1
|
Botcha L, Sehar M, Cheng YC, Zhang SC, Khan Jadoon MS, Chuang PK. Drug repurposing of 6-AZA-UTP and itraconazole reveals novel B3GALT5 inhibitors for pancreatic cancer. Bioorg Chem 2025; 160:108464. [PMID: 40273705 DOI: 10.1016/j.bioorg.2025.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
Pancreatic cancer has a poor prognosis with limited therapeutic options, necessitating novel treatment strategies. While B3GALT5 enzyme overexpression has been reported in pancreatic cancer cases, effective mechanisms to suppress its activity remain unexplored. In this study, we utilized bioinformatics and in silico studies to evaluate the relationship between B3GALT5 enzyme and pancreatic cancer. Through molecular docking analysis, FDA-approved drugs 6-AZA-UTP and itraconazole were identified as potential B3GALT5 enzyme inhibitors. Biological evaluation on MIA PaCa-2 and AsPC-1 pancreatic cancer cell lines demonstrated that both compounds significantly reduced cell viability. Flow cytometry analysis revealed that both drugs effectively suppressed B3GALT5 enzyme activation by decreasing SSEA-3 expression. Furthermore, both compounds exhibited potent anti-tumor effects by inhibiting cell adhesion, colony formation, and migration while inducing apoptosis in pancreatic cancer cells. Notably, both drugs demonstrated favorable ADMET profiles with no carcinogenic or toxic effects. Our investigations revealed that 6-AZA-UTP and itraconazole can effectively suppress B3GALT5 enzyme activity, resulting in tumor suppression and metastasis inhibition. These findings suggest that either 6-AZA-UTP or itraconazole can inhibit B3GALT5 enzyme activity and may serve as promising therapeutic options for pancreatic cancer treatment through drug repurposing strategy.
Collapse
Affiliation(s)
- Lavanya Botcha
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC
| | - Misbah Sehar
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC
| | - Yi-Chi Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC
| | - Sheng-Cheng Zhang
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC
| | | | - Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC.
| |
Collapse
|
2
|
Lo J, Kung CC, Cheng TJR, Wong CH, Ma C. Structure-Based Mechanism and Specificity of Human Galactosyltransferase β3GalT5. J Am Chem Soc 2025; 147:10875-10885. [PMID: 40130308 PMCID: PMC11969544 DOI: 10.1021/jacs.4c11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025]
Abstract
Human β1,3-galactosyltransferase 5 (β3GalT5) is a key enzyme involved in the synthesis of glycans on glycoproteins and glycolipids that are associated with various important biological functions, especially tumor malignancy and cancer progression, and has been considered as a promising target for development of anticancer agents. In this study, we determined the X-ray structures of β3GalT5 in complex with the stable donor analogue UDP-2-fluorogalactose or the native donor substrate UDP-galactose (UDP-Gal) and several glycan acceptors at different reaction steps. Based on the structures obtained from our experiments, β3GalT5 catalyzes the transfer of galactose from UDP-Gal to a broad spectrum of glycan acceptors with an SN2-like mechanism; however, in the absence of a glycan acceptor, UDP-Gal is slowly converted to UDP and two other products, one is galactose through an SN2-like mechanism with water as an acceptor and the other is an oxocarbenium-like product, presumably through an SN1-like mechanisms. The structure, mechanism, and specificity of β3GalT5 presented in this study advance our understanding of enzymatic glycosylation and provide valuable insights for application to glycan synthesis and drug design targeting β3GalT5-associated cancer.
Collapse
Affiliation(s)
- Jennifer
M. Lo
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Chuan Kung
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Che Ma
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Kung CC, Lo JM, Liao KS, Wu CY, Cheng LC, Chung C, Hsu TL, Ma C, Wong CH. Expression of Human β3GalT5-1 in Insect Cells as Active Glycoforms for the Efficient Synthesis of Cancer-Associated Globo-Series Glycans. J Am Chem Soc 2025; 147:10864-10874. [PMID: 40130300 PMCID: PMC11969553 DOI: 10.1021/jacs.4c11723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025]
Abstract
The globo-series glycosphingolipids (GSLs) are unique glycolipids exclusively expressed on the cell surface of various types of cancer and have been used as targets for the development of cancer vaccines and therapeutics. A practical enzymatic method has been developed for the synthesis of globo-series glycans, where the conversion of Gb4 to Gb5 (SSEA-3) glycan based on the microbial galactosyltransferase LgtD is relatively inefficient compared to other steps. To improve the efficiency, we explored the two human galactosyltransferase (β3GalT5) isozymes in cancer cells for this reaction and found that isozyme 1 (β3GalT5-1) is more active than isozyme 2 (β3GalT5-2). We then identified a common soluble domain of the two β3GalT5 isozymes as a candidate and evaluated the activity and substrate specificity of the glycosylated and nonglycosylated glycoforms. The glycoforms expressed in Sf9 cells were selected, and a site-specific alanine scan was performed to identify S66A β3GalT5 variant with 10-fold more efficiency than LgtD for the synthesis of globo-series glycans. The X-ray structure of β3GalT5-1 was determined for molecular modeling, and the result together with kinetic data were used to rationalize the improvement in catalysis.
Collapse
Affiliation(s)
- Chih-Chuan Kung
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jennifer M. Lo
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Li-Chun Cheng
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Cinya Chung
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tsui-Ling Hsu
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Che Ma
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
5
|
Xu L, Zhang W, Zhang H, Yang X, Ceccobelli S, Zhao Y, E G. Identification of Goat Supernumerary Teat Phenotype Using Wide-Genomic Copy Number Variants. Animals (Basel) 2024; 14:3252. [PMID: 39595305 PMCID: PMC11591440 DOI: 10.3390/ani14223252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Supernumerary teats (SNTs) or nipples often emerge around the mammary line. This study performed a genome-wide selective sweep analysis (GWS) at the copy number variant (CNV) level using two selected signal calculation methods (VST and FST) to identify candidate genes associated with SNTs in goats. A total of 12,310 CNVs were identified from 37 animals and 123 CNVs, with the top 1% VST values including 84 candidate genes (CDGs). Of these CDGs, minichromosome maintenance complex component 3, ectodysplasin A receptor associated via death domain, and cullin 5 demonstrated functions closely related to mammary gland development. In addition, 123 CNVs with the top 1% FST values were annotated to 97 CDGs. 5-Hydroxytryptamine receptor 2A, CCAAT/enhancer-binding protein alpha, and the polymeric immunoglobulin receptor affect colostrum secretion through multiple signaling pathways. Two genes, namely, RNA-binding motif protein 46 and β-1,3-galactosyltransferase 5, showed a close relation to mammary gland development. Six CNVs were identified and annotated to five genes by intersecting the top 1% of candidate CNVs with both parameters. These genes include LOC102185621, LOC102190481, and UDP-glucose pyrophosphorylase 2, which potentially affect the occurrence of BC through multiple biological processes, such as cell detoxification, glycogen synthesis, and phospholipid metabolism. In conclusion, we discovered numerous genes related to mammary development and breast cancer (BC) through a GWS, which suggests the mechanism of SNTs in goats and a certain association between mammary cancer and SNTs.
Collapse
Affiliation(s)
- Lu Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| | - Weiyi Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| |
Collapse
|
6
|
Tsuchida A, Hachisu K, Mizuno M, Takada Y, Ideo H. High expression of B3GALT5 suppresses the galectin-4-mediated peritoneal dissemination of poorly differentiated gastric cancer cells. Glycobiology 2024; 34:cwae064. [PMID: 39163480 DOI: 10.1093/glycob/cwae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Peritoneal metastasis frequently accompanies metastatic and/or recurrent gastric cancer, leading to a poor prognosis owing to a lack of effective treatment. Hence, there is a pressing need to enhance our understanding of the mechanisms and molecules driving peritoneal metastasis. In a previous study, galectin-4 inhibition impeded peritoneal metastasis in a murine model. This study examined the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) in cells with varying tumorigenic potentials to understand the intricate mechanisms underlying galectin-4-mediated regulation, particularly glycosylation. Detailed mass spectrometry analysis showed that galectin-4 knockout cells exhibit increased expression of lacto-series GSLs with β1,3-linked galactose while showing no significant alterations in neolacto-series GSLs. We conducted real-time polymerase chain reaction (PCR) analysis to identify candidate glycosyltransferases that synthesize increased levels of GSLs. Subsequently, we introduced the candidate B3GALT5 gene and selected the clones with high expression levels. B3GALT5 gene-expressing clones showed GSL glycan profiles like those of knockout cells and significantly reduced tumorigenic ability in mouse models. These clones exhibited diminished proliferative capacity and showed reduced expression of galectin-4 and activated AKT. Moreover, co-localization of galectin-4 with flotillin-2 (a raft marker) decreased in B3GALT5-expressing cells, implicating GSLs in galectin-4 localization to lipid rafts. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (a GSL synthase inhibitor) also affected galectin-4 localization in rafts, suggesting the involvement of GSL microdomains. We discovered that B3GALT5 plays a crucial role in regulating peritoneal metastasis of malignant gastric cancer cells by suppressing cell proliferation and modulating lipid rafts and galectin-4 via mechanisms that are yet to be elucidated.
Collapse
Affiliation(s)
- Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Kazuko Hachisu
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| |
Collapse
|
7
|
Zhang J, Huang Y, Li H, Xu P, Liu Q, Sun Y, Zhang Z, Wu T, Tang Q, Jia Q, Xia Y, Xu Y, Jing X, Li J, Mo L, Xie W, Qu A, He J, Li Y. B3galt5 functions as a PXR target gene and regulates obesity and insulin resistance by maintaining intestinal integrity. Nat Commun 2024; 15:5919. [PMID: 39004626 PMCID: PMC11247088 DOI: 10.1038/s41467-024-50198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Pregnane X receptor (PXR) has been reported to regulate glycolipid metabolism. The dysfunction of intestinal barrier contributes to metabolic disorders. However, the role of intestinal PXR in metabolic diseases remains largely unknown. Here, we show that activation of PXR by tributyl citrate (TBC), an intestinal-selective PXR agonist, improves high fat diet (HFD)-induced obesity. The metabolic benefit of intestinal PXR activation is associated with upregulation of β-1,3 galactosyltransferase 5 (B3galt5). Our results reveal that B3galt5 mainly expresses in the intestine and is a direct PXR transcriptional target. B3galt5 knockout exacerbates HFD-induced obesity, insulin resistance and inflammation. Mechanistically, B3galt5 is essential to maintain the integrity of intestinal mucus barrier. B3galt5 ablation impairs the O-glycosylation of mucin2, destabilizes the mucus layer, and increases intestinal permeability. Furthermore, B3galt5 deficiency abolishes the beneficial effect of intestinal PXR activation on metabolic disorders. Our results suggest the intestinal-selective PXR activation regulates B3galt5 expression and maintains metabolic homeostasis, making it a potential therapeutic strategy in obesity.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya Huang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Pharmacy, GuiQian International General Hospital, Guiyang, China
| | - Hong Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tong Wu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
8
|
Pujari R, Dubey SK. Relevance of glyco-biomakers and glycan profiles in cancer stem cells. Glycobiology 2024; 34:cwad019. [PMID: 36864577 DOI: 10.1093/glycob/cwad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Altered and aberrant glycosylation signatures have been linked to being a hallmark in a variety of human disorders including cancer. Cancer stem cells (CSCs), capable of self-renewal and differentiation, have recently been credited with a unique notion of disease genesis and implicated as the cause for initiation and recurrence of the disease in a new regime of neoplastic transformations hypothesis. Many biomarkers relating to diagnostic and prognostic intents have been discovered using the ubiquitous and abundant surface glycan patterns on CSCs. Various technological advancements have been developed to identify and determine concerns with glycosylation structure. However, the nature and purpose of the glycan moiety on these glycosylation pattern have not yet been thoroughly investigated. This review, thus, summarizes the process of glycosylation in CSCs, variations in glycosylation patterns in various stem cells, aberrant glycosylation patterns in cancer, the role of glycosylation in tumor cell adhesion, cell-matrix interactions, and signaling, as well as cancer detection and treatment. The function of carbohydrates as prospective serum biomarkers, some clinically authorized biomarkers, and potential novel biomarkers relating to cancer disease diagnosis and prognosis are also discussed in the review.
Collapse
Affiliation(s)
- Rohit Pujari
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| | - Shiv Kumar Dubey
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
9
|
Chen NY, Lin CW, Lai TY, Wu CY, Liao PC, Hsu TL, Wong CH. Increased expression of SSEA-4 on TKI-resistant non-small cell lung cancer with EGFR-T790M mutation. Proc Natl Acad Sci U S A 2024; 121:e2313397121. [PMID: 38252815 PMCID: PMC10835044 DOI: 10.1073/pnas.2313397121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme β3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.
Collapse
Affiliation(s)
- Nai-Yu Chen
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei11221, Taiwan
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung406040, Taiwan
| | - Ting-Yen Lai
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Pei-Chi Liao
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
10
|
Pal R, Yamazaki A, Komura N, Tanaka HN, Imamura A, Ishida H, Ando H. Convergent synthesis of functionalized derivatives of stage-specific embryonic antigens 3 & 4. Carbohydr Res 2024; 535:108990. [PMID: 38039697 DOI: 10.1016/j.carres.2023.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Stage-specific embryonic antigens (SSEAs) are carbohydrate markers that have diverse roles in embryonic development. However, the exact roles of SSEAs remain unclear. To obtain mechanistic insights into their roles, we aimed to develop functionalized SSEA glycan analogs via chemical synthesis. Herein, we report a convergent synthetic approach for SSEA-3 and SSEA-4 analogs using readily available versatile building blocks. A key step, namely the stereoselective glycosylation of a common tetrasaccharide acceptor, was successfully achieved using a 4-O-Bn Gal donor for SSEA-3 and a Neu-Gal donor for SSEA-4, which were previously developed by our group. The obtained SSEA-3 and SSEA-4 glycans were further functionalized with biotin and deuterated lipid for applications in biological studies. Thus, the findings of this study will facilitate further research on SSEAs.
Collapse
Affiliation(s)
- Rita Pal
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Ayano Yamazaki
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hideharu Ishida
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
11
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Luo Q, Liu P, Yu P, Qin T. Cancer Stem Cells are Actually Stem Cells with Disordered Differentiation: the Monophyletic Origin of Cancer. Stem Cell Rev Rep 2023; 19:827-838. [PMID: 36648606 PMCID: PMC10185654 DOI: 10.1007/s12015-023-10508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Cancer stem cells (CSCs) play an important role in cancer development. Based on advancements in CSC research, we propose a monophyletic model of cancer. This model is based on the idea that CSCs are stem cells with disordered differentiation whose original purpose was to repair damaged tissues. Inflammatory responses and damage repair signals are crucial for the creation and maintenance of CSCs. Normal quiescent stem cells are activated by environmental stimulation, such as an inflammatory response, and undergo cell division and differentiation. In the initial stage of cancer development, stem cell differentiation leads to heteromorphism due to the accumulation of gene mutations, resulting in the development of metaplasia or precancerosis. In the second stage, accumulated mutations induce poor differentiation and lead to cancer development. The monophyletic model illustrates the evolution, biological behavior, and hallmarks of CSCs, proposes a concise understanding of the origin of cancer, and may encourage a novel therapeutic approach.
Collapse
Affiliation(s)
- Qiankun Luo
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pan Liu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pengfei Yu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Tao Qin
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China.
| |
Collapse
|
13
|
Man YG, Mannion C, Stojadinovic A, Peoples GE, Cho WCS, Fu SW, Tan X, Hsiao YH, Liu A, Semczuk A, Zarogoulidis P, Gapeev AB, Deng X, Peng X, Reva BA, Omelchenko T, Wang J, Song G, Chen T. The most likely but largely ignored triggering factor for breast (or all) cancer invasion. J Cancer 2023; 14:573-590. [PMID: 37057291 PMCID: PMC10088539 DOI: 10.7150/jca.82291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/27/2023] [Indexed: 03/14/2023] Open
Abstract
Breast cancer development and progression are believed to be a sequential process, from normal to hyperplastic, to in situ, and to invasive and metastatic stages. Given that over 90% of cancer deaths are caused by invasive and metastatic lesions, countless factors and multiple theories have been proposed as the triggering factor for the cascade of actions of cancer invasion. However, those factors and theories are largely based on the studies of cell lines or animal models. In addition, corresponding interventions based on these factors and theories have failed to reduce the incidence rate of invasive and metastatic lesions, suggesting that previous efforts may have failed to arm at the right target. Considering these facts and observations, we are proposing "A focal aberrant degeneration in the myoepithelial cell layer (MECL) as the most likely triggering factor for breast cancer invasion". Our hypothesis is based on our recent studies of breast and multiple other cancers. Our commentary provides the rationale, morphologic, immunohistochemical, and molecular data to support our hypotheses. As all epithelium-derived cancers share a very similar architecture, our hypothesis is likely to be applicable to invasion of all cancer types. We believe that human tissue-derived data may provide a more realistic roadmap to guide the clinic practice.
Collapse
Affiliation(s)
- Yan-gao Man
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | | | | | - William CS Cho
- Queen Elizabeth Hospital, Department of Clinical Oncology, Hong Kong, China
| | - Sidney W. Fu
- Division of Genomic Medicine, Department of Medicine, and of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington DC, USA
| | - Xiaohui Tan
- Division of Genomic Medicine, Department of Medicine, and of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington DC, USA
| | - Yi-Hsuan Hsiao
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Aijun Liu
- Department of Pathology, Chinese PLA General Hospital 7 th Medical Center, Beijing, China
| | - Andrzej Semczuk
- IIND Department of Gynecology, Lublin Medical University, Lublin, Poland
| | - Paul Zarogoulidis
- Pulmonary-Oncology Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece
| | - Andrei B. Gapeev
- Laboratory of Biological Effects of Non-Ionizing Radiation, Institute of Cell Biophysics, Russian Academy of Sciences, Russian Federation
| | - Xiyun Deng
- Department of Pathology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xiaoning Peng
- Department of Pathology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Boris A. Reva
- Department of Genetics and Genomics Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Jialian Wang
- Department of Sema4 Health Informatics, Stamford, CT, USA
| | - Guohong Song
- Department of Medical Oncology, Peking University Cancer Hospital and Institute, China
| | - Tingtao Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University and National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Bhavnagari H, Raval A, Shah F. Deciphering Potential Role of Hippo Signaling Pathway in Breast Cancer: A Comprehensive Review. Curr Pharm Des 2023; 29:3505-3518. [PMID: 38141194 DOI: 10.2174/0113816128274418231215054210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
Breast cancer is a heterogeneous disease and a leading malignancy around the world. It is a vital cause of untimely mortality among women. Drug resistance is the major challenge for effective cancer therapeutics. In contrast, cancer stem cells (CSCs) are one of the reasons for drug resistance, tumor progression, and metastasis. The small population of CSCs present in each tumor has the ability of self-renewal, differentiation, and tumorigenicity. CSCs are often identified and enriched using a variety of cell surface markers (CD44, CD24, CD133, ABCG2, CD49f, LGR5, SSEA-3, CD70) that exert their functions by different regulatory networks, i.e., Notch, Wnt/β-catenin, hedgehog (Hh), and Hippo signaling pathways. Particularly the Hippo signaling pathway is the emerging and very less explored cancer stem cell pathway. Here, in this review, the Hippo signaling molecules are elaborated with respect to their ability of stemness as epigenetic modulators and how these molecules can be targeted for better cancer treatment and to overcome drug resistance.
Collapse
Affiliation(s)
- Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Raval
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
15
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
16
|
Novel Thieno [2,3-b]pyridine Anticancer Compound Lowers Cancer Stem Cell Fraction Inducing Shift of Lipid to Glucose Metabolism. Int J Mol Sci 2022; 23:ijms231911457. [PMID: 36232754 PMCID: PMC9569594 DOI: 10.3390/ijms231911457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022] Open
Abstract
Due to the role of cancer stem cells (CSCs) in tumor resistance and glycosphingolipid (GSL) involvement in tumor pathogenesis, we investigated the effect of a newly synthesized compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide 1 on the percentage of CSCs and the expression of six GSLs on CSCs and non-CSCs on breast cancer cell lines (MDA-MB-231 and MCF-7). We also investigated the effect of 1 on the metabolic profile of these cell lines. The MTT assay was used for cytotoxicity determination. Apoptosis and expression of GSLs were assessed by flow cytometry. A GC–MS-coupled system was used for the separation and identification of metabolites. Compound 1 was cytotoxic for both cell lines, and the majority of cells died by treatment-induced apoptosis. The percentage of CSCs was significantly lower in the MDA-MB-231 cell line. Treatment with 1 caused a decrease of CSC IV6Neu5Ac-nLc4Cer+ MDA-MB-231 cells. In the MCF-7 cell line, the percentage of GalNAc-GM1b+ CSCs was increased, while the expression of Gg3Cer was decreased in both CSC and non-CSC. Twenty-one metabolites were identified by metabolic profiling. The major impact of the treatment was in glycolysis/gluconeogenesis, pyruvate and inositol metabolism. Compound 1 exhibited higher potency in MBA-MB-231 cells, and it deserves further examination.
Collapse
|
17
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Sirpal P, Damseh R, Peng K, Nguyen DK, Lesage F. Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals. Neuroinformatics 2022; 20:537-558. [PMID: 34378155 PMCID: PMC9547786 DOI: 10.1007/s12021-021-09538-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model's fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.
Collapse
Affiliation(s)
- Parikshat Sirpal
- École Polytechnique de Montréal, Université de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, H3C 3A7, Canada.
- Neurology Division, Centre Hospitalier de L'Université de Montréal (CHUM), 1000 Saint-Denis, Montréal, H2X 0C1, Canada.
| | - Rafat Damseh
- École Polytechnique de Montréal, Université de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, H3C 3A7, Canada
| | - Ke Peng
- Neurology Division, Centre Hospitalier de L'Université de Montréal (CHUM), 1000 Saint-Denis, Montréal, H2X 0C1, Canada
| | - Dang Khoa Nguyen
- Neurology Division, Centre Hospitalier de L'Université de Montréal (CHUM), 1000 Saint-Denis, Montréal, H2X 0C1, Canada
| | - Frédéric Lesage
- École Polytechnique de Montréal, Université de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, H3C 3A7, Canada
- Research Centre, Montréal Heart Institute, Montréal, Canada
| |
Collapse
|
19
|
Ibragimova M, Tsyganov M, Litviakov N. Tumour Stem Cells in Breast Cancer. Int J Mol Sci 2022; 23:ijms23095058. [PMID: 35563449 PMCID: PMC9099719 DOI: 10.3390/ijms23095058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC− non-CSCs and their significance for metastasis are considered.
Collapse
Affiliation(s)
- Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
| |
Collapse
|
20
|
Guo J, Tang H, Huang P, Guo J, Shi Y, Yuan C, Liang T, Tang K. Single-Cell Profiling of Tumor Microenvironment Heterogeneity in Osteosarcoma Identifies a Highly Invasive Subcluster for Predicting Prognosis. Front Oncol 2022; 12:732862. [PMID: 35463309 PMCID: PMC9020875 DOI: 10.3389/fonc.2022.732862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in adolescents, and metastasis is the key reason for treatment failure and poor prognosis. Once metastasis occurs, the 5-year survival rate is only approximately 20%, and assessing and predicting the risk of osteosarcoma metastasis are still difficult tasks. In this study, cellular communication between tumor cells and nontumor cells was identified through comprehensive analysis of osteosarcoma single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, illustrating the complex regulatory network in the osteosarcoma microenvironment. In line with the heterogeneity of osteosarcoma, we found subpopulations of osteosarcoma cells that highly expressed COL6A1, COL6A3 and MIF and were closely associated with lung metastasis. Then, BCDEG, a reliable risk regression model that could accurately assess the metastasis risk and prognosis of patients, was established, providing a new strategy for the diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hong Tang
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pan Huang
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junfeng Guo
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| | - Youxing Shi
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengsong Yuan
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Taotao Liang
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kanglai Tang
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Homogeneous antibody and CAR-T cells with improved effector functions targeting SSEA-4 glycan on pancreatic cancer. Proc Natl Acad Sci U S A 2021; 118:2114774118. [PMID: 34876527 DOI: 10.1073/pnas.2114774118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic cancer is usually asymptomatic in the early stages; the 5-y survival rate is around 9%; and there is a lack of effective treatment. Here we show that SSEA-4 is more expressed in all pancreatic cancer cell lines examined but not detectable in normal pancreatic cells; and high expression of SSEA-4 or the key enzymes B3GALT5 + ST3GAL2 associated with SSEA-4 biosynthesis significantly lowers the overall survival rate. To evaluate potential new treatments for pancreatic cancer, homogeneous antibodies with a well-defined Fc glycan for optimal effector functions and CAR-T cells with scFv construct designed to target SSEA-4 were shown highly effective against pancreatic cancer in vitro and in vivo. This was further supported by the finding that a subpopulation of natural killer (NK) cells isolated by the homogeneous antibody exhibited enhancement in cancer-cell killing activity compared to the unseparated NK cells. These results indicate that targeting SSEA-4 by homologous antibodies or CAR-T strategies can effectively inhibit cancer growth, suggesting SSEA-4 as a potential immunotherapy target for treating pancreatic disease.
Collapse
|
22
|
Lee RH, Wang YJ, Lai TY, Hsu TL, Chuang PK, Wu HC, Wong CH. Combined Effect of Anti-SSEA4 and Anti-Globo H Antibodies on Breast Cancer Cells. ACS Chem Biol 2021; 16:1526-1537. [PMID: 34369155 DOI: 10.1021/acschembio.1c00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The globo-series glycosphingolipids (SSEA3, SSEA4, and Globo H) were shown to express in many cancers selectively, and a combination of anti-SSEA4 and anti-Globo H antibodies was able to suppress tumor growth in mice inoculated with breast cancer cell lines. To further understand the effect, we focused on the combined effect of the two antibodies in target binding and antibody-dependent cellular cytotoxicity (ADCC) in vitro. Here, we report that the binding of anti-Globo H antibody (VK9) to MDA-MB231 breast cancer cells was influenced by anti-SSEA4 antibody (MC813-70), and a combination of both antibodies induced a similar effect as did anti-SSEA4 antibodies alone in a reporter-based ADCC assay, indicating that SSEA4 is a major target in breast cancer due to its higher expression than Globo H. Furthermore, we showed that a homogeneous anti-SSEA4 antibody (chMC813-70-SCT) designed to maximize the ADCC activity can be used to isolate a subpopulation of natural killer (NK) cells that exhibit an ∼23% increase in killing the target cells as compared to the unseparated NK cells. These findings can be used to predict a therapy outcome based on the expression levels of antigens and evaluate therapeutic antibody development.
Collapse
Affiliation(s)
- Ruey-Herng Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Jen Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yen Lai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Po-Kai Chuang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
23
|
Humphries B, Wang Z, Yang C. MicroRNA Regulation of Breast Cancer Stemness. Int J Mol Sci 2021; 22:3756. [PMID: 33916548 PMCID: PMC8038508 DOI: 10.3390/ijms22073756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/22/2022] Open
Abstract
Recent advances in our understanding of breast cancer have demonstrated that cancer stem-like cells (CSCs, also known as tumor-initiating cell (TICs)) are central for progression and recurrence. CSCs are a small subpopulation of cells present in breast tumors that contribute to growth, metastasis, therapy resistance, and recurrence, leading to poor clinical outcome. Data have shown that cancer cells can gain characteristics of CSCs, or stemness, through alterations in key signaling pathways. The dysregulation of miRNA expression and signaling have been well-documented in cancer, and recent studies have shown that miRNAs are associated with breast cancer initiation, progression, and recurrence through regulating CSC characteristics. More specifically, miRNAs directly target central signaling nodes within pathways that can drive the formation, maintenance, and even inhibition of the CSC population. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as biomarkers and promising clinical therapeutics, and presents a comprehensive summary of currently validated targets involved in CSC-specific signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Brock Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
| |
Collapse
|
24
|
Heo HR, Joo KI, Seo JH, Kim CS, Cha HJ. Glycan chip based on structure-switchable DNA linker for on-chip biosynthesis of cancer-associated complex glycans. Nat Commun 2021; 12:1395. [PMID: 33654088 PMCID: PMC7925590 DOI: 10.1038/s41467-021-21538-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 01/29/2021] [Indexed: 12/05/2022] Open
Abstract
On-chip glycan biosynthesis is an effective strategy for preparing useful complex glycan sources and for preparing glycan-involved applications simultaneously. However, current methods have some limitations when analyzing biosynthesized glycans and optimizing enzymatic reactions, which could result in undefined glycan structures on a surface, leading to unequal and unreliable results. In this work, a glycan chip is developed by introducing a pH-responsive i-motif DNA linker to control the immobilization and isolation of glycans on chip surfaces in a pH-dependent manner. On-chip enzymatic glycosylations are optimized for uniform biosynthesis of cancer-associated Globo H hexasaccharide and its related complex glycans through stepwise quantitative analyses of isolated products from the surface. Successful interaction analyses of the anti-Globo H antibody and MCF-7 breast cancer cells with on-chip biosynthesized Globo H-related glycans demonstrate the feasibility of the structure-switchable DNA linker-based glycan chip platform for on-chip complex glycan biosynthesis and glycan-involved applications.
Collapse
Affiliation(s)
- Hye Ryoung Heo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kye Il Joo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Chang Sup Kim
- School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
25
|
Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: A review of their characteristics and the agents that affect them. Mol Carcinog 2021; 60:73-100. [PMID: 33428807 DOI: 10.1002/mc.23277] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
The evolving concept that cancer stem cells (CSCs) are the driving element in cancer development, evolution and heterogeneity, has overridden the previous model of a tumor consisting of cells all with similar sequentially acquired mutations and a similar potential for renewal, invasion and metastasis. This paradigm shift has focused attention on therapeutically targeting CSCs directly as a means of eradicating the disease. In breast cancers, CSCs can be identified by cell surface markers and are characterized by their ability to self-renew and differentiate, resist chemotherapy and radiation, and initiate new tumors upon serial transplantation in xenografted mice. These functional properties of CSCs are regulated by both intracellular and extracellular factors including pluripotency-related transcription factors, intracellular signaling pathways and external stimuli. Several classes of natural products and synthesized compounds have been studied to target these regulatory elements and force CSCs to lose stemness and/or terminally differentiate and thereby achieve a therapeutic effect. However, realization of an effective treatment for breast cancers, focused on the biological effects of these agents on breast CSCs, their functions and signaling, has not yet been achieved. In this review, we delineate the intrinsic and extrinsic factors identified to date that control or promote stemness in breast CSCs and provide a comprehensive compilation of potential agents that have been studied to target breast CSCs, transcription factors and stemness-related signaling. Our aim is to stimulate further study of these agents that could become the basis for their use as stand-alone treatments or components of combination therapies effective against breast cancers.
Collapse
Affiliation(s)
- Naing L Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yoosub Shin
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ge Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
26
|
Liao YM, Wang YH, Hung JT, Lin YJ, Huang YL, Liao GS, Hsu YL, Wu JC, Yu AL. High B3GALT5 expression confers poor clinical outcome and contributes to tumor progression and metastasis in breast cancer. Breast Cancer Res 2021; 23:5. [PMID: 33413566 PMCID: PMC7792347 DOI: 10.1186/s13058-020-01381-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/09/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Existence of breast cancer stem cells (BCSCs) is implicated in disease relapse, metastasis, and resistance of treatment. β1,3-Galactosyltransferase 5 (B3GALT5) has been shown to be a pro-survival marker for BCSCs. However, little is known about the prognostic significance of B3GALT5 in breast cancer. METHODS Paired tissues (tumor part and adjacent non-tumor part) from a cohort of 202 women with breast cancer were used to determine the expression levels of B3GALT5 mRNA by qRT-PCR. Kaplan-Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of relapse-free survival (RFS) and overall survival (OS). Both breast cancer cells and cancer stem cells (BCSCs) were used to see the in vitro effects of knockdown or overexpression of B3GALT5 on cell migration, invasion, and epithelial-to-mesenchymal transition (EMT). A patient-derived xenograft (PDX) model was used to see the in vivo effects of knockdown of B3GALT5 in BCSCs on tumor growth and metastasis. RESULTS Higher expression of B3GALT5 in 202 breast cancer tissues, especially in adjacent non-tumor tissue, correlated with poor clinical outcomes including shorter OS and RFS in all patients, especially those with early stage breast cancer. In vitro studies showed B3GALT5 could enhance cell migration, invasion, mammosphere formation, and EMT. Of note, B3GALT5 upregulated the expression of β-catenin and EMT activator zinc finger E-box binding homeobox 1 (ZEB1) pathway in BCSCs. In vivo studies showed B3GALT5 expression in BCSCs is critical for not only tumor growth but also lymph node and lung metastasis in PDX mice. CONCLUSION Our results demonstrated the value of B3GALT5 as a prognostic marker of breast cancer, especially among the early stage patients, and its crucial roles in regulating EMT, cell migration, and stemness thereby promoting breast cancer progression.
Collapse
Affiliation(s)
- Yu-Mei Liao
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
- Ph.D. Program in Translational Medicine, Kaohsiung Medical University, Kaohsiung, and Academia Sinica, Taipei, 115, Taiwan
- Division of Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Yu-Ju Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Yen-Lin Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Guo-Shiou Liao
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jen-Chien Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
- Department of Pediatrics, University of California in San Diego, San Diego, USA.
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
27
|
Deciphering the Importance of Glycosphingolipids on Cellular and Molecular Mechanisms Associated with Epithelial-to-Mesenchymal Transition in Cancer. Biomolecules 2021; 11:biom11010062. [PMID: 33418847 PMCID: PMC7824851 DOI: 10.3390/biom11010062] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.
Collapse
|
28
|
Abdyyev VK, Sant DW, Kiseleva EV, Spangenberg VE, Kolomiets OL, Andrade NS, Dashinimaev EB, Vorotelyak EA, Vasiliev AV. In vitro derived female hPGCLCs are unable to complete meiosis in embryoid bodies. Exp Cell Res 2020; 397:112358. [PMID: 33160998 DOI: 10.1016/j.yexcr.2020.112358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 11/19/2022]
Abstract
The fundamental question about the functionality of in vitro derived human primordial germ cell-like cells remains unanswered, despite ongoing research in this area. Attempts have been made to imitate the differentiation of human primordial germ cells (hPGCs) and meiocytes in vitro from human pluripotent stem cells (hPSCs). A defined system for developing human haploid cells in vitro is the challenge that scientists face to advance the knowledge of human germ cell development. To develop human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) that are capable of giving rise to haploid cells, we applied a sequential induction protocol via the early mesodermal push of female human embryonic and induced pluripotent stem cells. BMP4-induced early mesoderm-like cells showed significant alterations in their expression profiles toward early (PRDM1 and NANOS3) and late (VASA and DAZL) germ cell markers. Furthermore, using retinoic acid (RA), we induced hPGCLCs in embryoid bodies and identified positive staining for the meiotic initiation marker STRA8. Efforts to find the cells exhibiting progression to meiosis were unsuccessful. The validation by the expression of SCP3 did not correspond to the natural pattern. Regarding the 20-day meiotic induction, the derived hPGCLCs containing two X-chromosomes were unable to complete the meiotic division. We observed the expression of the oocyte marker PIWIL1 and PIWIL4. RNAseq analysis and cluster dendrogram showed a similar clustering of hPGCLC groups and meiotic like cell groups as compared to previously published data. This reproducible in vitro model for deriving hPGCLCs provides opportunities for studying the molecular mechanisms involved in the specification of hPGCs. Moreover, our results will support a further elucidation of gametogenesis and meiosis of female hPGCs.
Collapse
Affiliation(s)
- Vepa K Abdyyev
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - David W Sant
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ekaterina V Kiseleva
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Victor E Spangenberg
- Vavilov Institute of General Genetics, The Russian Academy of Sciences, Moscow, Russia
| | - Oksana L Kolomiets
- Vavilov Institute of General Genetics, The Russian Academy of Sciences, Moscow, Russia
| | - Nadja S Andrade
- Department of Psychiatry and Behavioral Studies, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Erdem B Dashinimaev
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Ekaterina A Vorotelyak
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrei V Vasiliev
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
29
|
Zhang X, Powell K, Li L. Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms, Cellular Origin, and Beyond. Cancers (Basel) 2020; 12:E3765. [PMID: 33327542 PMCID: PMC7765014 DOI: 10.3390/cancers12123765] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, breast cancer (BC) is still a major cause of cancer-related mortality in women. Breast cancer stem cells (BCSCs) are a small but significant subpopulation of heterogeneous breast cancer cells demonstrating strong self-renewal and proliferation properties. Accumulating evidence has proved that BCSCs are the driving force behind BC tumor initiation, progression, metastasis, drug resistance, and recurrence. As a heterogeneous disease, BC contains a full spectrum of different BC subtypes, and different subtypes of BC further exhibit distinct subtypes and proportions of BCSCs, which correspond to different treatment responses and disease-specific outcomes. This review summarized the current knowledge of BCSC biomarkers and their clinical relevance, the methods for the identification and isolation of BCSCs, and the mechanisms regulating BCSCs. We also discussed the cellular origin of BCSCs and the current advances in single-cell lineage tracing and transcriptomics and their potential in identifying the origin and lineage development of BCSCs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| | | | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
30
|
Marijan S, Markotić A, Mastelić A, Režić-Mužinić N, Pilkington LI, Reynisson J, Čulić VČ. Glycosphingolipid expression at breast cancer stem cells after novel thieno[2,3-b]pyridine anticancer compound treatment. Sci Rep 2020; 10:11876. [PMID: 32680999 PMCID: PMC7368022 DOI: 10.1038/s41598-020-68516-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosphingolipid expression differs between human breast cancer stem cells (CSC) and cancer non-stem cells (non-CSC). We performed studies of viability, type of cell death, cancer stem cell percent and glycosphingolipid expression on CSC and non-CSC after treatment of MDA-MB-231 and MDA-MB-453 triple-negative breast cancer cells with a newly developed thienopyridine anticancer compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide, 1). Compound 1 was cytotoxic for both breast cancer cell lines and the majority of cells died by treatment-induced apoptosis. The percent of cancer stem cells and number of formed mammospheres was significantly lower. Glycosphingolipids IV6Neu5Ac-nLc4Cer and GalNAc-GM1b (IV3Neu5Ac-Gg5Cer) not reported previously, were identified in both CSCs and non-CSCs. IV6Neu5Ac-nLc4Cer had increased expression in both CSCs and non-CSCs of both cell lines after the treatment with 1, while GM3 (II3Neu5Ac-LacCer) had increased expression only on both cell subpopulations in MDA-MB-231 cell line. GalNAc-GM1b, Gb4Cer (GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer) and GM2 (II3Neu5Ac-GalNAcβ1-4Galβ1-4Glcβ1-1Cer) were increased only in CSCs of both cell lines while GD3 was decreased in CSC of MDA-MB-231 cell line. Due to its effect in reducing the percentage of cancer stem cells and number of mammospheres, and its influence upon several glycosphingolipid expressions, it can be concluded that compound 1 deserves attention as a potential new drug for triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Sandra Marijan
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia
| | - Angela Mastelić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia
| | - Nikolina Režić-Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia
| | - Lisa Ivy Pilkington
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Johannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000, Split, Croatia.
| |
Collapse
|
31
|
Zhou X, Yang G, Guan F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells 2020; 9:E273. [PMID: 31979120 PMCID: PMC7072699 DOI: 10.3390/cells9020273] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Sialic acids, a subset of nine carbon acidic sugars, often exist as the terminal sugars of glycans on either glycoproteins or glycolipids on the cell surface. Sialic acids play important roles in many physiological and pathological processes via carbohydrate-protein interactions, including cell-cell communication, bacterial and viral infections. In particular, hypersialylation in tumors, as well as their roles in tumor growth and metastasis, have been widely described. Recent studies have indicated that the aberrant sialylation is a vital way for tumor cells to escape immune surveillance and keep malignance. In this article, we outline the present state of knowledge on the metabolic pathway of human sialic acids, the function of hypersialylation in tumors, as well as the recent labeling and analytical techniques for sialic acids. It is expected to offer a brief introduction of sialic acid metabolism and provide advanced analytical strategies in sialic acid studies.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
32
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
33
|
Nanno Y, Sterner E, Gildersleeve JC, Hering BJ, Burlak C. Profiling natural serum antibodies of non-human primates with a carbohydrate antigen microarray. Xenotransplantation 2019; 27:e12567. [PMID: 31762117 DOI: 10.1111/xen.12567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Engineering of α-Galactosyltransferase gene-knockout pigs circumvented hyperacute rejection of pig organs after xenotransplantation in non-human primates. Overcoming this hurdle revealed the importance of non-α-Gal carbohydrate antigens in the immunobiology of acute humoral xenograft rejection. METHODS This study analyzed serum from seven naïve cynomolgus monkeys (blood type O/B/AB = 3/2/2) for the intensity of natural IgM and IgG signals using carbohydrate antigen microarray, which included historically reported α-Gal and non-α-Gal carbohydrate antigens with various modifications. RESULTS The median (range) of IgM and IgG signals were 12.71 (7.23-16.38) and 9.05 (7.23-15.90), respectively. The highest IgM and IgG signals with narrowest distribution were from mono- and disaccharides, followed by modified structures. Natural anti-α-Gal antibody signals were medium to high in IgM (11.2-15.9) and medium in IgG (8.5-11.6) spectra, and was highest with Lac core structure (Galα1-3Galβ1-4Glc, iGb3) and lowest with LacNAc core structure (Galα1-3Galβ1-4GlcNAc). Similar signal intensities (up to 15.8 in IgM and up to 11.8 in IgG) were observed for historically detected natural non-α-Gal antigens, which included Tn antigen, T antigen, GM2 glycolipid, and Sda antigen. The hierarchical clustering analysis revealed the presence of clusters of anti-A antibodies and was capable of distinguishing between the blood group B and AB non-human primates. CONCLUSIONS The results presented here provide the most comprehensive evaluation of natural antibodies present in cynomolgus monkeys.
Collapse
Affiliation(s)
- Yoshihide Nanno
- Department of Surgery, Schulze Diabetes Institute, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eric Sterner
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bernhard J Hering
- Department of Surgery, Schulze Diabetes Institute, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
34
|
Novohradsky V, Markova L, Kostrhunova H, Trávníček Z, Brabec V, Kasparkova J. An anticancer Os(II) bathophenanthroline complex as a human breast cancer stem cell-selective, mammosphere potent agent that kills cells by necroptosis. Sci Rep 2019; 9:13327. [PMID: 31527683 PMCID: PMC6746710 DOI: 10.1038/s41598-019-49774-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Conventional chemotherapy is mostly effective in the treatment of rapidly-dividing differentiated tumor cells but has limited application toward eliminating cancer stem cell (CSC) population. The presence of a very small number of CSCs may contribute to the development of therapeutic resistance, metastases, and relapse. Thus, treatment failure by developing novel anticancer drugs capable of effective targeting of CSCs is at present a major challenge for research focused on chemotherapy of cancer. Here, we show that Os(II) complex 2 [Os(η6-pcym)(bphen)(dca)]PF6 (pcym = p-cymene, bphen = bathophenanthroline, and dca = dichloroacetate), is capable of efficient and selective killing CSCs in heterogeneous populations of human breast cancer cells MCF-7 and SKBR-3. Notably, its remarkable submicromolar potency to kill CSCs is considerably higher than that of its Ru analog, [Ru(η6-pcym)(bphen)(dca)]PF6 (complex 1) and salinomycin, one of the most selective CSC-targeting compounds hitherto identified. Furthermore, Os(II) complex 2 reduces the formation, size, and viability of three-dimensional mammospheres which more closely reflect the tumor microenvironment than cells in traditional two-dimensional cultures. The antiproliferation studies and propidium iodide staining using flow cytometry suggest that Os(II) complex 2 induces human breast cancer stem cell death predominantly by necroptosis, a programmed form of necrosis. The results of this study demonstrate the promise of Os(II) complex 2 in treating human breast tumors. They also represent the foundation for further preclinical and clinical studies and applications of Os(II) complex 2 to comply with the emergent need for human breast CSCs-specific chemotherapeutics capable to treat chemotherapy-resistant and relapsed human breast tumors.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 612 65, Brno, Czech Republic.,Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 612 65, Brno, Czech Republic.
| |
Collapse
|
35
|
't Hart IME, Li T, Wolfert MA, Wang S, Moremen KW, Boons GJ. Chemoenzymatic synthesis of the oligosaccharide moiety of the tumor-associated antigen disialosyl globopentaosylceramide. Org Biomol Chem 2019; 17:7304-7308. [PMID: 31339142 PMCID: PMC6852662 DOI: 10.1039/c9ob01368g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Disialosyl globopentaosylceramide (DSGb5) is often expressed by renal cell carcinomas. To investigate properties of DSGb5, we have prepared its oligosaccharide moiety by chemically synthesizing Gb5 which was enzymatically sialylated using the mammalian sialyltransferases ST3Gal1 and ST6GalNAc5. Glycan microarray binding studies indicate that Siglec-7 does not recognize DSGb5, and preferentially binds Neu5Acα(2,8)Neu5Ac containing glycans.
Collapse
Affiliation(s)
- Ingrid M E 't Hart
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Li PJ, Huang SY, Chiang PY, Fan CY, Guo LJ, Wu DY, Angata T, Lin CC. Chemoenzymatic Synthesis of DSGb5 and Sialylated Globo-series Glycans. Angew Chem Int Ed Engl 2019; 58:11273-11278. [PMID: 31140679 DOI: 10.1002/anie.201903943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Indexed: 12/26/2022]
Abstract
Sialic-acid-binding, immunoglobulin-type lectin-7 (Siglec-7) is present on the surface of natural killer cells. Siglec-7 shows preference for disialylated glycans, including α(2,8)-α(2,3)-disialic acids or internally branched α(2,6)-NeuAc, such as disialosylglobopentaose (DSGb5). Herein, DSGb5 was synthesized by a one-pot multiple enzyme method from Gb5 by α2,3-sialylation (with PmST1) followed by α2,6-sialylation (with Psp2,6ST) in 23 % overall yield. DSGb5 was also chemoenzymatically synthesized. The protection of the nonreducing-end galactose of Gb5 as 3,4-O-acetonide, 3,4-O-benzylidene, and 4,6-O-benzylidene derivatives provided DSGb5 in overall yields of 26 %, 12 %, and 19 %, respectively. Gb3, Gb4, and Gb5 were enzymatically sialylated to afford a range of globo-glycans. Surprisingly, DSGb5 shows a low affinity for Siglec-7 in a glycan microarray binding affinity assay. Among the synthesized globo-series glycans, α6α3DSGb4 shows the highest binding affinity for Siglec-7.
Collapse
Affiliation(s)
- Pei-Jhen Li
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Szu-Yu Huang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Pei-Yun Chiang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Chen-Yo Fan
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Li-Jhen Guo
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Dung-Yeh Wu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
37
|
Li P, Huang S, Chiang P, Fan C, Guo L, Wu D, Angata T, Lin C. Chemoenzymatic Synthesis of DSGb5 and Sialylated Globo‐series Glycans. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pei‐Jhen Li
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Szu‐Yu Huang
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Pei‐Yun Chiang
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Chen‐Yo Fan
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Li‐Jhen Guo
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Dung‐Yeh Wu
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Takashi Angata
- Institute of Biological ChemistryAcademia Sinica 128, Sec. 2, Academia Rd. Nankang Taipei 11529 Taiwan
| | - Chun‐Cheng Lin
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| |
Collapse
|
38
|
Chang YH, Ding DC, Chu TY. Estradiol and Progesterone Induced Differentiation and Increased Stemness Gene Expression of Human Fallopian Tube Epithelial Cells. J Cancer 2019; 10:3028-3036. [PMID: 31281480 PMCID: PMC6590043 DOI: 10.7150/jca.30588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Fallopian tube epithelial cells (FTECs) are thought to be the origin of epithelial ovarian cancer. However, the effect of the hormones on FTECs is unknown, and therefore, this study explored this effect. We successfully derived FTECs from the fallopian tube epithelial layer and treated them with estradiol and progesterone. Reverse transcription polymerase chain reaction was used to evaluate the gene expression of the FTECs' hormone receptors. Confocal and electron microscopy were used to evaluate the morphology of the FTECs after they were treated with hormones. Finally, quantitative PCR was used to evaluate the gene expression of the hormone-treated FTECs. The results showed that the FTECs exhibited cuboidal cell morphology and could be maintained at a constant proliferation rate. Furthermore, flow cytometry revealed that the FTECs expressed stem cell markers, such as SSEA3, SSEA4, and Lgr5. Moreover, the FTECs could express both estrogen and progesterone receptors. In a culture treated with 400 nM estrogen, the FTECs differentiated toward ciliated cells, whereas in a culture treated with estradiol or progesterone, the FTECs increased their expression of certain stem cell markers (SSEA3, SSEA4, and Aldh1) and stemness genes [Wnt (AXIN2, LGR5, LGR6, and OLFM4) and Notch (Hes1) signaling]. In conclusion, hormones may alter the gene expressions of FTECs, and these cells may provide new insights into how FTECs regenerate in response to hormones.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Stem Cell Laboratory, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; Hualien, Taiwan.,Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; Tzu Chi University, Hualien, Taiwan
| | - Dah-Ching Ding
- Stem Cell Laboratory, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; Hualien, Taiwan.,Department of Obstetrics and Gynecology, Hualien Tzu-Chi Hospital, Buddhist Tzu Chi Medical Foundation; Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University; Hualien, Taiwan
| | - Tang-Yuan Chu
- Department of Obstetrics and Gynecology, Hualien Tzu-Chi Hospital, Buddhist Tzu Chi Medical Foundation; Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University; Hualien, Taiwan
| |
Collapse
|
39
|
Signaling pathway of globo-series glycosphingolipids and β1,3-galactosyltransferase V (β3GalT5) in breast cancer. Proc Natl Acad Sci U S A 2019; 116:3518-3523. [PMID: 30808745 DOI: 10.1073/pnas.1816946116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The globo-series glycosphingolipids (GSLs) SSEA3, SSEA4, and Globo-H specifically expressed on cancer cells are found to correlate with tumor progression and metastasis, but the functional roles of these GSLs and the key enzyme β1,3-galactosyltransferase V (β3GalT5) that converts Gb4 to SSEA3 remain largely unclear. Here we show that the expression of β3GalT5 significantly correlates with tumor progression and poor survival in patients, and the globo-series GSLs in breast cancer cells form a complex in membrane lipid raft with caveolin-1 (CAV1) and focal adhesion kinase (FAK) which then interact with AKT and receptor-interacting protein kinase (RIP), respectively. Knockdown of β3GalT5 disrupts the complex and induces apoptosis through dissociation of RIP from the complex to interact with the Fas death domain (FADD) and trigger the Fas-dependent pathway. This finding provides a link between SSEA3/SSEA4/Globo-H and the FAK/CAV1/AKT/RIP complex in tumor progression and apoptosis and suggests a direction for the treatment of breast cancer, as demonstrated by the combined use of antibodies against Globo-H and SSEA4.
Collapse
|
40
|
Abstract
Research endeavors originally generated stem cell definitions for the purpose of describing normally sustainable developmental and tissue turnover processes in various species, including humans. The notion of investigating cells that possess a vague capacity of “stamm (phylum)” can be traced back to the late 19th century, mainly concentrating on cells that could produce the germline or the entire blood system. Lately, such undertakings have been recapitulated for oncogenesis, tumor growth, and cancer cell resistance to oncolytic therapies. However, due to the complexity and basic life-origin mechanisms comprising the genetic and epigenetic repertoire of the stemness in every developing or growing cell, presently there are ongoing debates regarding the biological essentials of the stem cell-like tumor initiation cells (ie, cancer stem cells; CSCs). This conceptual analysis focuses on the potential pitfalls of extrapolating that CSCs bear major traits of stemness. We propose a novel nomenclature of Tumor Survival Cells (TSCs) to further define tumor cells behaving like CSCs, based on the ruthless and detrimental features of Cancer Cell Survivology that appears fundamentally different from stem cell biology. Hence, precise academic separation of TSCs from all the stem cell-related labels applied to these unique tumor cells may help to improve scientific reasoning and strategies to decode the desperado-like survival behaviors of TSCs to eventually overcome cancer.
Collapse
Affiliation(s)
- Yang D Teng
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts.,2 Department of Neurosurgery, Harvard Medical School , Boston, Massachusetts.,3 Division of SCI Research, VA Boston Healthcare System , Boston, Massachusetts
| | - Lei Wang
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts.,2 Department of Neurosurgery, Harvard Medical School , Boston, Massachusetts.,3 Division of SCI Research, VA Boston Healthcare System , Boston, Massachusetts
| | - Serdar Kabatas
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts.,2 Department of Neurosurgery, Harvard Medical School , Boston, Massachusetts.,3 Division of SCI Research, VA Boston Healthcare System , Boston, Massachusetts
| | - Henning Ulrich
- 4 Departamento de Bioquímica, Instituto de Química , Universidade de São Paulo, São Paulo, Brazil
| | - Ross D Zafonte
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts
| |
Collapse
|
41
|
Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev 2018; 69:152-163. [PMID: 30029203 DOI: 10.1016/j.ctrv.2018.07.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
Development of therapeutic resistance and metastasis is a major challenge with current breast cancer (BC) therapy. Mounting evidence suggests that a subpopulation of cancer stem cells (CSCs) contribute to the cancer therapeutic resistance and metastasis, leading to the recurrence and death in patients. Breast cancer stem cells (BCSCs) are not only a consequence of mutations that overactivate the self-renewal ability of normal stem cells or committed progenitors but also a result of the de-differentiation of cancer cells induced by somatic mutations or microenvironmental components under treatment. Eradication of BCSCs may bring hope and relief to patients whose lives are threatened by recurrent BCs. Therefore, a better understanding of the generation, regulatory mechanisms, and identification of CSCs in BC therapeutic resistance and metastasis will be imperative for developing BCSC-targeted strategies. Here we summarize the latest studies about cell surface markers and signalling pathways that sustain the stemness of BCSC and discuss the associations of mechanisms behind these traits with phenotype and behavior changes in BCSCs. More importantly, their implications for future study are also evaluated and potential BCSC-targeted strategies are proposed to break through the limitation of current therapies.
Collapse
Affiliation(s)
- Xupeng Bai
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jie Ni
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Julia Beretov
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
42
|
Zhuo D, Li X, Guan F. Biological Roles of Aberrantly Expressed Glycosphingolipids and Related Enzymes in Human Cancer Development and Progression. Front Physiol 2018; 9:466. [PMID: 29773994 PMCID: PMC5943571 DOI: 10.3389/fphys.2018.00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
Glycosphingolipids (GSLs), which consist of a hydrophobic ceramide backbone and a hydrophilic carbohydrate residue, are an important type of glycolipid expressed in surface membranes of all animal cells. GSLs play essential roles in maintenance of plasma membrane stability, in regulation of numerous cellular processes (including adhesion, proliferation, apoptosis, and recognition), and in modulation of signal transduction pathways. GSLs have traditionally been classified as ganglio-series, lacto-series, or globo-series on the basis of their diverse types of oligosaccharide chains. Structures and functions of specific GSLs are also determined by their oligosaccharide chains. Different cells and tissues show differential expression of GSLs, and changes in structures of GSL glycan moieties occur during development of numerous types of human cancer. Association of GSLs and/or related enzymes with initiation and progression of cancer has been documented in 100s of studies, and many such GSLs are useful markers or targets for cancer diagnosis or therapy. In this review, we summarize (i) recent studies on aberrant expression and distribution of GSLs in common human cancers (breast, lung, colorectal, melanoma, prostate, ovarian, leukemia, renal, bladder, gastric); (ii) biological functions of specific GSLs in these cancers.
Collapse
Affiliation(s)
- Dinghao Zhuo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
43
|
Su YH, Lin TY, Liu HJ, Chuang CK. A set of cancer stem cell homing peptides associating with the glycan moieties of glycosphingolipids. Oncotarget 2018; 9:20490-20507. [PMID: 29755667 PMCID: PMC5945507 DOI: 10.18632/oncotarget.24960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/12/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSCs) are currently believed to be involved in tumor metastasis and relapse. And treatments against CSCs are well concerned issues. Peptides targeting to mouse and human CSCs were screened from an M13 phage display library. The first subset of cancer stem cell homing peptides (CSC HPs), CSC HP-1 to -12, were screened with mouse EMT6 breast cancer stem cells. Among them, CSC HP-1, CSC HP-3, CSC HP-8, CSC HP-9, and CSC HP-10 can bind to mouse CT26 colon CSCs; CSC HP-1, CSC HP-2, CSC HP-3, and CSC HP-8 can bind to mouse Hepa1-6 liver CSCs; as well as CSC HP-1, CSC HP-2, CSC HP-3, CSC HP-8, CSC HP-9, CSC HP-10, and CSC HP-11 can bind to human PANC-1 pancreatic CSCs. The second subset of cancer stem cell homing peptides, CSC HP-hP1 to -hP3, were screened with human PANC-1 pancreatic CSCs. Both CSC HP-hP1 and CSC HP-hP2 were demonstrated able to bind mouse EMT6, CT26 and Hepa1-6 CSCs as well as human colorectal HT29 and lung H1650 CSCs. CSC HP-1 and CSC HP-hP1 could strongly associate with the Globo 4 and Lewis Y glycan epitopes coupled on a microarray chip or Globo 4 and Globo H conjugated on bovine serum albumin. CSC HP-10, CSC HP-11 and CSC HP-hP2 could associate with the disialylated saccharide Neu5Ac-α-2,6-Gal-β-1,3-(Neu5Ac-α-2,6)-GalNAc coupled on a microarray chip. These results indicate that the CSC HPs may target to the known stem cell glycan markers GbH and Lewis Y as well as the disialylated saccharide.
Collapse
Affiliation(s)
- Yu-Hsiu Su
- Division of Biotechnology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Tai-Yun Lin
- Division of Biotechnology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung City 40227, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung City 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Chin-Kai Chuang
- Division of Biotechnology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| |
Collapse
|
44
|
Isfoss BL, Holmqvist B, Sand E, Forsell J, Jernström H, Olsson H. Stellate cells and mesenchymal stem cells in benign mammary stroma are associated with risk factors for breast cancer - an observational study. BMC Cancer 2018; 18:230. [PMID: 29486751 PMCID: PMC6389039 DOI: 10.1186/s12885-018-4151-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Background It is not known whether stromal cells in benign breast tissue can mediate risk of breast cancer. We recently described aldehyde dehydrogenase 1 A1 (ALDH1) positive (+) cells in morphologically normal breast stroma of premenopausal women, and the data indicated that their distribution is associated with clinical risk factors for breast cancer. The aim of the present study was to define the identities of these cells using histologic and immunohistologic methods, and to investigate associations between those cells and hormonal and genetic risk factors in pre- and postmenopausal women. Methods Stroma of morphologically normal tissue was analyzed in samples from 101 well-characterized women whose breasts had been operated. Morphology and immunolabeling were applied to determine cell identities based on the putative stem cell markers ALDH1 and stage-specific embryonic antigen-3 (SSEA3), and immunophenotypes indicating mast cells or stellate cells. The results were compared with the patients’ risk factors using regression analysis (two-tailed). Results ALDH1+ round/oval cells were associated with low parity in BRCA1/2 carriers (p = 0.022), while in non-BRCA1/2-carriers they were negatively associated with nulliparity (p = 0.057). In premenopausal women ALDH1+ round/oval cells were associated with family history (p = 0.058). SSEA3+ round/oval cells were morphologically and immunohistologically consistent with multilineage stress-enduring (Muse) cells, and these cells were independently associated with the breast cancer risk factors low parity (p = 0.015), family history (p = 0.021), and hormone use after menopause (p = 0.032). ALDH1+ spindle-shaped/polygonal cells were immunohistologically consistent with stellate cells, and were negatively associated with family history of breast cancer (p = 0.001). Conclusion This study identified novel stromal cell types in benign breast tissue that have a potential for stratifying women for breast cancer risk. Electronic supplementary material The online version of this article (10.1186/s12885-018-4151-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Björn Logi Isfoss
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden. .,Department of Pathology, Skane University Hospital, Lund, Sweden. .,Department of Pathology, Telemark Hospital, Ulefossv. 55, 3710, Skien, Norway.
| | - Bo Holmqvist
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden.,ImaGene-iT, Medicon Village, Lund, Sweden
| | - Elin Sand
- ImaGene-iT, Medicon Village, Lund, Sweden
| | | | - Helena Jernström
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Håkan Olsson
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund, Division of Cancer Epidemiology, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Kailemia MJ, Xu G, Wong M, Li Q, Goonatilleke E, Leon F, Lebrilla CB. Recent Advances in the Mass Spectrometry Methods for Glycomics and Cancer. Anal Chem 2018; 90:208-224. [PMID: 29049885 PMCID: PMC6200424 DOI: 10.1021/acs.analchem.7b04202] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muchena J. Kailemia
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Frank Leon
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
- Foods for Health Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
46
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
47
|
Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release 2017; 266:166-186. [PMID: 28941992 DOI: 10.1016/j.jconrel.2017.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of cancers. In this review, the importance of CSCs in cancer development and therapeutic response has been stated. Different CSCs cluster of differentiation (CD) biomarkers and their specific function and applications in the treatment of cancers have been discussed, Special attention has been made on targeted nano-delivery systems. In this regard, several examples have been illustrated concerning specific natural and artificial ligands against CSCs CD biomarkers that could be decorated on various nanoparticulated drug delivery systems to enhance therapeutic index of chemotherapeutic agents or anticancer gene therapy. The outlook of CSCs biomarkers discovery and therapeutic/diagnostic applications was discussed.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | | | - Maryam Hashemi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Noorolyai
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
48
|
The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors. J Transl Med 2017; 97:1142-1151. [PMID: 28394318 DOI: 10.1038/labinvest.2017.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022] Open
Abstract
The cancer stem-like cell (CSC) hypothesis postulates that a small population of cells in a cancer has self-renewal and clonal tumor initiation properties. These cells are responsible for tumor initiation, growth, recurrence and for resistance to chemotherapy and radiation therapy. CSCs can be characterized using markers such as SSEA-1, SSEA-4, CD44, CD24, ALDEFLUOR and others. CSCs form spheres when they are cultured in serum-free condition in low attachment plates and can generate tumors when injected into immune-deficient mice. During epithelial to mesenchymal transition (EMT), cells lose cellular adhesion and polarity and acquire an invasive phenotype. Recent studies have established a relationship between EMT and increased numbers of CSCs in some solid malignancies. Non-coding RNAs such as microRNAs and long non-coding RNAs (lncRNAs) have been shown to have important roles during EMT and some of these molecules also have regulatory roles in the proliferation of CSCs. Specific lncRNAs enhanced cell migration and invasion in breast carcinomas, which was associated with the generation of stem cell properties. The tumor microenvironment of CSCs also has an important role in tumor progression. Recent studies have shown that the interaction between tumor cells and the local microenvironment at the metastatic site leads to the development of premetastatic niche(s) and allows for the proliferation of the metastatic cells during colonization. The role of exosomes in the microenvironment during the EMT program is currently a major area of research. This review examines CSCs and the relationship between EMT and CSCs in solid tumors with emphasis on thyroid CSCs. The role of non-coding RNAs and of the microenvironment in EMT and in tumor progression are also examined. This review also highlights the growing number of studies that show the close association of EMT and CSCs and the role of exosomes and other elements of the tissue microenvironment in CSC metastasis. A better understanding of these mechanisms will lead to more effective targeting of primary and metastatic malignancies.
Collapse
|
49
|
Kuo HH, Lin RJ, Hung JT, Hsieh CB, Hung TH, Lo FY, Ho MY, Yeh CT, Huang YL, Yu J, Yu AL. High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma. Sci Rep 2017; 7:10750. [PMID: 28883415 PMCID: PMC5589766 DOI: 10.1038/s41598-017-11136-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer may arise from dedifferentiation of mature cells or maturation-arrested stem cells. Previously we reported that definitive endoderm from which liver was derived, expressed Globo H, SSEA-3 and SSEA-4. In this study, we examined the expression of their biosynthetic enzymes, FUT1, FUT2, B3GALT5 and ST3GAL2, in 135 hepatocellular carcinoma (HCC) tissues by qRT-PCR. High expression of either FUT1 or B3GALT5 was significantly associated with advanced stages and poor outcome. Kaplan Meier survival analysis showed significantly shorter relapse-free survival (RFS) for those with high expression of either FUT1 or B3GALT5 (P = 0.024 and 0.001, respectively) and shorter overall survival (OS) for those with high expression of B3GALT5 (P = 0.017). Combination of FUT1 and B3GALT5 revealed that high expression of both genes had poorer RFS and OS than the others (P < 0.001). Moreover, multivariable Cox regression analysis identified the combination of B3GALT5 and FUT1 as an independent predictor for RFS (HR: 2.370, 95% CI: 1.505-3.731, P < 0.001) and OS (HR: 2.153, 95% CI: 1.188-3.902, P = 0.012) in HCC. In addition, the presence of Globo H, SSEA-3 and SSEA-4 in some HCC tissues and their absence in normal liver was established by immunohistochemistry staining and mass spectrometric analysis.
Collapse
Affiliation(s)
- Huan-Hsien Kuo
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ruey-Jen Lin
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Fei-Yun Lo
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Lin Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan.
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
50
|
Abstract
Glycans are essential for the maintenance of normal biological function, with alterations in glycan expression being a hallmark of cancer. Cancer stem cells (CSCs) are a subset of cells within a tumour capable of self-renewal, cellular differentiation and resistances to conventional therapies. As is the case with stem cells, marker proteins present on the cell surface are frequently used to identify and enrich CSCs, with the expression of these markers statistical correlating with the likelihood of cancer recurrence and overall patient survival. As such CSC markers are of high clinical relevance. The majority of markers currently used to identify CSC populations are glycoproteins, and although the diverse biological roles for many of these markers are known, the nature and function of the glycan moiety on these glycoproteins remains to be fully elucidated. This mini-review summarises our current knowledge regarding the types and extent of CSC marker glycosylation, and the various roles that these glycans play in CSC biology, including in mediating cell adhesion, metastasis, evading apoptosis, tear shear resistance, tumour growth, maintaining pluripotency, self-renewal, trafficking, maintaining stability, maintaining enzymatic activity and aiding epithelial mesenchymal transitioning. Given that CSCs markers have multiple diverse biological functions, and are potentially of significant diagnostic and therapeutic benefit the search for new markers that are uniquely expressed on CSCs is vital to selectively target/identify this subset of cancer cells. As such we have also outlined how high-throughput lectin microarrays can be used to successfully profile the glycosylation status of CSC and to identify glyco-markers unique to CSCs.
Collapse
|