1
|
Liu J, Rogatch A, Williams BR, Freer C, Zuccoli C, Yang J, Kirk ML, Nieter Burgmayer SJ. Molybdenum Cofactor Model Reveals Remarkable Redox Activity at Both Molybdenum and the Pyranopterin Dithiolene Ligand. J Am Chem Soc 2025; 147:15088-15099. [PMID: 40289353 PMCID: PMC12063175 DOI: 10.1021/jacs.4c17577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
The molybdenum (Moco) and tungsten (Tuco) cofactors are uniquely found in pyranopterin dithiolene (PDT) molybdenum and tungsten enzymes, yet the roles of this electronically complex PDT ligand in the catalytic cycles of these enzymes has yet to be revealed. After more than a decade of effort, we have synthesized and characterized a model compound containing a reduced PDT ligand coordinated to a diamagnetic d2 low-spin Mo(4+) ion, mimicking the MoO(PDT) structure common to most Mo enzyme active sites. A combination of 1D and 2D NMR spectroscopies, augmented by molecular geometry optimization computations, confirms that both R,R- and S,S-diastereomers coexist in the synthetic final product. Redox processes at both the Mo ion and the pyranopterin are detected by cyclic voltammetry. The two-electron oxidant DCIP oxidizes the pterin component of the ligand in methanol, whereas no reaction occurs in aprotic acetonitrile. Addition of 1 equiv of the one-electron oxidant Fc+ stoichiometrically oxidizes the Mo(4+) ion to the paramagnetic d1 Mo(5+) species, a result supported by electron paramagnetic resonance (EPR) spectroscopy. However, the addition of more than 1 equiv of Fc+ results in oxidation of the reduced pyranopterin to yield a Mo(4+) complex of the oxidized pyranopterin dithiolene ligand, a result supported by both the cyclic voltammetry and electronic absorption titrations. The concrete examples from these model studies suggest how the unique electronic structure of the PDT ligand in Moco and Tuco may enable variable redox reactivity in enzymatic catalysis, highlighting its role as a complex noninnocent biological ligand.
Collapse
Affiliation(s)
- Jinming Liu
- Department
of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Angelina Rogatch
- Department
of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Benjamin R. Williams
- Department
of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Chelsea Freer
- Department
of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Chiara Zuccoli
- Department
of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Jing Yang
- Department
of Chemistry and Chemical Biology, The University of New Mexico, MSC03
2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United
States
| | - Martin L. Kirk
- Department
of Chemistry and Chemical Biology, The University of New Mexico, MSC03
2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United
States
| | | |
Collapse
|
2
|
Tian B, Wang F, Ran P, Dai L, Lv Y, Sun Y, Mu Z, Sun Y, Tang L, Goddard WA, Ding M. Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation. Nat Commun 2024; 15:10145. [PMID: 39578431 PMCID: PMC11584659 DOI: 10.1038/s41467-024-54318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Electro-selective-oxidation using water as a green oxygen source demonstrates promising potential towards efficient and sustainable chemical upgrading. However, surface micro-kinetics regarding co-adsorption and reaction between organic and oxygen intermediates remain unclear. Here we systematically study the electro-oxidation of aldehydes, alcohols, and amines on Co/Ni-oxyhydroxides with multiple characterizations. Utilizing Fourier transformed alternating current voltammetry (FTacV) measurements, we show the identification and quantification of two key operando parameters (ΔIharmonics/IOER and ΔVharmonics) that can be fundamentally linked to the altered surface coverage ( Δ θ OH * / θ OH * OER ) and the changes in adsorption energy of vital oxygenated intermediates (Δ G OH * EOOR - Δ G OH * OER ), under the influence of organic adsorption/oxidation. Mechanistic analysis based on these descriptors reveals distinct optimal oxyhydroxide surface states for each organics, and elucidates the critical catalyst design principles: balancing organic and M3+δ-OH* coverages and fine-tuning ΔG for key elementary steps, e.g., via precise modulation of chemical compositions, crystallinity, defects, electronic structures, and/or surface bimolecular interactions.
Collapse
Affiliation(s)
- Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Fangyuan Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Pan Ran
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Luhan Dai
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Lv
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxia Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Lingyu Tang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - William A Goddard
- Materials and Process Simulation Center (MSC) and Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, CA, USA
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Baranska N, Jones B, Dowsett MR, Rhodes C, Elton DM, Zhang J, Bond AM, Gavaghan D, Lloyd-Laney HO, Parkin A. Practical Guide to Large Amplitude Fourier-Transformed Alternating Current Voltammetry-What, How, and Why. ACS MEASUREMENT SCIENCE AU 2024; 4:418-431. [PMID: 39184357 PMCID: PMC11342453 DOI: 10.1021/acsmeasuresciau.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 08/27/2024]
Abstract
Fourier-transformed alternating current voltammetry (FTacV) is a technique utilizing a combination of a periodic (frequently sinusoidal) oscillation superimposed onto a staircase or linear potential ramp. The advanced utilization of a large amplitude sine wave induces substantial nonlinear current responses. Subsequent filter processing (via Fourier-transformation, band selection, followed by inverse Fourier-transformation) generates a series of harmonics in which rapid electron transfer processes may be separated from non-Faradaic and competing electron transfer processes with slower kinetics. Thus, FTacV enables the isolation of current associated with redox processes under experimental conditions that would not generate meaningful data using direct current voltammetry (dcV). In this study, the enhanced experimental sensitivity and selectivity of FTacV versus dcV are illustrated in measurements that (i) separate the Faradaic current from background current contributions, (ii) use a low (5 μM) concentration of analyte (exemplified with ferrocene), and (iii) enable discrimination of the reversible [Ru(NH3)6]3+/2+ electron-transfer process from the irreversible reduction of oxygen under a standard atmosphere, negating the requirement for inert gas conditions. The simple, homebuilt check-cell described ensures that modern instruments can be checked for their ability to perform valid FTacV experiments. Detailed analysis methods and open-source data sets that accompany this work are intended to facilitate other researchers in the integration of FTacV into their everyday electrochemical methodological toolkit.
Collapse
Affiliation(s)
- Natalia
G. Baranska
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Bryn Jones
- SciMed, Unit B4, The Embankment Business
Park, Vale Road, Heaton Mersey, Stockport SK4 3GN, United
Kingdom
| | - Mark R. Dowsett
- Alvatek
Ltd.,Unit 11 Westwood
Court, Brunel Road, Southampton SO40 3WX, United Kingdom
| | - Chris Rhodes
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Darrell M. Elton
- School
of Engineering and Mathematical Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Jie Zhang
- School
of Chemistry and the ARC Centre of Excellence for Electromaterials
Science, Monash University, Clayton, Victoria 3800, Australia
| | - Alan M. Bond
- School
of Chemistry and the ARC Centre of Excellence for Electromaterials
Science, Monash University, Clayton, Victoria 3800, Australia
| | - David Gavaghan
- Department
of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Henry O. Lloyd-Laney
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Alison Parkin
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, United Kingdom
| |
Collapse
|
4
|
Burgmayer SJN, Kirk ML. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis. Molecules 2023; 28:7456. [PMID: 38005178 PMCID: PMC10673323 DOI: 10.3390/molecules28227456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The pyranopterin dithiolene ligand is remarkable in terms of its geometric and electronic structure and is uniquely found in mononuclear molybdenum and tungsten enzymes. The pyranopterin dithiolene is found coordinated to the metal ion, deeply buried within the protein, and non-covalently attached to the protein via an extensive hydrogen bonding network that is enzyme-specific. However, the function of pyranopterin dithiolene in enzymatic catalysis has been difficult to determine. This focused account aims to provide an overview of what has been learned from the study of pyranopterin dithiolene model complexes of molybdenum and how these results relate to the enzyme systems. This work begins with a summary of what is known about the pyranopterin dithiolene ligand in the enzymes. We then introduce the development of inorganic small molecule complexes that model aspects of a coordinated pyranopterin dithiolene and discuss the results of detailed physical studies of the models by electronic absorption, resonance Raman, X-ray absorption and NMR spectroscopies, cyclic voltammetry, X-ray crystallography, and chemical reactivity.
Collapse
Affiliation(s)
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
5
|
Bedendi G, De Moura Torquato LD, Webb S, Cadoux C, Kulkarni A, Sahin S, Maroni P, Milton RD, Grattieri M. Enzymatic and Microbial Electrochemistry: Approaches and Methods. ACS MEASUREMENT SCIENCE AU 2022; 2:517-541. [PMID: 36573075 PMCID: PMC9783092 DOI: 10.1021/acsmeasuresciau.2c00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/17/2023]
Abstract
The coupling of enzymes and/or intact bacteria with electrodes has been vastly investigated due to the wide range of existing applications. These span from biomedical and biosensing to energy production purposes and bioelectrosynthesis, whether for theoretical research or pure applied industrial processes. Both enzymes and bacteria offer a potential biotechnological alternative to noble/rare metal-dependent catalytic processes. However, when developing these biohybrid electrochemical systems, it is of the utmost importance to investigate how the approaches utilized to couple biocatalysts and electrodes influence the resulting bioelectrocatalytic response. Accordingly, this tutorial review starts by recalling some basic principles and applications of bioelectrochemistry, presenting the electrode and/or biocatalyst modifications that facilitate the interaction between the biotic and abiotic components of bioelectrochemical systems. Focus is then directed toward the methods used to evaluate the effectiveness of enzyme/bacteria-electrode interaction and the insights that they provide. The basic concepts of electrochemical methods widely employed in enzymatic and microbial electrochemistry, such as amperometry and voltammetry, are initially presented to later focus on various complementary methods such as spectroelectrochemistry, fluorescence spectroscopy and microscopy, and surface analytical/characterization techniques such as quartz crystal microbalance and atomic force microscopy. The tutorial review is thus aimed at students and graduate students approaching the field of enzymatic and microbial electrochemistry, while also providing a critical and up-to-date reference for senior researchers working in the field.
Collapse
Affiliation(s)
- Giada Bedendi
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | - Sophie Webb
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Cécile Cadoux
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Amogh Kulkarni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Selmihan Sahin
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Plinio Maroni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Ross D. Milton
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Matteo Grattieri
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|
6
|
Gates C, Varnum H, Getty C, Loui N, Chen J, Kirk ML, Yang J, Nieter Burgmayer SJ. Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes. Inorg Chem 2022; 61:13728-13742. [PMID: 36000991 PMCID: PMC10544801 DOI: 10.1021/acs.inorgchem.2c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex [TEA][Tp*MoIV(O)(S2BMOPP)] (1) [TEA = tetraethylammonium, Tp* = tris(3,5-dimethylpyrazolyl)hydroborate, and BMOPP = 6-(3-butynyl-2-methyl-2-ol)-2-pivaloyl pterin] is a structural analogue of the molybdenum cofactor common to all pyranopterin molybdenum enzymes because it possesses a pyranopterin-ene-1,2-dithiolate ligand (S2BMOPP) that exists primarily in the ring-closed pyrano structure as a resonance hybrid of ene-dithiolate and thione-thiolate forms. Compound 1, the protonated [Tp*MoIV(O)(S2BMOPP-H)] (1-H) and one-electron-oxidized [Tp*MoV(O)(S2BMOPP)] [1-Mo(5+)] species have been studied using a combination of electrochemistry, electronic absorption, and electron paramagnetic resonance (EPR) spectroscopy. Additional insight into the nature of these molecules has been derived from electronic structure computations. Differences in dithiolene C-S bond lengths correlate with relative contributions from both ene-dithiolate and thione-thiolate resonance structures. Upon protonation of 1 to form 1-H, large spectroscopic changes are observed with transitions assigned as Mo(xy) → pyranopterin metal-to-ligand charge transfer and dithiolene → pyranopterin intraligand charge transfer, respectively, and this underscores a dramatic change in electronic structure between 1 and 1-H. The changes in electronic structure that occur upon protonation of 1 are also reflected in a large >300 mV increase in the Mo(V/IV) redox potential for 1-H, resulting from the greater thione-thiolate resonance contribution and decreased charge donation that stabilize the Mo(IV) state in 1-H with respect to one-electron oxidation. EPR spin Hamiltonian parameters for one-electron-oxidized 1-Mo(5+) and uncyclized [Tp*MoV(O)(S2BDMPP)] [3-Mo(5+)] [BDMPP = 6-(3-butynyl-2,2-dimethyl)-2-pivaloyl pterin] are very similar to each other and to those of [Tp*MoVO(bdt)] (bdt = 1,2-ene-dithiolate). This indicates that the dithiolate form of the ligand dominates at the Mo(V) level, consistent with the demand for greater S → Mo charge donation and a corresponding increase in Mo-S covalency as the oxidation state of the metal is increased. Protonation of 1 represents a simple reaction that models how the transfer of a proton from neighboring acidic amino acid residues to the Mo cofactor at a nitrogen atom within the pyranopterin dithiolene (PDT) ligand in pyranopterin molybdenum enzymes can impact the electronic structure of the Mo-PDT unit. This work also illustrates how pyran ring-chain tautomerization drives changes in resonance contributions to the dithiolene chelate and may adjust the reduction potential of the Mo ion.
Collapse
Affiliation(s)
- Cassandra Gates
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Haley Varnum
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Catherine Getty
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Natalie Loui
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Ju Chen
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | | |
Collapse
|
7
|
Petronek MS, Allen BG, Luthe G, Stolwijk JM. Polyoxometalate Nanoparticles as a Potential Glioblastoma Therapeutic via Lipid-Mediated Cell Death. Int J Mol Sci 2022; 23:ijms23158263. [PMID: 35897839 PMCID: PMC9332768 DOI: 10.3390/ijms23158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Polyoxometalate nanoparticles (POMs) are a class of compounds made up of multiple transition metals linked together using oxygen atoms. POMs commonly include group 6 transition metals, with two of the most common forms using molybdenum and tungsten. POMs are suggested to exhibit antimicrobial effects. In this study, we developed two POM preparations to study anti-cancer activity. We found that Mo-POM (NH4)Mo7O24) and W-POM (H3PW12O40) have anti-cancer effects on glioblastoma cells. Both POMs induced morphological changes marked by membrane swelling and the presence of multinucleated cells that may indicate apoptosis induction along with impaired cell division. We also observed significant increases in lipid oxidation events, suggesting that POMs are redox-active and can catalyze detrimental oxidation events in glioblastoma cells. Here, we present preliminary indications that molybdenum polyoxometalate nanoparticles may act like ferrous iron to catalyze the oxidation of phospholipids. These preliminary results suggest that Mo-POMs (NH4)Mo7O24) and W-POMs (H3PW12O40) may warrant further investigation into their utility as adjunct cancer therapies.
Collapse
Affiliation(s)
- Michael S. Petronek
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242-1181, USA
- Correspondence: (M.S.P.); (J.M.S.); Tel.: +1-(319)-356-8019 (M.S.P.)
| | - Bryan G. Allen
- Spheres4Life B.V., 7521 Enschede, The Netherlands; (B.G.A.); (G.L.)
| | - Gregor Luthe
- Spheres4Life B.V., 7521 Enschede, The Netherlands; (B.G.A.); (G.L.)
| | - Jeffrey M. Stolwijk
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242-1181, USA
- Spheres4Life B.V., 7521 Enschede, The Netherlands; (B.G.A.); (G.L.)
- Correspondence: (M.S.P.); (J.M.S.); Tel.: +1-(319)-356-8019 (M.S.P.)
| |
Collapse
|
8
|
Snitkoff-Sol RZ, Elbaz L. Assessing and measuring the active site density of PGM-free ORR catalysts. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Richardson KH, Seif-Eddine M, Sills A, Roessler MM. Controlling and exploiting intrinsic unpaired electrons in metalloproteins. Methods Enzymol 2022; 666:233-296. [PMID: 35465921 DOI: 10.1016/bs.mie.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electron paramagnetic resonance spectroscopy encompasses a versatile set of techniques that allow detailed insight into intrinsically occurring paramagnetic centers in metalloproteins and enzymes that undergo oxidation-reduction reactions. In this chapter, we discuss the process from isolating the protein to acquiring and analyzing pulse EPR spectra, adopting a practical perspective. We start with considerations when preparing the protein sample, explain techniques and procedures available for determining the reduction potential of the redox-active center of interest and provide details on methodologies to trap a given paramagnetic state for detailed pulse EPR studies, with an emphasis on biochemical and spectroscopic tools available when multiple EPR-active species are present. We elaborate on some of the most commonly used pulse EPR techniques and the choices the user has to make, considering advantages and disadvantages and how to avoid pitfalls. Examples are provided throughout.
Collapse
Affiliation(s)
| | - Maryam Seif-Eddine
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Adam Sills
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Maxie M Roessler
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom.
| |
Collapse
|
10
|
Hille R, Niks D. Application of EPR and related methods to molybdenum-containing enzymes. Methods Enzymol 2022; 666:373-412. [PMID: 35465925 DOI: 10.1016/bs.mie.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A description is provided of the contributions made to our understanding of molybdenum-containing enzymes through the application of electron paramagnetic resonance spectroscopy and related methods, by way of illustrating how these can be applied to better understand enzyme structure and function. An emphasis is placed on the use of EPR to identify both the coordination environment of the molybdenum coordination sphere as well as the structures of paramagnetic intermediates observed transiently in the course of reaction that have led to the elucidation of reaction mechanism.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA, United States.
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, CA, United States
| |
Collapse
|
11
|
Quantifying the electrochemical active site density of precious metal-free catalysts in situ in fuel cells. Nat Catal 2022. [DOI: 10.1038/s41929-022-00748-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Wang P, Chishti AN, Chen P, Lv Z, Tan Y, Zhang H, Zha J, Ma Z, Ni L, Zhang LN, Wei Y. A Keggin-type polyoxomolybdate-based crystalline material formed by hydrothermal transformation: photo/electro-catalytic properties and mechanism study. CrystEngComm 2022. [DOI: 10.1039/d2ce01301k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study constructs a POM-based crystalline material of [(SiMo12O40)Cu6(2,2′-bipy)6(Mo6O22)] (1). The photocatalytic MB degradation and electrocatalytic nitrite reduction properties of complex 1 are systematically studied for the first time.
Collapse
Affiliation(s)
- Peisen Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Aadil Nabi Chishti
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Peng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zengxiang Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yaya Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hanzhi Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Junjie Zha
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lu-nan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yongge Wei
- Key lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
González PJ, Rivas MG, Ferroni FM, Rizzi AC, Brondino CD. Electron transfer pathways and spin–spin interactions in Mo- and Cu-containing oxidoreductases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Caux C, Guigliarelli B, Vivès C, Biaso F, Horeau M, Hassoune H, Petit-Hartlein I, Juillan-Binard C, Torelli S, Fieschi F, Nivière V. Membrane-Bound Flavocytochrome MsrQ Is a Substrate of the Flavin Reductase Fre in Escherichia coli. ACS Chem Biol 2021; 16:2547-2559. [PMID: 34550690 DOI: 10.1021/acschembio.1c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MsrPQ is a new type of methionine sulfoxide reductase (Msr) system found in bacteria. It is specifically involved in the repair of periplasmic methionine residues that are oxidized by hypochlorous acid. MsrP is a periplasmic molybdoenzyme that carries out the Msr activity, whereas MsrQ, an integral membrane-bound hemoprotein, acts as the physiological partner of MsrP to provide electrons for catalysis. Although MsrQ (YedZ) was associated since long with a protein superfamily named FRD (ferric reductase domain), including the eukaryotic NADPH oxidases and STEAP proteins, its biochemical properties are still sparsely documented. Here, we have investigated the cofactor content of the E. coli MsrQ and its mechanism of reduction by the flavin reductase Fre. We showed by electron paramagnetic resonance (EPR) spectroscopy that MsrQ contains a single highly anisotropic low-spin (HALS) b-type heme located on the periplasmic side of the membrane. We further demonstrated that MsrQ holds a flavin mononucleotide (FMN) cofactor that occupies the site where a second heme binds in other members of the FDR superfamily on the cytosolic side of the membrane. EPR spectroscopy indicates that the FMN cofactor can accommodate a radical semiquinone species. The cytosolic flavin reductase Fre was previously shown to reduce the MsrQ heme. Here, we demonstrated that Fre uses the FMN MsrQ cofactor as a substrate to catalyze the electron transfer from cytosolic NADH to the heme. Formation of a specific complex between MsrQ and Fre could favor this unprecedented mechanism, which most likely involves transfer of the reduced FMN cofactor from the Fre active site to MsrQ.
Collapse
Affiliation(s)
- Christelle Caux
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| | - Bruno Guigliarelli
- CNRS, BIP-UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Univ., Marseille 13402, France
| | - Corinne Vivès
- CNRS, CEA, Institut de Biologie Structurale, Univ. Grenoble Alpes, Grenoble 38044, France
| | - Frédéric Biaso
- CNRS, BIP-UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Univ., Marseille 13402, France
| | - Marius Horeau
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| | - Hawra Hassoune
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| | | | - Céline Juillan-Binard
- CNRS, CEA, Institut de Biologie Structurale, Univ. Grenoble Alpes, Grenoble 38044, France
| | - Stephane Torelli
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| | - Franck Fieschi
- CNRS, CEA, Institut de Biologie Structurale, Univ. Grenoble Alpes, Grenoble 38044, France
| | - Vincent Nivière
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| |
Collapse
|
15
|
Gundry L, Guo SX, Kennedy G, Keith J, Robinson M, Gavaghan D, Bond AM, Zhang J. Recent advances and future perspectives for automated parameterisation, Bayesian inference and machine learning in voltammetry. Chem Commun (Camb) 2021; 57:1855-1870. [PMID: 33529293 DOI: 10.1039/d0cc07549c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced data analysis tools such as mathematical optimisation, Bayesian inference and machine learning have the capability to revolutionise the field of quantitative voltammetry. Nowadays such approaches can be implemented routinely with widely available, user-friendly modern computing languages, algorithms and high speed computing to provide accurate and robust methods for quantitative comparison of experimental data with extensive simulated data sets derived from models proposed to describe complex electrochemical reactions. While the methodology is generic to all forms of dynamic electrochemistry, including the widely used direct current cyclic voltammetry, this review highlights advances achievable in the parameterisation of large amplitude alternating current voltammetry. One significant advantage this technique offers in terms of data analysis is that Fourier transformation provides access to the higher order harmonics that are almost devoid of background current. Perspectives on the technical advances needed to develop intelligent data analysis strategies and make them generally available to users of voltammetry are provided.
Collapse
Affiliation(s)
- Luke Gundry
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| | - Si-Xuan Guo
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| | - Gareth Kennedy
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| | - Jonathan Keith
- School of Mathematics, Monash University, Clayton, Vic. 3800, Australia
| | - Martin Robinson
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - David Gavaghan
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| |
Collapse
|
16
|
Zouraris D, Karantonis A. Determination of kinetic and thermodynamic parameters from large amplitude Fourier transform ac voltammetry of immobilized electroactive species. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Kirk ML, Kc K. Molybdenum and Tungsten Cofactors and the Reactions They Catalyze. Met Ions Life Sci 2020; 20:/books/9783110589757/9783110589757-015/9783110589757-015.xml. [PMID: 32851830 PMCID: PMC8176780 DOI: 10.1515/9783110589757-015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The last 20 years have seen a dramatic increase in our mechanistic understanding of the reactions catalyzed by pyranopterin Mo and W enzymes. These enzymes possess a unique cofactor (Moco) that contains a novel ligand in bioinorganic chemistry, the pyranopterin ene-1,2-dithiolate. A synopsis of Moco biosynthesis and structure is presented, along with our current understanding of the role Moco plays in enzymatic catalysis. Oxygen atom transfer (OAT) reactivity is discussed in terms of breaking strong metal-oxo bonds and the mechanism of OAT catalyzed by enzymes of the sulfite oxidase (SO) family that possess dioxo Mo(VI) active sites. OAT reactivity is also discussed in members of the dimethyl sulfoxide (DMSO) reductase family, which possess des-oxo Mo(IV) sites. Finally, we reveal what is known about hydride transfer reactivity in xanthine oxidase (XO) family enzymes and the formate dehydrogenases. The formal hydride transfer reactivity catalyzed by xanthine oxidase family enzymes is complex and cleaves substrate C-H bonds using a mechanism that is distinct from monooxygenases. The chapter primarily highlights developments in the field that have occurred since ~2000, which have contributed to our collective structural and mechanistic understanding of the three canonical pyranopterin Mo enzymes families: XO, SO, and DMSO reductase.
Collapse
|
18
|
Ingersol LJ, Yang J, Kc K, Pokhrel A, Astashkin AV, Weiner JH, Johnston CA, Kirk ML. Addressing Ligand-Based Redox in Molybdenum-Dependent Methionine Sulfoxide Reductase. J Am Chem Soc 2020; 142:2721-2725. [PMID: 31989824 DOI: 10.1021/jacs.9b11762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A combination of pulsed EPR, CW EPR, and X-ray absorption spectroscopies has been employed to probe the geometric and electronic structure of the E. coli periplasmic molybdenum-dependent methionine sulfoxide reductase (MsrP). 17O and 1H pulsed EPR spectra show that the as-isolated Mo(V) enzyme form does not possess an exchangeable H2O/OH- ligand bound to Mo as found in the sulfite oxidizing enzymes of the same family. The nature of the unusual CW EPR spectrum has been re-evaluated in light of new data on the MsrP-N45R variant and related small-molecule analogues of the active site. These data point to a novel "thiol-blocked" [(PDT)MoVO(SCys)(thiolate)]- structure, which is supported by new EXAFS data. We discuss these new results in the context of ligand-based and metal-based redox chemistry in the enzymatic oxygen atom transfer reaction.
Collapse
Affiliation(s)
- Laura J Ingersol
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States
| | - Khadanand Kc
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States
| | - Amrit Pokhrel
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States
| | - Andrei V Astashkin
- Department of Chemistry Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Joel H Weiner
- Department of Biochemistry , University of Alberta , 474 Medical Science Building , Edmonton , Alberta T6G 2H7 , Canada
| | - Christopher A Johnston
- Department of Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States
| |
Collapse
|
19
|
Walker LM, Li B, Niks D, Hille R, Elliott SJ. Deconvolution of reduction potentials of formate dehydrogenase from Cupriavidus necator. J Biol Inorg Chem 2019; 24:889-898. [PMID: 31463592 DOI: 10.1007/s00775-019-01701-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
Abstract
The formate dehydrogenase enzyme from Cupriavidus necator (FdsABG) carries out the two-electron oxidation of formate to CO2, but is also capable of reducing CO2 back to formate, a potential biofuel. FdsABG is a heterotrimeric enzyme that performs this transformation using nine redox-active cofactors: a bis(molybdopterin guanine dinucleotide) (bis-MGD) at the active site coupled to seven iron-sulfur clusters, and one equivalent of flavin mononucleotide (FMN). To better understand the pathway of electron flow in FdsABG, the reduction potentials of the various cofactors were examined through direct electrochemistry. Given the redundancy of cofactors, a truncated form of the FdsA subunit was developed that possesses only the bis-MGD active site and a singular [4Fe-4S] cluster. Electrochemical characterization of FdsABG compared to truncated FdsA shows that the measured reduction potentials are remarkably similar despite the truncation with two observable features at - 265 mV and - 455 mV vs SHE, indicating that the voltammetry of the truncated enzyme is representative of the reduction potentials of the intact heterotrimer. By producing truncated FdsA without the necessary maturation factors required for bis-MGD insertion, a form of the truncated FdsA that possesses only the [4Fe-4S] was produced, which gives a single voltammetric feature at - 525 mV, allowing the contributions of the molybdenum cofactor to be associated with the observed feature at - 265 mV. This method allowed for the deconvolution of reduction potentials for an enzyme with highly complex cofactor content to know more about the thermodynamic landscape of catalysis.
Collapse
Affiliation(s)
- Lindsey M Walker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Bin Li
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Sean J Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Zouraris D, Karantonis A. Large amplitude ac voltammetry: Chief observables for a reversible reaction of free electroactive species. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Gisewhite DR, Nagelski AL, Cummins DC, Yap GPA, Burgmayer SJN. Modeling Pyran Formation in the Molybdenum Cofactor: Protonation of Quinoxalyl-Dithiolene Promoting Pyran Cyclization. Inorg Chem 2019; 58:5134-5144. [PMID: 30942584 PMCID: PMC6572731 DOI: 10.1021/acs.inorgchem.9b00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mononuclear Mo and W enzymes require a unique ligand known as molybdopterin (MPT). This ligand binds the metal through a dithiolene chelate, and the dithiolene bridges a reduced pyranopterin group. Pyran scission and formation have been proposed as a reaction of the MPT ligand that may occur within the enzymes to adjust reactivity at the Mo atom. We address this issue by investigating oxo-Mo(IV) model complexes containing dithiolenes substituted by pterin or quinoxaline and a hydroxyalkyl poised to form a pyran ring. While the pterin-dithiolene model complex exhibits a low energy, reversible pyran cyclization, here we report that pyran cyclization does not spontaneously occur in the quinoxalyl-dithiolene model. However, protonating the quinoxalyl-dithiolene model induces pyran cyclization forming an unstable, pyrano-quinoxalyl-dithiolene complex which subsequently dehydrates and rearranges to a pyrrolo-quinoxlyl-dithiolene complex that was previously characterized. The protonated pyrano-quinoxalyl-dithiolene complex was characterized by absorption spectroscopy and cyclic voltammetry, and these results suggest pyran cyclization leads to a significant change in the Mo electronic structure exhibited as a strong intraligand charge transfer (ILCT) transition and 370 mV positive shift of the Mo(V/IV) reduction potential. The influence of protonation on quinoxaline reactivity supports the hypothesis that the local protein environment in the second coordination sphere of molybdenum cofactor (Moco) could control pyran cyclization. The results also demonstrate that the remarkable chemical reactivity of the pterin-dithiolene ligand is subtly distinct and not reproduced by the simpler quinoxaline analog that is often used to replace pterin in synthetic Moco models.
Collapse
Affiliation(s)
- Douglas R. Gisewhite
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Alexandra L. Nagelski
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Daniel C. Cummins
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P. A. Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Sharon J. N. Burgmayer
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| |
Collapse
|
22
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
23
|
Fogeron T, Retailleau P, Chamoreau L, Li Y, Fontecave M. Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO
2
Photoreduction. Angew Chem Int Ed Engl 2018; 57:17033-17037. [DOI: 10.1002/anie.201809084] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/19/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Saclay 1, av.de la Terrasse 91198 Gif-sur-Yvette France
| | - Lise‐Marie Chamoreau
- Sorbonne Universités Université Paris Sorbonne Institut Parisien de Chimie Moléculaire, UMR 8232 CNRS 4 place Jussieu 75252 Paris Cedex 5 France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| |
Collapse
|
24
|
Fogeron T, Retailleau P, Chamoreau L, Li Y, Fontecave M. Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO
2
Photoreduction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Saclay 1, av.de la Terrasse 91198 Gif-sur-Yvette France
| | - Lise‐Marie Chamoreau
- Sorbonne Universités Université Paris Sorbonne Institut Parisien de Chimie Moléculaire, UMR 8232 CNRS 4 place Jussieu 75252 Paris Cedex 5 France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| |
Collapse
|
25
|
Fogeron T, Retailleau P, Gomez-Mingot M, Li Y, Fontecave M. Nickel Complexes Based on Molybdopterin-like Dithiolenes: Catalysts for CO2 Electroreduction. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00655] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Pascal Retailleau
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, Av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Maria Gomez-Mingot
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
26
|
Gisewhite DR, Yang J, Williams BR, Esmail A, Stein B, Kirk ML, Burgmayer SJN. Implications of Pyran Cyclization and Pterin Conformation on Oxidized Forms of the Molybdenum Cofactor. J Am Chem Soc 2018; 140:12808-12818. [PMID: 30200760 DOI: 10.1021/jacs.8b05777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The large family of mononuclear molybdenum and tungsten enzymes all possess the special ligand molybdopterin (MPT), which consists of a metal-binding dithiolene chelate covalently bound to a pyranopterin group. MPT pyran cyclization/scission processes have been proposed to modulate the reactivity of the metal center during catalysis. We have designed several small-molecule models for the Mo-MPT cofactor that allow detailed investigation into how pyran cyclization modulates electronic communication between the dithiolene and pterin moieties and how this cyclization alters the electronic environment of the molybdenum catalytic site. Using a combination of cyclic voltammetry, vibrational spectroscopy (FT-IR and rR), electronic absorption spectroscopy, and X-ray absorption spectroscopy, distinct changes in the Mo≡O stretching frequency, Mo(V/IV) reduction potential, and electronic structure across the pterin-dithiolene ligand are observed as a function of pyran ring closure. The results are significant, for they reveal that a dihydropyranopterin is electronically coupled into the Mo-dithiolene group due to a coplanar conformation of the pterin and dithiolene units, providing a mechanism for the electron-deficient pterin to modulate the Mo environment. A spectroscopic signature identified for the dihydropyranopterin-dithiolene ligand on Mo is a strong dithiolene → pterin charge transfer transition. In the absence of a pyran group bridge between pterin and dithiolene, the pterin rotates out of plane, largely decoupling the system. The results support a hypothesis that pyran cyclization/scission processes in MPT may function as a molecular switch to electronically couple and decouple the pterin and dithiolene to adjust the redox properties in certain pyranopterin molybdenum enzymes.
Collapse
Affiliation(s)
- Douglas R Gisewhite
- Department of Chemistry , Bryn Mawr College , Bryn Mawr , Pennsylvania 19010 , United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States
| | - Benjamin R Williams
- Department of Chemistry , Bryn Mawr College , Bryn Mawr , Pennsylvania 19010 , United States
| | - Alisha Esmail
- Department of Chemistry , Bryn Mawr College , Bryn Mawr , Pennsylvania 19010 , United States
| | - Benjamin Stein
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC03 2060, 1 University of New Mexico , Albuquerque , New Mexico 87131-0001 , United States
| | - Sharon J N Burgmayer
- Department of Chemistry , Bryn Mawr College , Bryn Mawr , Pennsylvania 19010 , United States
| |
Collapse
|
27
|
Zouraris D, Dimarogona M, Karnaouri A, Topakas E, Karantonis A. Direct electron transfer of lytic polysaccharide monooxygenases (LPMOs) and determination of their formal potentials by large amplitude Fourier transform alternating current cyclic voltammetry. Bioelectrochemistry 2018; 124:149-155. [PMID: 30032096 DOI: 10.1016/j.bioelechem.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
Abstract
MtLPMO9 and FoLPMO9 are two lytic polysaccharide monooxygenases (LPMOs), from the filamentous fungi Thermothelomyces thermophila and Fusarium oxysporum, respectively. In the present study an attempt has been made to achieve direct electron transfer between these enzymes and a glassy carbon electrode by immobilization in Nafion polyelectrolyte. The method used to ascertain the feasibility of direct electron transfer was large amplitude Fourier transform alternating current voltammetry (FTacV) and the formal potentials of these enzymes were determined at different temperatures. The findings of this paper indicate that LPMOs can be studied by direct electron transfer, which could be exploited in the near future for their biochemical characterization.
Collapse
Affiliation(s)
- D Zouraris
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - M Dimarogona
- Section of Process and Environmental Engineering, Department of Chemical Engineering, University of Patras, 26504 Rio, Patras, Greece
| | - A Karnaouri
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - E Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - A Karantonis
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece.
| |
Collapse
|
28
|
Kaufmann P, Duffus BR, Mitrova B, Iobbi-Nivol C, Teutloff C, Nimtz M, Jänsch L, Wollenberger U, Leimkühler S. Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase. Biochemistry 2018; 57:1130-1143. [PMID: 29334455 DOI: 10.1021/acs.biochem.7b01108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA.
Collapse
Affiliation(s)
- Paul Kaufmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Benjamin R Duffus
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Biljana Mitrova
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | | | - Christian Teutloff
- Institute for Experimental Physics, Free University of Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Manfred Nimtz
- Helmholtz Center for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Helmholtz Center for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| |
Collapse
|
29
|
Ash PA, Hidalgo R, Vincent KA. Protein Film Infrared Electrochemistry Demonstrated for Study of H2 Oxidation by a [NiFe] Hydrogenase. J Vis Exp 2017:55858. [PMID: 29286464 PMCID: PMC5755520 DOI: 10.3791/55858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Understanding the chemistry of redox proteins demands methods that provide precise control over redox centers within the protein. The technique of protein film electrochemistry, in which a protein is immobilized on an electrode surface such that the electrode replaces physiological electron donors or acceptors, has provided functional insight into the redox reactions of a range of different proteins. Full chemical understanding requires electrochemical control to be combined with other techniques that can add additional structural and mechanistic insight. Here we demonstrate a technique, protein film infrared electrochemistry, which combines protein film electrochemistry with infrared spectroscopic sampling of redox proteins. The technique uses a multiple-reflection attenuated total reflectance geometry to probe a redox protein immobilized on a high surface area carbon black electrode. Incorporation of this electrode into a flow cell allows solution pH or solute concentrations to be changed during measurements. This is particularly powerful in addressing redox enzymes, where rapid catalytic turnover can be sustained and controlled at the electrode allowing spectroscopic observation of long-lived intermediate species in the catalytic mechanism. We demonstrate the technique with experiments on E. coli hydrogenase 1 under turnover (H2 oxidation) and non-turnover conditions.
Collapse
Affiliation(s)
- Philip A Ash
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory
| | - Ricardo Hidalgo
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory;
| |
Collapse
|
30
|
Culka M, Huwiler SG, Boll M, Ullmann GM. Breaking Benzene Aromaticity-Computational Insights into the Mechanism of the Tungsten-Containing Benzoyl-CoA Reductase. J Am Chem Soc 2017; 139:14488-14500. [PMID: 28918628 DOI: 10.1021/jacs.7b07012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH-] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.
Collapse
Affiliation(s)
- Martin Culka
- Computational Biochemistry, University of Bayreuth , Universitätsstrasse 30, NW I, 95447 Bayreuth, Germany
| | - Simona G Huwiler
- Microbiology, Faculty of Biology, University of Freiburg , Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Matthias Boll
- Microbiology, Faculty of Biology, University of Freiburg , Schänzlestrasse 1, 79104 Freiburg, Germany
| | - G Matthias Ullmann
- Computational Biochemistry, University of Bayreuth , Universitätsstrasse 30, NW I, 95447 Bayreuth, Germany
| |
Collapse
|
31
|
Adamson H, Bond AM, Parkin A. Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry. Chem Commun (Camb) 2017; 53:9519-9533. [PMID: 28804798 PMCID: PMC5708363 DOI: 10.1039/c7cc03870d] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/12/2017] [Indexed: 12/17/2022]
Abstract
Biological electron-exchange reactions are fundamental to life on earth. Redox reactions underpin respiration, photosynthesis, molecular biosynthesis, cell signalling and protein folding. Chemical, biomedical and future energy technology developments are also inspired by these natural electron transfer processes. Further developments in techniques and data analysis are required to gain a deeper understanding of the redox biochemistry processes that power Nature. This review outlines the new insights gained from developing Fourier transformed ac voltammetry as a tool for protein film electrochemistry.
Collapse
Affiliation(s)
- Hope Adamson
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Alison Parkin
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
32
|
Robinson W, Bassegoda A, Reisner E, Hirst J. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase. J Am Chem Soc 2017; 139:9927-9936. [PMID: 28635274 PMCID: PMC5532686 DOI: 10.1021/jacs.7b03958] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Molybdenum-containing formate dehydrogenase H from Escherichia coli (EcFDH-H) is a powerful model system for studies of the reversible reduction of CO2 to formate. However, the mechanism of FDH catalysis is currently under debate, and whether the primary Mo coordination sphere remains saturated or one of the ligands dissociates to allow direct substrate binding during turnover is disputed. Herein, we describe how oxidation-state-dependent changes at the active site alter its inhibitor binding properties. Using protein film electrochemistry, we show that formate oxidation by EcFDH-H is inhibited strongly and competitively by N3-, OCN-, SCN-, NO2-, and NO3-, whereas CO2 reduction is inhibited only weakly and not competitively. During catalysis, the Mo center cycles between the formal Mo(VI)═S and Mo(IV)-SH states, and by modeling chronoamperometry data recorded at different potentials and substrate and inhibitor concentrations, we demonstrate that both formate oxidation and CO2 reduction are inhibited by selective inhibitor binding to the Mo(VI)═S state. The strong dependence of inhibitor-binding affinity on both Mo oxidation state and inhibitor electron-donor strength indicates that inhibitors (and substrates) bind directly to the Mo center. We propose that inhibitors bind to the Mo following dissociation of a selenocysteine ligand to create a vacant coordination site for catalysis and close by considering the implications of our data for the mechanisms of formate oxidation and CO2 reduction.
Collapse
Affiliation(s)
- William
E. Robinson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Arnau Bassegoda
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
| | - Erwin Reisner
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Judy Hirst
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
33
|
Adamson H, Robinson M, Wright JJ, Flanagan LA, Walton J, Elton D, Gavaghan DJ, Bond AM, Roessler MM, Parkin A. Retuning the Catalytic Bias and Overpotential of a [NiFe]-Hydrogenase via a Single Amino Acid Exchange at the Electron Entry/Exit Site. J Am Chem Soc 2017; 139:10677-10686. [PMID: 28697596 PMCID: PMC5562392 DOI: 10.1021/jacs.7b03611] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The redox chemistry of the electron entry/exit site in Escherichia coli hydrogenase-1 is shown to play a vital role in tuning biocatalysis. Inspired by nature, we generate a HyaA-R193L variant to disrupt a proposed Arg-His cation-π interaction in the secondary coordination sphere of the outermost, "distal", iron-sulfur cluster. This rewires the enzyme, enhancing the relative rate of H2 production and the thermodynamic efficiency of H2 oxidation catalysis. On the basis of Fourier transformed alternating current voltammetry measurements, we relate these changes in catalysis to a shift in the distal [Fe4S4]2+/1+ redox potential, a previously experimentally inaccessible parameter. Thus, metalloenzyme chemistry is shown to be tuned by the second coordination sphere of an electron transfer site distant from the catalytic center.
Collapse
Affiliation(s)
- Hope Adamson
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| | - Martin Robinson
- Department of Computer Science, University of Oxford , Oxford, OX1 3QD, U.K
| | - John J Wright
- School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London, E1 4NS, U.K
| | - Lindsey A Flanagan
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| | - Julia Walton
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| | - Darrell Elton
- Department of Engineering, School of Engineering and Mathematical Sciences, La Trobe University , Melbourne, Victoria 3086, Australia
| | - David J Gavaghan
- Department of Computer Science, University of Oxford , Oxford, OX1 3QD, U.K
| | - Alan M Bond
- School of Chemistry, Monash University , Clayton, Victoria 3800, Australia
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London, E1 4NS, U.K
| | - Alison Parkin
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| |
Collapse
|
34
|
Dong C, Yang J, Reschke S, Leimkühler S, Kirk ML. Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase. Inorg Chem 2017; 56:6830-6837. [PMID: 28590138 DOI: 10.1021/acs.inorgchem.7b00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pyranopterin dithiolene (PDT) ligand is an integral component of the molybdenum cofactor (Moco) found in all molybdoenzymes with the sole exception of nitrogenase. However, the roles of the PDT in catalysis are still unknown. The PDT is believed to be bound to the proteins by an extensive hydrogen-bonding network, and it has been suggested that these interactions may function to fine-tune Moco for electron- and atom-transfer reactivity in catalysis. Here, we use resonance Raman (rR) spectroscopy to probe Moco-protein interactions using heavy-atom congeners of lumazine, molecules that bind tightly to both wild-type xanthine dehydrogenase (wt-XDH) and its Q102G and Q197A variants following enzymatic hydroxylation to the corresponding violapterin product molecules. The resulting enzyme-product complexes possess intense near-IR absorption, allowing high-quality rR spectra to be collected on wt-XDH and the Q102G and Q197A variants. Small negative frequency shifts relative to wt-XDH are observed for the low-frequency Moco vibrations. These results are interpreted in the context of weak hydrogen-bonding and/or electrostatic interactions between Q102 and the -NH2 terminus of the PDT, and between Q197 and the terminal oxo of the Mo≡O group. The Q102A, Q102G, Q197A, and Q197E variants do not appreciably affect the kinetic parameters kred and kred/KD, indicating that a primary role for these glutamine residues is to stabilize and coordinate Moco in the active site of XO family enzymes but to not directly affect the catalytic throughput. Raman frequency shifts between wt-XDH and its Q102G variant suggest that the changes in the electron density at the Mo ion that accompany Mo oxidation during electron-transfer regeneration of the catalytically competent active site are manifest in distortions at the distant PDT amino terminus. This implies a primary role for the PDT as a conduit for facilitating enzymatic electron-transfer reactivity in xanthine oxidase family enzymes.
Collapse
Affiliation(s)
- Chao Dong
- Department of Chemistry and Chemical Biology, The University of New Mexico , MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico , MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Stefan Reschke
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico , MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
35
|
Martin LL, Kubeil C, Simonov AN, Kuznetsov VL, Corbin CJ, Auchus RJ, Conley AJ, Bond AM, Rodgers RJ. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17). Mol Cell Endocrinol 2017; 441:62-67. [PMID: 27702589 DOI: 10.1016/j.mce.2016.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 01/06/2023]
Abstract
Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem.
Collapse
Affiliation(s)
- Lisandra L Martin
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia.
| | - Clemens Kubeil
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Alexandr N Simonov
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia; ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Vladimir L Kuznetsov
- Boreskov Institute of Catalysis, Prospekt Lavrentieva 5, Novosibirsk, 630090, Russia
| | - C Jo Corbin
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan J Conley
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia; ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Raymond J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
36
|
Adamson H, Robinson M, Bond PS, Soboh B, Gillow K, Simonov AN, Elton DM, Bond AM, Sawers RG, Gavaghan DJ, Parkin A. Analysis of HypD Disulfide Redox Chemistry via Optimization of Fourier Transformed ac Voltammetric Data. Anal Chem 2017; 89:1565-1573. [PMID: 28029041 DOI: 10.1021/acs.analchem.6b03589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rapid disulfide bond formation and cleavage is an essential mechanism of life. Using large amplitude Fourier transformed alternating current voltammetry (FTacV) we have measured previously uncharacterized disulfide bond redox chemistry in Escherichia coli HypD. This protein is representative of a class of assembly proteins that play an essential role in the biosynthesis of the active site of [NiFe]-hydrogenases, a family of H2-activating enzymes. Compared to conventional electrochemical methods, the advantages of the FTacV technique are the high resolution of the faradaic signal in the higher order harmonics and the fact that a single electrochemical experiment contains all the data needed to estimate the (very fast) electron transfer rates (both rate constants ≥ 4000 s-1) and quantify the energetics of the cysteine disulfide redox-reaction (reversible potentials for both processes approximately -0.21 ± 0.01 V vs SHE at pH 6). Previously, deriving such data depended on an inefficient manual trial-and-error approach to simulation. As a highly advantageous alternative, we describe herein an automated multiparameter data optimization analysis strategy where the simulated and experimental faradaic current data are compared for both the real and imaginary components in each of the 4th to 12th harmonics after quantifying the charging current data using the time-domain response.
Collapse
Affiliation(s)
- Hope Adamson
- Department of Chemistry, University of York , Heslington, York, YO10 5DD, United Kingdom
| | - Martin Robinson
- Department of Computer Science, University of Oxford , Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom
| | - Paul S Bond
- Department of Chemistry, University of York , Heslington, York, YO10 5DD, United Kingdom
| | - Basem Soboh
- Experimental Molecular Biophysics, Freie Universität Berlin , Arnimalle 14, 14195 Berlin, Germany
| | - Kathryn Gillow
- Mathematical Institute, Andrew Wiles Building, University of Oxford , Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
| | - Alexandr N Simonov
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University , Clayton, Victoria 3800, Australia
| | - Darrell M Elton
- School of Engineering and Mathematical Sciences, La Trobe University , Bundoora, Victoria 3086, Australia
| | - Alan M Bond
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University , Clayton, Victoria 3800, Australia
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg , Halle (Saale), Germany
| | - David J Gavaghan
- Department of Computer Science, University of Oxford , Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York , Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
37
|
Tao L, Simonov AN, Romano CA, Butterfield CN, Fekete M, Tebo BM, Bond AM, Spiccia L, Martin LL, Casey WH. Biogenic Manganese-Oxide Mineralization is Enhanced by an Oxidative Priming Mechanism for the Multi-Copper Oxidase, MnxEFG. Chemistry 2016; 23:1346-1352. [PMID: 27726210 DOI: 10.1002/chem.201603803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/07/2022]
Abstract
In a natural geochemical cycle, manganese-oxide minerals (MnOx ) are principally formed through a microbial process, where a putative multicopper oxidase MnxG plays an essential role. Recent success in isolating the approximately 230 kDa, enzymatically active MnxEFG protein complex, has advanced our understanding of biogenic MnOx mineralization. Here, the kinetics of MnOx formation catalyzed by MnxEFG are examined using a quartz crystal microbalance (QCM), and the first electrochemical characterization of the MnxEFG complex is reported using Fourier transformed alternating current voltammetry. The voltammetric studies undertaken using near-neutral solutions (pH 7.8) establish the apparent reversible potentials for the Type 2 Cu sites in MnxEFG immobilized on a carboxy-terminated monolayer to be in the range 0.36-0.40 V versus a normal hydrogen electrode. Oxidative priming of the MnxEFG protein complex substantially enhances the enzymatic activity, as found by in situ electrochemical QCM analysis. The biogeochemical significance of this enzyme is clear, although the role of an oxidative priming of catalytic activity might be either an evolutionary advantage or an ancient relic of primordial existence.
Collapse
Affiliation(s)
- Lizhi Tao
- Department of Chemistry and Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Alexandr N Simonov
- School of Chemistry, Monash University, Victoria, 3800, Australia.,ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Cristina N Butterfield
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, 97239, USA.,Current address: Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California, 94720, USA
| | - Monika Fekete
- School of Chemistry, Monash University, Victoria, 3800, Australia
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Alan M Bond
- School of Chemistry, Monash University, Victoria, 3800, Australia
| | - Leone Spiccia
- School of Chemistry, Monash University, Victoria, 3800, Australia.,ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
| | | | - William H Casey
- Department of Chemistry and Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
38
|
Bonke SA, Bond AM, Spiccia L, Simonov AN. Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. J Am Chem Soc 2016; 138:16095-16104. [DOI: 10.1021/jacs.6b10304] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shannon A. Bonke
- School of Chemistry and the
ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Alan M. Bond
- School of Chemistry and the
ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Leone Spiccia
- School of Chemistry and the
ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| | - Alexandr N. Simonov
- School of Chemistry and the
ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
39
|
Lee CC, Sickerman NS, Hu Y, Ribbe MW. YedY: A Mononuclear Molybdenum Enzyme with a Redox-Active Ligand? Chembiochem 2016; 17:453-5. [PMID: 26751730 DOI: 10.1002/cbic.201600004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 11/07/2022]
Abstract
A recent electrochemical investigation suggests that the mononuclear molybdenum enzyme YdeY utilizes redox-active ligands during catalysis.
Collapse
Affiliation(s)
- Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California in Irvine, 2230/2236 McGaugh Hall, Irvine, CA, 92697-3900, USA
| | - Nathaniel S Sickerman
- Department of Molecular Biology and Biochemistry, University of California in Irvine, 2230/2236 McGaugh Hall, Irvine, CA, 92697-3900, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California in Irvine, 2230/2236 McGaugh Hall, Irvine, CA, 92697-3900, USA.
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California in Irvine, 2230/2236 McGaugh Hall, Irvine, CA, 92697-3900, USA. .,Department of Chemistry, University of California in Irvine, 2236 McGaugh Hall, Irvine, CA, 92697-2025, USA.
| |
Collapse
|