs. Since the 1990s and up to today, models that incorporate the Pi-release either distinctly before or after the power-stroke, in unbranched kinetic schemes, have dominated the literature. However, in recent years, alternative models have emerged to explain apparently contradictory findings. Here, we first compare and critically analyze three influential alternative models proposed previously. These are either characterized by a branched kinetic scheme or by partial uncoupling of Pi-release and the power-stroke. Finally, we suggest critical tests of the models aiming for a unified picture.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Oleg Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| | - Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| |
Collapse
|
17
|
Wiseman RW, Brown CM, Beck TW, Brault JJ, Reinoso TR, Shi Y, Chase PB. Creatine Kinase Equilibration and ΔG ATP over an Extended Range of Physiological Conditions: Implications for Cellular Energetics, Signaling, and Muscle Performance. Int J Mol Sci 2023; 24:13244. [PMID: 37686064 PMCID: PMC10487889 DOI: 10.3390/ijms241713244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
In this report, we establish a straightforward method for estimating the equilibrium constant for the creatine kinase reaction (CK Keq″) over wide but physiologically and experimentally relevant ranges of pH, Mg2+ and temperature. Our empirical formula for CK Keq″ is based on experimental measurements. It can be used to estimate [ADP] when [ADP] is below the resolution of experimental measurements, a typical situation because [ADP] is on the order of micromolar concentrations in living cells and may be much lower in many in vitro experiments. Accurate prediction of [ADP] is essential for in vivo studies of cellular energetics and metabolism and for in vitro studies of ATP-dependent enzyme function under near-physiological conditions. With [ADP], we were able to obtain improved estimates of ΔGATP, necessitating the reinvestigation of previously reported ADP- and ΔGATP-dependent processes. Application to actomyosin force generation in muscle provides support for the hypothesis that, when [Pi] varies and pH is not altered, the maximum Ca2+-activated isometric force depends on ΔGATP in both living and permeabilized muscle preparations. Further analysis of the pH studies introduces a novel hypothesis around the role of submicromolar ADP in force generation.
Collapse
Affiliation(s)
- Robert Woodbury Wiseman
- Departments of Physiology and Radiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Caleb Micah Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Thomas Wesley Beck
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey John Brault
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Tyler Robert Reinoso
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Yun Shi
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
Muretta JM, Rajasekaran D, Blat Y, Little S, Myers M, Nair C, Burdekin B, Yuen SL, Jimenez N, Guhathakurta P, Wilson A, Thompson AR, Surti N, Connors D, Chase P, Harden D, Barbieri CM, Adam L, Thomas DD. HTS driven by fluorescence lifetime detection of FRET identifies activators and inhibitors of cardiac myosin. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:223-232. [PMID: 37307989 PMCID: PMC10422832 DOI: 10.1016/j.slasd.2023.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Small molecules that bind to allosteric sites on target proteins to alter protein function are highly sought in drug discovery. High-throughput screening (HTS) assays are needed to facilitate the direct discovery of allosterically active compounds. We have developed technology for high-throughput time-resolved fluorescence lifetime detection of fluorescence resonance energy transfer (FRET), which enables the detection of allosteric modulators by monitoring changes in protein structure. We tested this approach at the industrial scale by adapting an allosteric FRET sensor of cardiac myosin to high-throughput screening (HTS), based on technology provided by Photonic Pharma and the University of Minnesota, and then used the sensor to screen 1.6 million compounds in the HTS facility at Bristol Myers Squibb. The results identified allosteric activators and inhibitors of cardiac myosin that do not compete with ATP binding, demonstrating high potential for FLT-based drug discovery.
Collapse
Affiliation(s)
- J M Muretta
- Photonic Pharma LLC and University of Minnesota, Minneapolis, MN, United States of America.
| | - D Rajasekaran
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - Y Blat
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - S Little
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - M Myers
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - C Nair
- Photonic Pharma LLC and University of Minnesota, Minneapolis, MN, United States of America
| | - B Burdekin
- Photonic Pharma LLC and University of Minnesota, Minneapolis, MN, United States of America
| | - S L Yuen
- Photonic Pharma LLC and University of Minnesota, Minneapolis, MN, United States of America
| | - N Jimenez
- Photonic Pharma LLC and University of Minnesota, Minneapolis, MN, United States of America
| | - P Guhathakurta
- Photonic Pharma LLC and University of Minnesota, Minneapolis, MN, United States of America
| | - A Wilson
- Photonic Pharma LLC and University of Minnesota, Minneapolis, MN, United States of America
| | - A R Thompson
- Photonic Pharma LLC and University of Minnesota, Minneapolis, MN, United States of America
| | - N Surti
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - D Connors
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - P Chase
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - D Harden
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - C M Barbieri
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - L Adam
- Bristol Myers Squibb, Princeton, NJ, United States of America
| | - D D Thomas
- Photonic Pharma LLC and University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
19
|
Marang C, Scott B, Chambers J, Gunther LK, Yengo CM, Debold EP. A mutation in switch I alters the load-dependent kinetics of myosin Va. Nat Commun 2023; 14:3137. [PMID: 37253724 PMCID: PMC10229639 DOI: 10.1038/s41467-023-38535-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Myosin Va is the molecular motor that drives intracellular vesicular transport, powered by the transduction of chemical energy from ATP into mechanical work. The coupling of the powerstroke and phosphate (Pi) release is key to understanding the transduction process, and crucial details of this process remain unclear. Therefore, we determined the effect of elevated Pi on the force-generating capacity of a mini-ensemble of myosin Va S1 (WT) in a laser trap assay. By increasing the stiffness of the laser trap we determined the effect of increasing resistive loads on the rate of Pi-induced detachment from actin, and quantified this effect using the Bell approximation. We observed that WT myosin generated higher forces and larger displacements at the higher laser trap stiffnesses in the presence of 30 mM Pi, but binding event lifetimes decreased dramatically, which is most consistent with the powerstroke preceding the release of Pi from the active site. Repeating these experiments using a construct with a mutation in switch I of the active site (S217A) caused a seven-fold increase in the load-dependence of the Pi-induced detachment rate, suggesting that the S217A region of switch I may help mediate the load-dependence of Pi-rebinding.
Collapse
Affiliation(s)
- Christopher Marang
- Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Brent Scott
- Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - James Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Laura K Gunther
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
20
|
Meller A, Lotthammer JM, Smith LG, Novak B, Lee LA, Kuhn CC, Greenberg L, Leinwand LA, Greenberg MJ, Bowman GR. Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains. eLife 2023; 12:e83602. [PMID: 36705568 PMCID: PMC9995120 DOI: 10.7554/elife.83602] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The design of compounds that can discriminate between closely related target proteins remains a central challenge in drug discovery. Specific therapeutics targeting the highly conserved myosin motor family are urgently needed as mutations in at least six of its members cause numerous diseases. Allosteric modulators, like the myosin-II inhibitor blebbistatin, are a promising means to achieve specificity. However, it remains unclear why blebbistatin inhibits myosin-II motors with different potencies given that it binds at a highly conserved pocket that is always closed in blebbistatin-free experimental structures. We hypothesized that the probability of pocket opening is an important determinant of the potency of compounds like blebbistatin. To test this hypothesis, we used Markov state models (MSMs) built from over 2 ms of aggregate molecular dynamics simulations with explicit solvent. We find that blebbistatin's binding pocket readily opens in simulations of blebbistatin-sensitive myosin isoforms. Comparing these conformational ensembles reveals that the probability of pocket opening correctly identifies which isoforms are most sensitive to blebbistatin inhibition and that docking against MSMs quantitatively predicts blebbistatin binding affinities (R2=0.82). In a blind prediction for an isoform (Myh7b) whose blebbistatin sensitivity was unknown, we find good agreement between predicted and measured IC50s (0.67 μM vs. 0.36 μM). Therefore, we expect this framework to be useful for the development of novel specific drugs across numerous protein targets.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Medical Scientist Training Program, Washington University in St. LouisPhiladelphiaUnited States
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Louis G Smith
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Medical Scientist Training Program, Washington University in St. LouisPhiladelphiaUnited States
| | - Lindsey A Lee
- Molecular, Cellular, and Developmental Biology Department, University of Colorado BoulderBoulderUnited States
- BioFrontiers InstituteBoulderUnited States
| | - Catherine C Kuhn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Leslie A Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado BoulderBoulderUnited States
- BioFrontiers InstituteBoulderUnited States
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
21
|
Multistep orthophosphate release tunes actomyosin energy transduction. Nat Commun 2022; 13:4575. [PMID: 35931685 PMCID: PMC9356070 DOI: 10.1038/s41467-022-32110-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Muscle contraction and a range of critical cellular functions rely on force-producing interactions between myosin motors and actin filaments, powered by turnover of adenosine triphosphate (ATP). The relationship between release of the ATP hydrolysis product ortophosphate (Pi) from the myosin active site and the force-generating structural change, the power-stroke, remains enigmatic despite its central role in energy transduction. Here, we present a model with multistep Pi-release that unifies current conflicting views while also revealing additional complexities of potential functional importance. The model is based on our evidence from kinetics, molecular modelling and single molecule fluorescence studies of Pi binding outside the active site. It is also consistent with high-speed atomic force microscopy movies of single myosin II molecules without Pi at the active site, showing consecutive snapshots of pre- and post-power stroke conformations. In addition to revealing critical features of energy transduction by actomyosin, the results suggest enzymatic mechanisms of potentially general relevance. Release of the ATP hydrolysis product orthophosphate (Pi) from the myosin active site is central in force generation but is poorly understood. Here, Moretto et al. present evidence for multistep Pi-release reconciling apparently contradictory results.
Collapse
|
22
|
Wang T, Spahiu E, Osten J, Behrens F, Grünhagen F, Scholz T, Kraft T, Nayak A, Amrute-Nayak M. Cardiac ventricular myosin and slow skeletal myosin exhibit dissimilar chemomechanical properties despite bearing the same myosin heavy chain isoform. J Biol Chem 2022; 298:102070. [PMID: 35623390 PMCID: PMC9243179 DOI: 10.1016/j.jbc.2022.102070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
The myosin II motors are ATP-powered force-generating machines driving cardiac and muscle contraction. Myosin II heavy chain isoform-beta (β-MyHC) is primarily expressed in the ventricular myocardium and in slow-twitch muscle fibers, such as M. soleus. M. soleus-derived myosin II (SolM-II) is often used as an alternative to the ventricular β-cardiac myosin (βM-II); however, the direct assessment of biochemical and mechanical features of the native myosins is limited. By employing optical trapping, we examined the mechanochemical properties of native myosins isolated from the rabbit heart ventricle and soleus muscles at the single-molecule level. We found purified motors from the two tissue sources, despite expressing the same MyHC isoform, displayed distinct motile and ATPase kinetic properties. We demonstrate βM-II was approximately threefold faster in the actin filament-gliding assay than SolM-II. The maximum actomyosin (AM) detachment rate derived in single-molecule assays was also approximately threefold higher in βM-II, while the power stroke size and stiffness of the "AM rigor" crossbridge for both myosins were comparable. Our analysis revealed a higher AM detachment rate for βM-II, corresponding to the enhanced ADP release rates from the crossbridge, likely responsible for the observed differences in the motility driven by these myosins. Finally, we observed a distinct myosin light chain 1 isoform (MLC1sa) that associates with SolM-II, which might contribute to the observed kinetics differences between βM-II and SolM-II. These results have important implications for the choice of tissue sources and justify prerequisites for the correct myosin heavy and light chains to study cardiomyopathies.
Collapse
Affiliation(s)
- Tianbang Wang
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Jennifer Osten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Florentine Behrens
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Fabius Grünhagen
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Scholz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
23
|
Hensel A, Stahl P, Moews L, König L, Patwardhan R, Höing A, Schulze N, Nalbant P, Stauber RH, Knauer SK. The Taspase1/Myosin1f-axis regulates filopodia dynamics. iScience 2022; 25:104355. [PMID: 35601920 PMCID: PMC9121324 DOI: 10.1016/j.isci.2022.104355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
The unique threonine protease Tasp1 impacts not only ordered development and cell proliferation but also pathologies. However, its substrates and the underlying molecular mechanisms remain poorly understood. We demonstrate that the unconventional Myo1f is a Tasp1 substrate and unravel the physiological relevance of this proteolysis. We classify Myo1f as a nucleo-cytoplasmic shuttle protein, allowing its unhindered processing by nuclear Tasp1 and an association with chromatin. Moreover, we show that Myo1f induces filopodia resulting in increased cellular adhesion and migration. Importantly, filopodia formation was antagonized by Tasp1-mediated proteolysis, supported by an inverse correlation between Myo1f concentration and Tasp1 expression level. The Tasp1/Myo1f-axis might be relevant in human hematopoiesis as reduced Tasp1 expression coincided with increased Myo1f concentrations and filopodia in macrophages compared to monocytes and vice versa. In sum, we discovered Tasp1-mediated proteolysis of Myo1f as a mechanism to fine-tune filopodia formation, inter alia relevant for cells of the immune system. Myosin1f is a nucleo-cytoplasmic shuttle protein temporarily located in the nucleus Myosin1f induces filopodia resulting in increased cellular adhesion and migration The protease Taspase1 cleaves Myosin1f, thereby impairing its function Taspase1 and Myosin1f inversely correlate in immune cell differentiation
Collapse
Affiliation(s)
- Astrid Hensel
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
- Corresponding author
| | - Paul Stahl
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Lisa Moews
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Lena König
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Rutuja Patwardhan
- Department of Molecular Cell Biology, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Alexander Höing
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Nina Schulze
- Imaging Center Campus Essen (ICCE), Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Roland H. Stauber
- Department of Molecular and Cellular Oncology/ENT, University Mainz Medical Center, 55131 Mainz, Germany
| | - Shirley K. Knauer
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
- Corresponding author
| |
Collapse
|
24
|
Smith DD, Girodat D, Abbott DW, Wieden HJ. Construction of a highly selective and sensitive carbohydrate-detecting biosensor utilizing Computational Identification of Non-disruptive Conjugation sites (CINC) for flexible and streamlined biosensor design. Biosens Bioelectron 2022; 200:113899. [PMID: 34974264 DOI: 10.1016/j.bios.2021.113899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 01/30/2023]
Abstract
Fluorescently-labeled solute-binding proteins that alter their fluorescence output in response to ligand binding have been utilized as biosensors for a variety of applications. Coupling protein ligand binding to altered fluorescence output often requires trial and error-based testing of both multiple labeling positions and fluorophores to produce a functional biosensor with the desired properties. This approach is laborious and can lead to reduced ligand binding affinity or altered ligand specificity. Here we report the Computational Identification of Non-disruptive Conjugation sites (CINC) for streamlined identification of fluorophore conjugation sites. By exploiting the structural dynamics properties of proteins, CINC identifies positions where conjugation of a fluorophore results in a fluorescence change upon ligand binding without disrupting protein function. We show that a CINC-developed maltooligosaccharide (MOS)-detecting biosensor is capable of rapid (kon = 20 μM-1s-1), sensitive (sub-μM KD) and selective MOS detection. The MOS-detecting biosensor is modular with respect to the spectroscopic properties and demonstrates portability to detecting MOS released via α-amylase-catalyzed depolymerization of starch using both a stopped-flow and a microplate reader assay. Our MOS-detecting biosensor represents a first-in-class probe whose design was guided by changes in localized dynamics of individual amino acid positions, supporting expansion of the CINC pipeline as an indispensable tool for a wide range of protein engineering applications.
Collapse
Affiliation(s)
- Dustin D Smith
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Dylan Girodat
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - D Wade Abbott
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
25
|
Debold EP. Mini‐ review: Recent insights into the relative timing of myosin’s powerstroke and release of phosphate. Cytoskeleton (Hoboken) 2022; 78:448-458. [DOI: 10.1002/cm.21695] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Edward P. Debold
- Department of Kinesiology University of Massachusetts Amherst Massachusetts
| |
Collapse
|
26
|
Development of a Real-Time Pectic Oligosaccharide-Detecting Biosensor Using the Rapid and Flexible Computational Identification of Non-Disruptive Conjugation Sites (CINC) Biosensor Design Platform. SENSORS 2022; 22:s22030948. [PMID: 35161692 PMCID: PMC8839585 DOI: 10.3390/s22030948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
Fluorescently labeled, solute-binding proteins that change their fluorescent output in response to ligand binding are frequently used as biosensors for a wide range of applications. We have previously developed a "Computational Identification of Non-disruptive Conjugation sites" (CINC) approach, an in silico pipeline utilizing molecular dynamics simulations for the rapid design and construction of novel protein-fluorophore conjugate-type biosensors. Here, we report an improved in silico scoring algorithm for use in CINC and its use in the construction of an oligogalacturonide-detecting biosensor set. Using both 4,5-unsaturated and saturated oligogalacturonides, we demonstrate that signal transmission from the ligand-binding pocket of the starting protein scaffold to the CINC-selected reporter positions is effective for multiple different ligands. The utility of an oligogalacturonide-detecting biosensor is shown in Carbohydrate Active Enzyme (CAZyme) activity assays, where the biosensor is used to follow product release upon polygalacturonic acid (PGA) depolymerization in real time. The oligogalacturonide-detecting biosensor set represents a novel enabling tool integral to our rapidly expanding platform for biosensor-based carbohydrate detection, and moving forward, the CINC pipeline will continue to enable the rational design of biomolecular tools to detect additional chemically distinct oligosaccharides and other solutes.
Collapse
|
27
|
Pepper I, Galkin VE. Actomyosin Complex. Subcell Biochem 2022; 99:421-470. [PMID: 36151385 PMCID: PMC9710302 DOI: 10.1007/978-3-031-00793-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Formation of cross-bridges between actin and myosin occurs ubiquitously in eukaryotic cells and mediates muscle contraction, intracellular cargo transport, and cytoskeletal remodeling. Myosin motors repeatedly bind to and dissociate from actin filaments in a cycle that transduces the chemical energy from ATP hydrolysis into mechanical force generation. While the general layout of surface elements within the actin-binding interface is conserved among myosin classes, sequence divergence within these motifs alters the specific contacts involved in the actomyosin interaction as well as the kinetics of mechanochemical cycle phases. Additionally, diverse lever arm structures influence the motility and force production of myosin molecules during their actin interactions. The structural differences generated by myosin's molecular evolution have fine-tuned the kinetics of its isoforms and adapted them for their individual cellular roles. In this chapter, we will characterize the structural and biochemical basis of the actin-myosin interaction and explain its relationship with myosin's cellular roles, with emphasis on the structural variation among myosin isoforms that enables their functional specialization. We will also discuss the impact of accessory proteins, such as the troponin-tropomyosin complex and myosin-binding protein C, on the formation and regulation of actomyosin cross-bridges.
Collapse
Affiliation(s)
- Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
28
|
Scott B, Marang C, Woodward M, Debold EP. Myosin's powerstroke occurs prior to the release of phosphate from the active site. Cytoskeleton (Hoboken) 2021; 78:185-198. [PMID: 34331410 DOI: 10.1002/cm.21682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Myosins are a family of motor proteins responsible for various forms of cellular motility, including muscle contraction and vesicular transport. The most fundamental aspect of myosin is its ability to transduce the chemical energy from the hydrolysis of ATP into mechanical work, in the form of force and/or motion. A key unanswered question of the transduction process is the timing of the force-generating powerstroke relative to the release of phosphate (Pi ) from the active site. We examined the ability of single-headed myosin Va to generate a powerstroke in a single molecule laser trap assay while maintaining Pi in its active site, by either elevating Pi in solution or by introducing a mutation in myosin's active site (S217A) to slow Pi -release from the active site. Upon binding to the actin filament, WT myosin generated a powerstoke rapidly (≥500 s-1 ) and without a detectable delay, both in the absence and presence of 30 mM Pi . The elevated levels of Pi did, however, affect event lifetime, eliminating the longest 25% of binding events, confirming that Pi rebound to myosin's active site and accelerated detachment. The S217A construct also generated a powerstroke similar in size and rate upon binding to actin despite the slower Pi release rate. These findings provide direct evidence that myosin Va generates a powerstroke with Pi still in its active site. Therefore, the findings are most consistent with a model in which the powerstroke occurs prior to the release of Pi from the active site.
Collapse
Affiliation(s)
- Brent Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mike Woodward
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
29
|
Measurement of Nucleotide Hydrolysis Using Fluorescent Biosensors for Phosphate. Methods Mol Biol 2021; 2263:289-318. [PMID: 33877604 DOI: 10.1007/978-1-0716-1197-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Assays for the detection of inorganic phosphate (Pi) are widely used to measure the activity of nucleotide hydrolyzing enzymes, such as ATPases and GTPases. The fluorescent biosensors for Pi, described here, are based on fluorescently labeled versions of E. coli phosphate-binding protein (PBP), which translates Pi binding into a large change in fluorescence intensity. In comparison with other Pi-detection systems, these biosensors are characterized by a high sensitivity (sub-micromolar Pi concentrations) and high time resolution (tens of milliseconds), and they are therefore particularly well suited for measurements of phosphate ester hydrolysis in real time. In this chapter, it is described how the Pi biosensors can be used to measure kinetics of ATPase and GTPase reactions, both under steady state and pre-steady state conditions. An example protocol is given for determining steady state kinetic parameters, Km and kcat, of the ATP-dependent chromatin remodeler Chd1, in a plate reader format. In addition, the measurement of Pi release kinetics under pre-steady state conditions is described, including a detailed experimental procedure for a single turnover measurement of ATP hydrolysis by the ABC-type ATPase SufBC using rapid mixing.
Collapse
|
30
|
A reverse stroke characterizes the force generation of cardiac myofilaments, leading to an understanding of heart function. Proc Natl Acad Sci U S A 2021; 118:2011659118. [PMID: 34088833 DOI: 10.1073/pnas.2011659118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Changes in the molecular properties of cardiac myosin strongly affect the interactions of myosin with actin that result in cardiac contraction and relaxation. However, it remains unclear how myosin molecules work together in cardiac myofilaments and which properties of the individual myosin molecules impact force production to drive cardiac contractility. Here, we measured the force production of cardiac myofilaments using optical tweezers. The measurements revealed that stepwise force generation was associated with a higher frequency of backward steps at lower loads and higher stall forces than those of fast skeletal myofilaments. To understand these unique collective behaviors of cardiac myosin, the dynamic responses of single cardiac and fast skeletal myosin molecules, interacting with actin filaments, were evaluated under load. The cardiac myosin molecules switched among three distinct conformational positions, ranging from pre- to post-power stroke positions, in 1 mM ADP and 0 to 10 mM phosphate solution. In contrast to cardiac myosin, fast skeletal myosin stayed primarily in the post-power stroke position, suggesting that cardiac myosin executes the reverse stroke more frequently than fast skeletal myosin. To elucidate how the reverse stroke affects the force production of myofilaments and possibly heart function, a simulation model was developed that combines the results from the single-molecule and myofilament experiments. The results of this model suggest that the reversal of the cardiac myosin power stroke may be key to characterizing the force output of cardiac myosin ensembles and possibly to facilitating heart contractions.
Collapse
|
31
|
Cardiomyopathy mutations impact the actin-activated power stroke of human cardiac myosin. Biophys J 2021; 120:2222-2236. [PMID: 33864791 DOI: 10.1016/j.bpj.2021.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiac muscle contraction is driven by the molecular motor myosin, which uses the energy from ATP hydrolysis to generate a power stroke when interacting with actin filaments, although it is unclear how this mechanism is impaired by mutations in myosin that can lead to heart failure. We have applied a fluorescence resonance energy transfer (FRET) strategy to investigate structural changes in the lever arm domain of human β-cardiac myosin subfragment 1 (M2β-S1). We exchanged the human ventricular regulatory light chain labeled at a single cysteine (V105C) with Alexa 488 onto M2β-S1, which served as a donor for Cy3ATP bound to the active site. We monitored the FRET signal during the actin-activated product release steps using transient kinetic measurements. We propose that the fast phase measured with our FRET probes represents the macroscopic rate constant associated with actin-activated rotation of the lever arm during the power stroke in M2β-S1. Our results demonstrated M2β-S1 has a slower actin-activated power stroke compared with fast skeletal muscle myosin and myosin V. Measurements at different temperatures comparing the rate constants of the actin-activated power stroke and phosphate release are consistent with a model in which the power stroke occurs before phosphate release and the two steps are tightly coupled. We suggest that the actin-activated power stroke is highly reversible but followed by a highly irreversible phosphate release step in the absence of load and free phosphate. We demonstrated that hypertrophic cardiomyopathy (R723G)- and dilated cardiomyopathy (F764L)-associated mutations both reduced actin activation of the power stroke in M2β-S1. We also demonstrate that both mutations alter in vitro actin gliding in the presence and absence of load. Thus, examining the structural kinetics of the power stroke in M2β-S1 has revealed critical mutation-associated defects in the myosin ATPase pathway, suggesting these measurements will be extremely important for establishing structure-based mechanisms of contractile dysfunction.
Collapse
|
32
|
Gunther LK, Rohde JA, Tang W, Cirilo JA, Marang CP, Scott BD, Thomas DD, Debold EP, Yengo CM. FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V. J Biol Chem 2021; 295:17383-17397. [PMID: 33453985 DOI: 10.1074/jbc.ra120.015632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre- and post-power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.
Collapse
Affiliation(s)
- Laura K Gunther
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - John A Rohde
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Wanjian Tang
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Joseph A Cirilo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher P Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Brent D Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
33
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
34
|
Roopnarine O, Thomas DD. Mechanistic analysis of actin-binding compounds that affect the kinetics of cardiac myosin-actin interaction. J Biol Chem 2021; 296:100471. [PMID: 33639160 PMCID: PMC8063737 DOI: 10.1016/j.jbc.2021.100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Actin-myosin mediated contractile forces are crucial for many cellular functions, including cell motility, cytokinesis, and muscle contraction. We determined the effects of ten actin-binding compounds on the interaction of cardiac myosin subfragment 1 (S1) with pyrene-labeled F-actin (PFA). These compounds, previously identified from a small-molecule high-throughput screen (HTS), perturb the structural dynamics of actin and the steady-state actin-activated myosin ATPase activity. However, the mechanisms underpinning these perturbations remain unclear. Here we further characterize them by measuring their effects on PFA fluorescence, which is decreased specifically by the strong binding of myosin to actin. We measured these effects under equilibrium and steady-state conditions, and under transient conditions, in stopped-flow experiments following addition of ATP to S1-bound PFA. We observed that these compounds affect early steps of the myosin ATPase cycle to different extents. They increased the association equilibrium constant K1 for the formation of the strongly bound collision complex, indicating increased ATP affinity for actin-bound myosin, and decreased the rate constant k+2 for subsequent isomerization to the weakly bound ternary complex, thus slowing the strong-to-weak transition that actin-myosin interaction undergoes early in the ATPase cycle. The compounds' effects on actin structure allosterically inhibit the kinetics of the actin-myosin interaction in ways that may be desirable for treatment of hypercontractile forms of cardiomyopathy. This work helps to elucidate the mechanisms of action for these compounds, several of which are currently used therapeutically, and sets the stage for future HTS campaigns that aim to discover new drugs for treatment of heart failure.
Collapse
Affiliation(s)
- Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota , USA.
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota , USA
| |
Collapse
|
35
|
Matusovsky OS, Kodera N, MacEachen C, Ando T, Cheng YS, Rassier DE. Millisecond Conformational Dynamics of Skeletal Myosin II Power Stroke Studied by High-Speed Atomic Force Microscopy. ACS NANO 2021; 15:2229-2239. [PMID: 33297671 DOI: 10.1021/acsnano.0c06820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Myosin-based molecular motors are responsible for a variety of functions in the cells. Myosin II is ultimately responsible for muscle contraction and can be affected by multiple mutations, that may lead to myopathies. Therefore, it is essential to understand the nanomechanical properties of myosin II. Due to the lack of technical capabilities to visualize rapid changes in nonprocessive molecular motors, there are several mechanistic details in the force-generating steps produced by myosin II that are poorly understood. In this study, high-speed atomic force microscopy was used to visualize the actin-myosin complex at high temporal and spatial resolutions, providing further details about the myosin mechanism of force generation. A two-step motion of the double-headed heavy meromyosin (HMM) lever arm, coupled to an 8.4 nm working stroke was observed in the presence of ATP. HMM heads attached to an actin filament worked independently, exhibiting different lever arm configurations in given time during experiments. A lever arm rotation was associated with several non-stereospecific long-lived and stereospecific short-lived (∼1 ms) HMM conformations. The presence of free Pi increased the short-lived stereospecific binding events in which the power stroke occurred, followed by release of Pi after the power stroke.
Collapse
Affiliation(s)
- Oleg S Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal H2W1S4, Canada
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Caitlin MacEachen
- Department of Kinesiology and Physical Education, McGill University, Montreal H2W1S4, Canada
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal H2W1S4, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal H2W1S4, Canada
| |
Collapse
|
36
|
The transmembrane peptide DWORF activates SERCA2a via dual mechanisms. J Biol Chem 2021; 296:100412. [PMID: 33581112 PMCID: PMC7988493 DOI: 10.1016/j.jbc.2021.100412] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The Ca-ATPase isoform 2a (SERCA2a) pumps cytosolic Ca2+ into the sarcoplasmic reticulum (SR) of cardiac myocytes, enabling muscle relaxation during diastole. Abnormally high cytosolic [Ca2+] is a central factor in heart failure, suggesting that augmentation of SERCA2a Ca2+ transport activity could be a promising therapeutic approach. SERCA2a is inhibited by the protein phospholamban (PLB), and a novel transmembrane peptide, dwarf open reading frame (DWORF), is proposed to enhance SR Ca2+ uptake and myocyte contractility by displacing PLB from binding to SERCA2a. However, establishing DWORF’s precise physiological role requires further investigation. In the present study, we developed cell-based FRET biosensor systems that can report on protein–protein interactions and structural changes in SERCA2a complexes with PLB and/or DWORF. To test the hypothesis that DWORF competes with PLB to occupy the SERCA2a-binding site, we transiently transfected DWORF into a stable HEK cell line expressing SERCA2a labeled with a FRET donor and PLB labeled with a FRET acceptor. We observed a significant decrease in FRET efficiency, consistent with a decrease in the fraction of SERCA2a bound to PLB. Surprisingly, we also found that DWORF also activates SERCA’s enzymatic activity directly in the absence of PLB at subsaturating calcium levels. Using site-directed mutagenesis, we generated DWORF variants that do not activate SERCA, thus identifying residues P15 and W22 as necessary for functional SERCA2a–DWORF interactions. This work advances our mechanistic understanding of the regulation of SERCA2a by small transmembrane proteins and sets the stage for future therapeutic development in heart failure research.
Collapse
|
37
|
Walker BC, Walczak CE, Cochran JC. Switch-1 instability at the active site decouples ATP hydrolysis from force generation in myosin II. Cytoskeleton (Hoboken) 2021; 78:3-13. [PMID: 33381891 PMCID: PMC7986744 DOI: 10.1002/cm.21650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022]
Abstract
Myosin active site elements (i.e., switch‐1) bind both ATP and a divalent metal to coordinate ATP hydrolysis. ATP hydrolysis at the active site is linked via allosteric communication to the actin polymer binding site and lever arm movement, thus coupling the free energy of ATP hydrolysis to force generation. How active site motifs are functionally linked to actin binding and the power stroke is still poorly understood. We hypothesize that destabilizing switch‐1 movement at the active site will negatively affect the tight coupling of the ATPase catalytic cycle to force production. Using a metal‐switch system, we tested the effect of interfering with switch‐1 coordination of the divalent metal cofactor on force generation. We found that while ATPase activity increased, motility was inhibited. Our results demonstrate that a single atom change that affects the switch‐1 interaction with the divalent metal directly affects actin binding and productive force generation. Even slight modification of the switch‐1 divalent metal coordination can decouple ATP hydrolysis from motility. Switch‐1 movement is therefore critical for both structural communication with the actin binding site, as well as coupling the energy of ATP hydrolysis to force generation.
Collapse
Affiliation(s)
- Benjamin C Walker
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Claire E Walczak
- Medical Sciences, Indiana University School of Medicine-Bloomington, Bloomington, Indiana, USA
| | - Jared C Cochran
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
38
|
Modulation of post-powerstroke dynamics in myosin II by 2'-deoxy-ADP. Arch Biochem Biophys 2020; 699:108733. [PMID: 33388313 DOI: 10.1016/j.abb.2020.108733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023]
Abstract
Muscle myosins are molecular motors that hydrolyze ATP and generate force through coordinated interactions with actin filaments, known as cross-bridge cycling. During the cross-bridge cycle, functional sites in myosin 'sense' changes in interactions with actin filaments and the nucleotide binding region, resulting in allosteric transmission of information throughout the structure. We investigated whether the dynamics of the post-powerstroke state of the cross-bridge cycle are modulated in a nucleotide-dependent fashion. We compared molecular dynamics simulations of the myosin II motor domain (M) from Dictyostelium discoideum in the presence of ADP (M.ADP) versus 2'-deoxy-ADP bound myosin (M.dADP). We found that dADP was more flexible than ADP and the two nucleotides interacted with myosin in different ways. Replacement of ADP with dADP in the post-powerstroke state also altered the conformation of the actin binding region in myosin heads. Our results provide atomic level insights into allosteric communication networks in myosin that provide insight into the nucleotide-dependent dynamics of the cross-bridge cycle.
Collapse
|
39
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
40
|
Wang T, Brenner B, Nayak A, Amrute-Nayak M. Acto-Myosin Cross-Bridge Stiffness Depends on the Nucleotide State of Myosin II. NANO LETTERS 2020; 20:7506-7512. [PMID: 32897722 DOI: 10.1021/acs.nanolett.0c02960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How various myosin isoforms fulfill the diverse physiological requirements of distinct muscle types remain unclear. Myosin II isoforms expressed in skeletal muscles determine the mechanical performance of the specific muscles. Here, we employed a single-molecule optical trapping method and compared the chemomechanical properties of slow and fast muscle myosin II isoforms. Stiffness of the myosin motor is key to its force-generating ability during muscle contraction. We found that acto-myosin (AM) cross-bridge stiffness depends on its nucleotide state as the myosin progresses through the ATPase cycle. The strong actin bound "AM.ADP" state exhibited >2 fold lower stiffness than "AM rigor" state. The two myosin isoforms displayed similar "rigor" stiffness. We conclude that the time-averaged stiffness of the slow myosin is lower due to prolonged duration of the AM.ADP state, which determines the force-generating potential and contraction speed of the muscle, elucidating the basis for functional diversity among myosins.
Collapse
Affiliation(s)
- Tianbang Wang
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
41
|
Offer G, Ranatunga K. The Location and Rate of the Phosphate Release Step in the Muscle Cross-Bridge Cycle. Biophys J 2020; 119:1501-1512. [DOI: 10.1016/j.bpj.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022] Open
|
42
|
Regazzoni F, Dedè L, Quarteroni A. Active Force Generation in Cardiac Muscle Cells: Mathematical Modeling and Numerical Simulation of the Actin-Myosin Interaction. VIETNAM JOURNAL OF MATHEMATICS 2020; 49:87-118. [PMID: 34722731 PMCID: PMC8549950 DOI: 10.1007/s10013-020-00433-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/21/2020] [Indexed: 06/13/2023]
Abstract
Cardiac in silico numerical simulations are based on mathematical models describing the physical processes involved in the heart function. In this review paper, we critically survey biophysically-detailed mathematical models describing the subcellular mechanisms behind the generation of active force, that is the process by which the chemical energy of ATP (adenosine triphosphate) is transformed into mechanical work, thus making the muscle tissue contract. While presenting these models, that feature different levels of biophysical detail, we analyze the trade-off between the accuracy in the description of the subcellular mechanisms and the number of parameters that need to be estimated from experiments. Then, we focus on a generalized version of the classic Huxley model, built on the basis of models available in the literature, that is able to reproduce the main experimental characterizations associated to the time scales typical of a heartbeat-such as the force-velocity relationship and the tissue stiffness in response to small steps-featuring only four independent parameters. Finally, we show how those parameters can be calibrated starting from macroscopic measurements available from experiments.
Collapse
Affiliation(s)
- Francesco Regazzoni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Dedè
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alfio Quarteroni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
- Mathematics Institute, École Polytechnique Fédérale de Lausanne (EPFL), Av. Piccard, CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Rockenfeller R, Günther M, Stutzig N, Haeufle DFB, Siebert T, Schmitt S, Leichsenring K, Böl M, Götz T. Exhaustion of Skeletal Muscle Fibers Within Seconds: Incorporating Phosphate Kinetics Into a Hill-Type Model. Front Physiol 2020; 11:306. [PMID: 32431619 PMCID: PMC7214688 DOI: 10.3389/fphys.2020.00306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 12/01/2022] Open
Abstract
Initiated by neural impulses and subsequent calcium release, skeletal muscle fibers contract (actively generate force) as a result of repetitive power strokes of acto-myosin cross-bridges. The energy required for performing these cross-bridge cycles is provided by the hydrolysis of adenosine triphosphate (ATP). The reaction products, adenosine diphosphate (ADP) and inorganic phosphate (P i ), are then used-among other reactants, such as creatine phosphate-to refuel the ATP energy storage. However, similar to yeasts that perish at the hands of their own waste, the hydrolysis reaction products diminish the chemical potential of ATP and thus inhibit the muscle's force generation as their concentration rises. We suggest to use the term "exhaustion" for force reduction (fatigue) that is caused by combined P i and ADP accumulation along with a possible reduction in ATP concentration. On the basis of bio-chemical kinetics, we present a model of muscle fiber exhaustion based on hydrolytic ATP-ADP-P i dynamics, which are assumed to be length- and calcium activity-dependent. Written in terms of differential-algebraic equations, the new sub-model allows to enhance existing Hill-type excitation-contraction models in a straightforward way. Measured time courses of force decay during isometric contractions of rabbit M. gastrocnemius and M. plantaris were employed for model verification, with the finding that our suggested model enhancement proved eminently promising. We discuss implications of our model approach for enhancing muscle models in general, as well as a few aspects regarding the significance of phosphate kinetics as one contributor to muscle fatigue.
Collapse
Affiliation(s)
| | - Michael Günther
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany
- Friedrich-Schiller-University, Jena, Germany
| | - Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Daniel F. B. Haeufle
- Hertie-Institute for Clinical Brain Research and Center for Integrative Neuroscience, Eberhard-Karls-University, Tübingen, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany
| | - Kay Leichsenring
- Institute of Solid Mechanics, Technical University Braunschweig, Braunschweig, Germany
| | - Markus Böl
- Institute of Solid Mechanics, Technical University Braunschweig, Braunschweig, Germany
| | - Thomas Götz
- Mathematical Institute, University of Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
44
|
Olivieri C, Wang Y, Li GC, V S M, Kim J, Stultz BR, Neibergall M, Porcelli F, Muretta JM, Thomas DDT, Gao J, Blumenthal DK, Taylor SS, Veglia G. Multi-state recognition pathway of the intrinsically disordered protein kinase inhibitor by protein kinase A. eLife 2020; 9:e55607. [PMID: 32338601 PMCID: PMC7234811 DOI: 10.7554/elife.55607] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
In the nucleus, the spatiotemporal regulation of the catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is orchestrated by an intrinsically disordered protein kinase inhibitor, PKI, which recruits the CRM1/RanGTP nuclear exporting complex. How the PKA-C/PKI complex assembles and recognizes CRM1/RanGTP is not well understood. Using NMR, SAXS, fluorescence, metadynamics, and Markov model analysis, we determined the multi-state recognition pathway for PKI. After a fast binding step in which PKA-C selects PKI's most competent conformations, PKI folds upon binding through a slow conformational rearrangement within the enzyme's binding pocket. The high-affinity and pseudo-substrate regions of PKI become more structured and the transient interactions with the kinase augment the helical content of the nuclear export sequence, which is then poised to recruit the CRM1/RanGTP complex for nuclear translocation. The multistate binding mechanism featured by PKA-C/PKI complex represents a paradigm on how disordered, ancillary proteins (or protein domains) are able to operate multiple functions such as inhibiting the kinase while recruiting other regulatory proteins for nuclear export.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Yingjie Wang
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
- Shenzhen Bay LaboratoryShenzhenChina
| | - Geoffrey C Li
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | - Manu V S
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Jonggul Kim
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - David DT Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
- Laboratory of Computational Chemistry and Drug Design, Peking University Shenzhen Graduate SchoolShenzhenChina
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of UtahSalt Lake CityUnited States
| | - Susan S Taylor
- Department of Chemistry and Biochemistry and Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
45
|
Nayak A, Wang T, Franz P, Steffen W, Chizhov I, Tsiavaliaris G, Amrute-Nayak M. Single-molecule analysis reveals that regulatory light chains fine-tune skeletal myosin II function. J Biol Chem 2020; 295:7046-7059. [PMID: 32273340 DOI: 10.1074/jbc.ra120.012774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/07/2020] [Indexed: 11/06/2022] Open
Abstract
Myosin II is the main force-generating motor during muscle contraction. Myosin II exists as different isoforms that are involved in diverse physiological functions. One outstanding question is whether the myosin heavy chain (MHC) isoforms alone account for these distinct physiological properties. Unique sets of essential and regulatory light chains (RLCs) are known to assemble with specific MHCs, raising the intriguing possibility that light chains contribute to specialized myosin functions. Here, we asked whether different RLCs contribute to this functional diversification. To this end, we generated chimeric motors by reconstituting the MHC fast isoform (MyHC-IId) and slow isoform (MHC-I) with different light-chain variants. As a result of the RLC swapping, actin filament sliding velocity increased by ∼10-fold for the slow myosin and decreased by >3-fold for the fast myosin. Results from ensemble molecule solution kinetics and single-molecule optical trapping measurements provided in-depth insights into altered chemo-mechanical properties of the myosin motors that affect the sliding speed. Notably, we found that the mechanical output of both slow and fast myosins is sensitive to the RLC isoform. We therefore propose that RLCs are crucial for fine-tuning the myosin function.
Collapse
Affiliation(s)
- Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Tianbang Wang
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Peter Franz
- Institute of Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Walter Steffen
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Igor Chizhov
- Institute of Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Georgios Tsiavaliaris
- Institute of Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
46
|
Holmes JB, Doh CY, Mamidi R, Li J, Stelzer JE. Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery. Expert Opin Drug Discov 2020; 15:457-469. [PMID: 32067508 PMCID: PMC7065952 DOI: 10.1080/17460441.2020.1722637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/24/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Heart failure remains one of the largest clinical challenges in the United States. Researchers have continually searched for more effective heart failure treatments that target the cardiac sarcomere but have found few successes despite numerous expensive cardiovascular clinical trials. Among many reasons, the high failure rate of cardiovascular clinical trials may be partly due to incomplete characterization of a drug candidate's complex interaction with cardiac physiology.Areas covered: In this review, the authors address the issue of preclinical cardiovascular studies of sarcomere-targeting heart failure therapies. The authors consider inherent tradeoffs made between mechanistic transparency and physiological fidelity for several relevant preclinical techniques at the atomic, molecular, heart muscle fiber, whole heart, and whole-organism levels. Thus, the authors suggest a comprehensive, bottom-up approach to preclinical cardiovascular studies that fosters scientific rigor and hypothesis-driven drug discovery.Expert opinion: In the authors' opinion, the implementation of hypothesis-driven drug discovery practices, such as the bottom-up approach to preclinical cardiovascular studies, will be imperative for the successful development of novel heart failure treatments. However, additional changes to clinical definitions of heart failure and current drug discovery culture must accompany the bottom-up approach to maximize the effectiveness of hypothesis-driven drug discovery.
Collapse
Affiliation(s)
- Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
47
|
McCarthy MR, Savich Y, Cornea RL, Thomas DD. Resolved Structural States of Calmodulin in Regulation of Skeletal Muscle Calcium Release. Biophys J 2020; 118:1090-1100. [PMID: 32049056 DOI: 10.1016/j.bpj.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Calmodulin (CaM) is proposed to modulate activity of the skeletal muscle sarcoplasmic reticulum (SR) calcium release channel (ryanodine receptor, RyR1 isoform) via a mechanism dependent on the conformation of RyR1-bound CaM. However, the correlation between CaM structure and functional regulation of RyR in physiologically relevant conditions is largely unknown. Here, we have used time-resolved fluorescence resonance energy transfer (TR-FRET) to study structural changes in CaM that may play a role in the regulation of RyR1. We covalently labeled each lobe of CaM (N and C) with fluorescent probes and used intramolecular TR-FRET to assess interlobe distances when CaM is bound to RyR1 in SR membranes, purified RyR1, or a peptide corresponding to the CaM-binding domain of RyR (RyRp). TR-FRET resolved an equilibrium between two distinct structural states (conformations) of CaM, each characterized by an interlobe distance and Gaussian distribution width (disorder). In isolated CaM, at low Ca2+, the two conformations of CaM are resolved, centered at 5 nm (closed) and 7 nm (open). At high Ca2+, the equilibrium shifts to favor the open conformation. In the presence of RyRp at high Ca2+, the closed conformation shifts to a more compact conformation and is the major component. When CaM is bound to full-length RyR1, either purified or in SR membranes, strikingly different results were obtained: 1) the two conformations are resolved and more ordered, 2) the open state is the major component, and 3) Ca2+ stabilized the closed conformation by a factor of two. We conclude that the Ca2+-dependent structural distribution of CaM bound to RyR1 is distinct from that of CaM bound to RyRp. We propose that the function of RyR1 is tuned to the Ca2+-dependent structural dynamics of bound CaM.
Collapse
Affiliation(s)
- Megan R McCarthy
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota
| | - Yahor Savich
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota.
| |
Collapse
|
48
|
Arata T. Myosin and Other Energy-Transducing ATPases: Structural Dynamics Studied by Electron Paramagnetic Resonance. Int J Mol Sci 2020; 21:E672. [PMID: 31968570 PMCID: PMC7014194 DOI: 10.3390/ijms21020672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this article was to document the energy-transducing and regulatory interactions in supramolecular complexes such as motor, pump, and clock ATPases. The dynamics and structural features were characterized by motion and distance measurements using spin-labeling electron paramagnetic resonance (EPR) spectroscopy. In particular, we focused on myosin ATPase with actin-troponin-tropomyosin, neural kinesin ATPase with microtubule, P-type ion-motive ATPase, and cyanobacterial clock ATPase. Finally, we have described the relationships or common principles among the molecular mechanisms of various energy-transducing systems and how the large-scale thermal structural transition of flexible elements from one state to the other precedes the subsequent irreversible chemical reactions.
Collapse
Affiliation(s)
- Toshiaki Arata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|
49
|
Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A. Force Generation by Myosin Motors: A Structural Perspective. Chem Rev 2019; 120:5-35. [PMID: 31689091 DOI: 10.1021/acs.chemrev.9b00264] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Generating force and movement is essential for the functions of cells and organisms. A variety of molecular motors that can move on tracks within cells have evolved to serve this role. How these motors interact with their tracks and how that, in turn, leads to the generation of force and movement is key to understanding the cellular roles that these motor-track systems serve. This review is focused on the best understood of these systems, which is the molecular motor myosin that moves on tracks of filamentous (F-) actin. The review highlights both the progress and the limits of our current understanding of how force generation can be controlled by F-actin-myosin interactions. What has emerged are insights they may serve as a framework for understanding the design principles of a number of types of molecular motors and their interactions with their tracks.
Collapse
Affiliation(s)
- Julien Robert-Paganin
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Olena Pylypenko
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Carlos Kikuti
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute , University of Florida College of Medicine , PO Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Anne Houdusse
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| |
Collapse
|
50
|
Woody MS, Winkelmann DA, Capitanio M, Ostap EM, Goldman YE. Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. eLife 2019; 8:49266. [PMID: 31526481 PMCID: PMC6748826 DOI: 10.7554/elife.49266] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Key steps of cardiac mechanochemistry, including the force-generating working stroke and the release of phosphate (Pi), occur rapidly after myosin-actin attachment. An ultra-high-speed optical trap enabled direct observation of the timing and amplitude of the working stroke, which can occur within <200 μs of actin binding by β-cardiac myosin. The initial actomyosin state can sustain loads of at least 4.5 pN and proceeds directly to the stroke or detaches before releasing ATP hydrolysis products. The rates of these processes depend on the force. The time between binding and stroke is unaffected by 10 mM Pi which, along with other findings, indicates the stroke precedes phosphate release. After Pi release, Pi can rebind enabling reversal of the working stroke. Detecting these rapid events under physiological loads provides definitive indication of the dynamics by which actomyosin converts biochemical energy into mechanical work.
Collapse
Affiliation(s)
- Michael S Woody
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|