1
|
Tarallo M, Mesarich CH, McDougal RL, Bradshaw RE. Foliar Pine Pathogens From Different Kingdoms Share Defence-Eliciting Effector Proteins. MOLECULAR PLANT PATHOLOGY 2025; 26:e70065. [PMID: 40025648 PMCID: PMC11872807 DOI: 10.1111/mpp.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Dothistroma needle blight, Cyclaneusma needle blight and red needle cast are devastating foliar pine diseases caused by the fungi Dothistroma septosporum and Cyclaneusma minus and the oomycete Phytophthora pluvialis, respectively. These pathogens colonise the host apoplast, secreting effector proteins to promote infection and disease. If these effectors are recognised by corresponding host resistance proteins, they activate the plant immune system to stop pathogen growth. We aimed to identify and characterise effectors that are common to all three pathogens. Using D. septosporum as a starting point, three candidate effectors (CEs) were investigated: Ds69335 (a CAP protein) and Ds131885, both of which have sequence and structural similarity to CEs of C. minus and P. pluvialis, and Ds74283, which adopts a β-trefoil fold and has structural rather than sequence similarity to CEs from all three pathogens. Notably, of the CEs investigated, Ds74283 and Ds131885, as well as their homologues from C. minus and P. pluvialis, elicited chlorosis or cell death in Nicotiana species, with Ds131885 and its homologues also triggering cell death in Pinus radiata. In line with these observed responses being related to activation of the plant immune system, the chlorosis triggered by Ds131885 and its homologues was compromised in a Nicotiana benthamiana mutant lacking the extracellular immune system co-receptor, SOBIR1. Such cross-kingdom, plant immune system-activating effectors, whether similar in sequence or structure, might ultimately enable the selection or engineering of durable, broad-spectrum resistance against foliar pine pathogens.
Collapse
Affiliation(s)
- Mariana Tarallo
- School of Food Technology and Natural SciencesMassey UniversityPalmerston NorthNew Zealand
- Bioprotection AotearoaLincolnNew Zealand
| | - Carl H. Mesarich
- Bioprotection AotearoaLincolnNew Zealand
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Rebecca L. McDougal
- Bioprotection AotearoaLincolnNew Zealand
- Scion (The New Zealand Forest Research Institute Ltd.)RotoruaNew Zealand
| | - Rosie E. Bradshaw
- School of Food Technology and Natural SciencesMassey UniversityPalmerston NorthNew Zealand
- Bioprotection AotearoaLincolnNew Zealand
| |
Collapse
|
2
|
Li Y, Zhang T, Liu X, Pan T, Li J, Yang W, Cao X, Jiang Y, Wang J, Zeng Y, Shi C, Huang H, Wang C, Wang N, Yang G. Eimeria tenella rhoptry neck protein 2 plays a key role in the process of invading the host intestinal epithelium. Vet Parasitol 2024; 332:110322. [PMID: 39366187 DOI: 10.1016/j.vetpar.2024.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The Apicomplexa parasitic phylum rhoptry neck protein 2 (RON2) plays a key role in the process of invading host cells. Eimeria tenella, an intracellular protozoan shares a similar conserved invasion pattern. However, whether E. tenella RON2 participates in the process of invading the host intestinal epithelium is poorly understood. In this study, the sequence of EtRON2 was analyzed and expressed. The expression of the truncated extracellular N-terminal fragment of EtRON2 (403-700 aa, designated EtRON2403-700) with a molecular mass of 38.3 kDa. EtRON2 in the sporozoite protein was detected at 151.4 kDa by rabbit anti-rEtRON2403-700 antibody. Immunofluorescence results showed that EtRON2 was mainly localized to the nucleus and apex of the E. tenella sporozoite. qPCR results showed that the highest expression level of EtRON2 was detected in sporulated oocysts compared with other developmental stages of E. tenella. In vitro invasion inhibition assays showed that the capacity of sporozoites to invade DF-1 cells was significantly inhibited after pretreatment with the rabbit anti-rEtRON2403-700 antibody. Silencing the EtRON2 gene by RNA interference (RNAi) significantly inhibited EtRON2 expression and significantly reduced the invasion of DF-1 cells by sporozoites. In vivo experiments revealed a significant decrease parasite burden and oocyst outputs in chicks after infection with EtRON2 gene-silenced sporozoites by cloacal inoculation. Recombinant EtRON2403-700 (rEtRON2403-700) immunizes chicks effectively against E. tenella infection by inducing humoral immunity and upregulating IFN-γ and CD8+ T lymphocytes. Furthermore, chicks exhibited increased relative weight gain rates, lower cecum lesion scores, and reduced oocyst outputs during the E. tenella challenge. H&E staining showed that the cecum tissue of chicks immunized with rEtRON2403-700 showed relatively mild histopathological changes. In conclusion, the results of this study demonstrated that EtRON2 plays a key role in E. tenella invasion of the host intestinal epithelium and provides a potential target for vaccines against E. tenella infection.
Collapse
Affiliation(s)
- Yanning Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Tongxuan Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Xuanrui Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Weng S, Tian E, Gao M, Zhang S, Yang G, Zhou B. Eimeria: Navigating complex intestinal ecosystems. PLoS Pathog 2024; 20:e1012689. [PMID: 39576763 PMCID: PMC11584145 DOI: 10.1371/journal.ppat.1012689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Eimeria is an intracellular obligate apicomplexan parasite that parasitizes the intestinal epithelial cells of livestock and poultry, exhibiting strong host and tissue tropism. Parasite-host interactions involve complex networks and vary as the parasites develop in the host. However, understanding the underlying mechanisms remains a challenge. Acknowledging the lack of studies on Eimeria invasion mechanism, we described the possible invasion process through comparative analysis with other apicomplexan parasites and explored the fact that parasite-host interactions serve as a prerequisite for successful recognition, penetration of the intestinal mechanical barrier, and completion of the invasion. Although it is recognized that microbiota can enhance the host immune capacity to resist Eimeria invasion, changes in the microenvironment can, in turn, contribute to Eimeria invasion and may be associated with reduced immune capacity. We also discuss the immune evasion strategies of Eimeria, emphasizing that the host employs sophisticated immune regulatory mechanisms to suppress immune evasion by parasites, thereby sustaining a balanced immune response. This review aims to deepen our understanding of Eimeria-host interactions, providing a theoretical basis for the study of the pathogenicity of Eimeria and the development of novel anticoccidial drugs.
Collapse
Affiliation(s)
- Shengjie Weng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Meng Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Siyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Guodong Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Bianhua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| |
Collapse
|
4
|
Zhang T, Qu H, Zheng W, Zhang Y, Li Y, Pan T, Li J, Yang W, Cao X, Jiang Y, Wang J, Zeng Y, Shi C, Huang H, Wang C, Yang G, Zhang J, Wang N. Oral vaccination with a recombinant Lactobacillus plantarum expressing the Eimeria tenella rhoptry neck 2 protein elicits protective immunity in broiler chickens infected with Eimeria tenella. Parasit Vectors 2024; 17:277. [PMID: 38943202 PMCID: PMC11212160 DOI: 10.1186/s13071-024-06355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Chicken coccidiosis is a protozoan disease that leads to considerable economic losses in the poultry industry. Live oocyst vaccination is currently the most effective measure for the prevention of coccidiosis. However, it provides limited protection with several drawbacks, such as poor immunological protection and potential reversion to virulence. Therefore, the development of effective and safe vaccines against chicken coccidiosis is still urgently needed. METHODS In this study, a novel oral vaccine against Eimeria tenella was developed by constructing a recombinant Lactobacillus plantarum (NC8) strain expressing the E. tenella RON2 protein. We administered recombinant L. plantarum orally at 3, 4 and 5 days of age and again at 17, 18 and 19 days of age. Meanwhile, each chick in the commercial vaccine group was immunized with 3 × 102 live oocysts of coccidia. A total of 5 × 104 sporulated oocysts of E. tenella were inoculated in each chicken at 30 days. Then, the immunoprotection effect was evaluated after E. tenella infection. RESULTS The results showed that the proportion of CD4+ and CD8+ T cells, the proliferative ability of spleen lymphocytes, inflammatory cytokine levels and specific antibody titers of chicks immunized with recombinant L. plantarum were significantly increased (P < 0.05). The relative body weight gains were increased and the number of oocysts per gram (OPG) was decreased after E. tenella challenge. Moreover, the lesion scores and histopathological cecum sections showed that recombinant L. plantarum can significantly relieve pathological damage in the cecum. The ACI was 170.89 in the recombinant L. plantarum group, which was higher than the 150.14 in the commercial vaccine group. CONCLUSIONS These above results indicate that L. plantarum expressing RON2 improved humoral and cellular immunity and enhanced immunoprotection against E. tenella. The protective efficacy was superior to that of vaccination with the commercial live oocyst vaccine. This study suggests that recombinant L. plantarum expressing the RON2 protein provides a promising strategy for vaccine development against coccidiosis.
Collapse
Affiliation(s)
- Tongxuan Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Hangfan Qu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Zheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yanan Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yanning Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Jingwei Zhang
- College of Foreign Languages, Jilin Agricultural University, Changchun, 130118, China.
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Zhang Y, Lu M, Zhang Z, Huang X, Huang J, Liu J, Huang J, Song X, Xu L, Yan R, Li X. The microneme adhesive repeat domain of MIC3 protein determined the site specificity of Eimeria acervulina, Eimeria maxima, and Eimeria mitis. Front Immunol 2023; 14:1291379. [PMID: 38022512 PMCID: PMC10663340 DOI: 10.3389/fimmu.2023.1291379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the determinants of host and tissue tropisms among parasites of veterinary and medical importance has long posed a substantial challenge. Among the seven species of Eimeria known to parasitize the chicken intestine, a wide variation in tissue tropisms has been observed. Prior research suggested that microneme protein (MIC) composed of microneme adhesive repeat (MAR) domain responsible for initial host cell recognition and attachment likely dictated the tissue tropism of Eimeria parasites. This study aimed to explore the roles of MICs and their associated MARs in conferring site-specific development of E. acervuline, E. maxima, and E. mitis within the host. Immunofluorescence assays revealed that MIC3 of E. acervuline (EaMIC3), MIC3 of E. maxima (EmMIC3), MIC3 of E. mitis (EmiMIC3), MAR3 of EaMIC3 (EaMIC3-MAR3), MAR2 of EmMIC3 (EmMIC3-MAR2), and MAR4 of EmiMIC3 (EmiMIC3-MAR4), exhibited binding capabilities to the specific intestinal tract where these parasites infect. In contrast, the invasion of sporozoites into host intestinal cells could be significantly inhibited by antibodies targeting EaMIC3, EmMIC3, EmiMIC3, EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4. Substitution experiments involving MAR domains highlighted the crucial roles of EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 in governing interactions with host ligands. Furthermore, animal experiments substantiated the significant contribution of EmiMIC3, EmiMIC3-MAR4, and their polyclonal antibodies in conferring protective immunity to Eimeria-affiliated birds. In summary, EaMIC3, EmMIC3, and EmiMIC3 are the underlying factors behind the diverse tissue tropisms exhibited by E. acervuline, E. maxima, and E. mitis, and EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 are the major determinants of MIC-mediated tissue tropism of each parasite. The results illuminated the molecular basis of the modes of action of Eimeria MICs, thereby facilitating an understanding and rationalization of the marked differences in tissue tropisms among E. acervuline, E. maxima, and E. mitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiangrui Li
- The Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Wang Y, Zhang Q, Zhang W, Chen J, Dai J, Zhou X. A conserved protein of Babesia microti elicits partial protection against Babesia and Plasmodium infection. Parasit Vectors 2023; 16:306. [PMID: 37649042 PMCID: PMC10469411 DOI: 10.1186/s13071-023-05825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/28/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The protozoan parasite Babesia microti that causes the zoonotic disease babesiosis resides in the erythrocytes of its mammalian host during its life-cycle. No effective vaccines are currently available to prevent Babesia microti infections. METHODS We previously identified a highly seroactive antigen, named Bm8, as a B. microti conserved erythrocyte membrane-associated antigen, by high-throughput protein chip screening. Bioinformatic and phylogenetic analysis showed that this membrane-associated protein is conserved among apicomplexan hemoprotozoa, such as members of genera Babesia, Plasmodium and Theileria. We obtained the recombinant protein Bm8 (rBm8) by prokaryotic expression and purification. RESULTS Immunofluorescence assays confirmed that Bm8 and its Plasmodium homolog were principally localized in the cytoplasm of the parasite. rBm8 protein was specifically recognized by the sera of mice infected with B. microti or P. berghei. Also, mice immunized with Bm8 polypeptide had a decreased parasite burden after B. microti or P. berghei infection. CONCLUSIONS Passive immunization with Bm8 antisera could protect mice against B. microti or P. berghei infection to a certain extent. These results lead us to hypothesize that the B. microti conserved erythrocyte membrane-associated protein Bm8 could serve as a novel broad-spectrum parasite vaccine candidate since it elicits a protective immune response against Babesiosis and Plasmodium infection.
Collapse
Affiliation(s)
- Yao Wang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Qianqian Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Wanruo Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Junhu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China (NHC), World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China.
| | - Xia Zhou
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
7
|
Wang J, Chen K, Ren Q, Zhang S, Yang J, Wang Y, Nian Y, Li X, Liu G, Luo J, Yin H, Guan G. Comparative genomics reveals unique features of two Babesia motasi subspecies: Babesia motasi lintanensis and Babesia motasi hebeiensis. Int J Parasitol 2023; 53:265-283. [PMID: 37004737 DOI: 10.1016/j.ijpara.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 04/03/2023]
Abstract
Parasites of the Babesia genus are prevalent worldwide and infect a wide diversity of domestic animals and humans. Herein, using Oxford Nanopore Technology and Illumina sequencing technologies, we sequenced two Babesia sub-species, Babesia motasi lintanensis and Babesia motasi hebeiensis. We identified 3,815 one-to-one ortholog genes that are specific to ovine Babesia spp. Phylogenetic analysis reveals that the two B. motasi subspecies form a distinct clade from other Piroplasma spp. Consistent with their phylogenetic position, comparative genomic analysis reveals that these two ovine Babesia spp. share higher colinearity with Babesia bovis than with Babesia microti. Concerning the speciation date, B. m. lintanensis split from B. m. hebeiensis approximately 17 million years ago. Genes correlated to transcription, translation, protein modification and degradation, as well as differential/specialized gene family expansions in these two subspecies may favor adaptation to vertebrate and tick hosts. The close relationship between B. m. lintanensis and B. m. hebeiensis is underlined by a high degree of genomic synteny. Compositions of most invasion, virulence, development, and gene transcript regulation-related multigene families, including spherical body protein, variant erythrocyte surface antigen, glycosylphosphatidylinositol anchored proteins, and transcription factor Apetala 2 genes, is largely conserved, but in contrast to this conserved situation, we observe major differences in species-specific genes that may be involved in multiple functions in parasite biology. For the first time in Babesia spp., we find abundant fragments of long terminal repeat-retrotransposons in these two species. We provide fundamental information to characterize the genomes of B. m. lintanensis and B. m. hebeiensis, providing insights into the evolution of B. motasi group parasites.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Shangdi Zhang
- Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Yanbo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Yueli Nian
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| |
Collapse
|
8
|
Invasion of Toxoplasma gondii bradyzoites: Molecular dissection of the moving junction proteins and effective vaccination targets. Proc Natl Acad Sci U S A 2023; 120:e2219533120. [PMID: 36693095 PMCID: PMC9945962 DOI: 10.1073/pnas.2219533120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Toxoplasmosis is a neglected parasitic disease necessitating public health control. Host cell invasion by Toxoplasma occurs at different stages of the parasite's life cycle and is crucial for survival and establishment of infection. In tachyzoites, which are responsible for acute toxoplasmosis, invasion involves the formation of a molecular bridge between the parasite and host cell membranes, referred to as the moving junction (MJ). The MJ is shaped by the assembly of AMA1 and RON2, as part of a complex involving additional RONs. While this essential process is well characterized in tachyzoites, the invasion process remains unexplored in bradyzoites, which form cysts and are responsible for chronic toxoplasmosis and contribute to the dissemination of the parasite between hosts. Here, we show that bradyzoites invade host cells in an MJ-dependent fashion but differ in protein composition from the tachyzoite MJ, relying instead on the paralogs AMA2 and AMA4. Functional characterization of AMA4 reveals its key role for cysts burden during the onset of chronic infection, while being dispensable for the acute phase. Immunizations with AMA1 and AMA4, alone or in complex with their rhoptry neck respective partners RON2 and RON2L1, showed that the AMA1-RON2 pair induces strong protection against acute and chronic infection, while the AMA4-RON2L1 complex targets more selectively the chronic form. Our study provides important insights into the molecular players of bradyzoite invasion and indicates that invasion of cyst-forming bradyzoites contributes to cyst burden. Furthermore, we validate AMA-RON complexes as potential vaccine candidates to protect against toxoplasmosis.
Collapse
|
9
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
10
|
Arranz-Solís D, Saeij JPJ. New Avenues to Design Toxoplasma Vaccines Based on Oocysts and Cysts. Front Immunol 2022; 13:910961. [PMID: 35734184 PMCID: PMC9207213 DOI: 10.3389/fimmu.2022.910961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Toxoplasmosis is a worldwide disease affecting all warm-blooded animals, including humans. Vaccination strategies aimed at inducing an efficient immune response while preventing transmission have been attempted in the past. While many different approaches can partially protect immunized animals against subsequent infections, full and lasting protection is rarely attained and only with live-attenuated vaccines. In addition, vaccines based on mutant strains that are deficient in forming the chronic phase of the parasite (such as Toxovax™) cannot be extensively used due to their zoonotic potential and the possibility of reversion to virulent phenotypes. An increasing number of studies using emerging genetic-engineering tools have been conducted to design novel vaccines based on recombinant proteins, DNA or delivery systems such as nanoparticles. However, these are usually less efficient due to their antigenic simplicity. In this perspective article we discuss potential target genes and novel strategies to generate live-attenuated long-lasting vaccines based on tissue cysts and oocysts, which are the environmentally resistant chronic forms of Toxoplasma. By selectively disrupting genes important for parasite dissemination, cyst formation and/or sporozoite invasion, alone or in combination, a vaccine based on a live-attenuated strain that elicits a protective immune response while preventing the transmission of Toxoplasma could be created. Finally, further improvements of protocols to generate Toxoplasma sexual stages in vitro might lead to the production of oocysts from such a strain without the need for using mice or cats.
Collapse
Affiliation(s)
| | - Jeroen P. J. Saeij
- Pathology, Microbiology and Immunology department, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| |
Collapse
|
11
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome sequence analysis of Eimeria necatrix unsporulated oocysts and sporozoites identifies genes involved in cellular invasion. Vet Parasitol 2021; 296:109480. [PMID: 34120030 DOI: 10.1016/j.vetpar.2021.109480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022]
Abstract
Eimeria necatrix is one of the most pathogenic chicken coccidia and causes avian coccidiosis, an enteric disease of major economic importance worldwide. Eimeria parasites have complex developmental life cycles, with an exogenous phase in the environment and an endogenous phase in the chicken intestine. Oocysts excreted by chickens rapidly undergo meiosis and cell division to form eight haploid sporozoites (SZ). SZ liberated from sporocysts in the chicken intestine migrate to their preferred site of development to initiate cellular invasion. To date, almost nothing is known about the proteins that mediate parasite invasion in E. necatrix. In order to discover genes with functions involved in cellular invasion, the transcriptome profiles of E. necatrix unsporulated oocysts (UO) and SZ were analyzed using a combination of third-generation single-molecule real-time sequencing (TGS) and second-generation sequencing (SGS) followed by qRT-PCR validation. Correction of TGS long reads by SGS short reads resulted in 34,932 (UO) and 23,040 (SZ) consensus isoforms. After subsequent assembly, a total of 4949 and 4254 genes were identified from UO and SZ libraries, respectively. A total of 8376 genes were identified as differentially expressed genes (DEGs) between SZ and UO. Compared to UO, 4057 genes were upregulated and 4319 genes were downregulated in SZ. Approximately 1399 and 1758 genes were defined as stage-specific genes in SZ and UO, respectively. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 2978 upregulated SZ genes were clustered into 29 GO terms, and 857 upregulated SZ genes were associated with 26 KEGG pathways. We also predicted a further 50 upregulated SZ genes and 73 upregulated UO genes encoding microneme proteins, apical membrane antigens, rhoptry neck proteins, rhoptry proteins, dense granule proteins, heat shock proteins, calcium-dependent protein kinases, cyclin-dependent kinases, cGMP-dependent protein kinase, and glycosylphosphatidylinositol-anchored surface antigens. Our data reveal new features of the E. necatrix transcriptional landscape and provide resources for the development of novel vaccine candidates against E. necatrix infection.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China.
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Ben Chaabene R, Lentini G, Soldati-Favre D. Biogenesis and discharge of the rhoptries: Key organelles for entry and hijack of host cells by the Apicomplexa. Mol Microbiol 2021; 115:453-465. [PMID: 33368727 DOI: 10.1111/mmi.14674] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Rhoptries are specialized secretory organelles found in the Apicomplexa phylum, playing a central role in the establishment of parasitism. The rhoptry content includes membranous as well as proteinaceous materials that are discharged into the host cell in a regulated fashion during parasite entry. A set of rhoptry neck proteins form a RON complex that critically participates in the moving junction formation during invasion. Some of the rhoptry bulb proteins are associated with the membranous materials and contribute to the formation of the parasitophorous vacuole membrane while others are targeted into the host cell including the nucleus to subvert cellular functions. Here, we review the recent studies on Toxoplasma and Plasmodium parasites that shed light on the key steps leading to rhoptry biogenesis, trafficking, and discharge.
Collapse
Affiliation(s)
- Rouaa Ben Chaabene
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Wang Q, Zhu S, Zhao Q, Huang B, Yu S, Yu Y, Liang S, Wang H, Zhao H, Han H, Dong H. Identification and Characterization of a Novel Apical Membrane Antigen 3 in Eimeria tenella. J Eukaryot Microbiol 2021; 68:e12836. [PMID: 33289220 DOI: 10.1111/jeu.12836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Eimeria tenella is an obligate intracellular parasite in the phylum Apicomplexa. As described for other members of Apicomplexa, apical membrane antigen 1 (AMA1) has been shown to be critical for sporozoite invasion of host cells by E. tenella. Recently, an E. tenella paralogue of AMA1 (EtAMA1), dubbed sporoAMA1 (EtAMA3), was identified in proteomic and transcriptomic analyses of E. tenella, but not further characterized. Here, we show that EtAMA3 is a type I integral membrane protein that has 24% -38% identity with other EtAMAs. EtAMA3 has the same pattern of Cys residues in domains I and II of AMA1 orthologs from apicomplexan parasites, but high variance in domain III, with all six invariant Cys residues absent. EtAMA3 expression was developmentally regulated at the mRNA and protein levels. EtAMA3 protein was detected in sporulated oocysts and sporozoites, but not in the unsporulated oocysts or second-generation merozoites. EtAMA3 is secreted by micronemes and is primarily localized to the apical end of sporozoites during host-cell invasion. Additionally, pretreatment of sporozoites with rEtAMA3-specific antibodies substantially impeded their invasion into host cells. These results suggest EtAMA3 is a sporozoite-specific protein that is involved in host-cell sporozoite invasion.
Collapse
Affiliation(s)
- Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| |
Collapse
|
14
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
15
|
Tartarelli I, Tinari A, Possenti A, Cherchi S, Falchi M, Dubey JP, Spano F. During host cell traversal and cell-to-cell passage, Toxoplasma gondii sporozoites inhabit the parasitophorous vacuole and posteriorly release dense granule protein-associated membranous trails. Int J Parasitol 2020; 50:1099-1115. [PMID: 32882286 DOI: 10.1016/j.ijpara.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii has a worldwide distribution and infects virtually all warm-blooded animals, including humans. Ingestion of the environmentally resistant oocyst stage, excreted only in the feces of cats, is central to transmission of this apicomplexan parasite. There is vast literature on the host and T. gondii tachyzoite (proliferative stage of the parasite) but little is known of the host-parasite interaction and conversion of the free-living stage (sporozoite inside the oocyst) to the parasitic stage. Here, we present events that follow invasion of host cells with T. gondii sporozoites by using immunofluorescence (IF) and transmission electron microscopy (TEM). Several human type cell cultures were infected with T. gondii sporozoites of the two genotypes (Type II, ME49 and Type III, VEG) most prevalent worldwide. For the first known time, using anti-rhoptry neck protein 4 (RON4) antibodies, the moving junction was visualized in sporozoites during the invasion process and shortly after its completion. Surprisingly, IF and TEM evaluation revealed that intracellular sporozoites release, at their posterior end, long membranous tails, herein named sporozoite-specific trails (SSTs). Differential permeabilization and IF experiments showed that the SSTs are associated with several dense granule proteins (GRAs) and that their membranous component is of parasite origin. Furthermore, TEM observations demonstrated that SST-associated sporozoites are delimited by a typical parasitophorous vacuole, which is retained during parasite exit from the host cell and during cell-to-cell passage. Our data strongly suggest that host cell traversal by T. gondii sporozoites relies on a novel force-producing mechanism, based on the massive extrusion at the parasite posterior pole of GRA-associated membranous material derived from the same pool of membranes forming the intravacuolar network.
Collapse
Affiliation(s)
- Irene Tartarelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Tinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessia Possenti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Simona Cherchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Jitender P Dubey
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland 20705, United States
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
16
|
Wang H, Wang Y, Huang J, Xu B, Chen J, Dai J, Zhou X. Babesia microti Protein BmSP44 Is a Novel Protective Antigen in a Mouse Model of Babesiosis. Front Immunol 2020; 11:1437. [PMID: 32733477 PMCID: PMC7358449 DOI: 10.3389/fimmu.2020.01437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
Babesiosis caused by Babesia species imposes an increasing threat to public-health and so far, there is no effective vaccine to prevent Babesia infections. Babesia surface antigen may participate in the invasion of erythrocytes. In our previous study, a surface antigen of B. microti merozoites, named as BmSP44 was identified as a dominant reactive antigen by protein microarray screening. To evaluate its potential applications in diagnosis and prevention of Babesiosis, the open reading frame encoding BmSP44 was cloned and the recombinant protein was expressed. In consistent with the protein microarray result, recombinant BmSP44 (rBmSP44) can be recognized by sera from B. microti infected mice. Immunofluorescence assays (IFA) confirmed that BmSP44 is a secreted protein and localized principally in the cytoplasm of the parasites. The parasitemia and Babesia gene copies were lower in mice administered rBmSP44 antisera compared with normal controls. Active immunization with rBmSP44 also afforded protection against B. microti infection. The concentrations of hemoglobin in rBmSP44 immunization group were higher than those in the control group. Importantly, vaccination of mice with rBmSP44 resulted in a Th1/Th2 mixed immune response with significantly elevated IL-10 and IFN-γ levels during the early stage of infection. Taken together, our results indicated that rBmSP44 can induce a protective immune response against Babesia infection. Thus, BmSP44 can be used as both a diagnosis marker and a vaccine candidate.
Collapse
Affiliation(s)
- Hui Wang
- School of Biology and Medical Science, Soochow University Medical College, Suzhou, China
| | - Yao Wang
- School of Biology and Medical Science, Soochow University Medical College, Suzhou, China
| | - Jilei Huang
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, China
| | - Bin Xu
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, China
| | - Junhu Chen
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xia Zhou
- School of Biology and Medical Science, Soochow University Medical College, Suzhou, China
| |
Collapse
|
17
|
Wilson SK, Heckendorn J, Martorelli Di Genova B, Koch LL, Rooney PJ, Morrissette N, Lebrun M, Knoll LJ. A Toxoplasma gondii patatin-like phospholipase contributes to host cell invasion. PLoS Pathog 2020; 16:e1008650. [PMID: 32628723 PMCID: PMC7365478 DOI: 10.1371/journal.ppat.1008650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 07/16/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of any warm-blooded animal. In a previous screen to identify virulence determinants, disruption of gene TgME49_305140 generated a T. gondii mutant that could not establish a chronic infection in mice. The protein product of TgME49_305140, here named TgPL3, is a 277 kDa protein with a patatin-like phospholipase (PLP) domain and a microtubule binding domain. Antibodies generated against TgPL3 show that it is localized to the apical cap. Using a rapid selection FACS-based CRISPR/Cas-9 method, a TgPL3 deletion strain (ΔTgPL3) was generated. ΔTgPL3 parasites have defects in host cell invasion, which may be caused by reduced rhoptry secretion. We generated complementation clones with either wild type TgPL3 or an active site mutation in the PLP domain by converting the catalytic serine to an alanine, ΔTgPL3::TgPL3S1409A (S1409A). Complementation of ΔTgPL3 with wild type TgPL3 restored all phenotypes, while S1409A did not, suggesting that phospholipase activity is necessary for these phenotypes. ΔTgPL3 and S1409A parasites are also virtually avirulent in vivo but induce a robust antibody response. Vaccination with ΔTgPL3 and S1409A parasites protected mice against subsequent challenge with a lethal dose of Type I T. gondii parasites, making ΔTgPL3 a compelling vaccine candidate. These results demonstrate that TgPL3 has a role in rhoptry secretion, host cell invasion and survival of T. gondii during acute mouse infection.
Collapse
Affiliation(s)
- Sarah K. Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | | | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Lindsey L. Koch
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Peggy J. Rooney
- Stratatech Corporation, Charmany Drive, Madison, Wisconsin, United States of America
| | - Naomi Morrissette
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | | | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Arenas AF, Arango-Plaza N, Arenas JC, Salcedo GE. Time-Frequency Approach Applied to Finding Interaction Regions in Pathogenic Proteins. Bioinform Biol Insights 2019; 13:1177932219850172. [PMID: 31210729 PMCID: PMC6552352 DOI: 10.1177/1177932219850172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/15/2022] Open
Abstract
Protein-protein interactions govern all molecular processes for living organisms, even those involved in pathogen infection. Pathogens such as virus, bacteria, and parasites contain proteins that help the pathogen to attach, penetrate, and settle inside the target cell. Thus, it is necessary to know the regions in pathogenic proteins that interact with host cell receptors. Currently, powerful pathogen databases are available and many pathogenic proteins have been recognized, but many pathogenic proteins have not been characterized. This work developed a program in MATLAB environment based on the time-frequency analysis to recognize important sites in proteins. Our program highlights the highest energy patches in proteins from their time-frequency distribution and matches the corresponding frequency. We sought to know if this approach is able to recognize stretches residues related to interaction. Our approach was applied to five study cases from pathogenic co-crystallized structures that have been well characterized. We searched the frequencies that characterize interaction regions in pathogenic proteins and with this information tried to identify new interaction patches in either paralogs or orthologs. We found that our program generates a well-interpretable graphic under several descriptors that can show important regions in proteins even those related to interaction. We propose that this MATLAB program could be used as a tool to explore outstanding regions in uncharacterized proteins.
Collapse
Affiliation(s)
- Ailan F Arenas
- Grupo de Estudio en Parasitología Molecular (Gepamol), Universidad del Quindío, Armenia, Colombia.,Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Colombia
| | - Nicolás Arango-Plaza
- Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Colombia
| | - Juan Camilo Arenas
- Grupo de Estudio en Parasitología Molecular (Gepamol), Universidad del Quindío, Armenia, Colombia.,Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Colombia
| | - Gladys E Salcedo
- Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
19
|
Zhu W, Li J, Pappoe F, Shen J, Yu L. Strategies Developed by Toxoplasma gondii to Survive in the Host. Front Microbiol 2019; 10:899. [PMID: 31080445 PMCID: PMC6497798 DOI: 10.3389/fmicb.2019.00899] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
One of the most successful intracellular parasites, Toxoplasma gondii has developed several strategies to avoid destruction by the host. These include approaches such as rapid and efficient cell invasion to avoid phagocytic engulfment, negative regulation of the canonical CD40-CD40L-mediated autophagy pathway, impairment of the noncanonical IFN-γ-dependent autophagy pathway, and modulation of host cell survival and death to obtain lifelong parasite survival. Different virulent strains have even evolved different ways to cope with and evade destruction by the host. This review aims to illustrate every aspect of the game between the host and Toxoplasma during the process of infection. A better understanding of all aspects of the battle between Toxoplasma and its hosts will be useful for the development of better strategies and drugs to control the parasite.
Collapse
Affiliation(s)
- Wanbo Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China.,Graduate School of Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Jingyang Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China.,The Clinical Laboratory of the Third People's Hospital of Heifei, Hefei, China
| | - Faustina Pappoe
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Sivakumar T, Tuvshintulga B, Zhyldyz A, Kothalawala H, Yapa PR, Kanagaratnam R, Vimalakumar SC, Abeysekera TS, Weerasingha AS, Yamagishi J, Igarashi I, Silva SSP, Yokoyama N. Genetic Analysis of Babesia Isolates from Cattle with Clinical Babesiosis in Sri Lanka. J Clin Microbiol 2018; 56:e00895-18. [PMID: 30158190 PMCID: PMC6204690 DOI: 10.1128/jcm.00895-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/18/2018] [Indexed: 11/20/2022] Open
Abstract
Bovine babesiosis is a serious threat to the cattle industry. We prepared blood DNA samples from 13 cattle with clinical babesiosis from the Badulla (n = 8), Jaffna (n = 3), and Kilinochchi (n = 2) districts in Sri Lanka. These DNA samples tested positive in PCR assays specific for Babesiabovis (n = 9), Babesia bigemina (n = 9), and Babesiaovata (n = 1). Twelve cattle were positive for B. bovis and/or B. bigemina One cow was negative for the tested Babesia species but was positive for Babesia on microscopic examination; the phylogenetic positions of 18S rRNA and cytochrome oxidase subunit III gene sequences suggested that the cow was infected with Babesia sp. Mymensingh, which was recently reported from a healthy cow in Bangladesh. We then developed a novel Babesia sp. Mymensingh-specific PCR assay and obtained positive results for one other sample. Analysis of gene sequences from the cow with positive B. ovata-specific PCR results demonstrated that the animal was infected not with B. ovata but with Babesia sp. Hue-1, which was recently reported from asymptomatic cattle in Vietnam. The virulence of Babesia sp. Hue-1 is unclear, as the cow was coinfected with B. bovis and B. bigemina However, Babesia sp. Mymensingh probably causes severe clinical babesiosis, as it was the sole Babesia species detected in a clinical case. The present study revealed the presence of two bovine Babesia species not previously reported in Sri Lanka, plus the first case of severe bovine babesiosis caused by a Babesia species other than B. bovis, B. bigemina, and Babesiadivergens.
Collapse
Affiliation(s)
- Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- Veterinary Research Institute, Peradeniya, Sri Lanka
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Atambekova Zhyldyz
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | | | | | | | | | | | - Junya Yamagishi
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| |
Collapse
|
21
|
Morlon-Guyot J, El Hajj H, Martin K, Fois A, Carrillo A, Berry L, Burchmore R, Meissner M, Lebrun M, Daher W. A proteomic analysis unravels novel CORVET and HOPS proteins involved in Toxoplasma gondii
secretory organelles biogenesis. Cell Microbiol 2018; 20:e12870. [DOI: 10.1111/cmi.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Hiba El Hajj
- Departments of Internal Medicine and Experimental Pathology, Immunology and Microbiology; American University of Beirut; Beirut Lebanon
| | - Kevin Martin
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Adrien Fois
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Amandine Carrillo
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | | | - Markus Meissner
- Wellcome Centre for Molecular Parasitology; University of Glasgow; Glasgow UK
- Department of Veterinary Sciences, Experimental Parasitology; Ludwig-Maximilians-Universität München; Munich Germany
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| |
Collapse
|
22
|
Development of cross-protective Eimeria-vectored vaccines based on apical membrane antigens. Int J Parasitol 2018. [DOI: 10.1016/j.ijpara.2018.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Guérin A, El Hajj H, Penarete-Vargas D, Besteiro S, Lebrun M. RON4 L1 is a new member of the moving junction complex in Toxoplasma gondii. Sci Rep 2017; 7:17907. [PMID: 29263399 PMCID: PMC5738351 DOI: 10.1038/s41598-017-18010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/05/2017] [Indexed: 12/02/2022] Open
Abstract
Apicomplexa parasites, including Toxoplasma and Plasmodium species, possess a unique invasion mechanism that involves a tight apposition between the parasite and the host plasma membranes, called “moving junction” (MJ). The MJ is formed by the assembly of the microneme protein AMA1, exposed at the surface of the parasite, and the parasite rhoptry neck (RON) protein RON2, exposed at the surface of the host cell. In the host cell, RON2 is associated with three additional parasite RON proteins, RON4, RON5 and RON8. Here we describe RON4L1, an additional member of the MJ complex in Toxoplasma. RON4L1 displays some sequence similarity with RON4 and is cleaved at the C-terminal end before reaching the rhoptry neck. Upon secretion during invasion, RON4L1 is associated with MJ and targeted to the cytosolic face of the host membrane. We generated a RON4L1 knock-out cell line and showed that it is not essential for the lytic cycle in vitro, although mutant parasites kill mice less efficiently. Similarly to RON8, RON4L1 is a coccidian-specific protein and its traffic to the MJ is not affected in absence of RON2, RON4 and RON5, suggesting the co-existence of independent MJ complexes in tachyzoite of Toxoplasma.
Collapse
Affiliation(s)
- Amandine Guérin
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Hiba El Hajj
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, 1107 2020, Lebanon
| | | | | | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France.
| |
Collapse
|
24
|
|
25
|
Parker ML, Ramaswamy R, van Gordon K, Powell CJ, Bosch J, Boulanger MJ. The structure of Plasmodium falciparum 3D7_0606800 reveals a bi-lobed architecture that supports re-annotation as a Venus Flytrap protein. Protein Sci 2017; 26:1878-1885. [PMID: 28681555 DOI: 10.1002/pro.3218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
Plasmodium falciparum, the causative agent of malaria, employs a diverse array of surface displayed proteins to promote dissemination and establish infection in the human host. Of these, Pf3D7_0606800 is highly immunogenic and has been designated a potential top 10 candidate for inclusion in a multicomponent malarial vaccine. The role of Pf3D7_0606800 in parasite biology, however, is unknown and its characterization has been complicated by a lack of sequence identity with proteins of known structure or function. Towards elucidating Pf3D7_0606800 function, we determined its structure to a resolution of 2.35 Å using selenium single wavelength anomalous dispersion. A bi-lobed architecture displays the core structural hallmarks of Venus Flytrap (VFT) proteins prompting us to re-annotate Pf3D7_0606800 as PfVFT1. Structural analysis further revealed an extended inter-lobe groove that, when interrogated by molecular docking, appears well suited to bind peptide-based ligands. Collectively, our structural characterization of the highly antigenic P. falciparum surface protein PfVFT1 provides intriguing functional insight and establishes a structural template that could prove valuable for malaria vaccine engineering studies.
Collapse
Affiliation(s)
- Michelle L Parker
- Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Raghavendran Ramaswamy
- Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Kyle van Gordon
- Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Cameron J Powell
- Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Jürgen Bosch
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio.,InterRayBio, LLC, Baltimore, Maryland
| | - Martin J Boulanger
- Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| |
Collapse
|
26
|
The moving junction protein RON4, although not critical, facilitates host cell invasion and stabilizes MJ members. Parasitology 2017; 144:1490-1497. [DOI: 10.1017/s0031182017000968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SUMMARYToxoplasma gondii is an obligate intracellular parasite of phylum Apicomplexa. To facilitate high-efficiency invasion of host cells, T. gondii secretes various proteins related to the moving junction (MJ) complex from rhoptries and micronemes into the interface between the parasite and host. AMA1/RON2/4/5/8 is an important MJ complex, but its mechanism of assembly remains unclear. In this study, we used the CRISPR-Cas9 system to generate a derivative of T. gondii strain RH with a null mutation in TgRON4, thought to be an essential MJ component. Deficiency of TgRON4 moderately decreased invasion ability relative to that of the wild-type parasite. In addition, expression of the endogenous N-terminal fragment of RON5 decreased in the mutant. Together, the results improve our understanding of the assembly mechanism of the MJ complex of T. gondii and raise the possibility of developing new therapeutic drugs that target this complex.
Collapse
|
27
|
Abstract
The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.
Collapse
Affiliation(s)
| | - John Parkinson
- a Program in Molecular Structure and Function , Hospital for Sick Children , Toronto , Ontario , Canada
- b Departments of Biochemistry, Molecular Genetics and Computer Science , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
28
|
Yang ASP, Lopaticki S, O'Neill MT, Erickson SM, Douglas DN, Kneteman NM, Boddey JA. AMA1 and MAEBL are important for Plasmodium falciparum sporozoite infection of the liver. Cell Microbiol 2017; 19. [PMID: 28371168 DOI: 10.1111/cmi.12745] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA-like protein, merozoite apical erythrocyte-binding ligand (MAEBL). MAEBL-deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.
Collapse
Affiliation(s)
- Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sara M Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Donna N Douglas
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Norman M Kneteman
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Liu Q, Li FC, Zhou CX, Zhu XQ. Research advances in interactions related to Toxoplasma gondii microneme proteins. Exp Parasitol 2017; 176:89-98. [PMID: 28286325 DOI: 10.1016/j.exppara.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii microneme proteins (TgMICs), secreted by micronemes upon contact with host cells, are reported to play important roles in multiple stages of the T. gondii life cycle, including parasite motility, invasion, intracellular survival, and egress from host cells. Meanwhile, during these processes, TgMICs participate in many protein-protein and protein-carbohydrate interactions, such as undergoing proteolytic maturation, binding to aldolase, engaging the host cell receptors and forming the moving junction (MJ), relying on different types of ectodomains, transmembrane (TM) domains and cytoplasmic domains (CDs). In this review, we summarize the research advances in protein-protein and protein-carbohydrate interactions related to TgMICs, and their intimate associations with corresponding biological processes during T. gondii infection, which will contribute to an improved understanding of the molecular pathogenesis of T. gondii infection, and provide a basis for developing effective control strategies against T. gondii.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| | - Fa-Cai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| |
Collapse
|
30
|
Yang ASP, Boddey JA. Molecular mechanisms of host cell traversal by malaria sporozoites. Int J Parasitol 2016; 47:129-136. [PMID: 27825827 DOI: 10.1016/j.ijpara.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022]
Abstract
Malaria is a pernicious infectious disease caused by apicomplexan parasites of the genus Plasmodium. Each year, malaria afflicts over 200million people, causing considerable morbidity, loss to gross domestic product of endemic countries, and more than 420,000 deaths. A central feature of the virulence of malaria parasites is the ability of sporozoite forms injected by a mosquito to navigate from the inoculation site in the skin through host tissues to infect the liver. The ability for sporozoites to traverse through different host cell types is very important for the successful development of parasites within the mammalian host. Over the past decade, our understanding of the role of host cell traversal has become clearer through important studies with rodent models of malaria. However, we still do not understand the stepwise process of host cell entry and exit or know the molecular mechanisms governing each step. We know even less about cell traversal by malaria parasite species that infect humans. Here, we review current knowledge regarding the role and molecular mechanisms of sporozoite cell traversal and highlight recent advances that prompt new ways of thinking about this important process.
Collapse
Affiliation(s)
- Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
31
|
Macrophages facilitate the excystation and differentiation of Toxoplasma gondii sporozoites into tachyzoites following oocyst internalisation. Sci Rep 2016; 6:33654. [PMID: 27641141 PMCID: PMC5027544 DOI: 10.1038/srep33654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/30/2016] [Indexed: 01/23/2023] Open
Abstract
Toxoplasma gondii is a common parasite of humans and animals, which is transmitted via oocysts in cat faeces or tissue cysts in contaminated meat. The robust oocyst and sporocyst walls protect the infective sporozoites from deleterious external attacks including disinfectants. Upon oocyst acquisition, these walls lose their integrity to let the sporozoites excyst and invade host cells following a process that remains poorly understood. Given the resistance of the oocyst wall to digestive enzymes and the ability of oocysts to cause parenteral infections, the present study investigated the possible contribution of macrophages in supporting sporozoite excystation following oocyst internalisation. By using single cell micromanipulations, real-time and time-point imaging techniques, we demonstrated that RAW macrophages could interact rapidly with oocysts and engulfed them by remodelling of their actin cytoskeleton. Internalised oocysts were associated to macrophage acidic compartments and showed evidences of wall disruption. Sporozoites were observed in macrophages containing oocyst remnants or in new macrophages, giving rise to dividing tachyzoites. All together, these results highlight an unexpected role of phagocytic cells in processing T. gondii oocysts, in line with non-classical routes of infection, and open new perspectives to identify chemical factors that lead to oocyst wall disruption under physiological conditions.
Collapse
|