1
|
Yan Y, Zhu J, Qiu Q, Li J, Cao X, Deng X. The Arabidopsis demethylase REF6 physically interacts with phyB to promote hypocotyl elongation under red light. Proc Natl Acad Sci U S A 2025; 122:e2417253122. [PMID: 40063793 PMCID: PMC11929476 DOI: 10.1073/pnas.2417253122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
The plant photoreceptor phytochrome B (phyB) mediates the responses of plants to red (R) light. Trimethylation of histone H3 at Lys27 (H3K27me3) plays a crucial role in governing gene expression and controlling the response of plants to environmental changes. However, how dynamic H3K27me3 mediates plant response to R light is poorly understood. Here, we report that RELATIVE OF EARLY FLOWERING 6 (REF6), an H3K27me3 demethylase, promotes hypocotyl elongation under R light in Arabidopsis. Upon exposure to R light, REF6 preferentially interacts with the active Pfr form of phyB. Consequently, phyB enhances REF6 accumulation and its binding ability, which are necessary for inducing cell-elongation-related genes from open chromatin, ensuring normal plant growth under prolonged light exposure. Moreover, REF6 acts together with the phyB-PIF4 module to mediate light regulation of hypocotyl growth. These findings provide insights into the understanding of how phytochromes, epigenetic factors, and transcription factors coordinately control plant growth in response to changing light environment.
Collapse
Affiliation(s)
- Yan Yan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jiaping Zhu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qi Qiu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xian Deng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
2
|
Steffen A, Dombert K, Iglesias MJ, Nolte C, de Leone MJ, Yanovsky MJ, Mateos JL, Staiger D. Assessing the Role of AtGRP7 Arginine 141, a Target of Dimethylation by PRMT5, in Flowering Time Control and Stress Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:2771. [PMID: 39409642 PMCID: PMC11478431 DOI: 10.3390/plants13192771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
PROTEIN ARGININE METHYLTRANSFERASES (PRMTs) catalyze arginine (R) methylation that is critical for transcriptional and post-transcriptional gene regulation. In Arabidopsis, PRMT5 that catalyzes symmetric R dimethylation is best characterized. PRMT5 mutants are late-flowering and show altered responses to environmental stress. Among PRMT5 targets are Arabidopsis thaliana GLYCINE RICH RNA BINDING PROTEIN 7 (AtGRP7) and AtGRP8 that promote the transition to flowering. AtGRP7 R141 has been shown to be modified by PRMT5. Here, we tested whether this symmetric dimethylation of R141 is important for AtGRP7's physiological role in flowering time control. We constructed AtGRP7 mutant variants with non-methylable R141 (R141A, R141K). Genomic clones containing these variants complemented the late-flowering phenotype of the grp7-1 mutant to the same extent as wild-type AtGRP7. Furthermore, overexpression of AtGRP7 R141A or R141K promoted flowering similar to overexpression of the wild-type protein. Thus, flowering time does not depend on R141 and its modification. However, germination experiments showed that R141 contributes to the activity of AtGRP7 in response to abiotic stress reactions mediated by abscisic acid during early development. Immunoprecipitation of AtGRP7-GFP in the prmt5 background revealed that antibodies against dimethylated arginine still recognized AtGRP7, suggesting that additional methyltransferases may be responsible for modification of AtGRP7.
Collapse
Affiliation(s)
- Alexander Steffen
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
| | - Katarzyna Dombert
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
| | - María José Iglesias
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Christine Nolte
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
| | - María José de Leone
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires C1405BWE, Argentina; (M.J.d.L.); (M.J.Y.)
| | - Marcelo J. Yanovsky
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires C1405BWE, Argentina; (M.J.d.L.); (M.J.Y.)
| | - Julieta L. Mateos
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
| |
Collapse
|
3
|
Barré-Villeneuve C, Azevedo-Favory J. R-Methylation in Plants: A Key Regulator of Plant Development and Response to the Environment. Int J Mol Sci 2024; 25:9937. [PMID: 39337424 PMCID: PMC11432338 DOI: 10.3390/ijms25189937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Although arginine methylation (R-methylation) is one of the most important post-translational modifications (PTMs) conserved in eukaryotes, it has not been studied to the same extent as phosphorylation and ubiquitylation. Technical constraints, which are in the process of being resolved, may partly explain this lack of success. Our knowledge of R-methylation has recently evolved considerably, particularly in metazoans, where misregulation of the enzymes that deposit this PTM is implicated in several diseases and cancers. Indeed, the roles of R-methylation have been highlighted through the analyses of the main actors of this pathway: the PRMT writer enzymes, the TUDOR reader proteins, and potential "eraser" enzymes. In contrast, R-methylation has been much less studied in plants. Even so, it has been shown that R-methylation in plants, as in animals, regulates housekeeping processes such as transcription, RNA silencing, splicing, ribosome biogenesis, and DNA damage. R-methylation has recently been highlighted in the regulation of membrane-free organelles in animals, but this role has not yet been demonstrated in plants. The identified R-met targets modulate key biological processes such as flowering, shoot and root development, and responses to abiotic and biotic stresses. Finally, arginine demethylases activity has mostly been identified in vitro, so further studies are needed to unravel the mechanism of arginine demethylation.
Collapse
Affiliation(s)
- Clément Barré-Villeneuve
- Crop Biotechnics, Department of Biosystems, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, 3000 Leuven, Belgium
| | - Jacinthe Azevedo-Favory
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, UMR 5096, 66860 Perpignan, France
| |
Collapse
|
4
|
Zhu Q, Ahmad A, Shi C, Tang Q, Liu C, Ouyang B, Deng Y, Li F, Cao X. Protein arginine methyltransferase 6 mediates antiviral immunity in plants. Cell Host Microbe 2024; 32:1566-1578.e5. [PMID: 39106871 DOI: 10.1016/j.chom.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024]
Abstract
Viral suppressor RNA silencing (VSR) is essential for successful infection. Nucleotide-binding and leucine-rich repeat (NLR)-based and autophagy-mediated immune responses have been reported to target VSR as counter-defense strategies. Here, we report a protein arginine methyltransferase 6 (PRMT6)-mediated defense mechanism targeting VSR. The knockout and overexpression of PRMT6 in tomato plants lead to enhanced and reduced disease symptoms, respectively, during tomato bush stunt virus (TBSV) infection. PRMT6 interacts with and inhibits the VSR function of TBSV P19 by methylating its key arginine residues R43 and R115, thereby reducing its dimerization and small RNA-binding activities. Analysis of the natural tomato population reveals that two major alleles associated with high and low levels of PRMT6 expression are significantly associated with high and low levels of viral resistance, respectively. Our study establishes PRMT6-mediated arginine methylation of VSR as a mechanism of plant immunity against viruses.
Collapse
Affiliation(s)
- Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ayaz Ahmad
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyan Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Silva SA, Bezerra VBF, Teixeira FC, Roque EMS, do Nascimento JIB, Aguiar AM, de Carvalho HH, Alves MS. Genome-wide identification and characterization of SNW/SKIP domain-containing proteins in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:705-714. [PMID: 38899579 DOI: 10.1111/plb.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Sessile organisms, such as plants, developed various ways to sense and respond to external and internal stimuli to maximize their fitness through evolutionary time. Transcripts and protein regulation are, among many, the main mechanisms that plants use to respond to environmental changes. SKIP protein is one such, presenting an SNKW interacting domain, which is highly conserved among eukaryotes, where SKI interacting protein acts in regulating key processes. In the present work, many bioinformatics tools, such as phylogenetic relationships, gene structure, physical-chemical properties, conserved motifs, prediction of regulatory cis-elements, chromosomal localization, and protein-protein interaction network, were used to better understand the genome-wide SNW/SKIP domain-containing proteins. In total, 28 proteins containing the SNW/SKIP domain were identified in different plant species, including plants of agronomic interest. Two main protein clusters were formed in phylogenetic analysis, and gene structure analysis revealed that, in general, the coding region had no introns. Also, expression of these genes is possibly induced by abiotic stress stimuli. Primary structure analysis of the proteins revealed the existence of an evolutionarily conserved functional unit. But physicochemical properties show that proteins containing the SNW/SKIP domain are commonly unstable under in vivo conditions. In addition, the protein network, demonstrated that SKIP homologues could act by modulating plant fitness through gene expression regulation at the transcriptional and post-transcriptional levels. This could be corroborated by the expression number of gene copies of SKIP proteins in many species, highlighting it's crucial role in plant development and tolerance through the course of evolution.
Collapse
Affiliation(s)
- S A Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - V B F Bezerra
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - F C Teixeira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - E M S Roque
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - J I B do Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - A M Aguiar
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - H H de Carvalho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - M S Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
6
|
Zhou H, Zeng H, Yan T, Chen S, Fu Y, Qin G, Zhao X, Heng Y, Li J, Lin F, Xu D, Wei N, Deng XW. Light regulates nuclear detainment of intron-retained transcripts through COP1-spliceosome to modulate photomorphogenesis. Nat Commun 2024; 15:5130. [PMID: 38879536 PMCID: PMC11180117 DOI: 10.1038/s41467-024-49571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Intron retention (IR) is the most common alternative splicing event in Arabidopsis. An increasing number of studies have demonstrated the major role of IR in gene expression regulation. The impacts of IR on plant growth and development and response to environments remain underexplored. Here, we found that IR functions directly in gene expression regulation on a genome-wide scale through the detainment of intron-retained transcripts (IRTs) in the nucleus. Nuclear-retained IRTs can be kept away from translation through this mechanism. COP1-dependent light modulation of the IRTs of light signaling genes, such as PIF4, RVE1, and ABA3, contribute to seedling morphological development in response to changing light conditions. Furthermore, light-induced IR changes are under the control of the spliceosome, and in part through COP1-dependent ubiquitination and degradation of DCS1, a plant-specific spliceosomal component. Our data suggest that light regulates the activity of the spliceosome and the consequent IRT nucleus detainment to modulate photomorphogenesis through COP1.
Collapse
Affiliation(s)
- Hua Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haiyue Zeng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 61000, Shandong, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Tingting Yan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Fu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 61000, Shandong, China
| | - Guochen Qin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 61000, Shandong, China
| | - Xianhai Zhao
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yueqin Heng
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xing Wang Deng
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Southern University of Science and Technology, Shenzhen, 518055, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 61000, Shandong, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
7
|
Yan Y, Luo H, Qin Y, Yan T, Jia J, Hou Y, Liu Z, Zhai J, Long Y, Deng X, Cao X. Light controls mesophyll-specific post-transcriptional splicing of photoregulatory genes by AtPRMT5. Proc Natl Acad Sci U S A 2024; 121:e2317408121. [PMID: 38285953 PMCID: PMC10861865 DOI: 10.1073/pnas.2317408121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Haofei Luo
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yuwei Qin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Tingting Yan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou571100, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yifeng Hou
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Xian Deng
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofeng Cao
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
8
|
Isono K, Nakamura K, Hanada K, Shirai K, Ueki M, Tanaka K, Tsuchimatsu T, Iuchi S, Kobayashi M, Yotsui I, Sakata Y, Taji T. LHT1/MAC7 contributes to proper alternative splicing under long-term heat stress and mediates variation in the heat tolerance of Arabidopsis. PNAS NEXUS 2023; 2:pgad348. [PMID: 38024403 PMCID: PMC10644991 DOI: 10.1093/pnasnexus/pgad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Natural genetic variation has facilitated the identification of genes underlying complex traits such as stress tolerances. We here evaluated the long-term (L-) heat tolerance (37°C for 5 days) of 174 Arabidopsis thaliana accessions and short-term (S-) heat tolerance (42°C, 50 min) of 88 accessions and found extensive variation, respectively. Interestingly, L-heat-tolerant accessions are not necessarily S-heat tolerant, suggesting that the tolerance mechanisms are different. To elucidate the mechanisms underlying the variation, we performed a chromosomal mapping using the F2 progeny of a cross between Ms-0 (a hypersensitive accession) and Col-0 (a tolerant accession) and found a single locus responsible for the difference in L-heat tolerance between them, which we named Long-term Heat Tolerance 1 (LHT1). LHT1 is identical to MAC7, which encodes a putative RNA helicase involved in mRNA splicing as a component of the MOS4 complex. We found one amino acid deletion in LHT1 of Ms-0 that causes a loss of function. Arabidopsis mutants of other core components of the MOS4 complex-mos4-2, cdc5-1, mac3a mac3b, and prl1 prl2-also showed hypersensitivity to L-heat stress, suggesting that the MOS4 complex plays an important role in L-heat stress responses. L-heat stress induced mRNA processing-related genes and compromised alternative splicing. Loss of LHT1 function caused genome-wide detrimental splicing events, which are thought to produce nonfunctional mRNAs that include retained introns under L-heat stress. These findings suggest that maintaining proper alternative splicing under L-heat stress is important in the heat tolerance of A. thaliana.
Collapse
Affiliation(s)
- Kazuho Isono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kotaro Nakamura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Mao Ueki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Satoshi Iuchi
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | | | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
9
|
Chen L, Xu Z, Huang J, Shu H, Hui Y, Zhu D, Wu Y, Dong S, Wu Z. Plant immunity suppressor SKRP encodes a novel RNA-binding protein that targets exon 3' end of unspliced RNA. THE NEW PHYTOLOGIST 2023; 240:1467-1483. [PMID: 37658678 DOI: 10.1111/nph.19236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The regulatory roles of RNA splicing in plant immunity are emerging but still largely obscure. We reported previously that Phytophthora pathogen effector Avr3c targets a soybean protein SKRP (serine/lysine/arginine-rich protein) to impair soybean basal immunity by regulating host pre-mRNA alternative splicing, while the biochemical nature of SKRP remains unknown. Here, by using Arabidopsis as a model, we studied the mechanism of SKRP in regulating pre-mRNA splicing and plant immunity. AtSKRP confers impaired plant immunity against Phytophthora capsici and associates with spliceosome component PRP8 and splicing factor SR45, which positively and negatively regulate plant immunity, respectively. Enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq) showed AtSKRP is a novel RNA-binding protein that targets exon 3' end of unspliced RNA. Such position-specific binding of SKRP is associated with its activity in suppressing intron retention, including at positive immune regulatory genes UBP25 and RAR1. In addition, we found AtSKRP self-interact and forms oligomer, and these properties are associated with its function in plant immunity. Overall, our findings reveal that the immune repressor SKRP is a spliceosome-associated protein that targets exon 3' end to regulate pre-mRNA splicing in Arabidopsis.
Collapse
Affiliation(s)
- Ling Chen
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihui Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufan Hui
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Danling Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yufeng Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Bao W, Zhang W, Huang Y, Zhao Y, Wu C, Duan L, Wang L, Yan S. Protein kinase ATR inhibits E3 ubiquitin ligase CRL4 PRL1 to stabilize ribonucleotide reductase in response to replication stress. Cell Rep 2023; 42:112685. [PMID: 37354461 DOI: 10.1016/j.celrep.2023.112685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
The protein kinase ATR is essential for replication stress responses in all eukaryotes. Ribonucleotide reductase (RNR) catalyzes the formation of deoxyribonucleotide (dNTP), the universal building block for DNA replication and repair. However, the relationship between ATR and RNR is not well understood. Here, we show that ATR promotes the protein stability of RNR in Arabidopsis. Through an activation tagging-based genetic screen, we found that overexpression of TSO2, a small subunit of RNR, partially suppresses the hypersensitivity of the atr mutant to replication stress. Biochemically, TSO2 interacts with PRL1, a central subunit of the Cullin4-based E3 ubiquitin ligase CRL4PRL1, which polyubiquitinates TSO2 and promotes its degradation. ATR inhibits CRL4PRL1 to attenuate TSO2 degradation. Our work provides an important insight into the replication stress responses and a post-translational regulatory mechanism for RNR. Given the evolutionary conservation of the proteins involved, the ATR-PRL1-RNR module may act across eukaryotes.
Collapse
Affiliation(s)
- Weiyi Bao
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Weijia Zhang
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yongchi Huang
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yan Zhao
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Cong Wu
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Leilei Duan
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lili Wang
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
11
|
Sheng C, Li X, Xia S, Zhang Y, Yu Z, Tang C, Xu L, Wang Z, Zhang X, Zhou T, Nie P, Baig A, Niu D, Zhao H. An OsPRMT5-OsAGO2/miR1875-OsHXK1 module regulates rice immunity to blast disease. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1077-1095. [PMID: 36511124 DOI: 10.1111/jipb.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Rice ARGONAUTE2 (OsAGO2) is a core component of the rice RNA-induced silencing complex (RISC), which is repressed by Magnaporthe oryzae (M. oryzae) infection. Whether and how OsAGO2-mediated gene silencing plays a role in rice blast resistance and which sRNAs participate in this process are unknown. Our results indicate that OsAGO2 is a key immune player that manipulates rice defense responses against blast disease. OsAGO2 associates with the 24-nt miR1875 and binds to the promoter region of HEXOKINASE1 (OsHXK1), which causes DNA methylation and leads to gene silencing. Our multiple genetic evidence showed that, without M. oryzae infection, OsAGO2/miR1875 RISC promoted OsHXK1 promoter DNA methylation and OsHXK1 silencing; after M. oryzae infection, the reduced OsAGO2/miR1875 led to a relatively activated OsHXK1 expression. OsHXK1 acts as a positive regulator of blast disease resistance that OsHXK1-OE rice exhibited enhanced resistance, whereas Cas9-Oshxk1 rice showed reduced resistance against M. oryzae infection. OsHXK1 may function through its sugar sensor activity as glucose induced defense-related gene expression and reactive oxygen species (ROS) accumulation in Nipponbare and OsHXK1-OE but not in Cas9-Oshxk1 rice. OsAGO2 itself is delicately regulated by OsPRMT5, which senses M. oryzae infection and attenuates OsAGO2-mediated gene silencing through OsAGO2 arginine methylation. Our study reveals an OsPRMT5-OsAGO2/miR1875-OsHXK1 regulatory module that fine tunes the rice defense response to blast disease.
Collapse
Affiliation(s)
- Cong Sheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengge Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yimai Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ze Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Tang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Le Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoyun Wang
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, China
| | - Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, 030000, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, China
| | - Pingping Nie
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, China
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Zhang H, Jia J, Zhai J. Plant Intron-Splicing Efficiency Database (PISE): exploring splicing of ∼1,650,000 introns in Arabidopsis, maize, rice, and soybean from ∼57,000 public RNA-seq libraries. SCIENCE CHINA. LIFE SCIENCES 2023; 66:602-611. [PMID: 36409390 DOI: 10.1007/s11427-022-2193-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022]
Abstract
Intron retention is the most common alternative splicing event in plants and plays a crucial role in the responses of plants to environmental signals. Despite a large number of RNA-seq libraries from different treatments and genetic mutants stored in public domains, a resource for querying the intron-splicing ratio of individual intron is still required. Here, we established the first-ever large-scale splicing efficiency database in any organism. Our database includes over 57,000 plant public RNA-seq libraries, comprising 25,283 from Arabidopsis, 17,789 from maize, 10,710 from rice, and 3,974 from soybean, and covers a total of 1.6 million introns in these four species. In addition, we manually curated and annotated all the mutant- and treatment-related libraries as well as their matched controls included in our library collection, and added graphics to display intron-splicing efficiency across various tissues, developmental stages, and stress-related conditions. The result is a large collection of 3,313 treatment conditions and 3,594 genetic mutants for discovering differentially regulated splicing efficiency. Our online database can be accessed at https://plantintron.com/ .
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Jian Y, Chen X, Sun K, Liu Z, Cheng D, Cao J, Liu J, Cheng X, Wu L, Zhang F, Luo Y, Hahn M, Ma Z, Yin Y. SUMOylation regulates pre-mRNA splicing to overcome DNA damage in fungi. THE NEW PHYTOLOGIST 2023; 237:2298-2315. [PMID: 36539920 DOI: 10.1111/nph.18692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Pathogenic fungi are subject to DNA damage stress derived from host immune responses during infection. Small ubiquitin-like modifier (SUMO) modification and precursor (pre)-mRNA splicing are both involved in DNA damage response (DDR). However, the mechanisms of how SUMOylation and splicing coordinated in DDR remain largely unknown. Combining with biochemical analysis, RNA-Seq method, and biological analysis, we report that SUMO pathway participates in DDR and virulence in Fusarium graminearum, a causal agent of Fusarium head blight of cereal crops world-wide. Interestingly, a key transcription factor FgSR is SUMOylated upon DNA damage stress. SUMOylation regulates FgSR nuclear-cytoplasmic partitioning and its phosphorylation by FgMec1, and promotes its interaction with chromatin remodeling complex SWI/SNF for activating the expression of DDR-related genes. Moreover, the SWI/SNF complex was found to further recruit splicing-related NineTeen Complex, subsequently modulates pre-mRNA splicing during DDR. Our findings reveal a novel function of SUMOylation in DDR by regulating a transcription factor to orchestrate gene expression and pre-mRNA splicing to overcome DNA damage during the infection of F. graminearum, which advances the understanding of the delicate regulation of DDR by SUMOylation in pathogenic fungi, and extends the knowledge of cooperation of SUMOylation and pre-mRNA splicing in DDR in eukaryotes.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xia Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zunyong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Danni Cheng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Feng Zhang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
14
|
Qin Y, Long Y, Zhai J. Genome-wide characterization of nascent RNA processing in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102294. [PMID: 36063636 DOI: 10.1016/j.pbi.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Following transcription initiation, RNA polymerase II (Pol II) elongates through the genic region and terminates after the polyadenylation signal. This process is accompanied by splicing, 3' cleavage, and polyadenylation, to eventually form a mature mRNA. Recent advances in short-read and long-read high-throughput sequencing methods have shed light on the global landscape of these co-transcriptional events at nucleotide resolution. In this mini review, we summarize recent developments in genome-wide approaches that broadened our understanding of nascent RNA processing in plants.
Collapse
Affiliation(s)
- Yuwei Qin
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yanping Long
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Jixian Zhai
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
15
|
Tu YT, Chen CY, Huang YS, Chang CH, Yen MR, Hsieh JWA, Chen PY, Wu K. HISTONE DEACETYLASE 15 and MOS4-associated complex subunits 3A/3B coregulate intron retention of ABA-responsive genes. PLANT PHYSIOLOGY 2022; 190:882-897. [PMID: 35670741 PMCID: PMC9434327 DOI: 10.1093/plphys/kiac271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 05/24/2023]
Abstract
Histone deacetylases (HDAs) play an important role in transcriptional regulation of multiple biological processes. In this study, we investigated the function of HDA15 in abscisic acid (ABA) responses. We used immunopurification coupled with mass spectrometry-based proteomics to identify proteins interacting with HDA15 in Arabidopsis (Arabidopsis thaliana). HDA15 interacted with the core subunits of the MOS4-associated complex (MAC), MAC3A and MAC3B, with interaction between HDA15 and MAC3B enhanced by ABA. hda15 and mac3a/mac3b mutants were ABA-insensitive during seed germination and hyposensitive to salinity. RNA sequencing analysis demonstrated that HDA15 and MAC3A/MAC3B co-regulate ABA-responsive intron retention (IR). Furthermore, HDA15 reduced the histone acetylation level of genomic regions near ABA-responsive IR sites and the association of MAC3B with ABA-responsive pre-mRNA was dependent on HDA15. Our results indicate that HDA15 is involved in ABA responses by interacting with MAC3A/MAC3B to mediate splicing of introns.
Collapse
Affiliation(s)
| | | | - Yi-Sui Huang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Chung-Han Chang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | | | - Keqiang Wu
- Authors for correspondence: (K.W.), (P.-Y.C.)
| |
Collapse
|
16
|
Lan W, Ma W, Zheng S, Qiu Y, Zhang H, Lu H, Zhang Y, Miao Y. Ubiquitome profiling reveals a regulatory pattern of UPL3 with UBP12 on metabolic-leaf senescence. Life Sci Alliance 2022; 5:e202201492. [PMID: 35926874 PMCID: PMC9354775 DOI: 10.26508/lsa.202201492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The HECT-type UPL3 ligase plays critical roles in plant development and stress protection, but understanding of its regulation remains limited. Here, the multi-omics analyses of ubiquitinated proteins in <i>upl3</i> mutants were performed. A landscape of UPL3-dependent ubiquitinated proteins is constructed: Preferential ubiquitination of proteins related to carbon fixation represented the largest set of proteins with increased ubiquitination in the <i>upl3</i> plant, including most of carbohydrate metabolic enzymes, BRM, and variant histone, whereas a small set of proteins with reduced ubiquitination caused by the <i>upl3</i> mutation were linked to cysteine/methionine synthesis, as well as hexokinase 1 (HXK1) and phosphoenolpyruvate carboxylase 2 (PPC2). Notably, ubiquitin hydrolase 12 (UBP12), BRM, HXK1, and PPC2 were identified as the UPL3-interacting partners in vivo and in vitro. Characterization of <i>brm</i>, <i>upl3</i>, <i>ppc2</i>, <i>gin2</i>, and <i>ubp12</i> mutant plants and proteomic and transcriptomic analysis suggested that UPL3 fine-tunes carbohydrate metabolism, mediating cellular senescence by interacting with UBP12, BRM, HXK1, and PPC2. Our results highlight a regulatory pattern of UPL3 with UBP12 as a hub of regulator on proteolysis-independent regulation and proteolysis-dependent degradation.
Collapse
Affiliation(s)
- Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weibo Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhao Qiu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haisen Lu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2022; 23:1226-1238. [PMID: 35567423 PMCID: PMC9276941 DOI: 10.1111/mpp.13228] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Nataliia Diachenko
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Golisz
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
18
|
Llinas RJ, Xiong JQ, Clark NM, Burkhart SE, Bartel B. An Arabidopsis pre-RNA processing8a (prp8a) missense allele restores splicing of a subset of mis-spliced mRNAs. PLANT PHYSIOLOGY 2022; 189:2175-2192. [PMID: 35608297 PMCID: PMC9342983 DOI: 10.1093/plphys/kiac221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic precursor mRNAs often harbor noncoding introns that must be removed prior to translation. Accurate splicing of precursor messenger RNA depends on placement and assembly of small nuclear ribonucleoprotein (snRNP) sub-complexes of the spliceosome. Yeast (Saccharomyces cerevisiae) studies established a role in splice-site selection for PRE-RNA PROCESSING8 (PRP8), a conserved spliceosome scaffolding protein of the U5 snRNP. However, analogous splice-site selection studies in multicellular eukaryotes are lacking. Such studies are crucial for a comprehensive understanding of alternative splicing, which is extensive in plants and animals but limited in yeast. In this work, we describe an Arabidopsis (Arabidopsis thaliana) prp8a mutant that modulates splice-site selection. We isolated prp8a-14 from a screen for suppressors of pex14-6, which carries a splice-site mutation in the PEROXIN14 (PEX14) peroxisome biogenesis gene. To elucidate Arabidopsis PRP8A function in spliceosome fidelity, we combined prp8a-14 with various pex14 splice-site mutations and monitored the double mutants for physiological and molecular consequences of dysfunctional and functional peroxisomes that correspond to impaired and recovered splicing, respectively. prp8a-14 restored splicing and PEX14 function to alleles with mutations in the exonic guanine of the 5'-splice site but did not restore splicing or function to alleles with mutations in the intronic guanine of 5'- or 3'-splice sites. We used RNA-seq to reveal the systemic impact of prp8a-14 and found hundreds of differentially spliced transcripts and thousands of transcripts with significantly altered levels. Among differentially spliced transcripts, prp8a-14 significantly altered 5'- and 3'-splice-site utilization to favor sites resulting in shorter introns. This study provides a genetic platform for probing splicing in plants and hints at a role for plant PRP8 in splice-site selection.
Collapse
Affiliation(s)
- Roxanna J Llinas
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | | | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Sarah E Burkhart
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
19
|
Górka S, Kubiak D, Ciesińska M, Niedojadło K, Tyburski J, Niedojadło J. Function of Cajal Bodies in Nuclear RNA Retention in A. thaliana Leaves Subjected to Hypoxia. Int J Mol Sci 2022; 23:ijms23147568. [PMID: 35886915 PMCID: PMC9321658 DOI: 10.3390/ijms23147568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Retention of RNA in the nucleus precisely regulates the time and rate of translation and controls transcriptional bursts that can generate profound variability in mRNA levels among identical cells in tissues. In this study, we investigated the function of Cajal bodies (CBs) in RNA retention in A. thaliana leaf nuclei during hypoxia stress was investigated. It was observed that in ncb-1 mutants with a complete absence of CBs, the accumulation of poly(A+) RNA in the leaf nuclei was lower than that in wt under stress. Moreover, unlike in root cells, CBs store less RNA, and RNA retention in the nuclei is much less intense. Our results reveal that the function of CBs in the accumulation of RNA in nuclei under stress depends on the plant organ. Additionally, in ncb-1, retention of introns of mRNA RPB1 (largest subunit of RNA polymerase II) mRNA was observed. However, this isoform is highly accumulated in the nucleus. It thus follows that intron retention in transcripts is more important than CBs for the accumulation of RNA in nuclei. Accumulated mRNAs with introns in the nucleus could escape transcript degradation by NMD (nonsense-mediated mRNA decay). From non-fully spliced mRNAs in ncb-1 nuclei, whose levels increase during hypoxia, introns are removed during reoxygenation. Then, the mRNA is transferred to the cytoplasm, and the RPB1 protein is translated. Despite the accumulation of isoforms in nuclei with retention of introns in reoxygenation, ncb-1 coped much worse with long hypoxia, and manifested faster yellowing and shrinkage of leaves.
Collapse
Affiliation(s)
- Sylwia Górka
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Dawid Kubiak
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Małgorzata Ciesińska
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (S.G.); (D.K.); (M.C.); (K.N.)
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
20
|
Cabezas-Fuster A, Micol-Ponce R, Fontcuberta-Cervera S, Ponce M. Missplicing suppressor alleles of Arabidopsis PRE-MRNA PROCESSING FACTOR 8 increase splicing fidelity by reducing the use of novel splice sites. Nucleic Acids Res 2022; 50:5513-5527. [PMID: 35639749 PMCID: PMC9177961 DOI: 10.1093/nar/gkac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient splicing requires a balance between high-fidelity splice-site (SS) selection and speed. In Saccharomyces cerevisiae, Pre-mRNA processing factor 8 (Prp8) helps to balance precise SS selection and rapid, efficient intron excision and exon joining. argonaute1-52 (ago1-52) and incurvata13 (icu13) are hypomorphic alleles of the Arabidopsis thaliana genes ARGONAUTE1 (AGO1) and AUXIN RESISTANT6 (AXR6) that harbor point mutations creating a novel 3'SS and 5'SS, respectively. The spliceosome recognizes these novel SSs, as well as the intact genuine SSs, producing a mixture of wild-type and aberrant mature mRNAs. Here, we characterized five novel mutant alleles of PRP8 (one of the two Arabidopsis co-orthologs of yeast Prp8), naming these alleles morphology of ago1-52 suppressed5 (mas5). In the mas5-1 background, the spliceosome preferentially recognizes the intact genuine 3'SS of ago1-52 and 5'SS of icu13. Since point mutations that damage genuine SSs make the spliceosome prone to recognizing cryptic SSs, we also tested alleles of four genes carrying damaged genuine SSs, finding that mas5-1 did not suppress their missplicing. The mas5-1 and mas5-3 mutations represent a novel class of missplicing suppressors that increase splicing fidelity by hampering the use of novel SSs, but do not alter general pre-mRNA splicing.
Collapse
Affiliation(s)
- Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
21
|
Golisz A, Krzyszton M, Stepien M, Dolata J, Piotrowska J, Szweykowska-Kulinska Z, Jarmolowski A, Kufel J. Arabidopsi s Spliceosome Factor SmD3 Modulates Immunity to Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:765003. [PMID: 34925413 PMCID: PMC8678131 DOI: 10.3389/fpls.2021.765003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/11/2021] [Indexed: 06/02/2023]
Abstract
SmD3 is a core component of the small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. The role of Arabidopsis SmD3 in plant immunity was assessed by testing sensitivity of smd3a and smd3b mutants to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and its pathogenesis effectors flagellin (flg22), EF-Tu (elf18) and coronatine (COR). Both smd3 mutants exhibited enhanced susceptibility to Pst accompanied by marked changes in the expression of key pathogenesis markers. mRNA levels of major biotic stress response factors were also altered upon treatment with Pseudomonas effectors. Our genome-wide transcriptome analysis of the smd3b-1 mutant infected with Pst, verified by northern and RT-qPCR, showed that lack of SmD3-b protein deregulates defense against Pst infection at the transcriptional and posttranscriptional levels including defects in splicing and an altered pattern of alternative splicing. Importantly, we show that SmD3-b dysfunction impairs mainly stomatal immunity as a result of defects in stomatal development. We propose that it is the malfunction of the stomata that is the primary cause of an altered mutant response to the pathogen. Other changes in the smd3b-1 mutant involved enhanced elf18- and flg22-induced callose deposition, reduction of flg22-triggered production of early ROS and boost of secondary ROS caused by Pst infection. Together, our data indicate that SmD3 contributes to the plant immune response possibly via regulation of mRNA splicing of key pathogenesis factors.
Collapse
Affiliation(s)
- Anna Golisz
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Michal Krzyszton
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Monika Stepien
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Jakub Dolata
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Justyna Piotrowska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Kufel
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Liang Z, Wen C, Jiang H, Ma S, Liu X. Protein Arginine Methyltransferase 5 Functions via Interacting Proteins. Front Cell Dev Biol 2021; 9:725301. [PMID: 34513846 PMCID: PMC8432624 DOI: 10.3389/fcell.2021.725301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
The protein arginine methyltransferases (PRMTs) are involved in such biological processes as transcription regulation, DNA repair, RNA splicing, and signal transduction, etc. In this study, we mainly focused on PRMT5, a member of the type II PRMTs, which functions mainly alongside other interacting proteins. PRMT5 has been shown to be overexpressed in a wide variety of cancers and other diseases, and is involved in the regulation of Epstein-Barr virus infection, viral carcinogenesis, spliceosome, hepatitis B, cell cycles, and various signaling pathways. We analyzed the regulatory roles of PRMT5 and interacting proteins in various biological processes above-mentioned, to elucidate for the first time the interaction between PRMT5 and its interacting proteins. This systemic analysis will enrich the biological theory and contribute to the development of novel therapies.
Collapse
Affiliation(s)
- Zhenzhen Liang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,NHC Key Lab of Radiobiology, Jilin University, Changchun, China
| | - Chaowei Wen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
An update on allosteric modulators as a promising strategy targeting histone methyltransferase. Pharmacol Res 2021; 172:105865. [PMID: 34474102 DOI: 10.1016/j.phrs.2021.105865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Histone methylation is a vital post-translational modification process in epigenetic regulation. The perturbation of histone methylation accounts for many diseases, including malignant cancers. Although achieving significant advances over past decades, orthosteric inhibitors targeting histone methyltransferases still suffer from challenges on subtype selectivity and acquired drug-resistant mutations. As an alternative, new compounds targeting the evolutionarily less conserved allosteric sites, exemplified by HKMTs and PRMTs inhibitors, offer a promising strategy to address this quandary. Herein, we highlight the allosteric sites and mechanisms in histone methyltransferases along with representative allosteric modulators, expecting to facilitate the discovery of allosteric modulators in favor of epigenetic therapy.
Collapse
|
24
|
Parbin S, Damodharan S, Rajyaguru PI. Arginine methylation and cytoplasmic mRNA fate: An exciting new partnership. Yeast 2021; 38:441-452. [PMID: 34048611 DOI: 10.1002/yea.3653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Posttranslational modifications play a crucial role in regulating gene expression. Among these modifications, arginine methylation has recently attracted tremendous attention due to its role in multiple cellular functions. This review discusses the recent advances that have established arginine methylation as a major player in determining cytoplasmic messenger RNA (mRNA) fate. We specifically focus on research that implicates arginine methylation in regulating mRNA translation, decay, and RNA granule dynamics. Based on this research, we highlight a few emerging future avenues that will lead to exciting discoveries in this field.
Collapse
Affiliation(s)
- Sabnam Parbin
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Integrative Genomics Core Unit, University Medical Centre, Göttingen, Göttingen, Germany
| | - Subha Damodharan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
25
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
26
|
Abstract
MicroRNAs (miRNAs) are essential non-coding riboregulators of gene expression in plants and animals. In plants, miRNAs guide their effector protein named ARGONAUTE (AGO) to find target RNAs for gene silencing through target RNA cleavage or translational inhibition. miRNAs are derived from primary miRNA transcripts (pri-miRNAs), most of which are transcribed by the DNA-dependent RNA polymerase II. In plants, an RNase III enzyme DICER-LIKE1-containing complex processes pri-miRNAs in the nucleus into miRNAs. To ensure proper function of miRNAs, plants use multiple mechanisms to control miRNA accumulation. On one hand, pri-miRNA levels are controlled through transcription and stability. On the other hand, the activities of the DCL1 complex are regulated by many protein factors at transcriptional, post-transcriptional and post-translational levels. Notably, recent studies reveal that pri-miRNA structure/sequence features and modifications also play important roles in miRNA biogenesis. In this review, we summarize recent progresses on the mechanisms regulating miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| |
Collapse
|
27
|
Wang L, Zhan L, Zhao Y, Huang Y, Wu C, Pan T, Qin Q, Xu Y, Deng Z, Li J, Hu H, Xue S, Yan S. The ATR-WEE1 kinase module inhibits the MAC complex to regulate replication stress response. Nucleic Acids Res 2021; 49:1411-1425. [PMID: 33450002 PMCID: PMC7897505 DOI: 10.1093/nar/gkaa1082] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
DNA damage response is a fundamental mechanism to maintain genome stability. The ATR-WEE1 kinase module plays a central role in response to replication stress. Although the ATR-WEE1 pathway has been well studied in yeasts and animals, how ATR-WEE1 functions in plants remains unclear. Through a genetic screen for suppressors of the Arabidopsis atr mutant, we found that loss of function of PRL1, a core subunit of the evolutionarily conserved MAC complex involved in alternative splicing, suppresses the hypersensitivity of atr and wee1 to replication stress. Biochemical studies revealed that WEE1 directly interacts with and phosphorylates PRL1 at Serine 145, which promotes PRL1 ubiquitination and subsequent degradation. In line with the genetic and biochemical data, replication stress induces intron retention of cell cycle genes including CYCD1;1 and CYCD3;1, which is abolished in wee1 but restored in wee1 prl1. Remarkably, co-expressing the coding sequences of CYCD1;1 and CYCD3;1 partially restores the root length and HU response in wee1 prl1. These data suggested that the ATR-WEE1 module inhibits the MAC complex to regulate replication stress responses. Our study discovered PRL1 or the MAC complex as a key downstream regulator of the ATR-WEE1 module and revealed a novel cell cycle control mechanism.
Collapse
Affiliation(s)
- Lili Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Zhan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongchi Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chong Wu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ting Pan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qi Qin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiren Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiping Deng
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Jing Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shunping Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
28
|
Processing of coding and non-coding RNAs in plant development and environmental responses. Essays Biochem 2020; 64:931-945. [DOI: 10.1042/ebc20200029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Abstract
Precursor RNAs undergo extensive processing to become mature RNAs. RNA transcripts are subjected to 5′ capping, 3′-end processing, splicing, and modification; they also form dynamic secondary structures during co-transcriptional and post-transcriptional processing. Like coding RNAs, non-coding RNAs (ncRNAs) undergo extensive processing. For example, secondary small interfering RNA (siRNA) transcripts undergo RNA processing, followed by further cleavage to become mature siRNAs. Transcriptome studies have revealed roles for co-transcriptional and post-transcriptional RNA processing in the regulation of gene expression and the coordination of plant development and plant–environment interactions. In this review, we present the latest progress on RNA processing in gene expression and discuss phased siRNAs (phasiRNAs), a kind of germ cell-specific secondary small RNA (sRNA), focusing on their functions in plant development and environmental responses.
Collapse
|
29
|
MAC5, an RNA-binding protein, protects pri-miRNAs from SERRATE-dependent exoribonuclease activities. Proc Natl Acad Sci U S A 2020; 117:23982-23990. [PMID: 32887800 DOI: 10.1073/pnas.2008283117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MAC5 is a component of the conserved MOS4-associated complex. It plays critical roles in development and immunity. Here we report that MAC5 is required for microRNA (miRNA) biogenesis. MAC5 interacts with Serrate (SE), which is a core component of the microprocessor that processes primary miRNA transcripts (pri-miRNAs) into miRNAs and binds the stem-loop region of pri-miRNAs. MAC5 is essential for both the efficient processing and the stability of pri-miRNAs. Interestingly, the reduction of pri-miRNA levels in mac5 is partially caused by XRN2/XRN3, the nuclear-localized 5'-to-3' exoribonucleases, and depends on SE. These results reveal that MAC5 plays a dual role in promoting pri-miRNA processing and stability through its interaction with SE and/or pri-miRNAs. This study also uncovers that pri-miRNAs need to be protected from nuclear RNA decay machinery, which is connected to the microprocessor.
Collapse
|
30
|
An Z, Yin L, Liu Y, Peng M, Shen WH, Dong A. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1010-1024. [PMID: 32324922 DOI: 10.1111/tpj.14780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Histones are highly basic proteins involved in packaging DNA into chromatin, and histone modifications are fundamental in epigenetic regulation in eukaryotes. Among the numerous chromatin modifiers identified in Arabidopsis (Arabidopsis thaliana), MORF-RELATED GENE (MRG)1 and MRG2 have redundant functions in reading histone H3 lysine 36 trimethylation (H3K36me3). Here, we show that MRG2 binds histone chaperones belonging to the NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) family, including NAP1-RELATED PROTEIN (NRP)1 and NRP2. Characterization of the loss-of-function mutants mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 revealed that MRG1/MRG2 and NRP1/NRP2 regulate flowering time through fine-tuning transcription of floral genes by distinct molecular mechanisms. In particular, the physical interaction between NRP1/NRP2 and MRG1/MRG2 inhibited the binding of MRG1/MRG2 to the transcription factor CONSTANS (CO), leading to a transcriptional repression of FLOWERING LOCUS T (FT) through impeded H4K5 acetylation (H4K5ac) within the FT chromatin. By contrast, NRP1/NRP2 and MRG1/MRG2 act together, likely in a multiprotein complex manner, in promoting the transcription of FLOWERING LOCUS C (FLC) via an increase of both H4K5ac and H3K9ac in the FLC chromatin. Because the expression pattern of FLC represents the major category of differentially expressed genes identified by genome-wide RNA-sequencing analysis in the mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 mutants, it is reasonable to speculate that the NRP1/NRP2-MRG1/MRG2 complex may be involved in transcriptional activation of genes beyond FLC and flowering time control.
Collapse
Affiliation(s)
- Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Universitè de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
31
|
Jia J, Long Y, Zhang H, Li Z, Liu Z, Zhao Y, Lu D, Jin X, Deng X, Xia R, Cao X, Zhai J. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. NATURE PLANTS 2020; 6:780-788. [PMID: 32541953 DOI: 10.1038/s41477-020-0688-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/08/2020] [Indexed: 05/21/2023]
Abstract
In eukaryotes, genes are transcribed by RNA polymerase-II (Pol-II) and introns are removed by the spliceosome largely cotranscriptionally1-3; analysis using long-read sequencing revealed that splicing occurs immediately after Pol-II passes introns in yeast4,5. Here, we developed a Nanopore-based method to profile chromatin-bound RNA that enables the simultaneous detection of splicing status, Pol-II position and polyadenylation at the genome-wide scale in Arabidopsis. We found that more than half of the introns remain unspliced after Pol-II transcribes 1 kb past the 3' splice site, which is much slower than the rate of splicing reported in yeast4,5. Many of the full-length chromatin-bound RNA molecules are polyadenylated, yet still contain unspliced introns at specific positions. These introns are nearly absent in the cytoplasm and are resistant to nonsense-mediated decay, suggesting that they are post-transcriptionally spliced before the transcripts are released into the cytoplasm; we therefore termed these introns post-transcriptionally spliced introns (pts introns). Analysis of around 6,500 public RNA-sequencing libraries found that the splicing of pts introns requires the function of splicing-related proteins such as PRMT5 and SKIP, and is also influenced by various environmental signals. The majority of the intron retention events in Arabidopsis are at pts introns, suggesting that chromatin-tethered post-transcriptional splicing is a major contributor to the widespread intron retention that is observed in plants, and could be a mechanism to produce fully spliced functional mRNAs for rapid response.
Collapse
Affiliation(s)
- Jinbu Jia
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanping Long
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Institute for Advanced Studies and College of Life Science, Wuhan University, Wuhan, China
| | - Hong Zhang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhuowen Li
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Liu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Zhao
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Dongdong Lu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xianhao Jin
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
32
|
Zhang Z, Fan Y, Xiong J, Guo X, Hu K, Wang Z, Gao J, Wen J, Yi B, Shen J, Ma C, Fu T, Xia S, Tu J. Two young genes reshape a novel interaction network in Brassica napus. THE NEW PHYTOLOGIST 2020; 225:530-545. [PMID: 31407340 DOI: 10.1111/nph.16113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
New genes often drive the evolution of gene interaction networks. In Brassica napus, the widely used genic male sterile breeding system 7365ABC is controlled by two young genes, Bnams4b and BnaMs3. However, the interaction mechanism of these two young genes remains unclear. Here, we confirmed that Bnams4b interacts with the nuclear localised E3 ligase BRUTUS (BTS). Ectopic expression of AtBRUTUS (AtBTS) and comparison between Bnams4b -transgenic Arabidopsis and bts mutants suggested that Bnams4b may drive translocation of BTS to cause various toxic defects. BnaMs3 gained an exclusive interaction with the plastid outer-membrane translocon Toc33 compared with Bnams3 and AtTic40, and specifically compensated for the toxic effects of Bnams4b . Heat shock treatment also rescued the sterile phenotype, and high temperature suppressed the interaction between Bnams4b and BTS in yeast. Furthermore, the ubiquitin system and TOC (translocon at the outer envelope membrane of chloroplasts) component accumulation were affected in Bnams4b -transgenic Arabidopsis plants. Taken together, these results indicate that new chimeric Bnams4b carries BTS from nucleus to chloroplast, which may disrupt the normal ubiquitin-proteasome system to cause toxic effects, and these defects can be compensated by BnaMs3-Toc33 interaction or environmental heat shock. It reveals a scenario in which two population-specific coevolved young genes reshape a novel interaction network in plants.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Fan
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
33
|
Kulichová K, Kumar V, Steinbachová L, Klodová B, Timofejeva L, Juříček M, Honys D, Hafidh S. PRP8A and PRP8B spliceosome subunits act co-ordinately to control pollen tube attraction in Arabidopsis. Development 2020; 147:dev.186742. [DOI: 10.1242/dev.186742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/14/2020] [Indexed: 02/04/2023]
Abstract
Precise guided pollen tube growth by the female gametophyte is a pre-requisite for successful sexual reproduction in flowering plants. Cysteine-rich proteins (CRPs) secreted from the embryo sac are known pollen tube attractants perceived by pollen tube receptor-like kinases (RLK's). How pre-mRNA splicing facilitates this cell-to-cell communication is not understood. Here, we report novel function of Pre-mRNA PROCESSING factor 8 paralogs, PRP8A and PRP8B, as regulators of pollen tube attraction. Double mutant prp8a prp8b ovules cannot attract pollen tubes, and prp8a prp8b pollen tubes fail in sensing ovules attraction signals. Only 3% of ovule-expressed genes were misregulated in prp8a prp8b. Combination of RNA-seq and MYB98/LURE1.2-YFP reporter revealed the expression of MYB98, LUREs and 49 other CRPs were downregulated suggesting loss of synergid cell fate. Differential Exon usage (DEU) and Intron-retention (IR) analysis revealed autoregulation of PPR8A/PRP8B splicing. In vivo, PRP8A coimmunoprecipitates with splicing enhancer AtSF3A1, suggesting involvement of PRP8A in 3′-splice site selection. Our data hint that PRP8A/PRP8B module exhibit spliceosome-autoregulation to facilitate pollen tube attraction via transcriptional regulation of MYB98, CRPs and LURE pollen tube attractants.
Collapse
Affiliation(s)
- Katarína Kulichová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Ljudmilla Timofejeva
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Miloslav Juříček
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
- Department of Plant Experimental Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| |
Collapse
|
34
|
Chen MX, Sun C, Zhang KL, Song YC, Tian Y, Chen X, Liu YG, Ye NH, Zhang J, Qu S, Zhu FY. SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant. BMC PLANT BIOLOGY 2019; 19:445. [PMID: 31651235 PMCID: PMC6813987 DOI: 10.1186/s12870-019-2018-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/05/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Apple is one of the most popular fruit crops world-wide and its skin color is an important quality consideration essential for commercial value. However, the strategy on genetic breeding for red skin apple and the genetic basis of skin color differentiation is very limited and still largely unknown. RESULTS Here, we reported a bud sport mutant of Fuji apple with red skin color and enhanced anthocyanins accumulation. Quantitative SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) proteomics investigations revealed proteome changes in the apple red skin bud mutation and a total of 451 differentially expressed proteins were identified in apple skin. The mutant showed significantly increased expression levels of photosynthesis-related proteins, stress-related proteins as well as anthocyanins biosynthesis pathway. On the other hand, substantial downregulation of mitogen-activated protein kinase 4 (MAPK4) and mevalonate kinase (MVK) were detected, indicating a promising role for the red skin color development in the mutant. Furthermore, we also hypothesize that a post-transcriptional regulation of the skin color formation occurs in the mutant through the advanced SWATH-MS analysis. CONCLUSION Our work provides important information on the application of proteomic methods for analysing proteomes changes in Fuji apple and highlights a clade of regulatory proteins potentially contributing for the molecular breeding of fruit skin color.
Collapse
Affiliation(s)
- Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Chao Sun
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 8210095 China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Yu-Chen Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Yuan Tian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Xi Chen
- Medical Research Institute, Wuhan University and SpecAlly Life Technology Co., Ltd, Wuhan, China
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 8210095 China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| |
Collapse
|
35
|
Plett KL, Raposo AE, Anderson IC, Piller SC, Plett JM. Protein Arginine Methyltransferase Expression Affects Ectomycorrhizal Symbiosis and the Regulation of Hormone Signaling Pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1291-1302. [PMID: 31216220 DOI: 10.1094/mpmi-01-19-0007-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The genomes of all eukaryotic organisms, from small unicellular yeasts to humans, include members of the protein arginine methyltransferase (PRMT) family. These enzymes affect gene transcription, cellular signaling, and function through the posttranslational methylation of arginine residues. Mis-regulation of PRMTs results in serious developmental defects, disease, or death, illustrating the importance of these enzymes to cellular processes. Plant genomes encode almost the full complement of PRMTs found in other higher organisms, plus an additional PRMT found uniquely in plants, PRMT10. Here, we investigate the role of these highly conserved PRMTs in a process that is unique to perennial plants-the development of symbiosis with ectomycorrhizal fungi. We show that PRMT expression and arginine methylation is altered in the roots of the model tree Eucalyptus grandis by the presence of its ectomycorrhizal fungal symbiont Pisolithus albus. Further, using transgenic modifications, we demonstrate that E. grandis-encoded PRMT1 and PRMT10 have important but opposing effects in promoting this symbiosis. In particular, the plant-specific EgPRMT10 has a potential role in the expression of plant hormone pathways during the colonization process and its overexpression reduces fungal colonization success.
Collapse
Affiliation(s)
- Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Anita E Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Sabine C Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| |
Collapse
|
36
|
Matsui A, Nakaminami K, Seki M. Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress. PLANT & CELL PHYSIOLOGY 2019; 60:1897-1905. [PMID: 31093678 DOI: 10.1093/pcp/pcz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved various sophisticated mechanisms for adaptation to nonoptimal environments. Recent studies using RNA metabolism-related mutants have revealed that RNA processing, RNA decay and RNA stability play an important role in regulating gene expression at a post-transcriptional level in response to abiotic stresses. Studies indicate that RNA metabolism is a unified network, and modification of stress adaptation-related transcripts at multiple steps of RNA metabolism is necessary to control abiotic stress-related gene expression. Recent studies have also demonstrated the important role of noncoding RNAs (ncRNAs) in regulating abiotic stress-related gene expression and revealed their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications and RNA-RNA interactions. ncRNAs regulate mRNA transcription and their synthesis is affected by mRNA processing and degradation. In the present review, recent findings pertaining to the role of the metabolic regulation of mRNAs and ncRNAs in abiotic stress adaptation are summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
37
|
Li X, Wang C, Jiang H, Luo C. A patent review of arginine methyltransferase inhibitors (2010-2018). Expert Opin Ther Pat 2019; 29:97-114. [PMID: 30640571 DOI: 10.1080/13543776.2019.1567711] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Protein arginine methyltransferases (PRMTs) are fundamental enzymes that specifically modify the arginine residues of versatile substrates in cells. The aberrant expression and abnormal enzymatic activity of PRMTs are associated with many human diseases, especially cancer. PRMTs are emerging as promising drug targets in both academia and industry. AREAS COVERED This review summarizes the updated patented inhibitors targeting PRMTs from 2010 to 2018. The authors illustrate the chemical structures, molecular mechanism of action, pharmacological activities as well as the potential clinical application including combination therapy and biomarker-guided therapy. PRMT inhibitors in clinical trials are also highlighted. The authors provide a future perspective for further development of potent and selective PRMT inhibitors. EXPERT OPINION Although a number of small molecule inhibitors of PRMTs with sufficient potency have been developed, the selectivity of most PRMT inhibitors remains to be improved. Hence, novel approaches such as allosteric regulation need to be further studied to identify PRMT inhibitors. So far, three PRMT inhibitors have entered clinical trials, including PRMT5 inhibitor GSK3326595 and JNJ-64619178 as well as PRMT1 inhibitor GSK3368715. PRMT inhibitors with novel mechanism of action and good drug-like properties may shed new light on drug research and development progress.
Collapse
Affiliation(s)
- Xiao Li
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Chen Wang
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Hao Jiang
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Cheng Luo
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
38
|
Huertas R, Catalá R, Jiménez-Gómez JM, Mar Castellano M, Crevillén P, Piñeiro M, Jarillo JA, Salinas J. Arabidopsis SME1 Regulates Plant Development and Response to Abiotic Stress by Determining Spliceosome Activity Specificity. THE PLANT CELL 2019; 31:537-554. [PMID: 30696706 PMCID: PMC6447010 DOI: 10.1105/tpc.18.00689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 05/19/2023]
Abstract
The control of precursor-messenger RNA (pre-mRNA) splicing is emerging as an important layer of regulation in plant responses to endogenous and external cues. In eukaryotes, pre-mRNA splicing is governed by the activity of a large ribonucleoprotein machinery, the spliceosome, whose protein core is composed of the Sm ring and the related Sm-like 2-8 complex. Recently, the Arabidopsis (Arabidopsis thaliana) Sm-like 2-8 complex has been characterized. However, the role of plant Sm proteins in pre-mRNA splicing remains largely unknown. Here, we present the functional characterization of Sm protein E1 (SME1), an Arabidopsis homolog of the SME subunit of the eukaryotic Sm ring. Our results demonstrate that SME1 regulates the spliceosome activity and that this regulation is controlled by the environmental conditions. Indeed, depending on the conditions, SME1 ensures the efficiency of constitutive and alternative splicing of selected pre-mRNAs. Moreover, missplicing of most targeted pre-mRNAs leads to the generation of nonsense-mediated decay signatures, indicating that SME1 also guarantees adequate levels of the corresponding functional transcripts. In addition, we show that the selective function of SME1 in ensuring appropriate gene expression patterns through the regulation of specific pre-mRNA splicing is essential for adequate plant development and adaptation to freezing temperatures. These findings reveal that SME1 plays a critical role in plant development and interaction with the environment by providing spliceosome activity specificity.
Collapse
Affiliation(s)
- Raul Huertas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, 28040 Madrid, Spain
| | - Rafael Catalá
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, 28040 Madrid, Spain
| | | | - M Mar Castellano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, 28040 Madrid, Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA, 28223 Pozuelo de Alarcón, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA, 28223 Pozuelo de Alarcón, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA, 28223 Pozuelo de Alarcón, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, 28040 Madrid, Spain
| |
Collapse
|
39
|
Wang S, Quan L, Li S, You C, Zhang Y, Gao L, Zeng L, Liu L, Qi Y, Mo B, Chen X. The PROTEIN PHOSPHATASE4 Complex Promotes Transcription and Processing of Primary microRNAs in Arabidopsis. THE PLANT CELL 2019; 31:486-501. [PMID: 30674692 PMCID: PMC6447022 DOI: 10.1105/tpc.18.00556] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/28/2018] [Accepted: 01/16/2019] [Indexed: 05/02/2023]
Abstract
PROTEIN PHOSPHATASE4 (PP4) is a highly conserved Ser/Thr protein phosphatase found in yeast, plants, and animals. The composition and functions of PP4 in plants are poorly understood. Here, we uncovered the complexity of PP4 composition and function in Arabidopsis (Arabidopsis thaliana) and identified the composition of one form of PP4 containing the regulatory subunit PP4R3A. We show that PP4R3A, together with one of two redundant catalytic subunit genes, PROTEIN PHOSPHATASE X (PPX)1 and PPX2, promotes the biogenesis of microRNAs (miRNAs). PP4R3A is a chromatin-associated protein that interacts with RNA polymerase II and recruits it to the promoters of miRNA-encoding (MIR) genes to promote their transcription. PP4R3A likely also promotes the cotranscriptional processing of miRNA precursors, because it recruits the microprocessor component HYPONASTIC LEAVES1 to MIR genes and to nuclear dicing bodies. Finally, we show that hundreds of introns exhibit splicing defects in pp4r3a mutants. Together, this study reveals roles for Arabidopsis PP4 in transcription and nuclear RNA metabolism.
Collapse
Affiliation(s)
- Suikang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Li Quan
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenjiang You
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Yong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yanhua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
40
|
Li S, Liu K, Zhou B, Li M, Zhang S, Zeng L, Zhang C, Yu B. MAC3A and MAC3B, Two Core Subunits of the MOS4-Associated Complex, Positively Influence miRNA Biogenesis. THE PLANT CELL 2018; 30:481-494. [PMID: 29437988 PMCID: PMC5868694 DOI: 10.1105/tpc.17.00953] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
MAC3A and MAC3B are conserved U-box-containing proteins in eukaryotes. They are subunits of the MOS4-associated complex (MAC) that plays essential roles in plant immunity and development in Arabidopsis thaliana However, their functional mechanisms remain elusive. Here, we show that Arabidopsis MAC3A and MAC3B act redundantly in microRNA (miRNA) biogenesis. Lack of both MAC3A and MAC3B in the mac3b mac3b double mutant reduces the accumulation of miRNAs, causing elevated transcript levels of miRNA targets. mac3a mac3b also decreases the levels of primary miRNA transcripts (pri-miRNAs). However, MAC3A and MAC3B do not affect the promoter activity of genes encoding miRNAs (MIR genes), suggesting that they may not affect MIR transcription. This result, together with the fact that MAC3A associates with pri-miRNAs in vivo, indicates that MAC3A and MAC3B may stabilize pri-miRNAs. Furthermore, we find that MAC3A and MAC3B interact with the DCL1 complex that catalyzes miRNA maturation, promote DCL1 activity, and are required for the localization of HYL1, a component of the DCL1 complex. Besides MAC3A and MAC3B, two other MAC subunits, CDC5 and PRL1, also function in miRNA biogenesis. Based on these results, we propose that MAC functions as a complex to control miRNA levels through modulating pri-miRNA transcription, processing, and stability.
Collapse
Affiliation(s)
- Shengjun Li
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| | - Kan Liu
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| | - Bangjun Zhou
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Mu Li
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Lirong Zeng
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Chi Zhang
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| | - Bin Yu
- Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118
| |
Collapse
|
41
|
Fu Y, Ma H, Chen S, Gu T, Gong J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:579-588. [PMID: 29253181 PMCID: PMC5853435 DOI: 10.1093/jxb/erx419] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proline plays a crucial role in the drought stress response in plants. However, there are still gaps in our knowledge about the molecular mechanisms that regulate proline metabolism under drought stress. Here, we report that the histone methylase encoded by CAU1, which is genetically upstream of P5CS1 (encoding the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthetase 1), plays a crucial role in proline-mediated drought tolerance. We determined that the transcript level of CAU1 decreased while that of ANAC055 (encoding a transcription factor) increased in wild-type Arabidopsis under drought stress. Further analyses showed that CAU1 bound to the promoter of ANAC055 and suppressed its expression via H4R3sme2-type histone methylation in the promoter region. Thus, under drought stress, a decreased level of CAU1 led to an increased transcript level of ANAC055, which induced the expression of P5CS1 and increased proline level independently of CAS. Drought tolerance and the level of proline were found to be decreased in the cau1 anac055 double-mutant, while proline supplementation restored drought sensitivity in the anac055 mutant. Our results reveal the details of a novel pathway leading to drought tolerance mediated by CAU1.
Collapse
Affiliation(s)
- Yanlei Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- Correspondence:
| | - Hailing Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Siying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Tianyu Gu
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jiming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Fu Y, Ma H, Chen S, Gu T, Gong J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. JOURNAL OF EXPERIMENTAL BOTANY 2018. [PMID: 29253181 DOI: 10.5061/dryad.hc4bj] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proline plays a crucial role in the drought stress response in plants. However, there are still gaps in our knowledge about the molecular mechanisms that regulate proline metabolism under drought stress. Here, we report that the histone methylase encoded by CAU1, which is genetically upstream of P5CS1 (encoding the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthetase 1), plays a crucial role in proline-mediated drought tolerance. We determined that the transcript level of CAU1 decreased while that of ANAC055 (encoding a transcription factor) increased in wild-type Arabidopsis under drought stress. Further analyses showed that CAU1 bound to the promoter of ANAC055 and suppressed its expression via H4R3sme2-type histone methylation in the promoter region. Thus, under drought stress, a decreased level of CAU1 led to an increased transcript level of ANAC055, which induced the expression of P5CS1 and increased proline level independently of CAS. Drought tolerance and the level of proline were found to be decreased in the cau1 anac055 double-mutant, while proline supplementation restored drought sensitivity in the anac055 mutant. Our results reveal the details of a novel pathway leading to drought tolerance mediated by CAU1.
Collapse
Affiliation(s)
- Yanlei Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Hailing Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Siying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tianyu Gu
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
43
|
Jia T, Zhang B, You C, Zhang Y, Zeng L, Li S, Johnson KCM, Yu B, Li X, Chen X. The Arabidopsis MOS4-Associated Complex Promotes MicroRNA Biogenesis and Precursor Messenger RNA Splicing. THE PLANT CELL 2017; 29:2626-2643. [PMID: 28947490 PMCID: PMC5774577 DOI: 10.1105/tpc.17.00370] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, the MOS4-ASSOCIATED COMPLEX (MAC) is required for defense and development. The evolutionarily conserved, putative RNA helicase MAC7 is a component of the Arabidopsis MAC, and the human MAC7 homolog, Aquarius, is implicated in pre-mRNA splicing. Here, we show that mac7-1, a partial loss-of-function mutant in MAC7, and two other MAC subunit mutants, mac3a mac3b and prl1 prl2 (pleiotropic regulatory locus), exhibit reduced microRNA (miRNA) levels, indicating that MAC promotes miRNA biogenesis. The mac7-1 mutant shows reduced primary miRNA (pri-miRNA) levels without affecting miRNA gene (MIR) promoter activity or the half-life of pri-miRNA transcripts. As a nuclear protein, MAC7 is not concentrated in dicing bodies, but it affects the localization of HYPONASTIC LEAVES1 (HYL1), a key protein in pri-miRNA processing, to dicing bodies. Immunoprecipitation of HYL1 retrieved 11 known MAC subunits, including MAC7, indicating association between HYL1 and MAC. We propose that MAC7 links MIR transcription to pri-miRNA processing. RNA-seq analysis showed that downregulated genes in MAC subunit mutants are mostly involved in plant defense and stimulus responses, confirming a role of MAC in biotic and abiotic stress responses. We also discovered global intron retention defects in mutants in three subunits of MAC, thus linking MAC function to splicing in Arabidopsis.
Collapse
Affiliation(s)
- Tianran Jia
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Bailong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Shengjun Li
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Kaeli C M Johnson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bin Yu
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Howard Hughes Medical Institute, University of California, Riverside, California 92521
| |
Collapse
|
44
|
Exogenous Auxin Elicits Changes in the Arabidopsis thaliana Root Proteome in a Time-Dependent Manner. Proteomes 2017; 5:proteomes5030016. [PMID: 28698516 PMCID: PMC5620533 DOI: 10.3390/proteomes5030016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022] Open
Abstract
Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400.
Collapse
|
45
|
Plett KL, Raposo AE, Bullivant S, Anderson IC, Piller SC, Plett JM. Root morphogenic pathways in Eucalyptus grandis are modified by the activity of protein arginine methyltransferases. BMC PLANT BIOLOGY 2017; 17:62. [PMID: 28279165 PMCID: PMC5345158 DOI: 10.1186/s12870-017-1010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/01/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Methylation of proteins at arginine residues, catalysed by members of the protein arginine methyltransferase (PRMT) family, is crucial for the regulation of gene transcription and for protein function in eukaryotic organisms. Inhibition of the activity of PRMTs in annual model plants has demonstrated wide-ranging involvement of PRMTs in key plant developmental processes, however, PRMTs have not been characterised or studied in long-lived tree species. RESULTS Taking advantage of the recently available genome for Eucalyptus grandis, we demonstrate that most of the major plant PRMTs are conserved in E. grandis as compared to annual plants and that they are expressed in all major plant tissues. Proteomic and transcriptomic analysis in roots suggest that the PRMTs of E. grandis control a number of regulatory proteins and genes related to signalling during cellular/root growth and morphogenesis. We demonstrate here, using chemical inhibition of methylation and transgenic approaches, that plant type I PRMTs are necessary for normal root growth and branching in E. grandis. We further show that EgPRMT1 has a key role in root hair initiation and elongation and is involved in the methylation of β-tubulin, a key protein in cytoskeleton formation. CONCLUSIONS Together, our data demonstrate that PRMTs encoded by E. grandis methylate a number of key proteins and alter the transcription of a variety of genes involved in developmental processes. Appropriate levels of expression of type I PRMTs are necessary for the proper growth and development of E. grandis roots.
Collapse
Affiliation(s)
- Krista L. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| | - Anita E. Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| | - Stephen Bullivant
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| | - Ian C. Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| | - Sabine C. Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| | - Jonathan M. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| |
Collapse
|
46
|
Deng X, Cao X. Roles of pre-mRNA splicing and polyadenylation in plant development. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:45-53. [PMID: 27866125 DOI: 10.1016/j.pbi.2016.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Plants possess amazing plasticity of growth and development, allowing them to adjust continuously and rapidly to changes in the environment. Over the past two decades, numerous molecular studies have illuminated the role of transcriptional regulation in plant development and environmental responses. However, emerging studies in Arabidopsis have uncovered an unexpectedly widespread role for post-transcriptional regulation in development and responses to environmental changes. In this review, we summarize recent discoveries detailing the contribution of two post-transcriptional mechanisms, pre-mRNA splicing and polyadenylation, to the regulation of plant development, with an emphasis on the control of flowering time. We also discuss future directions in the field and new technological approaches.
Collapse
Affiliation(s)
- Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
47
|
Zhang H, Lin C, Gu L. Light Regulation of Alternative Pre-mRNA Splicing in Plants. Photochem Photobiol 2017; 93:159-165. [PMID: 27925216 DOI: 10.1111/php.12680] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/20/2016] [Indexed: 02/03/2023]
Abstract
Alternative splicing (AS) is a major post-transcriptional mechanism to enhance the diversity of proteome in response to environmental signals. Among the numerous external signals perceived by plants, light is the most crucial one. Plants utilize complex photoreceptor signaling networks to sense different light conditions and adjust their growth and development accordingly. Although light-mediated gene expression has been widely investigated, little is known regarding the mechanism of light affecting AS to modulate mRNA at the post-transcriptional level. In this minireview, we summarize current progresses on how light affects AS, and how sensory photoreceptors and retrograde signaling pathways may coordinately regulate AS of pre-mRNAs. In addition, we also discuss the possibility that AS of the mRNAs encoding photoreceptors may be involved in feedback control of AS. We hypothesize that light regulation of the expression and activity of splicing factors would be a major mechanism of light-mediated AS. The combination of genetic study and high-throughput analyses of AS and splicing complexes in response to light is likely to further advance our understanding of the molecular mechanisms underlying light control of AS and plant development.
Collapse
Affiliation(s)
- Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
48
|
Peng C, Wong CC. The story of protein arginine methylation: characterization, regulation, and function. Expert Rev Proteomics 2017; 14:157-170. [PMID: 28043171 DOI: 10.1080/14789450.2017.1275573] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Arginine methylation is an important post-translational modification (PTM) in cells, which is catalyzed by a group of protein arginine methyltransferases (PRMTs). It plays significant roles in diverse cellular processes and various diseases. Misregulation and aberrant expression of PRMTs can provide potential biomarkers and therapeutic targets for drug discovery. Areas covered: Herein, we review the arginine methylation literature and summarize the methodologies for the characterization of this modification, as well as describe the recent insights into arginine methyltransferases and their biological functions in diseases. Expert commentary: Benefits from the enzyme-based large-scale screening approach, the novel affinity enrichment strategies, arginine methylated protein family is the focus of attention. Although a number of arginine methyltransferases and related substrates are identified, the catalytic mechanism of different types of PRMTs remains unclear and few related demethylases are characterized. Novel functional studies continuously reveal the importance of this modification in the cell cycle and diseases. A deeper understanding of arginine methylated proteins, modification sites, and their mechanisms of regulation is needed to explore their role in life processes, especially their relationship with diseases, thus accelerating the generation of potent, selective, cell-penetrant drug candidates.
Collapse
Affiliation(s)
- Chao Peng
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| | - Catherine Cl Wong
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|