1
|
Wang ZR, Li LT, Xiong FF, Zhao LB, Mao H, Zhu MY, Su SY, Guo ZY, He C. Preparation, and enzymatic activity analysis of an engineered capping enzyme. Enzyme Microb Technol 2025; 188:110640. [PMID: 40188656 DOI: 10.1016/j.enzmictec.2025.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 05/27/2025]
Abstract
The Vaccinia capping enzyme (VCE) and the 2'-O-methyltransferase (VP39) are proteins encoded by the vaccinia virus genome, used for capping viral mRNA to form m7GpppN2Me mRNA (Cap1 mRNA). This capping structure is essential for protecting mRNA from degradation, facilitating pre-mRNA splicing and nuclear export, and enabling translation initiation by the eukaryotic initiation factor (eIF4E). Moreover, it helps the virus circumvent innate immune responses, thereby facilitating replication using host cell mechanisms. Currently, the enzymatic capping process employs VCE and VP39 in concert with pre-mRNA to synthesize Cap1 mRNA directly. This study introduces an engineered fusion capping enzyme , created by linking VCE and VP39 via a flexible (GGGGS)3 linker(D1R-D12L-GS linker-VP39, DDGSV). The aim is to enhance the capping reaction while reducing raw material costs, process complexity, and impurities. The tertiary structure of DDGSV, predicted using AlphaFold2, aligns well with published structures of VCE and VP39, demonstrating no steric hindrance at the enzymatic active sites resulting from the fusion configuration. The expression vector pTolo-EX2-DDGSV was constructed and expressed in Escherichia coli BL21(DE3). The mRNA of the prepared capping enzymes exhibited good integrity on an agarose gel. The capping efficiency of the engineered enzyme DDGSV reached 80.19 % after 2 h of the capping reaction, matching the performance of commercial capping enzymes. Furthermore, the potential of RNA dot blotting for rapid detection of mRNA capping efficiency was explored; however, quantitative methods are also needed. Additionally, GFP mRNA prepared using DDGSV demonstrated high expression levels in HEK 293 T cells. These results indicate that the engineered enzyme can effectively cap Cap1 mRNA, providing a novel approach for mRNA vaccine development.
Collapse
Affiliation(s)
- Zi-Ru Wang
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Ling-Ting Li
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Fei-Fei Xiong
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Li-Bin Zhao
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Hui Mao
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Man-Yi Zhu
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Si-Yuan Su
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Zi-Yu Guo
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Cheng He
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China.
| |
Collapse
|
2
|
Cui Y, Chen T, Zhang Y, Zhang G, Lu C. Capping in mRNA analyzed using Pistol ribozyme and LC-MS. Biochem Biophys Res Commun 2025; 766:151860. [PMID: 40286767 DOI: 10.1016/j.bbrc.2025.151860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/23/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Understanding and meticulously controlling mRNA capping efficiency is an indispensable quality attribute in developing mRNA therapeutics. A rigorously defined capping process is critical for ensuring the consistency and reproducibility of mRNA drugs, forming the cornerstone of compliance with stringent regulatory standards. This investigation introduces an innovative methodology for assessing mRNA's capping efficiency through applying the Pistol ribozyme and liquid chromatography-mass spectrometry (LC-MS). The capping process, pivotal for mRNA stability and translational efficiency, significantly influences mRNA molecules' immunogenic properties and overall therapeutic efficacy. Our method employs the Pistol ribozyme for precise, site-specific mRNA cleavage, which LC-MS subsequently analyzes to distinguish between capped and uncapped forms. This approach exceeds the capabilities of traditional methods, such as radiolabeling and enzyme-linked immunosorbent assay (ELISA), in specificity and sensitivity, thus enhancing the analysis of mRNA modifications. Our findings confirm the presence of specific cap structures and quantify the efficiency of the mRNA capping process with remarkable accuracy. This advancement drives the development of mRNA-based therapeutics by refining quality control measures and augmenting the effectiveness of vaccines and gene therapies.
Collapse
Affiliation(s)
- Yue Cui
- College of Biological Science and Medical Engineering, DongHua University Shanghai 201620, China
| | - Ting Chen
- College of Biological Science and Medical Engineering, DongHua University Shanghai 201620, China
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, DongHua University Shanghai 201620, China
| | - Guilin Zhang
- Shanghai MeyesBio Technology Company Limited, Shanghai 201508, China
| | - Changrui Lu
- College of Biological Science and Medical Engineering, DongHua University Shanghai 201620, China.
| |
Collapse
|
3
|
Ling F, Feng H, Wu S, Zhu D, Chen Y, Zhou J, Lai J, Huang X, Hou T, Li Y. Role of m7G modification regulators as biomarkers in gastric cancer subtyping and precision immunotherapy. Int Immunopharmacol 2025; 154:114594. [PMID: 40194456 DOI: 10.1016/j.intimp.2025.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/17/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
This study investigated the role of N7-methylguanosine (m7G) modification regulators as biomarkers in subtyping and precision immunotherapy of gastric cancer (GC). Through multi-omics analyses, including RNA sequencing, proteomics, and single-cell measurement, the study revealed heterogeneity in the m7G regulatory landscape among GC patients. Three m7G subtypes were identified, each with distinct pathways and phenotypes. Patients with low m7Gscores, based on an established scoring system, showed better survival outcomes and increased antitumor immune cell infiltration, as well as higher tumor mutation loads and lower PD-L1 expression. The predictive value of m7Gscore was confirmed in two immunotherapy cohorts. These findings highlight the potential of m7G modification in shaping the tumor microenvironment and provide new insights for immunotherapeutic strategies in GC patients.
Collapse
Affiliation(s)
- Fa Ling
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Huolun Feng
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Sifan Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Dandan Zhu
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Jianlong Zhou
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Jiayi Lai
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Tieying Hou
- Medical Experimental Center, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, 518052, China; Shenzhen University Medical School, Shenzhen, Guangdong, 518073, China.
| | - Yong Li
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China; Department of Gastrointestinal Surgery, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
4
|
Drazkowska K, Cieslicka J, Kitowicz M, Pastucha A, Markiewicz L, Szymanek W, Goryca K, Kowalczyk T, Cysewski D, Bausch AR, Sikorski PJ. Effective recognition of double-stranded RNA does not require activation of cellular inflammation. SCIENCE ADVANCES 2025; 11:eads6498. [PMID: 40203104 PMCID: PMC11980852 DOI: 10.1126/sciadv.ads6498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Excess double-stranded RNA (dsRNA) is present in the cytoplasm of human cells, usually following viral infections. Recognition of dsRNAs activates innate immune pathways, leading to cellular inflammation and inhibition of cell growth. Here, we show that an effective dsRNA response may occur without the onset of inflammation. Pro-inflammatory [RLR (retinoic acid-inducible gene I-like receptor)-dependent pathway] and cell growth inhibitory mechanisms [oligoadenylate synthetase (OAS)/ribonuclease L (RNase L)- and dsRNA-activated protein kinase (PKR)-dependent pathways] can act independently. We found that the 5' ends of dsRNA direct the onset of cellular inflammation, whereas the RNA duplex activates the OAS/RNase L and PKR pathways. Unexpectedly, three of the most common human RNA epitranscriptomic marks-i.e., N6-methyladenosine, 5-methylcytosine, and pseudouridine-had almost no influence on the immunogenicity of dsRNA; however, the presence of N6-methyladenosine inhibited the OAS/RNase L pathway. Our observations demonstrate how precisely innate immunity is fine tuned in cells to take appropriate countermeasures when a specific threat arises.
Collapse
Affiliation(s)
- Karolina Drazkowska
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Julia Cieslicka
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Michal Kitowicz
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Anna Pastucha
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | | | - Wiktoria Szymanek
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Andreas R. Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | - Pawel J. Sikorski
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. Mol Cell 2025; 85:1147-1161.e9. [PMID: 39919747 PMCID: PMC11931551 DOI: 10.1016/j.molcel.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first-responder" cells during West Nile virus infection, we found that specific accumulation of antigenomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in first-responder cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late time points of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that, although most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
Affiliation(s)
| | - Jonathan Wilson
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Joshua M Ames
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Caleb Stokes
- Department of Immunology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, WA, USA
| | - Dante Moreno
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Noa Etzyon
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA; Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, USA; Institute on Infectious Diseases, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Hankinson J, Young D, Wignall-Fleming EB, Lukoszek R, Cowling VH, Randall R, Goodbourn S. The Cap-proximal secondary structures of the 5'UTRs of parainfluenza virus 5 mRNAs specify differential sensitivity to type I interferon and IFIT1. J Gen Virol 2025; 106:002093. [PMID: 40146622 PMCID: PMC11950200 DOI: 10.1099/jgv.0.002093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Parainfluenza virus 5 (PIV5) is a paramyxovirus that has been isolated from numerous mammalian hosts and is notable for its ability to cause persistent infections. Although PIV5-infected cells are resistant to IFN due to the ability of the V protein to target STAT1 for degradation, PIV5 shows residual IFN sensitivity when infecting cells that have already been exposed to IFN. We have previously reported that the human IFN-stimulated gene with the greatest inhibitory effect on PIV5 is IFIT1. IFIT1 inhibits the translation of incompletely methylated mRNAs (Cap0) but not those 2'-O-methylated at the first transcribed nucleotide (Cap1). All Mononegavirales are thought to generate Cap1 mRNA, so the sensitivity of PIV5 to IFIT1 is surprising. Here, we show that PIV5 generates Cap0 mRNA but not Cap1 mRNA, thus explaining its sensitivity to IFIT1. Furthermore, the sensitivity of different PIV5 genes to IFIT1-mediated translation inhibition varies. In the absence of complete Cap methylation, we show that the presence or absence of 5'-terminal RNA hairpin structures in the 5'UTRs of PIV5 genes determines the extent to which they are sensitive to IFIT1. Notably, the genes involved in RNA synthesis are relatively resistant to IFIT1 inhibition. This presents a potential mechanism by which IFIT1 can regulate the outcome of PIV5 infection in response to IFN and may be important in allowing the virus to establish prolonged/persistent infections.
Collapse
Affiliation(s)
- Jacqueline Hankinson
- Section for Pathogen Research, Institute for Infection and Immunity, St. George’s School of Health and Medical Sciences, City St. George’s, University of London, London, UK
| | - Dan Young
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, UK
| | | | - Radoslaw Lukoszek
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Victoria H. Cowling
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Cancer Research UK Scotland Institute, Glasglow, UK
- School of Cancer Science, University of Glasglow, Glasgow, UK
| | - Richard Randall
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, UK
| | - Steve Goodbourn
- Section for Pathogen Research, Institute for Infection and Immunity, St. George’s School of Health and Medical Sciences, City St. George’s, University of London, London, UK
| |
Collapse
|
7
|
Wang K, Young TL, Chen J, Tsai SN, Xu Y, Varley AJ, Solek NC, Gong F, Lu RXZ, Hubbard BP, Li B. A Reverse Transcription Nucleic-Acid-Based Barcoding System for In Vivo Measurement of Lipid Nanoparticle mRNA Delivery. ACS BIO & MED CHEM AU 2025; 5:35-41. [PMID: 39990951 PMCID: PMC11843327 DOI: 10.1021/acsbiomedchemau.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Lipid nanoparticles (LNPs) are the most extensively validated clinical delivery vehicles for mRNA therapeutics, exemplified by their widespread use in the mRNA COVID-19 vaccines. The pace of lipid nanoparticle (LNP) development for mRNA therapeutics is restricted by the limitations of existing methods for large-scale LNP screening. To address this challenge, we developed Quantitative Analysis of Reverse Transcribed Barcodes (QuART), a novel nucleic-acid-based system for measuring LNP functional delivery in vivo. QuART uses a bacterial retron reverse transcription system to couple functional mRNA delivery into the cytoplasm with a cDNA barcode readout. Our results demonstrate that QuART can be used to identify functional mRNA delivery both in vitro in cell culture and in vivo in mice. Multiplexing of QuART could enable high-throughput screening of LNP formulations, facilitating the rapid discovery of promising LNP candidates for mRNA therapeutics.
Collapse
Affiliation(s)
- Kevin
C. Wang
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Tiana L. Young
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jingan Chen
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Shannon N. Tsai
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yue Xu
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Andrew J. Varley
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Nicholas C. Solek
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Fanglin Gong
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick X. Z. Lu
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Basil P. Hubbard
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5G 2C8, Canada
| | - Bowen Li
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
8
|
Williams SG, Sim S, Wolin SL. RNA sensing at the crossroads of autoimmunity and autoinflammation. RNA (NEW YORK, N.Y.) 2025; 31:369-381. [PMID: 39779213 PMCID: PMC11874990 DOI: 10.1261/rna.080304.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Immune-mediated diseases are common in humans. The immune system is a complex host defense system that evolved to protect us from pathogens, but also plays an important role in homeostatic processes, removing dead or senescent cells, and participating in tumor surveillance. The human immune system has two arms: the older innate immune system and the newer adaptive immune system. Sensing of foreign RNA is critical to the innate immune system's ability to recognize pathogens, especially viral infections. However, RNA sensors are also strongly implicated in autoimmune and autoinflammatory diseases, highlighting the importance of balancing pathogen recognition with tolerance to host RNAs that can resemble their viral counterparts. We describe how RNA sensors bind their ligands, how this binding is coupled to upregulation of type I interferon-stimulated genes, and the ways in which mutations in RNA sensors and genes that play important roles in RNA homeostasis have been linked to autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Sandra G Williams
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
9
|
Khorshid Sokhangouy S, Behzadi M, Rezaei S, Farjami M, Haghshenas M, Sefidbakht Y, Mozaffari-Jovin S. mRNA Vaccines: Design Principles, Mechanisms, and Manufacturing-Insights From COVID-19 as a Model for Combating Infectious Diseases. Biotechnol J 2025; 20:e202400596. [PMID: 39989260 DOI: 10.1002/biot.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
The full approval of two SARS-CoV-2 mRNA vaccines, Comirnaty and Spikevax, has greatly accelerated the development of numerous mRNA vaccine candidates targeting infectious diseases and cancer. mRNA vaccines provide a rapid, safe, and versatile manufacturing process while eliciting strong humoral and cellular immune responses, making them particularly beneficial for addressing emerging pandemics. Recent advancements in modified nucleotides and lipid nanoparticle delivery systems have further emphasized the potential of this vaccine platform. Despite these transformative opportunities, significant improvements are needed to enhance vaccine efficacy, stability, and immunogenicity. This review outlines the fundamentals of mRNA vaccine design, the manufacturing process, and administration strategies, along with various optimization approaches. It also offers a comprehensive overview of the mRNA vaccine candidates developed since the onset of the COVID-19 pandemic, the challenges posed by emerging SARS-CoV-2 variants, and current strategies to address these variants. Finally, we discuss the potential of broad-spectrum and combined mRNA vaccines and examine the challenges and future prospects of the mRNA vaccine platform.
Collapse
Affiliation(s)
- Saeideh Khorshid Sokhangouy
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matine Behzadi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokuh Rezaei
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Mahsa Farjami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Haghshenas
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Xu L, Li C, Liao R, Xiao Q, Wang X, Zhao Z, Zhang W, Ding X, Cao Y, Cai L, Rosenecker J, Guan S, Tang J. From Sequence to System: Enhancing IVT mRNA Vaccine Effectiveness through Cutting-Edge Technologies. Mol Pharm 2025; 22:81-102. [PMID: 39601789 DOI: 10.1021/acs.molpharmaceut.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The COVID-19 pandemic has spotlighted the potential of in vitro transcribed (IVT) mRNA vaccines with their demonstrated efficacy, safety, cost-effectiveness, and rapid manufacturing. Numerous IVT mRNA vaccines are now under clinical trials for a range of targets, including infectious diseases, cancers, and genetic disorders. Despite their promise, IVT mRNA vaccines face hurdles such as limited expression levels, nonspecific targeting beyond the liver, rapid degradation, and unintended immune activation. Overcoming these challenges is crucial to harnessing the full therapeutic potential of IVT mRNA vaccines for global health advancement. This review provides a comprehensive overview of the latest research progress and optimization strategies for IVT mRNA molecules and delivery systems, including the application of artificial intelligence (AI) models and deep learning techniques for IVT mRNA structure optimization and mRNA delivery formulation design. We also discuss recent development of the delivery platforms, such as lipid nanoparticles (LNPs), polymers, and exosomes, which aim to address challenges related to IVT mRNA protection, cellular uptake, and targeted delivery. Lastly, we offer insights into future directions for improving IVT mRNA vaccines, with the hope to spur further progress in IVT mRNA vaccine research and development.
Collapse
Affiliation(s)
- Lifeng Xu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Rui Liao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoran Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Yuxue Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Larry Cai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Jie Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Best SM, Hage A. Platform influencers-host RNA control of antiviral immunity. Science 2024; 386:1346-1347. [PMID: 39700296 DOI: 10.1126/science.adu4928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cellular RNAs directly regulate the activity of an antiviral immune signaling complex.
Collapse
Affiliation(s)
- Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Adam Hage
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
12
|
Elshina E, Pitre E, Mendes M, Schweibenz B, Fan RLY, French H, Park JW, Wang W, Poon LLM, Marcotrigiano J, Russell AB, Te Velthuis AJW. Influenza A virus transcription generates capped cRNAs that activate RIG-I. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623191. [PMID: 39605425 PMCID: PMC11601390 DOI: 10.1101/2024.11.12.623191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
During influenza A virus (IAV) infection, host pathogen receptor retinoic acid-inducible gene I (RIG-I) detects the partially complementary, 5'-triphosphorylated ends of the viral genome segments and non-canonical replication products. However, it has also been suggested that innate immune responses may be triggered by viral transcription. In this study, we investigated whether an immunostimulatory RNA is produced during IAV transcription. We show that the IAV RNA polymerase can read though the polyadenylation signal during transcription termination, generating a capped complementary RNA (ccRNA), which contains the 5' cap of an IAV mRNA and the 3' terminus of a cRNA instead of a poly(A) tail. ccRNAs are detectable in vitro and in both ribonucleoprotein reconstitution assays and IAV infections. Mutations that disrupt polyadenylation enhance ccRNA synthesis and increase RIG-I-dependent innate immune activation. Notably, while ccRNA itself is not immunostimulatory, it forms a RIG-I agonist by hybridizing with a complementary negative-sense viral RNA. These findings thus identify a novel non-canonical IAV RNA species and suggest an alternative mechanism for RIG-I activation during IAV infection.
Collapse
|
13
|
Yermalovich AV, Mohsenin Z, Cowdin M, Giotti B, Gupta A, Feng A, Golomb L, Wheeler DB, Xu K, Tsankov A, Cleaver O, Meyerson M. An essential role for Cmtr2 in mammalian embryonic development. Dev Biol 2024; 516:47-58. [PMID: 39094818 DOI: 10.1016/j.ydbio.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
CMTR2 is an mRNA cap methyltransferase with poorly understood physiological functions. It catalyzes 2'-O-ribose methylation of the second transcribed nucleotide of mRNAs, potentially serving to mark RNAs as "self" to evade the cellular innate immune response. Here we analyze the consequences of Cmtr2 deficiency in mice. We discover that constitutive deletion of Cmtr2 results in mouse embryos that die during mid-gestation, exhibiting defects in embryo size, placental malformation and yolk sac vascularization. Endothelial cell deletion of Cmtr2 in mice results in vascular and hematopoietic defects, and perinatal lethality. Detailed characterization of the constitutive Cmtr2 KO phenotype shows an activation of the p53 pathway and decreased proliferation, but no evidence of interferon pathway activation. In summary, our study reveals the essential roles of Cmtr2 in mammalian cells beyond its immunoregulatory function.
Collapse
Affiliation(s)
- Alena V Yermalovich
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Zarin Mohsenin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Mitzy Cowdin
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akansha Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Alice Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Lior Golomb
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Douglas B Wheeler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Kelly Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Alexander Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA; Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Pardi N, Krammer F. mRNA vaccines for infectious diseases - advances, challenges and opportunities. Nat Rev Drug Discov 2024; 23:838-861. [PMID: 39367276 DOI: 10.1038/s41573-024-01042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
The concept of mRNA-based vaccines emerged more than three decades ago. Groundbreaking discoveries and technological advancements over the past 20 years have resolved the major roadblocks that initially delayed application of this new vaccine modality. The rapid development of nucleoside-modified COVID-19 mRNA vaccines demonstrated that this immunization platform is easy to develop, has an acceptable safety profile and can be produced at a large scale. The flexibility and ease of antigen design have enabled mRNA vaccines to enter development for a wide range of viruses as well as for various bacteria and parasites. However, gaps in our knowledge limit the development of next-generation mRNA vaccines with increased potency and safety. A deeper understanding of the mechanisms of action of mRNA vaccines, application of novel technologies enabling rational antigen design, and innovative vaccine delivery strategies and vaccination regimens will likely yield potent novel vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Zhang P, Wang Y, Jiang J, Yang C, Liu X, Lei T, Meng X, Yang J, Ding P, Chen J, Li Q. Macrophage manufacturing and engineering with 5'-Cap1 and N1-methylpseudouridine-modified mRNA. Mol Ther Methods Clin Dev 2024; 32:101307. [PMID: 39229455 PMCID: PMC11369376 DOI: 10.1016/j.omtm.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 07/26/2024] [Indexed: 09/05/2024]
Abstract
Macrophage-based cell therapeutics is an emerging modality to treat cancer and repair tissue damage. A reproducible manufacturing and engineering process is central to fulfilling their therapeutic potential. Here, we establish a robust macrophage-manufacturing platform (Mo-Mac) and demonstrate that macrophage functionality can be enhanced by N1-methylpseudouridine (m1Ψ)-modified mRNA. Using single-cell transcriptomic analysis as an unbiased approach, we found that >90% cells in the final product were macrophages while the rest primarily comprised T cells, B cells, natural killer cells, promyelocytes, promonocytes, and hematopoietic stem cells. This analysis also guided the development of flow-cytometry strategies to assess cell compositions in the manufactured product to meet requirements by the National Medical Products Administration. To modulate macrophage functionality, as an illustrative example we examined whether the engulfment capability of macrophages could be enhanced by mRNA technology. We found that efferocytosis was increased in vitro when macrophages were electroporated with m1Ψ-modified mRNA encoding CD300LF (CD300LF-mRNA-macrophage). Consistently, in a mouse model of acute liver failure, CD300LF-mRNA-macrophages facilitated organ recovery from acetaminophen-induced hepatotoxicity. These results demonstrate a GMP-compliant macrophage-manufacturing process and indicate that macrophages can be engineered by versatile mRNA technology to achieve therapeutic goals.
Collapse
Affiliation(s)
- Peixuan Zhang
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yantai Wang
- Department of General Surgery, Breast Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinfeng Jiang
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Chao Yang
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xianxia Liu
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Tingjun Lei
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Xiangjun Meng
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Jihong Yang
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Ping Ding
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jie Chen
- Department of General Surgery, Breast Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qintong Li
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
17
|
Warminski M, Grab K, Szczepanski K, Spiewla T, Zuberek J, Kowalska J, Jemielity J. Photoactivatable mRNA 5' Cap Analogs for RNA-Protein Crosslinking. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400994. [PMID: 39049186 PMCID: PMC11423160 DOI: 10.1002/advs.202400994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Chemical modification of messenger RNA (mRNA) has paved the way for advancing mRNA-based therapeutics. The intricate process of mRNA translation in eukaryotes is orchestrated by numerous proteins involved in complex interaction networks. Many of them bind specifically to a unique structure at the mRNA 5'-end, called 5'-cap. Depending on the 5'-terminal sequence and its methylation pattern, different proteins may be involved in the translation initiation and regulation, but a deeper understanding of these mechanisms requires specialized molecular tools to identify natural binders of mRNA 5'-end variants. Here, a series of 8 new synthetic 5'-cap analogs that allow the preparation of RNA molecules with photoreactive tags using a standard in vitro transcription reaction are reported. Two photoreactive tags and four different modification sites are selected to minimize potential interference with cap-protein contacts and to provide complementary properties regarding crosslinking chemistry and molecular interactions. The tailored modification strategy allows for the generation of specific crosslinks with model cap-binding proteins, such as eIF4E and Dcp2. The usefulness of the photoreactive cap analogs is also demonstrated for identifying the cap-binding subunit in a multi-protein complex, which makes them perfect candidates for further development of photoaffinity labeling probes to study more complex mRNA-related processes.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, Warsaw, 02-089, Poland
| | - Kacper Szczepanski
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, Warsaw, 02-089, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, 02-097, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, Warsaw, 02-089, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, 02-097, Poland
| |
Collapse
|
18
|
Shoja Doost J, Fazel F, Boodhoo N, Sharif S. mRNA Vaccination: An Outlook on Innate Sensing and Adaptive Immune Responses. Viruses 2024; 16:1404. [PMID: 39339880 PMCID: PMC11437395 DOI: 10.3390/v16091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Vaccination has led to significant dismantling of infectious diseases worldwide. Since the dawn of the SARS-CoV-2 pandemic, there has been increased popularity in the usage and study of the mRNA vaccine platform. Here, we highlight fundamental knowledge on mRNA vaccine pharmacology, followed by the immunity conferred by innate sensing and adaptive responses resulting from exposure to the mRNA vaccine construct and encapsulation materials. A better understanding of these immune mechanisms will shed light on further improvements in mRNA vaccine design, aiming to improve efficiency and optimize immune responses upon inoculation.
Collapse
Affiliation(s)
| | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.D.); (F.F.); (N.B.)
| |
Collapse
|
19
|
Zellmann F, Schmauk N, Murmann N, Böhm M, Schwenger A, Göbel MW. Quality Control of mRNA Vaccines by Synthetic Ribonucleases: Analysis of the Poly-A-Tail. Chembiochem 2024; 25:e202400347. [PMID: 38742914 DOI: 10.1002/cbic.202400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The effectivity and safety of mRNA vaccines critically depends on the presence of correct 5' caps and poly-A tails. Due to the high molecular mass of full-size mRNAs, however, the direct analysis by mass spectrometry is hardly possible. Here we describe the use of synthetic ribonucleases to cleave off 5' and 3' terminal fragments which can be further analyzed by HPLC or by LC-MS. Compared to existing methods (e. g. RNase H), the new approach uses robust catalysts, is free of sequence limitations, avoids metal ions and combines fast sample preparation with high precision of the cut.
Collapse
Affiliation(s)
- Felix Zellmann
- Analytical Development CureVac SE, Friedrich-Miescher-Str. 15, 72076, Tübingen, Germany
| | - Nina Schmauk
- Analytical Development CureVac SE, Friedrich-Miescher-Str. 15, 72076, Tübingen, Germany
| | - Nina Murmann
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Madeleine Böhm
- Analytical Development CureVac SE, Friedrich-Miescher-Str. 15, 72076, Tübingen, Germany
| | - Alexander Schwenger
- Analytical Development CureVac SE, Friedrich-Miescher-Str. 15, 72076, Tübingen, Germany
| | - Michael W Göbel
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Sikorska J, Wyss DF. Recent developments in understanding RIG-I's activation and oligomerization. Sci Prog 2024; 107:368504241265182. [PMID: 39091074 PMCID: PMC11297509 DOI: 10.1177/00368504241265182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Insights into mechanisms driving either activation or inhibition of immune response are crucial in understanding the pathology of various diseases. The differentiation of viral from endogenous RNA in the cytoplasm by pattern-recognition receptors, such as retinoic acid-inducible gene I (RIG-I), is one of the essential paths for timely activation of an antiviral immune response through induction of type I interferons (IFN). In this mini-review, we describe the most recent developments centered around RIG-I's structure and mechanism of action. We summarize the paradigm-changing work over the past few years that helped us better understand RIG-I's monomeric and oligomerization states and their role in conveying immune response. We also discuss potential applications of the modulation of the RIG-I pathway in preventing autoimmune diseases or induction of immunity against viral infections. Overall, our review aims to summarize innovative research published in the past few years to help clarify questions that have long persisted around RIG-I.
Collapse
Affiliation(s)
| | - Daniel F Wyss
- Daniel F Wyss, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
21
|
Tran BT, Go S, Kim KR, Chung HS, Ahn DR. The positional and numerical effect of N 6-methyladenosine in tracrRNA on the DNA cleavage activity of Cas9. RSC Adv 2024; 14:20529-20535. [PMID: 38946770 PMCID: PMC11209871 DOI: 10.1039/d4ra03957b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
Post-transcriptional modifications on the guide RNAs utilized in the Cas9 system may have the potential to impact the activity of Cas9. In this study, we synthesized a series of tracrRNAs containing N 6-methyadenosine (m6A), a prevalent post-transcriptional modification, at various positions. We evaluated the effect of these modifications on the DNA cleavage activity of Cas9. Our results show that multiple m6As in the anti-repeat region of tracrRNA reduce the DNA cleavage activity of Cas9. This suggests that the m6A-modified tracrRNA can be used for Cas9 only when the number and the position of the modified residue are properly chosen in tracrRNA.
Collapse
Affiliation(s)
- Binh Thanh Tran
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST) Hwarangno 14-gil 5, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Seulgi Go
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST) Hwarangno 14-gil 5, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Kyoung-Ran Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST) Hwarangno 14-gil 5, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Hak Suk Chung
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST) Hwarangno 14-gil 5, Seongbuk-gu Seoul 02792 Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST) Seoul 02792 Republic of Korea
| | - Dae-Ro Ahn
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST) Hwarangno 14-gil 5, Seongbuk-gu Seoul 02792 Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
22
|
Solotchi M, Patel SS. Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA. Biochem Soc Trans 2024; 52:1131-1148. [PMID: 38884803 PMCID: PMC11346460 DOI: 10.1042/bst20230724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.
Collapse
Affiliation(s)
- Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, U.S.A
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
23
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597966. [PMID: 38895355 PMCID: PMC11185705 DOI: 10.1101/2024.06.07.597966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first responder" cells during West Nile virus infection, we found that specific accumulation of anti- genomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in "first responder" cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late timepoints of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that while most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
|
24
|
Xue L, Chang T, Li Z, Wang C, Zhao H, Li M, Tang P, Wen X, Yu M, Wu J, Bao X, Wang X, Gong P, He J, Chen X, Xiong X. Cryo-EM structures of Thogoto virus polymerase reveal unique RNA transcription and replication mechanisms among orthomyxoviruses. Nat Commun 2024; 15:4620. [PMID: 38816392 PMCID: PMC11139864 DOI: 10.1038/s41467-024-48848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Influenza viruses and thogotoviruses account for most recognized orthomyxoviruses. Thogotoviruses, exemplified by Thogoto virus (THOV), are capable of infecting humans using ticks as vectors. THOV transcribes mRNA without the extraneous 5' end sequences derived from cap-snatching in influenza virus mRNA. Here, we report cryo-EM structures to characterize THOV polymerase RNA synthesis initiation and elongation. The structures demonstrate that THOV RNA transcription and replication are able to start with short dinucleotide primers and that the polymerase cap-snatching machinery is likely non-functional. Triggered by RNA synthesis, asymmetric THOV polymerase dimers can form without the involvement of host factors. We confirm that, distinctive from influenza viruses, THOV-polymerase RNA synthesis is weakly dependent of the host factors ANP32A/B/E in human cells. This study demonstrates varied mechanisms in RNA synthesis and host factor utilization among orthomyxoviruses, providing insights into the mechanisms behind thogotoviruses' broad-infectivity range.
Collapse
Affiliation(s)
- Lu Xue
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tiancai Chang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Chenchen Wang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Heyu Zhao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mei Li
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Peng Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Wen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xichen Bao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
25
|
Consalvo CD, Aderounmu AM, Donelick HM, Aruscavage PJ, Eckert DM, Shen PS, Bass BL. Caenorhabditis elegans Dicer acts with the RIG-I-like helicase DRH-1 and RDE-4 to cleave dsRNA. eLife 2024; 13:RP93979. [PMID: 38747717 PMCID: PMC11095941 DOI: 10.7554/elife.93979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.
Collapse
Affiliation(s)
- Claudia D Consalvo
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Helen M Donelick
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Debra M Eckert
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Peter S Shen
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
26
|
Chen S, Jiang Z, Li Q, Pan W, Chen Y, Liu J. Viral RNA capping: Mechanisms and antiviral therapy. J Med Virol 2024; 96:e29622. [PMID: 38682614 DOI: 10.1002/jmv.29622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
RNA capping is an essential trigger for protein translation in eukaryotic cells. Many viruses have evolved various strategies for initiating the translation of viral genes and generating progeny virions in infected cells via synthesizing cap structure or stealing the RNA cap from nascent host messenger ribonucleotide acid (mRNA). In addition to protein translation, a new understanding of the role of the RNA cap in antiviral innate immunity has advanced the field of mRNA synthesis in vitro and therapeutic applications. Recent studies on these viral RNA capping systems have revealed startlingly diverse ways and molecular machinery. A comprehensive understanding of how viruses accomplish the RNA capping in infected cells is pivotal for designing effective broad-spectrum antiviral therapies. Here we systematically review the contemporary insights into the RNA-capping mechanisms employed by viruses causing human and animal infectious diseases, while also highlighting its impact on host antiviral innate immune response. The therapeutic applications of targeting RNA capping against viral infections and the development of RNA-capping inhibitors are also summarized.
Collapse
Affiliation(s)
- Saini Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhimin Jiang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiuchen Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenliang Pan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Decombe A, El-Kazzi P, Nisole S, Decroly É. [How do 2'-O-methylations within Human Immunodeficiency Virus type 1 (HIV-1) genome regulate its replication?]. Med Sci (Paris) 2024; 40:421-427. [PMID: 38819277 DOI: 10.1051/medsci/2024046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The genomic RNA of HIV-1 is modified by epitranscriptomic modifications, including 2'-O-methylations, which are found on 17 internal positions. These methylations are added by the cellular methyltransferase FTSJ3, and have pro-viral effects, since they shield the viral genome from the detection by the innate immune sensor MDA5. In turn, the production of interferons by infected cells is reduced, limiting the expression of interferon-stimulated genes (ISGs) with antiviral activities. Moreover, 2'-O-methylations protect the HIV-1 genome from its degradation by ISG20, an interferon-induced exonuclease. Conversely, these methylations also exhibit antiviral effects, as they impede reverse-transcription in vitro or in quiescent cells, which are known to contain low nucleotide concentrations. Altogether, these observations suggest a balance between the proviral effect of 2'-O-methylations, related to the protection of the viral genome from detection by MDA5 and degradation by ISG20, and the antiviral effect, associated with the negative impact of 2'-O-methylations on the viral replication. These findings pave the way for further optimization of therapeutic RNA, by selective methylation of specific nucleotides.
Collapse
Affiliation(s)
- Alice Decombe
- AFMB (Architecture et fonction des macromolécules biologiques), UMR 7257 - CNRS / Université Aix-Marseille, Marseille, France
| | - Priscila El-Kazzi
- AFMB (Architecture et fonction des macromolécules biologiques), UMR 7257 - CNRS / Université Aix-Marseille, Marseille, France
| | - Sébastien Nisole
- AFMB (Architecture et fonction des macromolécules biologiques), UMR 7257 - CNRS / Université Aix-Marseille, Marseille, France
| | - Étienne Decroly
- AFMB (Architecture et fonction des macromolécules biologiques), UMR 7257 - CNRS / Université Aix-Marseille, Marseille, France
| |
Collapse
|
28
|
Valdés-López JF, Hernández-Sarmiento LJ, Tamayo-Molina YS, Velilla-Hernández PA, Rodenhuis-Zybert IA, Urcuqui-Inchima S. Interleukin 27, like interferons, activates JAK-STAT signaling and promotes pro-inflammatory and antiviral states that interfere with dengue and chikungunya viruses replication in human macrophages. Front Immunol 2024; 15:1385473. [PMID: 38720890 PMCID: PMC11076713 DOI: 10.3389/fimmu.2024.1385473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Y. S. Tamayo-Molina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
29
|
Zhou KI, Pecot CV, Holley CL. 2'- O-methylation (Nm) in RNA: progress, challenges, and future directions. RNA (NEW YORK, N.Y.) 2024; 30:570-582. [PMID: 38531653 PMCID: PMC11019748 DOI: 10.1261/rna.079970.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
RNA 2'-O-methylation (Nm) is highly abundant in noncoding RNAs including ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA), and occurs in the 5' cap of virtually all messenger RNAs (mRNAs) in higher eukaryotes. More recently, Nm has also been reported to occur at internal sites in mRNA. High-throughput methods have been developed for the transcriptome-wide detection of Nm. However, these methods have mostly been applied to abundant RNAs such as rRNA, and the validity of the internal mRNA Nm sites detected with these approaches remains controversial. Nonetheless, Nm in both coding and noncoding RNAs has been demonstrated to impact cellular processes, including translation and splicing. In addition, Nm modifications at the 5' cap and possibly at internal sites in mRNA serve to prevent the binding of nucleic acid sensors, thus preventing the activation of the innate immune response by self-mRNAs. Finally, Nm has been implicated in a variety of diseases including cancer, cardiovascular diseases, and neurologic syndromes. In this review, we discuss current challenges in determining the distribution, regulation, function, and disease relevance of Nm, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Chad V Pecot
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- University of North Carolina RNA Discovery Center, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christopher L Holley
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
30
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
31
|
Dayeh DM, Cika J, Moon Y, Henderson S, Di Grandi D, Fu Y, Muthusamy K, Palackal N, Ihnat PM, Pyles EA. Comprehensive chromatographic assessment of forced degraded in vitro transcribed mRNA. J Chromatogr A 2024; 1722:464885. [PMID: 38631223 DOI: 10.1016/j.chroma.2024.464885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Heightened interest in messenger RNA (mRNA) therapeutics has accelerated the need for analytical methodologies that facilitate the production of supplies for clinical trials. Forced degradation studies are routinely conducted to provide an understanding of potential weak spots in the molecule that are exploited by stresses encountered during bulk purification, production, shipment, and storage. Consequently, temperature fluctuations and excursions are often experienced during these unit operations and may accelerate mRNA degradation. Here, we present a concise panel of chromatography-based stability-indicating assays for evaluating thermally stressed in vitro transcribed (IVT) mRNA as part of a forced degradation study. We found that addition of EDTA to the mRNAs prior to heat exposure reduced the extent of degradation, suggesting that transcripts may be fragmenting via a divalent metal-ion mediated pathway. Trace divalent metal contamination that can accelerate RNA instability is likely carried over from upstream steps. We demonstrate the application of these methods to evaluate the critical quality attributes (CQAs) of mRNAs as well as to detect intrinsic process- and product-related impurities.
Collapse
Affiliation(s)
- Daniel M Dayeh
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Jaclyn Cika
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Youmi Moon
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Steven Henderson
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Deanna Di Grandi
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Yue Fu
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| | - Kathir Muthusamy
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| | - Nisha Palackal
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Peter M Ihnat
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Erica A Pyles
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| |
Collapse
|
32
|
Avila-Bonilla RG, Macias S. The molecular language of RNA 5' ends: guardians of RNA identity and immunity. RNA (NEW YORK, N.Y.) 2024; 30:327-336. [PMID: 38325897 PMCID: PMC10946433 DOI: 10.1261/rna.079942.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| |
Collapse
|
33
|
Kim YA, Mousavi K, Yazdi A, Zwierzyna M, Cardinali M, Fox D, Peel T, Coller J, Aggarwal K, Maruggi G. Computational design of mRNA vaccines. Vaccine 2024; 42:1831-1840. [PMID: 37479613 DOI: 10.1016/j.vaccine.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
mRNA technology has emerged as a successful vaccine platform that offered a swift response to the COVID-19 pandemic. Accumulating evidence shows that vaccine efficacy, thermostability, and other important properties, are largely impacted by intrinsic properties of the mRNA molecule, such as RNA sequence and structure, both of which can be optimized. Designing mRNA sequence for vaccines presents a combinatorial problem due to an extremely large selection space. For instance, due to the degeneracy of the genetic code, there are over 10632 possible mRNA sequences that could encode the spike protein, the COVID-19 vaccines' target. Moreover, designing different elements of the mRNA sequence simultaneously against multiple objectives such as translational efficiency, reduced reactogenicity, and improved stability requires an efficient and sophisticated optimization strategy. Recently, there has been a growing interest in utilizing computational tools to redesign mRNA sequences to improve vaccine characteristics and expedite discovery timelines. In this review, we explore important biophysical features of mRNA to be considered for vaccine design and discuss how computational approaches can be applied to rapidly design mRNA sequences with desirable characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeff Coller
- Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
34
|
Avila-Bonilla RG, Martínez-Montero JP. Crosstalk between vault RNAs and innate immunity. Mol Biol Rep 2024; 51:387. [PMID: 38443657 PMCID: PMC10914904 DOI: 10.1007/s11033-024-09305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Vault (vt) RNAs are noncoding (nc) RNAs transcribed by RNA polymerase III (RNA Pol III) with 5'-triphosphate (5'-PPP) termini that play significant roles and are recognized by innate immune sensors, including retinoic acid-inducible protein 1 (RIG-I). In addition, vtRNAs adopt secondary structures that can be targets of interferon-inducible protein kinase R (PKR) and the oligoadenylate synthetase (OAS)/RNase L system, both of which are important for activating antiviral defenses. However, changes in the expression of vtRNAs have been associated with pathological processes that activate proinflammatory pathways, which influence cellular events such as differentiation, aging, autophagy, apoptosis, and drug resistance in cancer cells. RESULTS In this review, we summarized the biology of vtRNAs and focused on their interactions with the innate immune system. These findings provide insights into the diverse roles of vtRNAs and their correlation with various cellular processes to improve our understanding of their biological functions.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Genética y Biología Molecular, Av. IPN 2508, 07360, Mexico City, Mexico.
| | | |
Collapse
|
35
|
Fiorucci D, Meaccini M, Poli G, Stincarelli MA, Vagaggini C, Giannecchini S, Sutto-Ortiz P, Canard B, Decroly E, Dreassi E, Brai A, Botta M. Identification of Novel Non-Nucleoside Inhibitors of Zika Virus NS5 Protein Targeting MTase Activity. Int J Mol Sci 2024; 25:2437. [PMID: 38397115 PMCID: PMC10888717 DOI: 10.3390/ijms25042437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Zika virus (ZIKV) is a positive-sense single-stranded virus member of the Flaviviridae family. Among other arboviruses, ZIKV can cause neurological disorders such as Guillain Barré syndrome, and it can have congenital neurological manifestations and affect fertility. ZIKV nonstructural protein 5 (NS5) is essential for viral replication and limiting host immune detection. Herein, we performed virtual screening to identify novel small-molecule inhibitors of the ZIKV NS5 methyltransferase (MTase) domain. Compounds were tested against the MTases of both ZIKV and DENV, demonstrating good inhibitory activities against ZIKV MTase. Extensive molecular dynamic studies conducted on the series led us to identify other derivatives with improved activity against the MTase and limiting ZIKV infection with an increased selectivity index. Preliminary pharmacokinetic parameters have been determined, revealing excellent stability over time. Preliminary in vivo toxicity studies demonstrated that the hit compound 17 is well tolerated after acute administration. Our results provide the basis for further optimization studies on novel non-nucleoside MTase inhibitors.
Collapse
Affiliation(s)
- Diego Fiorucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Micaela Meaccini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulio Poli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Alfreda Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134 Florence, Italy; (M.A.S.); (S.G.)
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134 Florence, Italy; (M.A.S.); (S.G.)
| | - Priscila Sutto-Ortiz
- AFMB, Aix-Marseille University, CNRS, UMR 7257, Case 925, 163 Avenue de Luminy, Cedex 09, 13288 Marseille, France; (P.S.-O.)
| | - Bruno Canard
- AFMB, Aix-Marseille University, CNRS, UMR 7257, Case 925, 163 Avenue de Luminy, Cedex 09, 13288 Marseille, France; (P.S.-O.)
| | - Etienne Decroly
- AFMB, Aix-Marseille University, CNRS, UMR 7257, Case 925, 163 Avenue de Luminy, Cedex 09, 13288 Marseille, France; (P.S.-O.)
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
36
|
Ahmed-Belkacem R, Sutto-Ortiz P, Delpal A, Troussier J, Canard B, Vasseur JJ, Decroly E, Debart F. 5'-cap RNA/SAM mimetic conjugates as bisubstrate inhibitors of viral RNA cap 2'-O-methyltransferases. Bioorg Chem 2024; 143:107035. [PMID: 38199140 DOI: 10.1016/j.bioorg.2023.107035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.
Collapse
Affiliation(s)
| | | | - Adrien Delpal
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | - Joris Troussier
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruno Canard
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | | | | | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
37
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Woltz R, Schweibenz B, Tsutakawa SE, Zhao C, Ma L, Shurina B, Hura GL, John R, Vorobiev S, Swapna GVT, Solotchi M, Tainer JA, Krug RM, Patel SS, Montelione GT. The NS1 protein of influenza B virus binds 5'-triphosphorylated dsRNA to suppress RIG-I activation and the host antiviral response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559316. [PMID: 38328244 PMCID: PMC10849492 DOI: 10.1101/2023.09.25.559316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Influenza A and B viruses overcome the host antiviral response to cause a contagious and often severe human respiratory disease. Here, integrative structural biology and biochemistry studies on non-structural protein 1 of influenza B virus (NS1B) reveal a previously unrecognized viral mechanism for innate immune evasion. Conserved basic groups of its C-terminal domain (NS1B-CTD) bind 5'triphosphorylated double-stranded RNA (5'-ppp-dsRNA), the primary pathogen-associated feature that activates the host retinoic acid-inducible gene I protein (RIG-I) to initiate interferon synthesis and the cellular antiviral response. Like RIG-I, NS1B-CTD preferentially binds blunt-end 5'ppp-dsRNA. NS1B-CTD also competes with RIG-I for binding 5'ppp-dsRNA, and thus suppresses activation of RIG-I's ATPase activity. Although the NS1B N-terminal domain also binds dsRNA, it utilizes a different binding mode and lacks 5'ppp-dsRNA end preferences. In cells infected with wild-type influenza B virus, RIG-I activation is inhibited. In contrast, RIG-I activation and the resulting phosphorylation of transcription factor IRF-3 are not inhibited in cells infected with a mutant virus encoding NS1B with a R208A substitution it its CTD that eliminates its 5'ppp-dsRNA binding activity. These results reveal a novel mechanism in which NS1B binds 5'ppp-dsRNA to inhibit the RIG-I antiviral response during influenza B virus infection, and open the door to new avenues for antiviral drug discovery.
Collapse
Affiliation(s)
- Ryan Woltz
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Schweibenz
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Susan E. Tsutakawa
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chen Zhao
- Department of Molecular Biosciences, Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - LiChung Ma
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ben Shurina
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Gregory L. Hura
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rachael John
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Sergey Vorobiev
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - GVT Swapna
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - John A. Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert M. Krug
- Department of Molecular Biosciences, Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Gaetano T. Montelione
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
39
|
Consalvo CD, Aderounmu AM, Donelick HM, Aruscavage PJ, Eckert DM, Shen PS, Bass BL. C. elegans Dicer acts with the RIG-I-like helicase DRH-1 and RDE-4 to cleave dsRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558868. [PMID: 37790392 PMCID: PMC10542151 DOI: 10.1101/2023.09.21.558868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, C. elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.
Collapse
Affiliation(s)
| | - Adedeji M. Aderounmu
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
- These authors contributed equally
| | - Helen M. Donelick
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
- These authors contributed equally
| | - P. Joe Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Debra M. Eckert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Peter S. Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
- Lead Contact
| |
Collapse
|
40
|
Lee KY, Craig C, Patel SS. Unraveling blunt-end RNA binding and ATPase-driven translocation activities of the RIG-I family helicase LGP2. Nucleic Acids Res 2024; 52:355-369. [PMID: 38015453 PMCID: PMC10783506 DOI: 10.1093/nar/gkad1106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
The RIG-I family helicases, comprising RIG-I, MDA5 and LGP2, are cytoplasmic RNA sensors that trigger an antiviral immune response by specifically recognizing foreign RNAs. While LGP2 lacks the signaling domain necessary for immune activation, it plays a vital role in regulating the RIG-I/MDA5 signaling pathway. In this study, we investigate the mechanisms underlying this regulation by examining the oligomeric state, RNA binding specificity, and translocation activity of human LGP2 and the impact of ATPase activity. We show that LGP2, like RIG-I, prefers binding blunt-ended double-stranded (ds) RNAs over internal dsRNA regions or RNA overhangs and associates with blunt-ends faster than with overhangs. Unlike RIG-I, a 5'-triphosphate (5'ppp), Cap0, or Cap1 RNA-end does not influence LGP2's RNA binding affinity. LGP2 hydrolyzes ATP in the presence of RNA but at a 5-10 fold slower rate than RIG-I. Nevertheless, LGP2 uses its ATPase activity to translocate and displace biotin-streptavidin interactions. This activity is significantly hindered by a methylated RNA patch, particularly on the 3'-strand, suggesting a 3'-strand tracking mechanism like RIG-I. The preference of LGP2 for blunt-end RNA binding, its insensitivity to Cap0/Cap1 modification, and its translocation/protein displacement ability have substantial implications for how LGP2 regulates the RNA sensing process by MDA5/RIG-I.
Collapse
Affiliation(s)
- Kuan-Ying Lee
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, 08854, USA
| | - Candice Craig
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
41
|
Cottrell KA, Andrews RJ, Bass BL. The competitive landscape of the dsRNA world. Mol Cell 2024; 84:107-119. [PMID: 38118451 PMCID: PMC10843539 DOI: 10.1016/j.molcel.2023.11.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.
Collapse
Affiliation(s)
- Kyle A Cottrell
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Ryan J Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
42
|
Potužník JF, Cahova H. If the 5' cap fits (wear it) - Non-canonical RNA capping. RNA Biol 2024; 21:1-13. [PMID: 39007883 PMCID: PMC11253889 DOI: 10.1080/15476286.2024.2372138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
RNA capping is a prominent RNA modification that influences RNA stability, metabolism, and function. While it was long limited to the study of the most abundant eukaryotic canonical m7G cap, the field recently went through a large paradigm shift with the discovery of non-canonical RNA capping in bacteria and ultimately all domains of life. The repertoire of non-canonical caps has expanded to encompass metabolite caps, including NAD, FAD, CoA, UDP-Glucose, and ADP-ribose, alongside alarmone dinucleoside polyphosphate caps, and methylated phosphate cap-like structures. This review offers an introduction into the field, presenting a summary of the current knowledge about non-canonical RNA caps. We highlight the often still enigmatic biological roles of the caps together with their processing enzymes, focusing on the most recent discoveries. Furthermore, we present the methods used for the detection and analysis of these non-canonical RNA caps and thus provide an introduction into this dynamic new field.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
- Department of Cell Biology, Charles University, Faculty of Science, Prague 2, Czechia
| | - Hana Cahova
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| |
Collapse
|
43
|
Dai J, Agbemabiese CA, Griffin AN, Patton JT. Rotavirus capping enzyme VP3 inhibits interferon expression by inducing MAVS degradation during viral replication. mBio 2023; 14:e0225523. [PMID: 37905816 PMCID: PMC10746195 DOI: 10.1128/mbio.02255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Rotavirus is an enteric RNA virus that causes severe dehydrating gastroenteritis in infants and young children through infection of enterocytes in the small intestine. Timely clearance of the virus demands a robust innate immune response by cells associated with the small intestine, including the expression of interferon (IFN). Previous studies have shown that some rotavirus strains suppress the production of interferon, by inducing the degradation of mitochondrial antiviral signaling (MAVS) protein and interferon regulatory factor-3 (IRF3). In this study, we have used reverse genetics to generate recombinant rotaviruses expressing compromised forms of VP3 or NSP1, or both, to explore the function of these viral proteins in the degradation of MAVS and IRF3. Our results demonstrate that VP3 is responsible for MAVS depletion in rotavirus-infected cells, and through this activity, helps to suppress IFN production. Thus, VP3 functions to support the activity of rotavirus NSP1, the major interferon antagonist of the virus.
Collapse
Affiliation(s)
- Jin Dai
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - Ashley N. Griffin
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
44
|
Ying Y, Zhang W, Zhu H, Luo J, Xu X, Yang S, Zhao Y, Zhang Z. A novel m7G regulator-based methylation patterns in head and neck squamous cell carcinoma. Mol Carcinog 2023; 62:1902-1917. [PMID: 37642290 DOI: 10.1002/mc.23624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/17/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Abnormal RNA N7-methylguanosine (m7G) modification is known to contribute to effects on tumor occurrence and development. Nevertheless, the mechanisms of its function in immunoregulation, tumor microenvironment (TME) modulation, and tumor promotion remain largely unknown. A series of computer-aided bioinformatic analyses were conducted based on transcriptomic, single-cell sequence, and spatial transcriptomic data to determine the m7G modification patterns in head and neck squamous cell carcinoma (HNSCC). Consensus clustering approach was employed according to the expressions of 33 m7G regulators. ESTIMATE, CIBERSORT, and single sample gene set enrichment analysis algorithms were adopted to investigate the immune cell infiltration features. A prognostic model named m7Gscore was established. Seurat, SingleR, and Monocle2 were used to analyze the single-cell sequence profiling. STUtility was used to integrate multiple spatial transcriptomic datasets. Quantitative reverse transcription polymerase chain reaction, transwell, and wound-healing assay were performed to verify the oncogenes. Here, three different m7G modification patterns were highlighted in HNSCC patients, which were also related to various clinical manifestations and three representative immunophenotypes: immune-excluded, immune-desert, and inflamed, separately. Patients with lower m7Gscore were highlighted by higher immune cell infiltrations, better overall survival rates, lesser tumor mutation burden (TMB), lower sensitivities to target inhibitors therapies, and better immunotherapeutic response. Moreover, DCPS, EIF4E, EIF4E2, LSM1, NCBP2, NUDT1, and NUDT5 were identified to play critical roles in T-cell differentiation. Knockdown of LSM1/NUDT5 could restrain the malignancy of HNSCC cells. Collectively, quantitative assessment of m7G modification patterns in individual HNSCC patients could contribute to identifying more efficient immunotherapeutic approaches and improve the clinical outcome of HNSCC.
Collapse
Affiliation(s)
- Yukang Ying
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Haoran Zhu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jun Luo
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Xuhui Xu
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Suqing Yang
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Yue Zhao
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Zhenxing Zhang
- Department of stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| |
Collapse
|
45
|
de Regt AK, Anand K, Ciupka K, Bender F, Gatterdam K, Putschli B, Fusshöller D, Hilbig D, Kirchhoff A, Hunkler C, Wolter S, Grünewald A, Wallerath C, Schuberth-Wagner C, Ludwig J, Paeschke K, Bartok E, Hagelueken G, Hartmann G, Zillinger T, Geyer M, Schlee M. A conserved isoleucine in the binding pocket of RIG-I controls immune tolerance to mitochondrial RNA. Nucleic Acids Res 2023; 51:11893-11910. [PMID: 37831086 PMCID: PMC10681732 DOI: 10.1093/nar/gkad835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.
Collapse
Affiliation(s)
- Ann Kristin de Regt
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Kanchan Anand
- Institute of Structural Biology, University Hospital Bonn, Bonn, Germany
| | - Katrin Ciupka
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Felix Bender
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University Hospital Bonn, Bonn, Germany
| | - Bastian Putschli
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - David Fusshöller
- Institute of Structural Biology, University Hospital Bonn, Bonn, Germany
| | - Daniel Hilbig
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Alexander Kirchhoff
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Charlotte Hunkler
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Steven Wolter
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Agathe Grünewald
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Christina Wallerath
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Janos Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Katrin Paeschke
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Eva Bartok
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
- Unit of Experimental Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Gregor Hagelueken
- Institute of Structural Biology, University Hospital Bonn, Bonn, Germany
| | - Gunther Hartmann
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, Bonn, Germany
| | - Martin Schlee
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
46
|
Liu Y, Zhu E, Lei Y, Luo A, Yan Y, Cai M, Liu S, Huang Y, Guan H, Zhong M, Li W, Lin L, Hultstöm M, Lai E, Zheng Z, Liu X, Tang C. Diagnostic Values of METTL1-Related Genes and Immune Characteristics in Systemic Lupus Erythematosus. J Inflamm Res 2023; 16:5367-5383. [PMID: 38026241 PMCID: PMC10661937 DOI: 10.2147/jir.s431628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Methyltransferase like 1 (METTL1) regulates epitranscriptomes via the m7G modification in mammalian mRNA and microRNA. Systemic lupus erythematosus (SLE) is caused by abnormal immune reactivity and has diverse clinical manifestations. RNA methylation as a mechanism to regulate gene expression is widely implicated in immune regulation. However, the role of m7G in immune response of SLE has not been extensively studied. Patients and Methods Expression of METTL1 was identified in the public dataset GSE122459 and validated in an independent cohort of SLE patients. We investigated the association between METTL1-expression and clinical manifestations of SLE. Subsequently, differentially expressed genes (DEG) that were correlated with METTL1-expression in GSE122459 were used for functional enrichment analysis. The correlation between infiltrating immune cells and METTL1, as well as candidate biomarkers identified to be correlated with either METTL1 or immune cell infiltration were assessed by single-sample GSEA. Potential mechanisms were explored with Gene ontology and KEGG pathway enrichment. Diagnostic performances of candidate biomarkers in SLE were analyzed. Results The mRNA and protein expression of METTL1 in SLE patients were significantly decreased in both datasets. METTL1-coexpressed DEGs were enriched in several key immune-related pathways. Activated CD8 T cells, activated CD4 T cells, memory B cells and type 2 helper T cells were different between patients with high and low METTL1 expression. Further, activated CD8 T-cells, activated CD4 T-cells, memory B-cells were correlated with METTL1. The genes of LAMP3, CD83, PDCD1LG2, IGKVD3D-20, IGKV5-2, IGKV2D-30, IGLV3-19 and IGLV4-60 were identified as candidate targets that were correlated with immune cell proportion. Moreover, LAMP3, CD83, and PDCD1LG2 expression were of diagnostic value in SLE as indicated by ROC analysis. Conclusion Our findings suggested that METTL1 and its candidate targets LAMP3, CD83, PDCD1LG2 may be used for diagnosing SLE and could be explored for developing targeted molecular therapy for SLE.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Yaping Yan
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Mansi Cai
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Shanshan Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Yan Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Hui Guan
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Weinian Li
- Department of Rheumatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510623, People’s Republic of China
| | - Lian Lin
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Michael Hultstöm
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Unit for Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Enyin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, People’s Republic of China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| |
Collapse
|
47
|
Kong LZ, Kim SM, Wang C, Lee SY, Oh SC, Lee S, Jo S, Kim TD. Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 2023; 55:2320-2331. [PMID: 37945923 PMCID: PMC10689850 DOI: 10.1038/s12276-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleic acid sensing is involved in viral infections, immune response-related diseases, and therapeutics. Based on the composition of nucleic acids, nucleic acid sensors are defined as DNA or RNA sensors. Pathogen-associated nucleic acids are recognized by membrane-bound and intracellular receptors, known as pattern recognition receptors (PRRs), which induce innate immune-mediated antiviral responses. PRR activation is tightly regulated to eliminate infections and prevent abnormal or excessive immune responses. Nucleic acid sensing is an essential mechanism in tumor immunotherapy and gene therapies that target cancer and infectious diseases through genetically engineered immune cells or therapeutic nucleic acids. Nucleic acid sensing supports immune cells in priming desirable immune responses during tumor treatment. Recent studies have shown that nucleic acid sensing affects the efficiency of gene therapy by inhibiting translation. Suppression of innate immunity induced by nucleic acid sensing through small-molecule inhibitors, virus-derived proteins, and chemical modifications offers a potential therapeutic strategy. Herein, we review the mechanisms and regulation of nucleic acid sensing, specifically covering recent advances. Furthermore, we summarize and discuss recent research progress regarding the different effects of nucleic acid sensing on therapeutic efficacy. This study provides insights for the application of nucleic acid sensing in therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea.
- Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
48
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
49
|
Wang YS, Kumari M, Chen GH, Hong MH, Yuan JPY, Tsai JL, Wu HC. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci 2023; 30:84. [PMID: 37805495 PMCID: PMC10559634 DOI: 10.1186/s12929-023-00977-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023] Open
Abstract
mRNA-based drugs have tremendous potential as clinical treatments, however, a major challenge in realizing this drug class will promise to develop methods for safely delivering the bioactive agents with high efficiency and without activating the immune system. With regard to mRNA vaccines, researchers have modified the mRNA structure to enhance its stability and promote systemic tolerance of antigenic presentation in non-inflammatory contexts. Still, delivery of naked modified mRNAs is inefficient and results in low levels of antigen protein production. As such, lipid nanoparticles have been utilized to improve delivery and protect the mRNA cargo from extracellular degradation. This advance was a major milestone in the development of mRNA vaccines and dispelled skepticism about the potential of this technology to yield clinically approved medicines. Following the resounding success of mRNA vaccines for COVID-19, many other mRNA-based drugs have been proposed for the treatment of a variety of diseases. This review begins with a discussion of mRNA modifications and delivery vehicles, as well as the factors that influence administration routes. Then, we summarize the potential applications of mRNA-based drugs and discuss further key points pertaining to preclinical and clinical development of mRNA drugs targeting a wide range of diseases. Finally, we discuss the latest market trends and future applications of mRNA-based drugs.
Collapse
Affiliation(s)
- Yu-Shiuan Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Joyce Pei-Yi Yuan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Jui-Ling Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan.
| |
Collapse
|
50
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|