1
|
Talebi F, Gregucci F, Ahmed J, Ben Chetrit N, D. Brown B, Chan TA, Chand D, Constanzo J, Demaria S, I. Gabrilovich D, Golden E, Godkin A, Guha C, P. Gupta G, Hasan A, G. Herrera F, Kaufman H, Li D, A. Melcher A, McDonald S, Merghoub T, Monjazeb AM, Paris S, Pitroda S, Sadanandam A, Schaue D, Santambrogio L, Szapary P, Sage J, W. Welsh J, Wilkins A, H. Young K, Wennerberg E, Zitvogel L, Galluzzi L, Deutsch E, C. Formenti S. Updates on radiotherapy-immunotherapy combinations: Proceedings of 8th Annual ImmunoRad Conference. Oncoimmunology 2025; 14:2507856. [PMID: 40401900 PMCID: PMC12101595 DOI: 10.1080/2162402x.2025.2507856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The annual ImmunoRad Conference has established itself as a recurrent occasion to explore the possibility of combining radiation therapy (RT) and immunotherapy (IT) for clinical cancer management. Bringing together a number of preclinical and clinical leaders in the fields of radiation oncology, immuno-oncology and IT, this annual event fosters indeed essential conversations and fruitful exchanges on how to address existing challenges to expand the therapeutic value of RT-IT combinations. The 8th edition of the ImmunoRad Conference, which has been held in October 2024 at the Weill Cornell Medical College of New York City, highlighted exciting preclinical and clinical advances at the interface between RT and IT, setting the stage for extra progress toward extended benefits for patients with an increasing variety of tumor types. Here, we critically summarize the lines of investigation that have been discussed at the occasion of the 8th Annual ImmunoRad Conference.
Collapse
Affiliation(s)
- Fereshteh Talebi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jalal Ahmed
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nir Ben Chetrit
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy A. Chan
- Department of Cancer Sciences, Global Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Case Western University School of Medicine, Cleveland, OH, USA
| | | | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Godkin
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Chandan Guha
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaorav P. Gupta
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Fernanda G. Herrera
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
- Services of Radiation Oncology and Immuno-Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Oncology, Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Donna Li
- University of Wisconsin, Madison, WI, USA
| | - Alan A. Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Sierra McDonald
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center and Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California, San Diego, CA, USA
| | | | - Sean Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Julien Sage
- Departments of Genetics and Pediatrics, Stanford University, Stanford, California
| | - James W. Welsh
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Kristina H. Young
- Division of Radiation Oncology, The Oregon Clinic, Portland, OR, USA
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Eric Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Laurence Zitvogel
- Gustave Roussy, INSERM U1015, Division of Medicine, Paris-Saclay University, Center of Clinical Investigations BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, INSERM U1030, Division of Medicine, Paris-Saclay University, RHU LySAIRI “Lymphocyte-Sparing Artificial Intelligence-guided Radio-Immunotherapy”, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Xie Y, Wang X, Wang W, Pu N, Liu L. Epithelial-mesenchymal transition orchestrates tumor microenvironment: current perceptions and challenges. J Transl Med 2025; 23:386. [PMID: 40176117 PMCID: PMC11963649 DOI: 10.1186/s12967-025-06422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical process in cancer progression, facilitating tumor cells to develop invasive traits and augmenting their migratory capabilities. EMT is primed by tumor microenvironment (TME)-derived signals, whereupon cancer cells undergoing EMT in turn remodel the TME, thereby modulating tumor progression and therapeutic response. This review discusses the mechanisms by which EMT coordinates TME dynamics, including secretion of soluble factors, direct cell contact, release of exosomes and enzymes, as well as metabolic reprogramming. Recent evidence also indicates that cells undergoing EMT may differentiate into cancer-associated fibroblasts, thereby establishing themselves as functional constituents of the TME. Elucidating the relationship between EMT and the TME offers novel perspectives for therapeutic strategies to enhance cancer treatment efficacy. Although EMT-directed therapies present significant therapeutic potential, the current lack of effective targeting approaches-attributable to EMT complexity and its microenvironmental context dependency-underscores the necessity for mechanistic investigations and translational clinical validation.
Collapse
Affiliation(s)
- Yuqi Xie
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Wang X, You H, Zhang T, Li Y, Chen X, Basler M, Jiang Q, Chen H, Liu N, Yuan F, Li J. Immunoproteasome subunits are novel signatures for predicting efficacy of immunotherapy in muscle invasive bladder cancer. J Transl Med 2025; 23:228. [PMID: 40012053 PMCID: PMC11863778 DOI: 10.1186/s12967-025-06207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND How to select muscle-invasive bladder cancer (MIBC) patients who are sensitive to immunotherapy is an unmet medical need. This study aimed to explore the role of immunoproteasome subunits as a novel signature for predicting efficacy of immunotherapy in MIBC. METHODS The expression profile of immunoproteasome subunits of MIBC and normal tissues was evaluated from data of The Cancer Genome Atlas (TCGA) and of the Chongqing University Cancer Hospital (CQUCH) cohort. Survival analysis and response to immunotherapy was further explored and compared between immunoproteasome subunitshigh and immunoproteasome subunitslow MIBC patients in the TCGA, the CQUCH and the IMvigor210 cohort. The association of the expression of immunoproteasome subunits with immune checkpoint molecules and the tumor immune microenvironment was explored by immunohistochemistry staining and bioinformatic analysis in MIBC of these three cohorts. RESULTS The expression of the immunoproteasome subunits PSMB8, PSMB9 and PSMB10 was significantly upregulated in MIBC. MIBC patients with high expression of immunoproteasome subunits, especially high expression of PSMB9, showed a trend of prolonged overall and progression free survival, which was further significantly improved in response to immunotherapy. Bioinformatics and immunohistochemistry staining revealed a positive correlation of the expression of immunoproteasome subunits with the expression of immune checkpoint molecules, with T cell activation and with T cell-mediated cytotoxicity. CONCLUSIONS Immunoproteasome subunits, in particular PSMB9, are immune microenvironment-related molecules of MIBC and are promising signatures for survival prediction in response to immunotherapy of MIBC.
Collapse
Affiliation(s)
- XinJian Wang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Urological Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China
| | - Hang You
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases of Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Teng Zhang
- Department of Urological Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China
| | - Yuan Li
- Department of Urological Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China
| | - XinYu Chen
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Institute of Cell Biology and Immunology, Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - QingMing Jiang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Han Chen
- Department of Urological Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China
| | - Nan Liu
- Department of Urological Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China
| | - Fang Yuan
- Department of Urological Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China.
| | - Jun Li
- Department of Urological Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China.
| |
Collapse
|
4
|
Lau D, Elliott T. Imaging antigen processing and presentation in cancer. IMMUNOTHERAPY ADVANCES 2025; 5:ltaf002. [PMID: 40265075 PMCID: PMC12012451 DOI: 10.1093/immadv/ltaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/04/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Antigen processing and presentation are vital processes of the adaptive immunity. These processes involve a series of intracellular and extracellular events, including the enzymology within cells during antigen processing, the loading and presentation of antigenic peptides on major histocompatibility complexes, the recruitment of T cells, their interaction with antigen-presenting cells, and the expression of adhesion, co-stimulatory and co-inhibitory molecules at the T cell immunological synapse. These events collectively fine-tune and sustain antigen recognition and T cell function. Dysregulation of this machinery can profoundly impact the efficacy of cancer immunotherapy. Imaging technologies have emerged as powerful tools for elucidating the mechanisms underlying antigen processing and presentation. By providing complementary perspectives into the cellular and molecular interactions at play, imaging has significantly enhanced our understanding of these complex immunological events in cancer. Such insights can improve the monitoring of immunotherapy responses, facilitate the identification of effective treatments, and aid in predicting patient outcomes. Methods This review explores the role of imaging in studying antigen processing and presentation in the context of cancer. Conclusion It highlights key considerations for developing imaging tools and biomarkers to detect components of these pathways. Additionally, it examines the strengths and limitations of various imaging approaches and discusses their potential for clinical translation.
Collapse
Affiliation(s)
- Doreen Lau
- Centre for Inflammation Research and Translational Medicine, Department of Life Sciences, Division of Biosciences, Brunel University London, London, United Kingdom
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tim Elliott
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Yu T, Van der Jeught K, Zhu H, Zhou Z, Sharma S, Liu S, Eyvani H, So KM, Singh N, Wang J, Sandusky GE, Liu Y, Opyrchal M, Cao S, Wan J, Zhang C, Zhang X. Inhibition of Glutamate-to-Glutathione Flux Promotes Tumor Antigen Presentation in Colorectal Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2310308. [PMID: 39482885 PMCID: PMC11714253 DOI: 10.1002/advs.202310308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/10/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer (CRC) cells display remarkable adaptability, orchestrating metabolic changes that confer growth advantages, pro-tumor microenvironment, and therapeutic resistance. One such metabolic change occurs in glutamine metabolism. Colorectal tumors with high glutaminase (GLS) expression exhibited reduced T cell infiltration and cytotoxicity, leading to poor clinical outcomes. However, depletion of GLS in CRC cells has minimal effect on tumor growth in immunocompromised mice. By contrast, remarkable inhibition of tumor growth is observed in immunocompetent mice when GLS is knocked down. It is found that GLS knockdown in CRC cells enhanced the cytotoxicity of tumor-specific T cells. Furthermore, the single-cell flux estimation analysis (scFEA) of glutamine metabolism revealed that glutamate-to-glutathione (Glu-GSH) flux, downstream of GLS, rather than Glu-to-2-oxoglutarate flux plays a key role in regulating the immune response of CRC cells in the tumor. Mechanistically, inhibition of the Glu-GSH flux activated reactive oxygen species (ROS)-related signaling pathways in tumor cells, thereby increasing the tumor immunogenicity by promoting the activity of the immunoproteasome. The combinatorial therapy of Glu-GSH flux inhibitor and anti-PD-1 antibody exhibited a superior tumor growth inhibitory effect compared to either monotherapy. Taken together, the study provides the first evidence pointing to Glu-GSH flux as a potential therapeutic target for CRC immunotherapy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haiqi Zhu
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Zhuolong Zhou
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Samantha Sharma
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Ka Man So
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Naresh Singh
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Jia Wang
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - George E. Sandusky
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Yunlong Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Division of Hematology/Oncology, Department of MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIN46202USA
| | - Jun Wan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Chi Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biomedical Engineering and Knight Cancer InstituteOregon Health & Science UniversityPortlandOR97239USA
| | - Xinna Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| |
Collapse
|
6
|
Rana PS, Ignatz-Hoover JJ, Guo C, Mosley AL, Malek E, Federov Y, Adams DJ, Driscoll JJ. Immunoproteasome Activation Expands the MHC Class I Immunopeptidome, Unmasks Neoantigens, and Enhances T-cell Anti-Myeloma Activity. Mol Cancer Ther 2024; 23:1743-1760. [PMID: 39210605 PMCID: PMC11612626 DOI: 10.1158/1535-7163.mct-23-0931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/30/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes. Immunoproteasomes are highly specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma cells. Compound A increased the presentation of individual MHC-I-bound peptides by >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that compound A binds to the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/β (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of compound A on antigen presentation. Treatment of multiple myeloma cell lines and patient bone marrow-derived CD138+ cells with compound A increased the anti-myeloma activity of allogenic and autologous T cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T cells reduced the growth of myeloma xenotransplants in NOD/SCID gamma mice. Taken together, our results demonstrate the paradigm shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Chunna Guo
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L. Mosley
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ehsan Malek
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Yuriy Federov
- Small Molecule Drug Discovery Core, Case Western Reserve University, Cleveland, Ohio
| | - Drew J. Adams
- Small Molecule Drug Discovery Core, Case Western Reserve University, Cleveland, Ohio
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
7
|
Crouch SA, Krause J, Dandekar T, Breitenbach T. DataXflow: Synergizing data-driven modeling with best parameter fit and optimal control - An efficient data analysis for cancer research. Comput Struct Biotechnol J 2024; 23:1755-1772. [PMID: 38707537 PMCID: PMC11068525 DOI: 10.1016/j.csbj.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Building data-driven models is an effective strategy for information extraction from empirical data. Adapting model parameters specifically to data with a best fitting approach encodes the relevant information into a mathematical model. Subsequently, an optimal control framework extracts the most efficient targets to steer the model into desired changes via external stimuli. The DataXflow software framework integrates three software pipelines, D2D for model fitting, a framework solving optimal control problems including external stimuli and JimenaE providing graphical user interfaces to employ the other frameworks lowering the barriers for the need of programming skills, and simultaneously automating reoccurring modeling tasks. Such tasks include equation generation from a graph and script generation allowing also to approach systems with many agents, like complex gene regulatory networks. A desired state of the model is defined, and therapeutic interventions are modeled as external stimuli. The optimal control framework purposefully exploits the model-encoded information by providing those external stimuli that effect the desired changes most efficiently. The implementation of DataXflow is available under https://github.com/MarvelousHopefull/DataXflow. We showcase its application by detecting specific drug targets for a therapy of lung cancer from measurement data to lower proliferation and increase apoptosis. By an iterative modeling process refining the topology of the model, the regulatory network of the tumor is generated from the data. An application of the optimal control framework in our example reveals the inhibition of AURKA and the activation of CDH1 as the most efficient drug target combination. DataXflow paves the way to an agile interplay between data generation and its analysis potentially accelerating cancer research by an efficient drug target identification, even in complex networks.
Collapse
Affiliation(s)
| | | | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Tim Breitenbach
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| |
Collapse
|
8
|
Yaman E, Heyer N, de Paiva CS, Stepp MA, Pflugfelder SC, Alam J. Mouse Corneal Immune Cell Heterogeneity Revealed by Single-Cell RNA Sequencing. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39432400 PMCID: PMC11500044 DOI: 10.1167/iovs.65.12.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose This study aimed to define the heterogeneity, spatial localization, and functional roles of immune cells in the mouse cornea using single-cell RNA sequencing (scRNA-seq) and immunofluorescent staining. Methods Enriched mouse corneal immune cells (C57BL/6 strain, age 16-20 weeks) underwent single-cell RNA sequencing library preparation, sequencing, and analysis with Seurat, Monocle 3, and CellChat packages in R. Pathway analysis used Qiagen Ingenuity Pathway Analysis software. Immunostaining confirmed cell distribution. Results We identified 14 distinct immune cell clusters (56% myeloid and 44% lymphoid). Myeloid populations included resident macrophages, conventional dendritic cells (cDC2s), Langerhans cells, neutrophils, monocytes, and mast cells. Additionally, lymphocyte subsets (B, CD8, CD4, γδT, natural killer, natural killer T, and group 2 innate lymphoid cells) were found. We also found three new subtypes of resident macrophages in the cornea. Trajectory analysis suggested a differentiation pathway from monocytes to conventional dendritic cells, resident macrophages, and LCs. Intercellular communication network analysis using cord diagram identified amyloid precursor protein, chemokine (C-C motif) ligands (2, 3, 4, 6, 7, 9, and 12), Cxcl2, Mif, Tnf, Tgfb1, Igf1, and Il10 as prominent ligands involved in these interactions. Sexually dimorphic gene expression patterns were observed, with male myeloid cells expressing genes linked to immune regulation (Egr1, Foxp1, Mrc1, and Il1rn) and females showing higher expression of antigen presentation genes (Clic1, Psmb8, and Psmb9). Finally, immunostaining confirmed the spatial distribution of these cell populations within the cornea. Conclusions This study unveils a diverse immune landscape in the mouse cornea, with evidence for cell differentiation and sex-based differences. Immunostaining validates the spatial distribution of these populations, furthering our knowledge of corneal immune function.
Collapse
Affiliation(s)
- Ebru Yaman
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Nicole Heyer
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Mary Ann Stepp
- Departments of Anatomy, Regenerative Biology and Ophthalmology, The George Washington University Medical School and Health Sciences, Washington, DC, United States
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jehan Alam
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
9
|
Jeong H, Koh J, Kim S, Song SG, Lee SH, Jeon Y, Lee CH, Keam B, Lee SH, Chung DH, Jeon YK. Epithelial-mesenchymal transition induced by tumor cell-intrinsic PD-L1 signaling predicts a poor response to immune checkpoint inhibitors in PD-L1-high lung cancer. Br J Cancer 2024; 131:23-36. [PMID: 38729997 PMCID: PMC11231337 DOI: 10.1038/s41416-024-02698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND We investigated the role of tumor cell-intrinsic PD-L1 signaling in the epithelial-mesenchymal transition (EMT) in non-small-cell lung cancer (NSCLC) and the role of EMT as a predictive biomarker for immune checkpoint inhibitor (ICI) therapy. METHODS PD-L1-overexpressing or PD-L1-knockdown NSCLC cells underwent RNA-seq and EMT phenotype assessment. Mouse lung cancer LLC cells were injected into nude mice. Two cohorts of patients with NSCLC undergoing ICI therapy were analyzed. RESULTS RNA-seq showed that EMT pathways were enriched in PD-L1-high NSCLC cells. EMT was enhanced by PD-L1 in NSCLC cells, which was mediated by transforming growth factor-β (TGFβ). PD-L1 promoted the activation of p38-MAPK by binding to and inhibiting the protein phosphatase PPM1B, thereby increasing the TGFβ production. Tumor growth and metastasis increased in nude mice injected with PD-L1-overexpressing LLC cells. In the ICI cohort, EMT signature was higher in patients with progressive disease than in those with responses, and EMT was significantly associated with poor survival in PD-L1-high NSCLC. In PD-L1-high NSCLC, EMT was associated with increased M2-macrophage and regulatory T-cell infiltrations and decreased cytotoxic T-cell infiltration. CONCLUSIONS Tumor cell-intrinsic PD-L1 function contributes to NSCLC progression by promoting EMT. EMT may predict an unfavorable outcome after ICI therapy in PD-L1-high NSCLC.
Collapse
Affiliation(s)
- Hyein Jeong
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sehui Kim
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung Geun Song
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Lee
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngjoo Jeon
- Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Chul-Hwan Lee
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
- Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
11
|
Wen P, Sun Y, Jiang TX, Qiu XB. PA200-Mediated Proteasomal Protein Degradation and Regulation of Cellular Senescence. Int J Mol Sci 2024; 25:5637. [PMID: 38891826 PMCID: PMC11171664 DOI: 10.3390/ijms25115637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Cellular senescence is closely related to DNA damage, proteasome inactivity, histone loss, epigenetic alterations, and tumorigenesis. The mammalian proteasome activator PA200 (also referred to as PSME4) or its yeast ortholog Blm10 promotes the acetylation-dependent degradation of the core histones during transcription, DNA repair, and spermatogenesis. According to recent studies, PA200 plays an important role in senescence, probably because of its role in promoting the degradation of the core histones. Loss of PA200 or Blm10 is a major cause of the decrease in proteasome activity during senescence. In this paper, recent research progress on the association of PA200 with cellular senescence is summarized, and the potential of PA200 to serve as a therapeutic target in age-related diseases is discussed.
Collapse
Affiliation(s)
- Pei Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
| | - Tian-Xia Jiang
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| |
Collapse
|
12
|
Burov A, Grigorieva E, Lebedev T, Vedernikova V, Popenko V, Astakhova T, Leonova O, Spirin P, Prassolov V, Karpov V, Morozov A. Multikinase inhibitors modulate non-constitutive proteasome expression in colorectal cancer cells. Front Mol Biosci 2024; 11:1351641. [PMID: 38774235 PMCID: PMC11106389 DOI: 10.3389/fmolb.2024.1351641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.
Collapse
Affiliation(s)
- Alexander Burov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grigorieva
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria Vedernikova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Karpov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Lambert AW, Zhang Y, Weinberg RA. Cell-intrinsic and microenvironmental determinants of metastatic colonization. Nat Cell Biol 2024; 26:687-697. [PMID: 38714854 DOI: 10.1038/s41556-024-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Cancer metastasis is a biologically complex process that remains a major challenge in the oncology clinic, accounting for nearly all of the mortality associated with malignant neoplasms. To establish metastatic growths, carcinoma cells must disseminate from the primary tumour, survive in unfamiliar tissue microenvironments, re-activate programs of proliferation, and escape innate and adaptive immunosurveillance. The entire process is extremely inefficient and can occur over protracted timescales, yielding only a vanishingly small number of carcinoma cells that are able to complete all of the required steps. Here we review both the cancer-cell-intrinsic mechanisms and microenvironmental interactions that enable metastatic colonization. In particular, we highlight recent work on the behaviour of already-disseminated tumour cells, since meaningful progress in treating metastatic disease will clearly require a better understanding of the cells that spawn metastases, which generally have disseminated by the time of initial diagnosis.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center, Cambridge, MA, USA.
| |
Collapse
|
14
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
15
|
Minini M, Pavy A, Lekbaby B, Fouassier L. Crosstalk between cancer cell plasticity and immune microenvironment in cholangiocarcinoma. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive tumor of the biliary tree characterized by an intense desmoplastic tumor microenvironment (TME). To date, treatment of CCA remains challenging; tumor resection is the only curative treatment with a high recurrence probability. Besides resection, therapeutic options have moved forward with the advent of immunotherapies, but these remain limited and low effective. Our knowledge about the cellular interplays in CCA is still fragmentary. An area is currently emerging regarding the potential role of cancer cell plasticity in the genesis of an immunosuppressive microenvironment. The cancer cells’ ability to acquire stemness properties and to disseminate through an epithelial-mesenchymal transition (EMT) shape a tumor immune microenvironment that supports cancer progression by attracting immunosuppressive cells including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and by increasing the expression of inhibitory immune checkpoints such as PD-1/PD-L-1. EMT-inducing transcription factors (EMT-TF) have recently emerged as regulators of tumor immunity by creating an immunosuppressive microenvironment. This review delves into the molecular mechanisms underlying the existing links between EMT/stemness and tumor immune microenvironment, as well as the last discoveries in CCA.
Collapse
|
16
|
Guerra A, Betancourt-Mar JA, Llanos-Pérez JA, Mansilla R, Nieto-Villar JM. Metastasis Models: Thermodynamics and Complexity. Methods Mol Biol 2024; 2745:45-75. [PMID: 38060179 DOI: 10.1007/978-1-0716-3577-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The thermodynamic formalism of nonequilibrium systems together with the theory of complex systems and systems biology offer an appropriate theoretical framework to explain the complexity observed at the macroscopic level in physiological phenomena. In turn, they allow the establishment of an appropriate conceptual and operational framework to address the study of phenomena such as the emergence and evolution of cancer.This chapter is organized as follows: In Subheading 1, an integrated vision of these disciplines is offered for the characterization of the emergence and evolution of cancer, seen as a nonlinear dynamic system, temporally and spatially self-organized out of thermodynamic equilibrium. The development of the various mathematical models and different techniques and approaches used in the characterization of cancer metastasis is presented in Subheading 2. Subheading 3 is devoted to the time course of cancer metastasis, with particular emphasis on the epithelial-mesenchymal transition (EMT henceforth) as well as chronotherapeutic treatments. In Subheading 4, models of the spatial evolution of cancer metastasis are presented. Finally, in Subheading 5, some conclusions and remarks are presented.
Collapse
Affiliation(s)
- A Guerra
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Havana, Cuba
| | | | | | - R Mansilla
- Centro Peninsular en Humanidades y Ciencias Sociales (CEPHCIS), National Autonomous University of Mexico (UNAM), Mérida, Mexico
| | - J M Nieto-Villar
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Havana, Cuba.
| |
Collapse
|
17
|
Canel M, Sławińska AD, Lonergan DW, Kallor AA, Upstill-Goddard R, Davidson C, von Kriegsheim A, Biankin AV, Byron A, Alfaro J, Serrels A. FAK suppresses antigen processing and presentation to promote immune evasion in pancreatic cancer. Gut 2023; 73:131-155. [PMID: 36977556 PMCID: PMC10715489 DOI: 10.1136/gutjnl-2022-327927] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Immunotherapy for the treatment of pancreatic ductal adenocarcinoma (PDAC) has shown limited efficacy. Poor CD8 T-cell infiltration, low neoantigen load and a highly immunosuppressive tumour microenvironment contribute to this lack of response. Here, we aimed to further investigate the immunoregulatory function of focal adhesion kinase (FAK) in PDAC, with specific emphasis on regulation of the type-II interferon response that is critical in promoting T-cell tumour recognition and effective immunosurveillance. DESIGN We combined CRISPR, proteogenomics and transcriptomics with mechanistic experiments using a KrasG12Dp53R172H mouse model of pancreatic cancer and validated findings using proteomic analysis of human patient-derived PDAC cell lines and analysis of publicly available human PDAC transcriptomics datasets. RESULTS Loss of PDAC cell-intrinsic FAK signalling promotes expression of the immunoproteasome and Major Histocompatibility Complex class-I (MHC-I), resulting in increased antigen diversity and antigen presentation by FAK-/- PDAC cells. Regulation of the immunoproteasome by FAK is a critical determinant of this response, optimising the physicochemical properties of the peptide repertoire for high affinity binding to MHC-I. Expression of these pathways can be further amplified in a STAT1-dependent manner via co-depletion of FAK and STAT3, resulting in extensive infiltration of tumour-reactive CD8 T-cells and further restraint of tumour growth. FAK-dependent regulation of antigen processing and presentation is conserved between mouse and human PDAC, but is lost in cells/tumours with an extreme squamous phenotype. CONCLUSION Therapies aimed at FAK degradation may unlock additional therapeutic benefit for the treatment of PDAC through increasing antigen diversity and promoting antigen presentation.
Collapse
Affiliation(s)
- Marta Canel
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - David W Lonergan
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ashwin Adrian Kallor
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Rosie Upstill-Goddard
- The Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Catherine Davidson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew V Biankin
- The Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Alan Serrels
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Imodoye SO, Adedokun KA. EMT-induced immune evasion: connecting the dots from mechanisms to therapy. Clin Exp Med 2023; 23:4265-4287. [PMID: 37966552 DOI: 10.1007/s10238-023-01229-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic program crucial for organismal development and tissue regeneration. Unfortunately, this program is often hijacked by epithelial tumors to facilitate metastasis. Beyond its role in cancer spread, EMT increases cancer cell survival by activating stem cell programs and bypassing apoptotic programs. Importantly, the capacity of EMT to enforce tumor progression by altering the tumor cell phenotype without triggering immune responses opens the intriguing possibility of a mechanistic link between EMT-driven cancers and immune evasion. Indeed, EMT has been acknowledged as a of driver immune evasion, but the mechanisms are still evolving. Here, we review recent insights into the influence of EMT on tumor immune evasion. Specifically, we focus on the mechanistic roles of EMT in immune escape as the basis that may provide a platform for innovative therapeutic approaches in advanced tumors. We summarize promising therapeutic approaches currently in clinical trials and trending preclinical studies aimed at reinvigorating the tumor microenvironment to create immune-permissive conditions that facilitates immune-mediated tumor clearance. We anticipate that this will assist researchers and pharmaceutical companies in understanding how EMT compromises the immune response, potentially paving the way for effective cancer therapies.
Collapse
Affiliation(s)
- Sikiru O Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA.
| | - Kamoru A Adedokun
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
19
|
Heryanto YD, Imoto S. The transcriptome signature analysis of the epithelial-mesenchymal transition and immune cell infiltration in colon adenocarcinoma. Sci Rep 2023; 13:18383. [PMID: 37884639 PMCID: PMC10603081 DOI: 10.1038/s41598-023-45792-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) process is tightly connected to tumors' immune microenvironment. In colon adenocarcinoma (COAD), both the EMT and immune cell infiltration contribute to tumor progression; however, several questions regarding the mechanisms governing the interaction between EMT and the immune response remain unanswered. Our study aims to investigate the cross-talk between these two processes in cases of COAD and identify the key regulators involved. We utilized the EMT and immune signatures of samples from the COAD-TCGA database to identify three subtypes of COAD: high mesenchymal, medium mesenchymal, and low mesenchymal. We observed that EMT was associated with increased tumor immune response and infiltration mediated by pro-inflammatory cytokines. However, EMT was also linked to immunosuppressive activity that involved regulatory T cells, dendritic cells, and the upregulated expression of multiple immune checkpoints, such as PD-1, PDL-1, CTLA-4, and others. Finally, we employed the multivariate random forest feature importance method to identify key genes, such as DOK2 and MSRB3, that may play crucial roles in both EMT and the intratumoral immune response.
Collapse
Affiliation(s)
- Yusri Dwi Heryanto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
20
|
León-Letelier RA, Dou R, Vykoukal J, Sater AHA, Ostrin E, Hanash S, Fahrmann JF. The kynurenine pathway presents multi-faceted metabolic vulnerabilities in cancer. Front Oncol 2023; 13:1256769. [PMID: 37876966 PMCID: PMC10591110 DOI: 10.3389/fonc.2023.1256769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The kynurenine pathway (KP) and associated catabolites play key roles in promoting tumor progression and modulating the host anti-tumor immune response. To date, considerable focus has been on the role of indoleamine 2,3-dioxygenase 1 (IDO1) and its catabolite, kynurenine (Kyn). However, increasing evidence has demonstrated that downstream KP enzymes and their associated metabolite products can also elicit tumor-microenvironment immune suppression. These advancements in our understanding of the tumor promotive role of the KP have led to the conception of novel therapeutic strategies to target the KP pathway for anti-cancer effects and reversal of immune escape. This review aims to 1) highlight the known biological functions of key enzymes in the KP, and 2) provide a comprehensive overview of existing and emerging therapies aimed at targeting discrete enzymes in the KP for anti-cancer treatment.
Collapse
Affiliation(s)
- Ricardo A. León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ali Hussein Abdel Sater
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
21
|
Machino H, Dozen A, Konaka M, Komatsu M, Nakamura K, Ikawa N, Shozu K, Asada K, Kaneko S, Yoshida H, Kato T, Nakayama K, Saloura V, Kyo S, Hamamoto R. Integrative analysis reveals early epigenetic alterations in high-grade serous ovarian carcinomas. Exp Mol Med 2023; 55:2205-2219. [PMID: 37779141 PMCID: PMC10618212 DOI: 10.1038/s12276-023-01090-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological malignancy. To date, the profiles of gene mutations and copy number alterations in HGSOC have been well characterized. However, the patterns of epigenetic alterations and transcription factor dysregulation in HGSOC have not yet been fully elucidated. In this study, we performed integrative omics analyses of a series of stepwise HGSOC model cells originating from human fallopian tube secretory epithelial cells (HFTSECs) to investigate early epigenetic alterations in HGSOC tumorigenesis. Assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and RNA sequencing (RNA-seq) methods were used to analyze HGSOC samples. Additionally, protein expression changes in target genes were confirmed using normal HFTSECs, serous tubal intraepithelial carcinomas (STICs), and HGSOC tissues. Transcription factor motif analysis revealed that the DNA-binding activity of the AP-1 complex and GATA family proteins was dysregulated during early tumorigenesis. The protein expression levels of JUN and FOSL2 were increased, and those of GATA6 and DAB2 were decreased in STIC lesions, which were associated with epithelial-mesenchymal transition (EMT) and proteasome downregulation. The genomic region around the FRA16D site, containing a cadherin cluster region, was epigenetically suppressed by oncogenic signaling. Proteasome inhibition caused the upregulation of chemokine genes, which may facilitate immune evasion during HGSOC tumorigenesis. Importantly, MEK inhibitor treatment reversed these oncogenic alterations, indicating its clinical effectiveness in a subgroup of patients with HGSOC. This result suggests that MEK inhibitor therapy may be an effective treatment option for chemotherapy-resistant HGSOC.
Collapse
Affiliation(s)
- Hidenori Machino
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Ai Dozen
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Mariko Konaka
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Noriko Ikawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kanto Shozu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, 930-0152, Japan
| | - Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Syuzo Kaneko
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Yoshida
- Division of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enyacho, Izumo-shi, Shimane, 693-8501, Japan
| | - Vassiliki Saloura
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enyacho, Izumo-shi, Shimane, 693-8501, Japan
| | - Ryuji Hamamoto
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
22
|
Moffett AS, Deng Y, Levine H. Modeling the Role of Immune Cell Conversion in the Tumor-Immune Microenvironment. Bull Math Biol 2023; 85:93. [PMID: 37658264 PMCID: PMC10474003 DOI: 10.1007/s11538-023-01201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Tumors develop in a complex physical, biochemical, and cellular milieu, referred to as the tumor microenvironment. Of special interest is the set of immune cells that reciprocally interact with the tumor, the tumor-immune microenvironment (TIME). The diversity of cell types and cell-cell interactions in the TIME has led researchers to apply concepts from ecology to describe the dynamics. However, while tumor cells are known to induce immune cells to switch from anti-tumor to pro-tumor phenotypes, this type of ecological interaction has been largely overlooked. To address this gap in cancer modeling, we develop a minimal, ecological model of the TIME with immune cell conversion, to highlight this important interaction and explore its consequences. A key finding is that immune conversion increases the range of parameters supporting a co-existence phase in which the immune system and the tumor reach a stalemate. Our results suggest that further investigation of the consequences of immune cell conversion, using detailed, data-driven models, will be critical for greater understanding of TIME dynamics.
Collapse
Affiliation(s)
- Alexander S. Moffett
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115 USA
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 USA
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 77005 USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115 USA
- Department of Physics, Northeastern University, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
| |
Collapse
|
23
|
Yang K, Halima A, Chan TA. Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 2023; 20:604-623. [PMID: 37328642 DOI: 10.1038/s41571-023-00789-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour-immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
24
|
Bandopadhyay S, Patranabis S. Mechanisms of HIF-driven immunosuppression in tumour microenvironment. J Egypt Natl Canc Inst 2023; 35:27. [PMID: 37646847 DOI: 10.1186/s43046-023-00186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
Hypoxia arises due to insufficient oxygen delivery to rapidly proliferating tumour cells that outpace the available blood supply. It is a characteristic feature of most solid tumour microenvironments and plays a critical role in regulating anti-tumour immunity, enhancing tumoral heterogeneity, and promoting therapeutic resistance and poor clinical outcomes. Hypoxia-inducible factors (HIFs) are the major hypoxia-responsive transcription factors that are activated under low oxygenation conditions and have been identified to drive multifunctional roles in tumour immune evasion. The HIF signalling network serves as an attractive target for targeted therapeutic approaches. This review aims to provide a comprehensive overview of the most crucial mechanisms by which HIF controls the expression of immunosuppressive molecules and immune checkpoints, disrupts cancer immunogenicity, and induces immunotherapeutic resistance.
Collapse
Affiliation(s)
| | - Somi Patranabis
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India.
| |
Collapse
|
25
|
Lee MH, Ratanachan D, Wang Z, Hack J, Abdulrahman L, Shamlin NP, Kalayjian M, Nesseler JP, Ganapathy E, Nguyen C, Ratikan JA, Cacalano NA, Austin D, Damoiseaux R, DiPardo B, Graham DS, Kalbasi A, Sayer JW, McBride WH, Schaue D. Adaptation of the Tumor Antigen Presentation Machinery to Ionizing Radiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:693-705. [PMID: 37395687 PMCID: PMC10435044 DOI: 10.4049/jimmunol.2100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/18/2022] [Indexed: 07/04/2023]
Abstract
Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), β2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5. In contrast, in another less immunogenic, murine fibrosarcoma (NFSA), LMP7 transcripts and expression of components of the immunoproteasome and the APM were muted after IR, which affected MHC-I expression and CD8+ T lymphocyte infiltration into NFSA tumors in vivo. Introduction of LMP7 into NFSA largely corrected these deficiencies, enhancing MHC-I expression and in vivo tumor immunogenicity. The immune adaptation in response to IR mirrored many aspects of the response to IFN-γ in coordinating the transcriptional MHC-I program, albeit with notable differences. Further investigations showed divergent upstream pathways in that, unlike IFN-γ, IR failed to activate STAT-1 in either FSA or NFSA cells while heavily relying on NF-κB activation. The IR-induced shift toward immunoproteasome production within a tumor indicates that proteasomal reprogramming is part of an integrated and dynamic tumor-host response that is specific to the stressor and the tumor and therefore is of clinical relevance for radiation oncology.
Collapse
Affiliation(s)
- Mi-Heon Lee
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Duang Ratanachan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Zitian Wang
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jacob Hack
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Lobna Abdulrahman
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas P. Shamlin
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mirna Kalayjian
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jean Philippe Nesseler
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ekambaram Ganapathy
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christine Nguyen
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Josephine A. Ratikan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicolas A. Cacalano
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - David Austin
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of CNSI, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Benjamin DiPardo
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Danielle S. Graham
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - James W. Sayer
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- School of Public Health, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - William H. McBride
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
26
|
Najafi A, Jolly MK, George JT. Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity. iScience 2023; 26:106964. [PMID: 37426354 PMCID: PMC10329148 DOI: 10.1016/j.isci.2023.106964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancer metastasis and morbidity. EMT is a non-binary process, and cells can be stably arrested en route to EMT in an intermediate hybrid state associated with enhanced tumor aggressiveness and worse patient outcomes. Understanding EMT progression in detail will provide fundamental insights into the mechanisms underlying metastasis. Despite increasingly available single-cell RNA sequencing (scRNA-seq) data that enable in-depth analyses of EMT at the single-cell resolution, current inferential approaches are limited to bulk microarray data. There is thus a great need for computational frameworks to systematically infer and predict the timing and distribution of EMT-related states at single-cell resolution. Here, we develop a computational framework for reliable inference and prediction of EMT-related trajectories from scRNA-seq data. Our model can be utilized across a variety of applications to predict the timing and distribution of EMT from single-cell sequencing data.
Collapse
Affiliation(s)
- Annice Najafi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mohit K. Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
27
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
28
|
Javitt A, Shmueli MD, Kramer MP, Kolodziejczyk AA, Cohen IJ, Radomir L, Sheban D, Kamer I, Litchfield K, Bab-Dinitz E, Zadok O, Neiens V, Ulman A, Wolf-Levy H, Eisenberg-Lerner A, Kacen A, Alon M, Rêgo AT, Stacher-Priehse E, Lindner M, Koch I, Bar J, Swanton C, Samuels Y, Levin Y, da Fonseca PCA, Elinav E, Friedman N, Meiners S, Merbl Y. The proteasome regulator PSME4 modulates proteasome activity and antigen diversity to abrogate antitumor immunity in NSCLC. NATURE CANCER 2023; 4:629-647. [PMID: 37217651 DOI: 10.1038/s43018-023-00557-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav D Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Matthias P Kramer
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ivan J Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Radomir
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Kevin Litchfield
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Oranit Zadok
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Vanessa Neiens
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Adi Ulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Wolf-Levy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Assaf Kacen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Ina Koch
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charles Swanton
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Yardena Samuels
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Paula C A da Fonseca
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| | - Nir Friedman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
29
|
George JT, Levine H. Optimal cancer evasion in a dynamic immune microenvironment generates diverse post-escape tumor antigenicity profiles. eLife 2023; 12:82786. [PMID: 37096883 PMCID: PMC10129331 DOI: 10.7554/elife.82786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
The failure of cancer treatments, including immunotherapy, continues to be a major obstacle in preventing durable remission. This failure often results from tumor evolution, both genotypic and phenotypic, away from sensitive cell states. Here, we propose a mathematical framework for studying the dynamics of adaptive immune evasion that tracks the number of tumor-associated antigens available for immune targeting. We solve for the unique optimal cancer evasion strategy using stochastic dynamic programming and demonstrate that this policy results in increased cancer evasion rates compared to a passive, fixed strategy. Our foundational model relates the likelihood and temporal dynamics of cancer evasion to features of the immune microenvironment, where tumor immunogenicity reflects a balance between cancer adaptation and host recognition. In contrast with a passive strategy, optimally adaptive evaders navigating varying selective environments result in substantially heterogeneous post-escape tumor antigenicity, giving rise to immunogenically hot and cold tumors.
Collapse
Affiliation(s)
- Jason T George
- Department of Biomedical Engineering, Texas A&M University, Houston, United States
- Engineering Medicine Program, Texas A&M University, Houston, United States
- Center for Theoretical Biological Physics, Rice University, Houston, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, United States
- Department of Physics, Northeastern University, Boston, United States
- Department of Bioengineering, Northeastern University, Boston, United States
| |
Collapse
|
30
|
Geoffroy K, Araripe Saraiva B, Viens M, Béland D, Bourgeois-Daigneault MC. Increased expression of the immunoproteasome subunits PSMB8 and PSMB9 by cancer cells correlate with better outcomes for triple-negative breast cancers. Sci Rep 2023; 13:2129. [PMID: 36746983 PMCID: PMC9902398 DOI: 10.1038/s41598-023-28940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Proteasome dependency is a feature of many cancers that can be targeted by proteasome inhibitors. For some cancer types, notably breast cancer and triple-negative breast cancer (TNBC), high mRNA expression of a modified form of the proteasome, called the immunoproteasome (ImP), correlates with better outcomes and higher expression of one ImP subunit was associated with slower tumor growth in a small patient cohort. While these findings are in line with an anti-tumoral role of the ImP in breast cancer, studies investigating ImP expression at the protein level in large patient cohorts are lacking. Furthermore, while ImPs can be found in both immune and non-immune cells, the cellular source is often ignored in correlative studies. In order to determine the impact of ImP expression on breast cancer outcomes, we assessed the protein expression and cellular source of the ImP subunits PSMB8 and PSMB9 in a cohort of 2070 patients. Our data show a clear correlation between high ImP expression and better outcomes, most notably for TNBC patients and when tumor cells rather than stromal or immune cells express PSMB8 or PSMB9. Our results therefore suggest that ImP expression by tumor cells could be used as prognostic markers of TNBC outcomes.
Collapse
Affiliation(s)
- Karen Geoffroy
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Bruna Araripe Saraiva
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Melissa Viens
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Delphine Béland
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada. .,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada. .,Institut du Cancer de Montréal, Montreal, Canada.
| |
Collapse
|
31
|
Alfarano G, Audano M, Di Chiaro P, Balestrieri C, Milan M, Polletti S, Spaggiari P, Zerbi A, Diaferia GR, Mitro N, Natoli G. Interferon regulatory factor 1 (IRF1) controls the metabolic programmes of low-grade pancreatic cancer cells. Gut 2023; 72:109-128. [PMID: 35568393 DOI: 10.1136/gutjnl-2021-325811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinomas (PDACs) include heterogeneous mixtures of low-grade cells forming pseudoglandular structures and compact nests of high-grade cells organised in non-glandular patterns. We previously reported that low-grade PDAC cells display high expression of interferon regulatory factor 1 (IRF1), a pivotal transcription factor of the interferon (IFN) system, suggesting grade-specific, cell-intrinsic activation of IFN responses. Here, we set out to determine the molecular bases and the functional impact of the activation of IFN-regulated responses in human PDACs. DESIGN We first confirmed the correlation between glandular differentiation and molecular subtypes of PDAC on the one hand, and the expression of IRF1 and IFN-stimulated genes on the other. We next used unbiased omics approaches to systematically analyse basal and IFN-regulated responses in low-grade and high-grade PDAC cells, as well as the impact of IRF1 on gene expression programmes and metabolic profiles of PDAC cells. RESULTS High-level expression of IRF1 in low-grade PDAC cells was controlled by endodermal lineage-determining transcription factors. IRF1-regulated gene expression equipped low-grade PDAC cells with distinctive properties related to antigen presentation and processing as well as responsiveness to IFN stimulation. Notably, IRF1 also controlled the characteristic metabolic profile of low-grade PDAC cells, suppressing both mitochondrial respiration and fatty acid synthesis, which may in part explain its growth-inhibiting activity. CONCLUSION IRF1 links endodermal differentiation to the expression of genes controlling antigen presentation and processing as well as to the specification of the metabolic profile characteristic of classical PDAC cells.
Collapse
Affiliation(s)
- Gabriele Alfarano
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Balestrieri
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Milan
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Spaggiari
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandro Zerbi
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele (Milano), Italy
| | | | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
32
|
Cornel AM, Dunnebach E, Hofman DA, Das S, Sengupta S, van den Ham F, Wienke J, Strijker JGM, van den Beemt DAMH, Essing AHW, Koopmans B, Engels SAG, Lo Presti V, Szanto CS, George RE, Molenaar JJ, van Heesch S, Dierselhuis MP, Nierkens S. Epigenetic modulation of neuroblastoma enhances T cell and NK cell immunogenicity by inducing a tumor-cell lineage switch. J Immunother Cancer 2022; 10:jitc-2022-005002. [PMID: 36521927 PMCID: PMC9756225 DOI: 10.1136/jitc-2022-005002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Immunotherapy in high-risk neuroblastoma (HR-NBL) does not live up to its full potential due to inadequate (adaptive) immune engagement caused by the extensive immunomodulatory capacity of HR-NBL. We aimed to tackle one of the most notable immunomodulatory processes in neuroblastoma (NBL), absence of major histocompatibility complex class I (MHC-I) surface expression, a process greatly limiting cytotoxic T cell engagement. We and others have previously shown that MHC-I expression can be induced by cytokine-driven immune modulation. Here, we aimed to identify tolerable pharmacological repurposing strategies to upregulate MHC-I expression and therewith enhance T cell immunogenicity in NBL. METHODS Drug repurposing libraries were screened to identify compounds enhancing MHC-I surface expression in NBL cells using high-throughput flow cytometry analyses optimized for adherent cells. The effect of positive hits was confirmed in a panel of NBL cell lines and patient-derived organoids. Compound-treated NBL cell lines and organoids were cocultured with preferentially expressed antigen of melanoma (PRAME)-reactive tumor-specific T cells and healthy-donor natural killer (NK) cells to determine the in vitro effect on T cell and NK cell cytotoxicity. Additional immunomodulatory effects of histone deacetylase inhibitors (HDACi) were identified by transcriptome and translatome analysis of treated organoids. RESULTS Drug library screening revealed MHC-I upregulation by inhibitor of apoptosis inhibitor (IAPi)- and HDACi drug classes. The effect of IAPi was limited due to repression of nuclear factor kappa B (NFκB) pathway activity in NBL, while the MHC-I-modulating effect of HDACi was widely translatable to a panel of NBL cell lines and patient-derived organoids. Pretreatment of NBL cells with the HDACi entinostat enhanced the cytotoxic capacity of tumor-specific T cells against NBL in vitro, which coincided with increased expression of additional players regulating T cell cytotoxicity (eg, TAP1/2 and immunoproteasome subunits). Moreover, MICA and MICB, important in NK cell cytotoxicity, were also increased by entinostat exposure. Intriguingly, this increase in immunogenicity was accompanied by a shift toward a more mesenchymal NBL cell lineage. CONCLUSIONS This study indicates the potential of combining (immuno)therapy with HDACi to enhance both T cell-driven and NKcell-driven immune responses in patients with HR-NBL.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ester Dunnebach
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Damon A Hofman
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Femke van den Ham
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Judith Wienke
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | - Denise A M H van den Beemt
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Anke H W Essing
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Bianca Koopmans
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Sem A G Engels
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Vania Lo Presti
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Celina S Szanto
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan J Molenaar
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | | | - S Nierkens
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
34
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
35
|
Tang WW, Bauer KM, Barba C, Ekiz HA, O’Connell RM. miR-aculous new avenues for cancer immunotherapy. Front Immunol 2022; 13:929677. [PMID: 36248881 PMCID: PMC9554277 DOI: 10.3389/fimmu.2022.929677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The rising toll of cancer globally necessitates ingenuity in early detection and therapy. In the last decade, the utilization of immune signatures and immune-based therapies has made significant progress in the clinic; however, clinical standards leave many current and future patients without options. Non-coding RNAs, specifically microRNAs, have been explored in pre-clinical contexts with tremendous success. MicroRNAs play indispensable roles in programming the interactions between immune and cancer cells, many of which are current or potential immunotherapy targets. MicroRNAs mechanistically control a network of target genes that can alter immune and cancer cell biology. These insights provide us with opportunities and tools that may complement and improve immunotherapies. In this review, we discuss immune and cancer cell-derived miRNAs that regulate cancer immunity and examine miRNAs as an integral part of cancer diagnosis, classification, and therapy.
Collapse
Affiliation(s)
- William W. Tang
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Huseyin Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Ryan M. O’Connell
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Irajizad E, Fahrmann JF, Long JP, Vykoukal J, Kobayashi M, Capello M, Yu CY, Cai Y, Hsiao FC, Patel N, Park S, Peng Q, Dennison JB, Kato T, Tai MC, Taguchi A, Kadara H, Wistuba II, Katayama H, Do KA, Hanash SM, Ostrin EJ. A Comprehensive Search of Non-Canonical Proteins in Non-Small Cell Lung Cancer and Their Impact on the Immune Response. Int J Mol Sci 2022; 23:ijms23168933. [PMID: 36012199 PMCID: PMC9409146 DOI: 10.3390/ijms23168933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
There is substantial interest in mining neoantigens for cancer applications. Non-canonical proteins resulting from frameshift mutations have been identified as neoantigens in cancer. We investigated the landscape of non-canonical proteins in non-small cell lung cancer (NSCLC) and their induced immune response in the form of autoantibodies. A database of cryptoproteins was computationally constructed and comprised all alternate open reading frames (altORFs) and ORFs identified in pseudogenes, noncoding RNAs, and untranslated regions of mRNAs that did not align with known canonical proteins. Proteomic profiles of seventeen lung adenocarcinoma (LUAD) cell lines were searched to evaluate the occurrence of cryptoproteins. To assess the immunogenicity, immunoglobulin (Ig)-bound cryptoproteins in plasmas were profiled by mass spectrometry. The specimen set consisted of plasmas from 30 newly diagnosed NSCLC cases, pre-diagnostic plasmas from 51 NSCLC cases, and 102 control plasmas. An analysis of LUAD cell lines identified 420 cryptoproteins. Plasma Ig-bound analyses revealed 90 cryptoproteins uniquely found in cases and 14 cryptoproteins that had a fold-change >2 compared to controls. In pre-diagnostic samples, 17 Ig-bound cryptoproteins yielded an odds ratio ≥2. Eight Ig-bound cryptoproteins were elevated in both pre-diagnostic and newly diagnosed cases compared to controls. Cryptoproteins represent a class of neoantigens that induce an autoantibody response in NSCLC.
Collapse
Affiliation(s)
- Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - James P. Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Makoto Kobayashi
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Hikarigaoka, Fukushima 960-1247, Japan
| | - Michela Capello
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Chuan-Yih Yu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Yining Cai
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Fu Chung Hsiao
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Nikul Patel
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Soyoung Park
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Qian Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Taketo Kato
- Department of Thoracic Surgery, Nagoya University, Nagoya 464-8601, Japan
| | - Mei Chee Tai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya 464-8601, Japan
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Correspondence: (K.-A.D.); (S.M.H.); (E.J.O.); Tel.: +1-713-745-5242 (S.M.H.)
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Correspondence: (K.-A.D.); (S.M.H.); (E.J.O.); Tel.: +1-713-745-5242 (S.M.H.)
| | - Edwin J. Ostrin
- Departments of General Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Correspondence: (K.-A.D.); (S.M.H.); (E.J.O.); Tel.: +1-713-745-5242 (S.M.H.)
| |
Collapse
|
37
|
Liu R, Liu R, Guo Z, Ren J, Huang J, Luo Q, Tan Q. shRNA‑mediated knockdown of KNTC1 inhibits non-small-cell lung cancer through regulating PSMB8. Cell Death Dis 2022; 13:685. [PMID: 35933405 PMCID: PMC9357013 DOI: 10.1038/s41419-022-05140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023]
Abstract
In view of the important roles played by Kinetochore proteins in mitosis, we believed that they may contribute to the development and progression of human cancers, which has been reported recently elsewhere. Kinetochore-associated 1 (KNTC1) participates in the segregation of sister chromatids during mitosis, the effects of which on non-small-cell lung cancer (NSCLC) remain unclear. Here, we sought to identify the biological significance of KNTC1 in NSCLC. KNTC1 protein expression in NSCLC tissues was investigated by immunohistochemistry. Lentivirus delivered short hairpin RNA (shRNA) was utilized to establish KNTC1 silence NSCLC cell lines. The effects of KNTC1 depletion on NSCLC cell proliferation, migration, apoptosis, and tumor formation were analyzed by MTT assay, wound-healing assay, transwell assay, flow cytometry assay, and in nude mouse models in vivo. After KNTC1 reduction, NSCLC cell viability, proliferation, migration, and invasion were restrained. A xenograft tumor model was also provided to demonstrate the inhibited tumorigenesis in NSCLC. In addition, the downstream mechanism analysis indicated that KNTC1 depletion was positively associated with PSMB8. The findings of the present study suggested that KNTC1 may have a pivotal role in mediating NSCLC progression and may act as a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ruijun Liu
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ruili Liu
- Department of Stomatology, Ordos central hospital, Ordos, Inner Mongolia, 017000, P. R. China
| | - Zhiyi Guo
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jianghao Ren
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jia Huang
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Qingquan Luo
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Qiang Tan
- Shanghai Lung Tumor Clinical Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
38
|
D’Amico S, Tempora P, Melaiu O, Lucarini V, Cifaldi L, Locatelli F, Fruci D. Targeting the antigen processing and presentation pathway to overcome resistance to immune checkpoint therapy. Front Immunol 2022; 13:948297. [PMID: 35936007 PMCID: PMC9352877 DOI: 10.3389/fimmu.2022.948297] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the significant clinical advances with the use of immune checkpoint inhibitors (ICIs) in a wide range of cancer patients, response rates to the therapy are variable and do not always result in long-term tumor regression. The development of ICI-resistant disease is one of the pressing issue in clinical oncology, and the identification of new targets and combination therapies is a crucial point to improve response rates and duration. Antigen processing and presentation (APP) pathway is a key element for an efficient response to ICI therapy. Indeed, malignancies that do not express tumor antigens are typically poor infiltrated by T cells and unresponsive to ICIs. Therefore, improving tumor immunogenicity potentially increases the success rate of ICI therapy. In this review, we provide an overview of the key elements of the APP machinery that can be exploited to enhance tumor immunogenicity and increase the efficacy of ICI-based immunotherapy.
Collapse
Affiliation(s)
- Silvia D’Amico
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Patrizia Tempora
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Doriana Fruci,
| |
Collapse
|
39
|
Mullins R, Pal A, Barrett TF, Neal MEH, Puram SV. Epithelial-Mesenchymal Plasticity in Tumor Immune Evasion. Cancer Res 2022; 82:2329-2343. [PMID: 35363853 PMCID: PMC9256788 DOI: 10.1158/0008-5472.can-21-4370] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 01/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process that occurs during embryogenesis and tissue repair. However, EMT can be hijacked by malignant cells, where it may promote immune evasion and metastasis. Classically considered a dichotomous transition, EMT in cancer has recently been considered a plastic process whereby malignant cells display and interconvert among hybrid epithelial/mesenchymal (E/M) states. Epithelial-mesenchymal plasticity (EMP) and associated hybrid E/M states are divergent from classical EMT, with unique immunomodulatory effects. Here, we review recent insights into the EMP-immune cross-talk, highlighting possible mechanisms of immune evasion conferred by hybrid E/M states and roles of immune cells in EMP.
Collapse
Affiliation(s)
- Riley Mullins
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Ananya Pal
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Thomas F Barrett
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Molly E Heft Neal
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Sidharth V Puram
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, U.S.A.,Corresponding author: Sidharth V. Puram, MD PhD, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8115, St. Louis, MO 63110, (314) 362-7509,
| |
Collapse
|
40
|
Kim SK, Cho SW. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front Pharmacol 2022; 13:868695. [PMID: 35685630 PMCID: PMC9171538 DOI: 10.3389/fphar.2022.868695] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/08/2022] [Indexed: 12/17/2022] Open
Abstract
Recently, in the field of cancer treatment, the paradigm has changed to immunotherapy that activates the immune system to induce cancer attacks. Among them, immune checkpoint inhibitors (ICI) are attracting attention as excellent and continuous clinical results. However, it shows not only limitations such as efficacy only in some patients or some indications, but also side-effects and resistance occur. Therefore, it is necessary to understand the factors of the tumor microenvironment (TME) that affect the efficacy of immunotherapy, that is, the mechanism by which cancer grows while evading or suppressing attacks from the immune system within the TME. Tumors can evade attacks from the immune system through various mechanisms such as restricting antigen recognition, inhibiting the immune system, and inducing T cell exhaustion. In addition, tumors inhibit or evade the immune system by accumulating specific metabolites and signal factors within the TME or limiting the nutrients available to immune cells. In order to overcome the limitations of immunotherapy and develop effective cancer treatments and therapeutic strategies, an approach is needed to understand the functions of cancer and immune cells in an integrated manner based on the TME. In this review, we will examine the effects of the TME on cancer cells and immune cells, especially how cancer cells evade the immune system, and examine anti-cancer strategies based on TME.
Collapse
Affiliation(s)
- Seong Keun Kim
- Cellus Inc., Seoul, South Korea
- *Correspondence: Seong Keun Kim, ; Sun Wook Cho,
| | - Sun Wook Cho
- Cellus Inc., Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- *Correspondence: Seong Keun Kim, ; Sun Wook Cho,
| |
Collapse
|
41
|
Ortiz-Cuaran S, Swalduz A, Foy JP, Marteau S, Morel AP, Fauvet F, De Souza G, Michon L, Boussageon M, Gadot N, Godefroy M, Léon S, Tortereau A, Mourksi NEH, Leonce C, Albaret MA, Dongre A, Vanbervliet B, Robert M, Tonon L, Pommier RM, Hofman V, Attignon V, Boyault S, Audoynaud C, Auclair J, Bouquet F, Wang Q, Ménétrier-Caux C, Pérol M, Caux C, Hofman P, Lantuejoul S, Puisieux A, Saintigny P. Epithelial-to-mesenchymal transition promotes immune escape by inducing CD70 in non-small cell lung cancer. Eur J Cancer 2022; 169:106-122. [PMID: 35550950 DOI: 10.1016/j.ejca.2022.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Epithelial-to-mesenchymal transition (EMT) is associated with tumor aggressiveness, drug resistance, and poor survival in non-small cell lung cancer (NSCLC) and other cancers. The identification of immune-checkpoint ligands (ICPLs) associated with NSCLCs that display a mesenchymal phenotype (mNSCLC) could help to define subgroups of patients who may benefit from treatment strategies using immunotherapy. METHODS We evaluated ICPL expression in silico in 130 NSCLC cell lines. In vitro, CRISPR/Cas9-mediated knockdown and lentiviral expression were used to assess the impact of ZEB1 expression on CD70. Gene expression profiles of lung cancer samples from the TCGA (n = 1018) and a dataset from MD Anderson Cancer Center (n = 275) were analyzed. Independent validation was performed by immunohistochemistry and targeted-RNA sequencing in 154 NSCLC whole sections, including a large cohort of pulmonary sarcomatoid carcinomas (SC, n = 55). RESULTS We uncover that the expression of CD70, a regulatory ligand from the tumor necrosis factor ligand family, is enriched in mNSCLC in vitro models. Mechanistically, the EMT-inducer ZEB1 impacted CD70 expression and fostered increased activity of the CD70 promoter. CD70 overexpression was also evidenced in mNSCLC patient tumor samples and was particularly enriched in SC, a lung cancer subtype associated with poor prognosis. In these tumors, CD70 expression was associated with decreased CD3+ and CD8+ T-cell infiltration and increased T-cell exhaustion markers. CONCLUSION Our results provide evidence on the pivotal roles of CD70 and ZEB1 in immune escape in mNSCLC, suggesting that EMT might promote cancer progression and metastasis by not only increasing cancer cell plasticity but also reprogramming the immune response in the local tumor microenvironment.
Collapse
Affiliation(s)
- Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.
| | - Aurélie Swalduz
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Jean-Philippe Foy
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Solène Marteau
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Anne-Pierre Morel
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Frédérique Fauvet
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Geneviève De Souza
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Lucas Michon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maxime Boussageon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Research Pathology, Centre Léon Bérard, Lyon, France
| | - Marion Godefroy
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Sophie Léon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Antonin Tortereau
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Nour-El-Houda Mourksi
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marie Alexandra Albaret
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Béatrice Vanbervliet
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marie Robert
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Laurie Tonon
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Roxane M Pommier
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte D'Azur, CHU de Nice, University Hospital Federation OncoAge, Nice, France
| | | | - Sandrine Boyault
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | | | | | | | - Qing Wang
- Genomics Platform, Centre Léon Bérard, Lyon, France
| | - Christine Ménétrier-Caux
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maurice Pérol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Christophe Caux
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte D'Azur, CHU de Nice, University Hospital Federation OncoAge, Nice, France
| | - Sylvie Lantuejoul
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France; Research Pathology, Centre Léon Bérard, Lyon, France
| | - Alain Puisieux
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
42
|
Gu Y, Bui T, Muller WJ. Exploiting Mouse Models to Recapitulate Clinical Tumor Dormancy and Recurrence in Breast Cancer. Endocrinology 2022; 163:6585026. [PMID: 35560214 DOI: 10.1210/endocr/bqac055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/19/2022]
Abstract
Breast cancer recurrence and metastasis from activated dormant tumors remain the leading causes in disease morbidity. Estrogen receptor positive breast cancer that accounts for nearly 80% of all cases face a life-long risk of relapse after initial treatment. The biology of dormant tumors and dormant cancer cells that give rise to recurrent disease and metastasis remain to be understood for us to overcome the clinical challenges that they bring. The selection and optimization of pre-clinical models to recapitulate dormancy and recurrence in patients is critical for studying the underlying cellular and environmental factors. Here, we provide a brief review of studies that utilize mouse models to dissect the mechanisms of dormancy and therapeutic strategies to avert recurrence. This review specifically accentuates the versatility and benefits of immunocompetent transgenic mouse models that can be manipulated to recapitulate primary dormancy, metastatic dormancy, and post-therapy dormancy.
Collapse
Affiliation(s)
- Yu Gu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Tung Bui
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
- Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
43
|
Mercier R, LaPointe P. The role of cellular proteostasis in anti-tumor immunity. J Biol Chem 2022; 298:101930. [PMID: 35421375 PMCID: PMC9108985 DOI: 10.1016/j.jbc.2022.101930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general - and anti-tumor immunity in particular - is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
44
|
Sadagopan A, Michelakos T, Boyiadzis G, Ferrone C, Ferrone S. Human Leukocyte Antigen Class I Antigen-Processing Machinery Upregulation by Anticancer Therapies in the Era of Checkpoint Inhibitors: A Review. JAMA Oncol 2022; 8:462-473. [PMID: 34940799 PMCID: PMC8930447 DOI: 10.1001/jamaoncol.2021.5970] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Although typically impressive, objective responses to immune checkpoint inhibitors (ICIs) occur in only 12.5% of patients with advanced cancer. The majority of patients do not respond due to cell-intrinsic resistance mechanisms, including human leukocyte antigen (HLA) class I antigen-processing machinery (APM) defects. The APM defects, which have a negative effect on neoantigen presentation to cytotoxic T lymphocytes (CTLs), are present in the majority of malignant tumors. These defects are caused by gene variations in less than 25% of cases and by dysregulated signaling and/or epigenetic changes in most of the remaining cases, making them frequently correctable. This narrative review summarizes the growing clinical evidence that chemotherapy, targeted therapies, and, to a lesser extent, radiotherapy can correct HLA class I APM defects in cancer cells and improve responses to ICIs. OBSERVATIONS Most chemotherapeutics enhance HLA class I APM component expression and function in cancer cells, tumor CTL infiltration, and responses to ICIs in preclinical and clinical models. Despite preclinical evidence, radiotherapy does not appear to upregulate HLA class I expression in patients and does not enhance the efficacy of ICIs in clinical settings. The latter findings underscore the need to optimize the dose and schedule of radiation and timing of ICI administration to maximize their immunogenic synergy. By increasing DNA and chromatin accessibility, epigenetic agents (histone deacetylase inhibitors, DNA methyltransferase inhibitors, and EZH2 inhibitors) enhance HLA class I APM component expression and function in many cancer types, a crucial contributor to their synergy with ICIs in patients. Furthermore, epidermal growth factor receptor (EGFR) inhibitors and BRAF/mitogen-activated protein kinase kinase inhibitors are effective at upregulating HLA class I expression in EGFR- and BRAF-variant tumors, respectively; these changes may contribute to the clinical responses induced by these inhibitors in combination with ICIs. CONCLUSIONS AND RELEVANCE This narrative review summarizes evidence indicating that chemotherapy and targeted therapies are effective at enhancing HLA class I APM component expression and function in cancer cells. The resulting increased immunogenicity and recognition and elimination of cancer cells by cognate CTLs contributes to the antitumor activity of these therapies as well as to their synergy with ICIs.
Collapse
Affiliation(s)
- Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriella Boyiadzis
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Masuda H, Harano K, Miura S, Wang Y, Hirota Y, Harada O, Jolly MK, Matsunaga Y, Lim B, Wood AL, Parinyanitikul N, Jin Lee H, Gong G, George JT, Levine H, Lee J, Wang X, Lucci A, Rao A, Schweitzer BL, Lawrence OR, Seitz RS, Morris SW, Hout DR, Nakamura S, Krishnamurthy S, Ueno NT. Changes in Triple-Negative Breast Cancer Molecular Subtypes in Patients Without Pathologic Complete Response After Neoadjuvant Systemic Chemotherapy. JCO Precis Oncol 2022; 6:e2000368. [PMID: 35294223 PMCID: PMC8939918 DOI: 10.1200/po.20.00368] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 08/25/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Lehmann et al have identified four molecular subtypes of triple-negative breast cancer (TNBC)-basal-like (BL) 1, BL2, mesenchymal (M), and luminal androgen receptor-and an immunomodulatory (IM) gene expression signature modifier. Our group previously showed that the response of TNBC to neoadjuvant systemic chemotherapy (NST) differs by molecular subtype, but whether NST affects the subtype was unknown. Here, we tested the hypothesis that in patients without pathologic complete response, TNBC subtypes can change after NST. Moreover, in cases with the changed subtype, we determined whether epithelial-to-mesenchymal transition (EMT) had occurred. MATERIALS AND METHODS From the Pan-Pacific TNBC Consortium data set containing TNBC patient samples from four countries, we examined 64 formalin-fixed, paraffin-embedded pairs of matched pre- and post-NST tumor samples. The TNBC subtype was determined using the TNBCtype-IM assay. We analyzed a partial EMT gene expression scoring metric using mRNA data. RESULTS Of the 64 matched pairs, 36 (56%) showed a change in the TNBC subtype after NST. The most frequent change was from BL1 to M subtypes (38%). No tumors changed from M to BL1. The IM signature was positive in 14 (22%) patients before NST and eight (12.5%) patients after NST. The EMT score increased after NST in 28 (78%) of the 36 patients with the changed subtype (v 39% of the 28 patients without change; P = .002254). CONCLUSION We report, to our knowledge, for the first time that the TNBC molecular subtype and IM signature frequently change after NST. Our results also suggest that EMT is promoted by NST. Our findings may lead to innovative adjuvant therapy strategies in TNBC cases with residual tumor after NST.
Collapse
Affiliation(s)
- Hiroko Masuda
- Department of Breast Surgical Oncology, Showa University, Tokyo, Japan
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kenichi Harano
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Sakiko Miura
- Department of Pathology, Showa University, Tokyo, Japan
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yuko Hirota
- Department of Pathology, Showa University, Tokyo, Japan
| | - Oi Harada
- Department of Breast Surgical Oncology, Showa University, Tokyo, Japan
- Department of Pathology, Kameda General Hospital, Chiba, Japan
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Yuki Matsunaga
- Department of Breast Surgical Oncology, Showa University, Tokyo, Japan
| | - Bora Lim
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anita L. Wood
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Napa Parinyanitikul
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jason T. George
- Center for Theoretical Biological Physics, Rice University, Houston, TX
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX
| | - Herbert Levine
- Departments of Bioengineering and Physics, Northeastern University, Boston, MA
| | - Jangsoon Lee
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xiaoping Wang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anthony Lucci
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Robert S. Seitz
- Oncocyte Corporation (formerly Insight Genetics), Nashville, TN
| | | | - David R. Hout
- Oncocyte Corporation (formerly Insight Genetics), Nashville, TN
| | - Seigo Nakamura
- Department of Breast Surgical Oncology, Showa University, Tokyo, Japan
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naoto T. Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
46
|
Lahman MC, Schmitt TM, Paulson KG, Vigneron N, Buenrostro D, Wagener FD, Voillet V, Martin L, Gottardo R, Bielas J, McElrath JM, Stirewalt DL, Pogosova-Agadjanyan EL, Yeung CC, Pierce RH, Egan DN, Bar M, Hendrie PC, Kinsella S, Vakil A, Butler J, Chaffee M, Linton J, McAfee MS, Hunter DS, Bleakley M, Rongvaux A, Van den Eynde BJ, Chapuis AG, Greenberg PD. Targeting an alternate Wilms' tumor antigen 1 peptide bypasses immunoproteasome dependency. Sci Transl Med 2022; 14:eabg8070. [PMID: 35138909 DOI: 10.1126/scitranslmed.abg8070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing effective antileukemic immunotherapy will require understanding mechanisms underlying tumor control or resistance. Here, we report a mechanism of escape from immunologic targeting in an acute myeloid leukemia (AML) patient, who relapsed 1 year after immunotherapy with engineered T cells expressing a human leukocyte antigen A*02 (HLA-A2)-restricted T cell receptor (TCR) specific for a Wilms' tumor antigen 1 epitope, WT1126-134 (TTCR-C4). Resistance occurred despite persistence of functional therapeutic T cells and continuous expression of WT1 and HLA-A2 by the patient's AML cells. Analysis of the recurrent AML revealed expression of the standard proteasome, but limited expression of the immunoproteasome, specifically the beta subunit 1i (β1i), which is required for presentation of WT1126-134. An analysis of a second patient treated with TTCR-C4 demonstrated specific loss of AML cells coexpressing β1i and WT1. To determine whether the WT1 protein continued to be processed and presented in the absence of immunoproteasome processing, we identified and tested a TCR targeting an alternative, HLA-A2-restricted WT137-45 epitope that was generated by immunoproteasome-deficient cells, including WT1-expressing solid tumor lines. T cells expressing this TCR (TTCR37-45) killed the first patients' relapsed AML resistant to WT1126-134 targeting, as well as other primary AML, in vitro. TTCR37-45 controlled solid tumor lines lacking immunoproteasome subunits both in vitro and in an NSG mouse model. As proteasome composition can vary in AML, defining and preferentially targeting these proteasome-independent epitopes may maximize therapeutic efficacy and potentially circumvent AML immune evasion by proteasome-related immunoediting.
Collapse
Affiliation(s)
- Miranda C Lahman
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Thomas M Schmitt
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelly G Paulson
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, 1200 Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Denise Buenrostro
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Felecia D Wagener
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Hutchinson Centre Research Institute of South Africa, Cape Town 8001, South Africa
| | - Lauren Martin
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jason Bielas
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julie M McElrath
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Derek L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | | | - Cecilia C Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Robert H Pierce
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Daniel N Egan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Merav Bar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Paul C Hendrie
- University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Sinéad Kinsella
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aesha Vakil
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonah Butler
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary Chaffee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonathan Linton
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Megan S McAfee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel S Hunter
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marie Bleakley
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Anthony Rongvaux
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| | - Benoit J Van den Eynde
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Aude G Chapuis
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Philip D Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| |
Collapse
|
47
|
Leister H, Krause FF, Mahdavi R, Steinhoff U, Visekruna A. The Role of Immunoproteasomes in Tumor-Immune Cell Interactions in Melanoma and Colon Cancer. Arch Immunol Ther Exp (Warsz) 2022; 70:5. [PMID: 35064840 PMCID: PMC8783903 DOI: 10.1007/s00005-022-00644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
The participation of proteasomes in vital cellular and metabolic processes that are involved in tumor growth has made this protease complex an attractive target for cancer treatment. In contrast to ubiquitously available constitutive proteasome, the increased enzymatic activity of immunoproteasome is associated with tumor-infiltrating immune cells, such as antigen-presenting cells and T lymphocytes. In various tumors, an effective anti-tumor immunity is provided through generation of tumor-associated antigens by proteasomes, contributing crucially to cancer eradication by T lymphocytes. The knowledge regarding the role of immunoproteasomes in the communication between tumor cells and infiltrating immune cells is limited. Novel data suggest that the involvement of immunoproteasomes in tumorigenesis is more complex than previously thought. In the intestine, in which diverse signals from commensal bacteria and food can contribute to the onset of chronic inflammation and inflammation-driven cancer, immunoproteasomes exert tumorigenic properties by modulating the expression of pro-inflammatory factors. In contrast, in melanoma and non-small cell lung cancer, the immunoproteasome acts against cancer development by promoting an effective anti-tumor immunity. In this review, we highlight the potential of immunoproteasomes to either contribute to inflammatory signaling and tumor development, or to support anti-cancer immunity. Further, we discuss novel therapeutic options for cancer treatments that are associated with modulating the activity of immunoproteasomes in the tumor microenvironment.
Collapse
Affiliation(s)
- Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Rouzbeh Mahdavi
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
48
|
Mandal S, Tejaswi T, Janivara R, Srikrishnan S, Thakur P, Sahoo S, Chakraborty P, Sohal SS, Levine H, George JT, Jolly MK. Transcriptomic-Based Quantification of the Epithelial-Hybrid-Mesenchymal Spectrum across Biological Contexts. Biomolecules 2021; 12:29. [PMID: 35053177 PMCID: PMC8773604 DOI: 10.3390/biom12010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) underlies embryonic development, wound healing, and cancer metastasis and fibrosis. Cancer cells exhibiting EMP often have more aggressive behavior, characterized by drug resistance, and tumor-initiating and immuno-evasive traits. Thus, the EMP status of cancer cells can be a critical indicator of patient prognosis. Here, we compare three distinct transcriptomic-based metrics-each derived using a different gene list and algorithm-that quantify the EMP spectrum. Our results for over 80 cancer-related RNA-seq datasets reveal a high degree of concordance among these metrics in quantifying the extent of EMP. Moreover, each metric, despite being trained on cancer expression profiles, recapitulates the expected changes in EMP scores for non-cancer contexts such as lung fibrosis and cellular reprogramming into induced pluripotent stem cells. Thus, we offer a scoring platform to quantify the extent of EMP in vitro and in vivo for diverse biological applications including cancer.
Collapse
Affiliation(s)
- Susmita Mandal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
| | - Tanishq Tejaswi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Rohini Janivara
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Syamanthak Srikrishnan
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India; (S.S.); (P.T.)
| | - Pradipti Thakur
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India; (S.S.); (P.T.)
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7248, Australia;
| | - Herbert Levine
- Departments of Physics and Bioengineering, Northeastern University, Boston, MA 02115, USA;
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Jason T. George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.M.); (T.T.); (S.S.); (P.C.)
| |
Collapse
|
49
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
50
|
Maeng HM, Moore BN, Bagheri H, Steinberg SM, Inglefield J, Dunham K, Wei WZ, Morris JC, Terabe M, England LC, Roberson B, Rosing D, Sachdev V, Pack SD, Miettinen MM, Barr FG, Weiner LM, Panch S, Stroncek DF, Wood LV, Berzofsky JA. Phase I Clinical Trial of an Autologous Dendritic Cell Vaccine Against HER2 Shows Safety and Preliminary Clinical Efficacy. Front Oncol 2021; 11:789078. [PMID: 34976830 PMCID: PMC8716407 DOI: 10.3389/fonc.2021.789078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Despite recent advances, there is an urgent need for agents targeting HER2-expressing cancers other than breast cancer. We report a phase I study (NCT01730118) of a dendritic cell (DC) vaccine targeting HER2 in patients with metastatic cancer or bladder cancer at high risk of relapse. PATIENTS AND METHODS Part 1 of the study enrolled patients with HER2-expressing metastatic cancer that had progressed after at least standard treatment and patients who underwent definitive treatment for invasive bladder cancer with no evidence of disease at the time of enrollment. Part 2 enrolled patients with HER2-expressing metastatic cancer who had progressed after anti-HER2 therapy. The DC vaccines were prepared from autologous monocytes and transduced with an adenoviral vector expressing the extracellular and transmembrane domains of HER2 (AdHER2). A total of five doses were planned, and adverse events were recorded in patients who received at least one dose. Objective response was evaluated by unidimensional immune-related response criteria every 8 weeks in patients who received at least two doses. Humoral and cellular immunogenicity were assessed in patients who received more than three doses. RESULTS A total of 33 patients were enrolled at four dose levels (5 × 106, 10 × 106, 20 × 106, and 40 × 106 DCs). Median follow-up duration was 36 weeks (4-124); 10 patients completed five doses. The main reason for going off-study was disease progression. The main adverse events attributable to the vaccine were injection-site reactions. No cardiac toxicity was noted. Seven of 21 evaluable patients (33.3%) demonstrated clinical benefit (1 complete response, 1 partial response, and 5 stable disease). After ≥3 doses, an antibody response was detected in 3 of 13 patients (23.1%), including patients with complete and partial responses. Lymphocytes from 10 of 11 patients (90.9%) showed induction of anti-HER2 responses measured by the production of at least one of interferon-gamma, granzyme B, or tumor necrosis factor-alpha, and there were multifunctional responses in 8 of 11 patients (72.7%). CONCLUSIONS The AdHER2 DC vaccine showed evidence of immunogenicity and preliminary clinical benefit in patients with HER2-expressing cancers, along with an excellent safety profile. It shows promise for further clinical applications, especially in combination regimens.
Collapse
Affiliation(s)
- Hoyoung M. Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States,*Correspondence: Hoyoung M. Maeng,
| | - Brittni N. Moore
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Hadi Bagheri
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, Rockville, MD, United States
| | - Jon Inglefield
- Clinical Support Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory, Frederick, MD, United States
| | - Kim Dunham
- Clinical Support Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory, Frederick, MD, United States
| | - Wei-Zen Wei
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - John C. Morris
- Division of Hematology-Oncology, University of Cincinnati, Cincinnati, OH, United States
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Lee C. England
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Brenda Roberson
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Douglas Rosing
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Vandana Sachdev
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Svetlana D. Pack
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Markku M. Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Frederic G. Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - Sandhya Panch
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - David F. Stroncek
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Lauren V. Wood
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|