1
|
Qin Z, Li Y, Shao X, Li K, Bai Y, Wang B, Ma F, Shi W, Song L, Zhuang A, He F, Ding C, Yang W. HNF4A functions as a hepatocellular carcinoma oncogene or tumor suppressor depending upon the AMPK pathway activity status. Cancer Lett 2025; 623:217732. [PMID: 40254090 DOI: 10.1016/j.canlet.2025.217732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cancer cells frequently undergo energy metabolic stress induced by the increased dynamics of nutrient supply. Hepatocyte nuclear factor 4A (HNF4A) is a master transcription factor (TF) in hepatocytes that regulates metabolism and differentiation. However, the mechanism underlying how HNF4A functions in cancer progression remains unclear due to conflicting results observed in numerous studies. To address the roles of HNF4A in hepatocellular carcinoma (HCC), we investigated the regulatory functions of HNF4A in HCC cells under different glucose supply conditions. We found that HNF4A exhibited tumor-suppressive effects on the proliferation and migration of HCC cells in glucose-sufficient conditions and tumor-promotive effects on HCC cells in glucose-insufficient conditions. Further investigation revealed that this diverse function of HNF4A was dependent upon the AMPK pathway activity. Similarly, the prognosis predicted by HNF4A was also correlated with whether the AMPKa expression levels were low or high in clinical HCC patients. Multiomics approaches consisting of proteomics and ChIP-seq revealed that key HNF4A target genes, including NEDD4 and RPS6KA2, are involved in the diverse function of HNF4A in HCC in response to the AMPK activity status. Specifically, HNF4A could bind to the promoter region of NEDD4 and RPS6KA2, and upregulating their expression. Our study has demonstrated the relationship between and synergism of AMPK and HNF4A in the progression of HCC under diverse nutrient conditions.
Collapse
Affiliation(s)
- Zhaoyu Qin
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Yan Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Xiexiang Shao
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kai Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Yihe Bai
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Bing Wang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fahan Ma
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Wenhao Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Aojia Zhuang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fuchu He
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chen Ding
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Wenjun Yang
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
3
|
Mitriashkin A, Yap JYY, Fernando EAK, Iyer NG, Grenci G, Fong ELS. Cell confinement by micropatterning induces phenotypic changes in cancer-associated fibroblasts. Acta Biomater 2025; 192:61-76. [PMID: 39637956 DOI: 10.1016/j.actbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Recent advances in single-cell studies have revealed the vast transcriptomic heterogeneity of cancer-associated fibroblasts (CAFs), with each subset likely having unique roles in the tumor microenvironment. However, it is still unclear how different CAF subsets should be cultured in vitro to recapitulate their in vivo phenotype. The inherent plasticity of CAFs, or their ability to dynamically change their phenotype in response to different environmental stimuli, makes it highly challenging to induce and maintain a specific CAF state in vitro. In this study, we investigated how cell shape and confinement on two-dimensional culture substrates with different stiffnesses influence CAF transcriptomic profile and phenotype. Using micropatterning of polyacrylamide hydrogels to induce shape- and confinement-dependent changes in cell morphology, we observed that micropatterned CAFs exhibited phenotypic shifts towards more desmoplastic and inflammatory CAF subsets. Additionally, micropatterning enabled control over a range of CAF-specific markers and pathways. Lastly, we report how micropatterned and non-micropatterned CAFs respond differently to anti-cancer drugs, highlighting the importance of phenotype-oriented therapy that considers for CAF plasticity and regulatory networks. Control over CAF morphology offers a unique opportunity to establish highly robust CAF phenotypes in vitro, facilitating deeper understanding of CAF plasticity, heterogeneity, and development of novel therapeutic targets. STATEMENT OF SIGNIFICANCE: Cancer-associated fibroblasts (CAFs) are the dominant stromal cell type in many cancers, and recent studies have revealed that they are highly heterogeneous and comprise several subpopulations. It is still unclear how different subsets of CAFs should be cultured in vitro to recapitulate their in vivo phenotype. In this study, we investigated how cell shape and confinement affect CAF transcriptomic profile and phenotype. We report that micropatterned CAFs resemble desmoplastic and inflammatory CAF subsets observed in vivo and respond differently to anti-cancer drugs as compared to non-patterned CAFs. Control over CAF morphology enables the generation of highly robust CAF phenotypes in vitro, facilitating deeper understanding of CAF plasticity and heterogeneity.
Collapse
Affiliation(s)
- Aleksandr Mitriashkin
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Josephine Yu Yan Yap
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore
| | - Elekuttige Anton Kanishka Fernando
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore 168583, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Eliza Li Shan Fong
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
4
|
Veeraraghavan J, De Angelis C, Gutierrez C, Liao FT, Sabotta C, Rimawi MF, Osborne CK, Schiff R. HER2-Positive Breast Cancer Treatment and Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:495-525. [PMID: 39821040 DOI: 10.1007/978-3-031-70875-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents. Efforts to develop new treatment regimens to treat/overcome resistance is futile without a primary understanding of the mechanistic underpinnings of resistance. Resistance could be attributed to mechanisms that are either specific to the tumor epithelial cells or those that emerge through changes in the tumor microenvironment. Reactivation of the HER receptor layer due to incomplete blockade of the HER receptor layer or due to alterations in the HER receptors is one of the major mechanisms. In other instances, resistance may occur due to deregulations in key downstream signaling such as the PI3K/AKT or RAS/MEK/ERK pathways or due to the emergence of compensatory pathways such as ER, other RTKs, or metabolic pathways. Potent new targeted agents and approaches to target key actionable drivers of resistance have already been identified, many of which are in early clinical development or under preclinical evaluation. Ongoing and future translational research will continue to uncover additional therapeutic vulnerabilities, as well as new targeted agents and approaches to treat and/or overcome anti-HER2 treatment resistance.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Fu-Tien Liao
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline Sabotta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mothaffar F Rimawi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - C Kent Osborne
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Wu Y, Chen Z, Zheng Z, Li X, Shu J, Mao R, An J, Fan S, Luo R, Guo Y, Xu W, Liang M, Huang K, Wang C. Tudor-SN exacerbates pathological vascular remodeling by promoting the polyubiquitination of PTEN via NEDD4-1. J Biomed Sci 2024; 31:88. [PMID: 39237902 PMCID: PMC11378411 DOI: 10.1186/s12929-024-01076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Dysregulation of vascular homeostasis can induce cardiovascular diseases and increase global mortality rates. Although lineage tracing studies have confirmed the pivotal role of modulated vascular smooth muscle cells (VSMCs) in the progression of pathological vascular remodeling, the underlying mechanisms are still unclear. METHODS The expression of Tudor-SN was determined in VSMCs of artery stenosis, PDGF-BB-treated VSMCs and atherosclerotic plaque. Loss- and gain-of-function approaches were used to explore the role of Tudor-SN in the modulation of VSMCs phenotype both in vivo and in vitro. RESULTS In this study, we demonstrate that Tudor-SN expression is significantly elevated in injury-induced arteries, atherosclerotic plaques, and PDGF-BB-stimulated VSMCs. Tudor-SN deficiency attenuates, but overexpression aggravates the synthetic phenotypic switching of VSMCs and pathological vascular remodeling. Loss of Tudor-SN also reduces atherosclerotic plaque formation and increases plaque stability. Mechanistically, PTEN, the major regulator of the MAPK and PI3K-AKT signaling pathways, plays a vital role in Tudor-SN-mediated regulation on proliferation and migration of VSMCs. Tudor-SN facilitates the polyubiquitination and degradation of PTEN via NEDD4-1, thus exacerbating vascular remodeling under pathological conditions. BpV (HOpic), a specific inhibitor of PTEN, not only counteracts the protective effect of Tudor-SN deficiency on proliferation and migration of VSMCs, but also abrogates the negative effect of carotid artery injury-induced vascular remodeling in mice. CONCLUSIONS Our findings reveal that Tudor-SN deficiency significantly ameliorated pathological vascular remodeling by reducing NEDD4-1-dependent PTEN polyubiquitination, suggesting that Tudor-SN may be a novel target for preventing vascular diseases.
Collapse
Affiliation(s)
- Yichen Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China
| | - Zilong Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhe Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoguang Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jiangcheng Shu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ruiqi Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jie An
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Siyuan Fan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ruijie Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yi Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wenjing Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China.
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China.
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Wuhan, China.
| |
Collapse
|
6
|
Nigam A, Krishnamoorthy GP, Chatila WK, Berman K, Saqcena M, Walch H, Venkatramani M, Ho AL, Schultz N, Fagin JA, Untch BR. Cooperative genomic lesions in HRAS-mutant cancers predict resistance to farnesyltransferase inhibitors. Oncogene 2024; 43:2806-2819. [PMID: 39152269 DOI: 10.1038/s41388-024-03095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/19/2024]
Abstract
In the clinical development of farnesyltransferase inhibitors (FTIs) for HRAS-mutant tumors, responses varied by cancer type. Co-occurring mutations may affect responses. We aimed to uncover cooperative genetic events specific to HRAS-mutant tumors and to study their effect on sensitivity to FTIs. Using targeted sequencing data from the MSK-IMPACT and Dana-Farber Cancer Institute Genomic Evidence Neoplasia Information Exchange databases, we identified comutations that were observed predominantly in HRAS-mutant versus KRAS-mutant or NRAS-mutant cancers. HRAS-mutant cancers had a higher frequency of coaltered mutations (48.8%) in the MAPK, PI3K, or RTK pathway genes, compared with KRAS-mutant (41.4%) and NRAS-mutant (38.4%) cancers (p < 0.05). Class 3 BRAF, NF1, PTEN, and PIK3CA mutations were more prevalent in HRAS-mutant lineages. To study the effects of comutations on sensitivity to FTIs, HrasG13R was transfected into "RASless" (Kraslox/lox/Hras-/-/Nras-/-/RERTert/ert) mouse embryonic fibroblasts (MEFs), which sensitized nontransfected MEFs to tipifarnib. Comutation in the form of Pten or Nf1 deletion and Pik3caH1047R transduction led to resistance to tipifarnib in HrasG13R-transfected MEFs in the presence or absence of KrasWT, whereas BrafG466E transduction led to resistance to tipifarnib only in the presence of KrasWT. Combined treatment with tipifarnib and MEK inhibition sensitized cells to tipifarnib in all settings, including in MEFs with PI3K pathway comutations. HRAS-mutant tumors demonstrate lineage-dependent MAPK or PI3K pathway alterations, which confer resistance to tipifarnib. The combined use of FTIs and MEK inhibition is a promising strategy for HRAS-mutant tumors.
Collapse
Affiliation(s)
- Aradhya Nigam
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Walid K Chatila
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Henry Walch
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mandakini Venkatramani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Hsu CY, Yanagi T, Maeda T, Nishihara H, Funakoshi T, Miyamoto K, Iwamoto R, Takahashi K, Ujiie H. Establishment of a trastuzumab-resistant extramammary Paget disease model: loss of PTEN as a potential mechanism. Br J Cancer 2024; 131:944-953. [PMID: 38987365 PMCID: PMC11369254 DOI: 10.1038/s41416-024-02788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND/OBJECTIVES Extramammary Paget disease (EMPD) is a rare, cutaneous intraepithelial adenocarcinoma typically treated with wide local excision. Unfortunately, a number of patients with metastases show poor responses to chemotherapy. While some studies have explored trastuzumab's effectiveness against EMPD positive for human epidermal growth factor receptor 2 (HER2), trastuzumab resistance (TR) may emerge after anti-HER2 therapy. METHODS/SUBJECTS In this study, we established TR EMPD patient-derived xenografts (PDX) that replicated the histological and HER2 expression traits of naive EMPD tumours. RESULTS Cancer gene analyses revealed a loss of the PTEN gene in TR tumours, which was further confirmed by immunohistochemical staining and immunoblotting to test for protein expression levels. Reduced PTEN levels correlated with increased protein kinase B (Akt) phosphorylation and p27 downregulation, suggesting a potential mechanism for trastuzumab resistance in EMPD cells. In the trastuzumab-sensitive EMPD-PDX mouse model, PTEN inhibitors partially restored trastuzumab-mediated tumour regression. The TR EMPD-PDX responded favourably to targeted therapy (lapatinib, abemaciclib, palbociclib) and chemotherapy (eribulin, docetaxel, trastuzumab deruxtecan). CONCLUSIONS This study demonstrates an innovative TR EMPD-PDX model and introduces promising antineoplastic effects with various treatments for TR EMPD tumours.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Paget Disease, Extramammary/drug therapy
- Paget Disease, Extramammary/genetics
- Paget Disease, Extramammary/pathology
- Paget Disease, Extramammary/metabolism
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Trastuzumab/therapeutic use
- Trastuzumab/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Che-Yuan Hsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takuya Maeda
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kodai Miyamoto
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ririko Iwamoto
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kenzo Takahashi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Nigam A, Krishnamoorthy G, Chatila W, Berman K, Saqcena M, Walch H, Ho A, Schultz N, Fagin J, Untch B. Cooperative Genomic Lesions in HRAS-Mutant Cancers Predict Resistance to Farnesyltransferase Inhibitors. RESEARCH SQUARE 2023:rs.3.rs-3154719. [PMID: 37503077 PMCID: PMC10371077 DOI: 10.21203/rs.3.rs-3154719/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The clinical development of farnesyltransferase inhibitors (FTI) for HRAS-mutant tumors showed mixed responses dependent on cancer type. Co-occurring mutations may affect response. We aimed to uncover cooperative genetic events specific to HRAS-mutant tumors and study their effect on FTI sensitivity. Using targeted sequencing data from MSK-IMPACT and DFCI-GENIE databases we identified co-mutations in HRAS- vs KRAS- and NRAS-mutant cancers. HRAS-mutant cancers had a higher frequency of co-altered mutations (48.8%) in MAPK, PI3K, or RTK pathways genes compared to KRAS- and NRAS-mutant cancers (41.4% and 38.4%, respectively; p < 0.05). Class 3 BRAF, NF1, PTEN, and PIK3CA mutations were more prevalent in HRAS-mutant lineages. To study the effect of comutations on FTI sensitivity, HrasG13R was transfected into 'RASless' (Kraslox/lox;Hras-/-;Nras-/-) mouse embryonic fibroblasts (MEFs) which sensitized non-transfected MEFs to tipifarnib. Comutation in the form of Pten or Nf1 deletion or Pik3caH1047R or BrafG466E transduction led to relative resistance to tipifarnib in HrasG13R MEFs in the presence or absence of KrasWT. Combined treatment of tipifarnib with MEK inhibition sensitized cells to tipifarnib, including in MEFs with PI3K pathway comutations. HRAS-mutant tumors demonstrate lineage demonstrate lineage-dependent MAPK/PI3K pathway alterations that confer relative resistance to tipifarnib. Combined FTI and MEK inhibition is a promising combination for HRAS-mutant tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alan Ho
- Memorial Sloan-Kettering Cancer Center
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | | |
Collapse
|
9
|
Debbarma A, Mansolf M, Khatri VA, Valentino JA, Sapi E. Effect of Borrelia burgdorferi on the Expression of miRNAs in Breast Cancer and Normal Mammary Epithelial Cells. Microorganisms 2023; 11:1475. [PMID: 37374977 DOI: 10.3390/microorganisms11061475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is one of the leading causes of death in women worldwide. Recent studies have demonstrated that inflammation due to infections with microorganisms could play a role in breast cancer development. One of the known human pathogens, Borrelia burgdorferi, the causative agent of Lyme disease, has been shown to be present in various types of breast cancer and is associated with poor prognosis. We reported that B. burgdorferi can invade breast cancer cells and affect their tumorigenic phenotype. To better understand the genome-wide genetic changes caused by B. burgdorferi, we evaluated the microRNA (miRNA or miR) expression profiles of two triple-negative breast cancer cell lines and one non-tumorigenic mammary cell line before and after B. burgdorferi infection. Using a cancer-specific miRNA panel, four miRNAs (miR-206, 214-3p, 16-5p, and 20b-5p) were identified as potential markers for Borrelia-induced changes, and the results were confirmed by quantitative real-time reverse transcription (qRT-PCR). Among those miRNAs, miR-206 and 214 were the most significantly upregulated miRNAs. The cellular impact of miR-206 and 214 was evaluated using DIANA software to identify related molecular pathways and genes. Analyses showed that the cell cycle, checkpoints, DNA damage-repair, proto-oncogenes, and cancer-related signaling pathways are mostly affected by B. burgdorferi infection. Based on this information, we have identified potential miRNAs which could be further evaluated as biomarkers for tumorigenesis caused by pathogens in breast cancer cells.
Collapse
Affiliation(s)
- Ananya Debbarma
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Miranda Mansolf
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Vishwa A Khatri
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Justine A Valentino
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| |
Collapse
|
10
|
Lekka E, Kokanovic A, Mosole S, Civenni G, Schmidli S, Laski A, Ghidini A, Iyer P, Berk C, Behera A, Catapano CV, Hall J. Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease. Nat Commun 2022; 13:7940. [PMID: 36572670 PMCID: PMC9792516 DOI: 10.1038/s41467-022-35481-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
Lin28 RNA-binding proteins are stem-cell factors that play key roles in development. Lin28 suppresses the biogenesis of let-7 microRNAs and regulates mRNA translation. Notably, let-7 inhibits Lin28, establishing a double-negative feedback loop. The Lin28/let-7 axis resides at the interface of metabolic reprogramming and oncogenesis and is therefore a potential target for several diseases. In this study, we use compound-C1632, a drug-like Lin28 inhibitor, and show that the Lin28/let-7 axis regulates the balance between ketogenesis and lipogenesis in liver cells. Hence, Lin28 inhibition activates synthesis and secretion of ketone bodies whilst suppressing lipogenesis. This occurs at least partly via let-7-mediated inhibition of nuclear receptor co-repressor 1, which releases ketogenesis gene expression mediated by peroxisome proliferator-activated receptor-alpha. In this way, small-molecule Lin28 inhibition protects against lipid accumulation in multiple cellular and male mouse models of hepatic steatosis. Overall, this study highlights Lin28 inhibitors as candidates for the treatment of hepatic disorders of abnormal lipid deposition.
Collapse
Affiliation(s)
- Evangelia Lekka
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kokanovic
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Mosole
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Sandro Schmidli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alice Ghidini
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pavithra Iyer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alok Behera
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Yu B, Huang Y, Yang Y, Hu H, Yang J. Effect of CTP-mediated PTEN on 5637 bladder cancer cells and the underlying molecular mechanism. BMC Urol 2022; 22:200. [PMID: 36496361 PMCID: PMC9741776 DOI: 10.1186/s12894-022-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The aim of the present study was to explore the effect of cytoplasmic transduction peptide (CTP)-phosphatase and tensin homolog (PTEN) on the proliferation, cell cycle, apoptosis, migration and invasion of bladder cancer cells and the underlying molecular mechanism. METHODS A eukaryotic expression vector, pTT5-CTP-PTEN, was constructed. The constructed vector was transfected into HEK 293-6E cells to express a fusion protein, CTP-PTEN. The fusion protein was purified. 5637 bladder cancer cells were cocultured with purified CTP-PTEN fusion protein. Target gene expression, protein expression, cell proliferation, cell cycle, apoptosis, cell invasion and cell migration were examined by reverse transcription polymerase chain reaction (RT-PCR), western blot, MTT assay, flow cytometry, Transwell assay, and cell scratch assay, respectively. RESULTS Both PTEN and CTP-PTEN fusion protein inhibited the proliferation, cell cycle, invasion and migration of bladder cancer cells and promoted the apoptosis of bladder cancer cells. The effect of CTP-PTEN was more significant. CONCLUSIONS The fused expression of CTP and PTEN significantly increased the penetrability of the tumor suppressor gene PTEN into cancer cells. The CTP-PTEN fusion protein exhibited a significant carcinostatic effect on 5637 bladder cancer cells.
Collapse
Affiliation(s)
- Bei Yu
- grid.411292.d0000 0004 1798 8975Urological Department, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| | - Yuan Huang
- grid.411292.d0000 0004 1798 8975Department of Clinical Laboratory, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| | - Yue Yang
- grid.411292.d0000 0004 1798 8975Urological Department, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| | - Haifeng Hu
- grid.411292.d0000 0004 1798 8975Urological Department, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| | - Jin Yang
- grid.411292.d0000 0004 1798 8975Urological Department, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| |
Collapse
|
12
|
Chow CY, Lie EF, Wu CH, Chow LW. Clinical implication of genetic composition and molecular mechanism on treatment strategies of HER2-positive breast cancers. Front Oncol 2022; 12:964824. [PMID: 36387174 PMCID: PMC9659858 DOI: 10.3389/fonc.2022.964824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
The current clinical management model of HER2-positive breast cancers is commonly based on guidelines, which in turn are based on the design and outcome of clinical trials. While this model is useful to most practicing clinicians, the treatment outcome of individual patient is not certain at the start of treatment. As the understanding of the translational research of carcinogenesis and the related changes in cancer genetics and tumor microenvironment during treatment is critical in the selection of right choice of treatment to maximize the successful clinical outcome for the patient, this review article intends to discuss the latest developments in the genetic and molecular mechanisms of cancer progression and treatment resistance, and how they influence the planning of the treatment strategies of HER2-positive breast cancers.
Collapse
Affiliation(s)
- Christopher Y.C. Chow
- UNIMED Medical Institute, Hong Kong, Hong Kong SAR, China
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | | | - Cheng-Hsun Wu
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Louis W.C. Chow
- UNIMED Medical Institute, Hong Kong, Hong Kong SAR, China
- Organisation for Oncology and Translational Research, Hong Kong, Hong Kong SAR, China
- *Correspondence: Louis W.C. Chow,
| |
Collapse
|
13
|
Manai M, ELBini-Dhouib I, Finetti P, Bichiou H, Reduzzi C, Aissaoui D, Ben-Hamida N, Agavnian E, Srairi-Abid N, Lopez M, Amri F, Guizani-Tabbane L, Rahal K, Mrad K, Manai M, Birnbaum D, Mamessier E, Cristofanilli M, Boussen H, Kharrat M, Doghri R, Bertucci F. MARCKS as a Potential Therapeutic Target in Inflammatory Breast Cancer. Cells 2022; 11:cells11182926. [PMID: 36139501 PMCID: PMC9496908 DOI: 10.3390/cells11182926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory breast cancer (IBC) is the most pro-metastatic form of breast cancer (BC). We previously demonstrated that protein overexpression of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) protein was associated with shorter survival in IBC patients. MARCKS has been associated with the PI3K/AKT pathway. MARCKS inhibitors are in development. Our objective was to investigate MARCKS, expressed preferentially in IBC that non-IBC (nIBC), as a novel potential therapeutic target for IBC. The biologic activity of MPS, a MARCKS peptide inhibitor, on cell proliferation, migration, invasion, and mammosphere formation was evaluated in IBC (SUM149 and SUM190) and nIBC (MDA-MB-231 and MCF7) cell lines, as well as its effects on protein expression in the PTEN/AKT and MAPK pathways. The prognostic relevance of MARCKS and phosphatase and tensin homolog (PTEN) protein expression as a surrogate marker of metastasis-free survival (MFS) was evaluated by immunohistochemistry (IHC) in a retrospective series of archival tumor samples derived from 180 IBC patients and 355 nIBC patients. In vitro MPS impaired cell proliferation, migration and invasion, and mammosphere formation in IBC cells. MARCKS inhibition upregulated PTEN and downregulated pAKT and pMAPK expression in IBC cells, but not in nIBC cells. By IHC, MARCKS expression and PTEN expression were negatively correlated in IBC samples and were associated with shorter MFS and longer MFS, respectively, in multivariate analysis. The combination of MARCKS-/PTEN+ protein status was associated with longer MFS in IBC patient only (p = 8.7 × 10−3), and mirrored the molecular profile (MARCKS-downregulated/PTEN-upregulated) of MPS-treated IBC cell lines. In conclusion, our results uncover a functional role of MARCKS implicated in IBC aggressiveness. Associated with the good-prognosis value of the MARCKS-/PTEN+ protein status that mirrors the molecular profile of MPS-treated IBC cell lines, our results suggest that MARCKS could be a potential therapeutic target in patients with MARCKS-positive IBC. Future preclinical studies using a larger panel of IBC cell lines, animal models and analysis of a larger series of clinical samples are warranted in order to validate our results.
Collapse
Affiliation(s)
- Maroua Manai
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Anatomic Pathology Department, Salah Azaiz Institute, Tunis 1006, Tunisia
- Correspondence: (M.M.); (F.B.); Tel.: +1-312-900-6650 (M.M.); +33-4-91-22-35-37 (F.B.)
| | - Ines ELBini-Dhouib
- Biomolecules Laboratory of Venins and Theranostic Applications, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
| | - Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules-LR16 IPT06, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dorra Aissaoui
- Biomolecules Laboratory of Venins and Theranostic Applications, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Naziha Ben-Hamida
- Anatomic Pathology Department, Salah Azaiz Institute, Tunis 1006, Tunisia
| | - Emilie Agavnian
- Department of Bio-Pathology, Paoli-Calmettes Institute, 13009 Marseille, France
| | - Najet Srairi-Abid
- Biomolecules Laboratory of Venins and Theranostic Applications, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Marc Lopez
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
| | - Fatma Amri
- Laboratory of Neurophysiology Cellular Phytopathology and Biomolecules Valorisation (LR18ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules-LR16 IPT06, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Khaled Rahal
- Department of Surgical Oncology, Salah Azaiez Institute, Bab Saadoun, Tunis 1006, Tunisia
| | - Karima Mrad
- Anatomic Pathology Department, Salah Azaiz Institute, Tunis 1006, Tunisia
| | - Mohamed Manai
- Mycology, Pathologies and Biomarkers Laboratory (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
| | - Emilie Mamessier
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Hamouda Boussen
- Medical Oncology Service, Hospital of Ariana, Ariana 2080, Tunisia
| | - Maher Kharrat
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Raoudha Doghri
- Anatomic Pathology Department, Salah Azaiz Institute, Tunis 1006, Tunisia
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, «Equipe labellisée Ligue Contre le Cancer», 13009 Marseille, France
- Medicine School, Aix-Marseille University, 13005 Marseille, France
- Department of Medical Oncology, Paoli-Calmettes Institute, 13009 Marseille, France
- Correspondence: (M.M.); (F.B.); Tel.: +1-312-900-6650 (M.M.); +33-4-91-22-35-37 (F.B.)
| |
Collapse
|
14
|
Overcoming Resistance to HER2-Directed Therapies in Breast Cancer. Cancers (Basel) 2022; 14:cancers14163996. [PMID: 36010990 PMCID: PMC9406173 DOI: 10.3390/cancers14163996] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Breast cancer is the most common cancer in women in the United States. Around 15% of all breast cancers overexpress the HER2 protein. These HER2-positive tumors have been associated with aggressive behavior if left untreated. Drugs targeting HER2 have greatly improved the outcomes of patients with HER2-positive tumors in the last decades. Despite these improvements, many patients with early breast cancer have recurrences, and many with advanced disease experience progression of disease on HER2-targeted drugs, suggesting that patients can develop resistance to these medications. In this review, we summarize several mechanisms of resistance to HER2-targeted treatments. Understanding how the tumors grow despite these therapies could allow us to develop better treatment strategies to continue to improve patient outcomes. Abstract Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for around 15% of all breast cancers and was historically associated with a worse prognosis compared with other breast cancer subtypes. With the development of HER2-directed therapies, the outcomes of patients with HER2-positive disease have improved dramatically; however, many patients present with de novo or acquired resistance to these therapies, which leads to early recurrences or progression of advanced disease. In this narrative review, we discuss the mechanisms of resistance to different HER2-targeted therapies, including monoclonal antibodies, small tyrosine kinase inhibitors, and antibody-drug conjugates. We review mechanisms such as impaired binding to HER2, incomplete receptor inhibition, increased signaling from other receptors, cross-talk with estrogen receptors, and PIK3CA pathway activation. We also discuss the role of the tumor immune microenvironment and HER2-heterogeneity, and the unique mechanisms of resistance to novel antibody-drug conjugates. A better understanding of these mechanisms and the potential strategies to overcome them will allow us to continue improving outcomes for patients with breast cancer.
Collapse
|
15
|
Fischer T, Hartmann O, Reissland M, Prieto-Garcia C, Klann K, Pahor N, Schülein-Völk C, Baluapuri A, Polat B, Abazari A, Gerhard-Hartmann E, Kopp HG, Essmann F, Rosenfeldt M, Münch C, Flentje M, Diefenbacher ME. PTEN mutant non-small cell lung cancer require ATM to suppress pro-apoptotic signalling and evade radiotherapy. Cell Biosci 2022; 12:50. [PMID: 35477555 PMCID: PMC9044846 DOI: 10.1186/s13578-022-00778-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy. Results We demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA-PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model. Conclusion PTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models.
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00778-7.
Collapse
Affiliation(s)
- Thomas Fischer
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany.,Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Würzburg, Germany
| | - Oliver Hartmann
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | - Michaela Reissland
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | - Cristian Prieto-Garcia
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | - Kevin Klann
- Protein Quality Control Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Nikolett Pahor
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | | | - Apoorva Baluapuri
- Department of Biochemistry and Molecular Biology, Cancer Systems Biology Group, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Würzburg, Germany
| | - Arya Abazari
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Gerhard-Hartmann
- Comprehensive Cancer Centre Mainfranken, Würzburg, Germany.,Institute for Pathology, University of Würzburg, Würzburg, Germany
| | | | - Frank Essmann
- Institute for Clinical Pharmacology, Robert Bosch Hospital, Stuttgart, Germany
| | - Mathias Rosenfeldt
- Comprehensive Cancer Centre Mainfranken, Würzburg, Germany.,Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Christian Münch
- Protein Quality Control Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Markus E Diefenbacher
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany. .,Mildred Scheel Early Career Center, Würzburg, Germany. .,Comprehensive Cancer Centre Mainfranken, Würzburg, Germany. .,Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
16
|
Yang Z, Xie J, Fang J, Lv M, Yang M, Deng Z, Xie Y, Cai L. Nigericin exerts anticancer effects through inhibition of the SRC/STAT3/BCL-2 in osteosarcoma. Biochem Pharmacol 2022; 198:114938. [PMID: 35114189 DOI: 10.1016/j.bcp.2022.114938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
The treatment of osteosarcoma has reached a bottleneck period in recent 30 years, there is an urgent need to find new drugs and treatment methods. Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has exerted promising antitumoral effect in various tumors. The anticancer effect of Nigericin in human osteosarcoma has never been reported. In the present study, we explored the anticancer effects of Nigericin in osteosarcoma in vitro and in vivo. Our results showed that nigericin treatment significantly reduced tumor cell proliferation in dose-dependent and time-dependent in human osteosarcoma cells. Nigericin can inhibit cell growth of osteosarcoma cells, in addition to S-phase cycle arrest, the nigericin induces apoptosis. Furthermore, bioinformatics predicted that Nigericin exerts anticancer effects through inhibiting SRC/STAT3 signaling pathway in osteosarcoma. The direct binding between SRC and activator of transcription 3 (STAT3) was confirmed by Western blot. Nigericin can down regulate STAT3 and Bcl-2. In order to further elucidate the inhibitory effect of nigericin on SRC / STAT3 / Bcl-2 signal transduction mechanism, we established human osteosarcoma cancer cells stably expressing STAT3. Western blot confirmed that nigericin exerts anticancer effects on human osteosarcoma cancer cells by directly targeting STAT3. In addition, Nigericin can significantly inhibit tumor migration and invasion. Finally, Nigericin inhibits tumor growth in a mouse osteosarcoma model. The nigericin targeting the SRC/STAT3/BCL-2 signaling pathway may provide new insights into the molecular mechanism of nigericin on cancer cells and suggest its possible clinical application in osteosarcoma.
Collapse
Affiliation(s)
- Zhiqiang Yang
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Jiangtao Xie
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Jiayu Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430000, China.
| | - Minchao Lv
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Min Yang
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Zhouming Deng
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Yuanlong Xie
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Lin Cai
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| |
Collapse
|
17
|
Yan Y, Shi H, Zhao Z, Wang S, Zhou S, Mu Y, Ding N, Lai Y, Zhao AZ, Cheng L, Li F. Adiponectin Deficiency Promotes Endometrial Carcinoma Pathogenesis and Development via Activation of
Mitogen‐Activated
Protein Kinase. J Pathol 2022; 257:146-157. [PMID: 35072951 DOI: 10.1002/path.5874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/06/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Yunjing Yan
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Hui Shi
- Department of Pathology Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu Province China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Ning Ding
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Yimei Lai
- Department of Pathology First Affiliated Hospital of Gannan Medical University Ganzhou Jiangxi Province China
| | - Allan Z. Zhao
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| | - Lixian Cheng
- Key laboratory of Functional and Clinical Translational Medicine Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College Xiamen Fujian Province China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong Province China
| |
Collapse
|
18
|
RB depletion is required for the continuous growth of tumors initiated by loss of RB. PLoS Genet 2021; 17:e1009941. [PMID: 34879057 PMCID: PMC8654178 DOI: 10.1371/journal.pgen.1009941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor is functionally inactivated in a wide range of human tumors where this inactivation promotes tumorigenesis in part by allowing uncontrolled proliferation. RB has been extensively studied, but its mechanisms of action in normal and cancer cells remain only partly understood. Here, we describe a new mouse model to investigate the consequences of RB depletion and its re-activation in vivo. In these mice, induction of shRNA molecules targeting RB for knock-down results in the development of phenotypes similar to Rb knock-out mice, including the development of pituitary and thyroid tumors. Re-expression of RB leads to cell cycle arrest in cancer cells and repression of transcriptional programs driven by E2F activity. Thus, continuous RB loss is required for the maintenance of tumor phenotypes initiated by loss of RB, and this new mouse model will provide a new platform to investigate RB function in vivo.
Collapse
|
19
|
Smith AE, Ferraro E, Safonov A, Morales CB, Lahuerta EJA, Li Q, Kulick A, Ross D, Solit DB, de Stanchina E, Reis-Filho J, Rosen N, Arribas J, Razavi P, Chandarlapaty S. HER2 + breast cancers evade anti-HER2 therapy via a switch in driver pathway. Nat Commun 2021; 12:6667. [PMID: 34795269 PMCID: PMC8602441 DOI: 10.1038/s41467-021-27093-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Inhibition of HER2 in HER2-amplified breast cancer has been remarkably successful clinically, as demonstrated by the efficacy of HER-kinase inhibitors and HER2-antibody treatments. Whilst resistance to HER2 inhibition is common in the metastatic setting, the specific programs downstream of HER2 driving resistance are not established. Through genomic profiling of 733 HER2-amplified breast cancers, we identify enrichment of somatic alterations that promote MEK/ERK signaling in metastatic tumors with shortened progression-free survival on anti-HER2 therapy. These mutations, including NF1 loss and ERBB2 activating mutations, are sufficient to mediate resistance to FDA-approved HER2 kinase inhibitors including tucatinib and neratinib. Moreover, resistant tumors lose AKT dependence while undergoing a dramatic sensitization to MEK/ERK inhibition. Mechanistically, this driver pathway switch is a result of MEK-dependent activation of CDK2 kinase. These results establish genetic activation of MAPK as a recurrent mechanism of anti-HER2 therapy resistance that may be effectively combated with MEK/ERK inhibitors.
Collapse
Affiliation(s)
- Alison E Smith
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
| | - Emanuela Ferraro
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anton Safonov
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | - Qing Li
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Amanda Kulick
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dara Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jorge Reis-Filho
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Neal Rosen
- Molecular Pharmacology and Chemistry Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Medicine, New York, NY, 10065, USA.
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Niu Z, Li X, Dong S, Gao J, Huang Q, Yang H, Qian H, Zhuo S, Zhuang T, Zhu J, Ding Y, Xu W. The E3 Ubiquitin Ligase HOIP inhibits Cancer Cell Apoptosis via modulating PTEN stability. J Cancer 2021; 12:6553-6562. [PMID: 34659546 PMCID: PMC8489130 DOI: 10.7150/jca.61996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Chemotherapy is widely used in a variety of solid tumors, such as lung cancer, gastric cancer and breast cancer. The genotoxic drugs, such as cisplatin, suppress cancer progression either by inhibition cell proliferation or facilitating apoptosis. However, the chemotherapy resistance remains an urgent challenge in cancer therapy, especially in advanced stages. Several studies showed that the activation of pro-survival pathways, such as PI3K-AKT, participated in mediating chemotherapy resistance. The insights into the molecular mechanisms for underlying chemotherapy resistance are of great importance to improve cancer patient survival in advanced stages. The HOIP protein belongs to the RING family E3 ubiquitin ligases and modulates several atypical ubiquitination processes in cellular signaling. Previous studies showed that HOIP might be an important effector in modulating cancer cell death under genotoxic drugs. Here, we report that HOIP associates with PTEN and facilitates PTEN degradation in cancer cells. Depletion of HOIP causes cell cycle arrest and apoptosis, which effects could be rescued by PTEN silencing. Besides, the survival data from public available database show that HOIP expression correlates with poor survival in several types of chemotherapy-treated cancer patients. In conclusion, our study establishes a novel mechanism by which HOIP modulates PTEN stability and facilitates chemotherapy resistance in malignancies.
Collapse
Affiliation(s)
- Zhiguo Niu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.,Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Xin Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Shuxiao Dong
- Department of Gastroenterology surgery, Shandong Provincial Third Hospital, Jinan, 250000, China
| | - Jianhui Gao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Huijie Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Shu Zhuo
- Signet Therapeutics Inc, Shenzhen, China. Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518000, China
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China.,Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yinlu Ding
- Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| |
Collapse
|
21
|
Al-Matouq J, Al-Haj L, Al-Saif M, Khabar KSA. Post-transcriptional screen of cancer amplified genes identifies ERBB2/Her2 signaling as AU-rich mRNA stability-promoting pathway. Oncogenesis 2021; 10:61. [PMID: 34535639 PMCID: PMC8448767 DOI: 10.1038/s41389-021-00351-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Amplification of specific cancer genes leads to their over-expression contributing to tumor growth, spread, and drug resistance. Little is known about the ability of these amplified oncogenes to augment the expression of cancer genes through post-transcriptional control. The AU-rich elements (ARE)-mediated mRNA decay is compromised for many key cancer genes leading to their increased abundance and effects. Here, we performed a post-transcriptional screen for frequently amplified cancer genes demonstrating that ERBB2/Her2 overexpression was able to augment the post-transcriptional effects. The ERBB1/2 inhibitor, lapatinib, led to the reversal of the aberrant ARE-mediated process in ERBB2-amplified breast cancer cells. The intersection of overexpressed genes associated with ERBB2 amplification in TCGA datasets with ARE database (ARED) identified ERBB2-associated gene cluster. Many of these genes were over-expressed in the ERBB2-positive SKBR3 cells compared to MCF10A normal-like cells, and were under-expressed due to ERBB2 siRNA treatment. Lapatinib accelerated the ARE-mRNA decay for several ERBB2-regulated genes. The ERBB2 inhibitor decreased both the abundance and stability of the phosphorylated inactive form of the mRNA decay-promoting protein, tristetraprolin (ZFP36/TTP). The ERBB2 siRNA was also able to reduce the phosphorylated ZFP36/TTP form. In contrast, ectopic expression of ERBB2 in MCF10A or HEK293 cells led to increased abundance of the phosphorylated ZFP36/TTP. The effect of ERBB2 on TTP phosphorylation appeared to be mediated via the MAPK-MK2 pathway. Screening for the impact of other amplified cancer genes in HEK293 cells also demonstrated that EGFR, AKT2, CCND1, CCNE1, SKP2, and FGFR3 caused both increased abundance of phosphorylated ZFP36/TTP and ARE-post-transcriptional reporter activity. Thus, specific amplified oncogenes dysregulate post-transcriptional ARE-mediated effects, and targeting the ARE-mediated pathway itself may provide alternative therapeutic approaches.
Collapse
Affiliation(s)
- Jenan Al-Matouq
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia ,Present Address: Mohammed Al-Mana College for Medical Science, Dammam, Saudi Arabia
| | - Latifa Al-Haj
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia
| | - Maher Al-Saif
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia
| | - Khalid S. A. Khabar
- grid.415310.20000 0001 2191 4301Molecular BioMedicine Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
22
|
A novel treatment strategy for lapatinib resistance in a subset of HER2-amplified gastric cancer. BMC Cancer 2021; 21:923. [PMID: 34399705 PMCID: PMC8366014 DOI: 10.1186/s12885-021-08283-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 13–23% of all GC cases and patients with HER2 overexpression exhibit a poor prognosis. Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, is an effective agent to treat HER2-amplified breast cancer but it failed in gastric cancer (GC) clinical trials. However, the molecular mechanism of lapatinib resistance in HER2-amplified GC is not well studied. Methods We employed an unbiased, genome-scale screening with pooled CRISPR library on HER2-amplified GC cell lines to identify genes that are associated with resistance to lapatinib. To validate the candidate genes, we applied in vitro and in vivo pharmacological tests to confirm the function of the target genes. Results We found that loss of function of CSK or PTEN conferred lapatinib resistance in HER2-amplified GC cell lines NCI-N87 and OE19, respectively. Moreover, PI3K and MAPK signaling was significantly increased in CSK or PTEN null cells. Furthermore, in vitro and in vivo pharmacological study has shown that lapatinib resistance by the loss of function of CSK or PTEN, could be overcome by lapatinib combined with the PI3K inhibitor copanlisib and MEK inhibitor trametinib. Conclusions Our study suggests that loss-of-function mutations of CSK and PTEN cause lapatinib resistance by re-activating MAPK and PI3K pathways, and further proved these two pathways are druggable targets. Inhibiting the two pathways synergistically are effective to overcome lapatinib resistance in HER2-amplified GC. This study provides insights for understanding the resistant mechanism of HER2 targeted therapy and novel strategies that may ultimately overcome resistance or limited efficacy of lapatinib treatment for subset of HER2 amplified GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08283-9.
Collapse
|
23
|
EGFRvIII tumorigenicity requires PDGFRA co-signaling and reveals therapeutic vulnerabilities in glioblastoma. Oncogene 2021; 40:2682-2696. [PMID: 33707748 PMCID: PMC9159289 DOI: 10.1038/s41388-021-01721-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Focal amplification of epidermal growth factor receptor (EGFR) and its ligand-independent, constitutively active EGFRvIII mutant form are prominent oncogenic drivers in glioblastoma (GBM). The EGFRvIII gene rearrangement is considered to be an initiating event in the etiology of GBM, however, the mechanistic details of how EGFRvIII drives cellular transformation and tumor maintenance remain unclear. Here, we report that EGFRvIII demonstrates a reliance on PDGFRA co-stimulatory signaling during the tumorigenic process in a genetically engineered autochthonous GBM model. This dependency exposes liabilities that were leveraged using kinase inhibitors treatments in EGFRvIII-expressing GBM patient-derived xenografts (PDXs), where simultaneous pharmacological inhibition of EGFRvIII and PDGFRA kinase activities is necessary for anti-tumor efficacy. Our work establishes that EGFRvIII-positive tumors have unexplored vulnerabilities to targeted agents concomitant to the EGFR kinase inhibitor repertoire.
Collapse
|
24
|
Zhang Q, Wu X, Yang J. miR-194-5p protects against myocardial ischemia/reperfusion injury via MAPK1/PTEN/AKT pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:654. [PMID: 33987352 PMCID: PMC8106072 DOI: 10.21037/atm-21-807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background MicroRNA (miRNA), which participates in various physiological and pathological processes, is a highly conserved small RNA sequence. This study aimed to investigate the role of miR-194-5p in hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis and myocardial ischemia/reperfusion (I/R) injury. Methods We set up an H/R H9c2 cell model in vitro and an I/R mouse model in vivo. Then, cell vitality, apoptosis, and histopathological evaluation were conducted. Reactive oxygen species (ROS) generation and the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) were examined by 2’,7’-Dichlorodihydrofluorescein diacetate (H2DCFDA), and enzyme-linked immunosorbent assay (ELISA), respectively. The level of creatine kinase isoenzyme (CK-MB), cardiac troponin I (cTnI), myoglobin (Mb) is examined by ELISA. The expression of Caspase-3, cleaved-Caspase-3, Bax, Bcl-2, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and protein kinase B (AKT) was analyzed by western blot. Results Data showed the expression of miR-194-5p was decreased in H/R-induced H9c2 cells and I/R-induced mouse. Conversely, overexpression of miR-194-5p could improve cardiomyocyte damage in ischemic models in vivo and in vitro. Furthermore, mitogen-activated protein kinase 1 (MAPK1) was found as a direct target of miR-194-5p, which negatively regulated the expression of MAPK1. The up-regulation of MAPK1 inhibited the myocardial protection previously observed by miR-194-5p. Conclusions Our study shows overexpression of miR-194-5p protects against H/R injury in vitro and cardiac I/R injury in vivo, which involves the inhibition of cardiac apoptosis and oxidative stress by targeting MAPK1 expression via PTEN/AKT pathway. These findings supply novel insights into potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Qiufeng Zhang
- Emergency Department, First People's Hospital of Shangqiu City, Shangqiu, China
| | - Xiaotian Wu
- Emergency Department, First People's Hospital of Shangqiu City, Shangqiu, China
| | - Jie Yang
- Department of Cardiovascular Medicine, Xiaoshan Hospital, Xiaoshan, China
| |
Collapse
|
25
|
Liu R, Guan S, Gao Z, Wang J, Xu J, Hao Z, Zhang Y, Yang S, Guo Z, Yang J, Shao H, Chang B. Pathological Hyperinsulinemia and Hyperglycemia in the Impaired Glucose Tolerance Stage Mediate Endothelial Dysfunction Through miR-21, PTEN/AKT/eNOS, and MARK/ET-1 Pathways. Front Endocrinol (Lausanne) 2021; 12:644159. [PMID: 33967958 PMCID: PMC8104127 DOI: 10.3389/fendo.2021.644159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Impaired glucose tolerance (IGT) is an important prediabetic stage characterized by elevated concentrations of glucose and insulin in the blood. The pathological hyperglycemia and hyperinsulinemia in IGT may regulate the expression of microRNA-21 (miR-21) and affect the downstream insulin signaling pathways, leading to endothelial cell dysfunction and early renal damage. METHODS The individual and combined effects of insulin and glucose were investigated using human glomerular endothelial cells (HGECs). The expression levels of miR-21, and PTEN/AKT/eNOS and MAPK/ET-1 pathway proteins in the treated cells were measured. The levels of nitric oxide (NO) and endothelin-1 (ET-1) secreted by the cells were also measured. The role of miR-21 in mediating the regulatory effects of insulin and glucose was assessed by overexpression/inhibition of this miRNA using mimics/inhibitor. RESULTS High (>16.7 mmol/L) concentration of glucose upregulated the expression of miR-21, leading to the activation and inhibition of the PTEN/AKT/eNOS and MAPK/ET-1 pathways, and upregulation of NO and downregulation of ET-1 secretion, respectively. High (>25 ng/mL) concentration of insulin downregulated the expression of miR-21, and lead to the activation of the MAPK/ET-1 and inhibition of the PTEN/AKT/eNOS pathway, thereby upregulating the expression of ET-1 and downregulating the secretion of NO. MiR-21 was observed to play a key role by directly controlling the activation of the insulin signaling pathways when the cells were cotreated with different concentrations of insulin and glucose. The expression of miR-21 was found to be dependent on the relative concentration of insulin and glucose. Under simulated conditions of the IGT stage (8.3 mmol/L glucose + 50 ng/mL insulin), the inhibitory effect of high insulin concentration on miR-21 expression in the cells attenuated the activation by high glucose concentration, resulting in the downregulation of miR-21, upregulation of ET-1 and downregulation of NO secretion. CONCLUSION Taken together, these results indicate that high insulin and glucose concentrations regulate the secretory function of glomerular endothelial cells in opposite ways by regulating the expression of miRNA-21. Pathological concentrations of insulin and glucose in the IGT stage may lead to a decrease in miR-21 expression, thereby disordering the secretion of vasoactive factors, resulting in renal tubule ischemia.
Collapse
Affiliation(s)
- Ran Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Shilin Guan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhongai Gao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhaohu Hao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shaohua Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhenhong Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hailin Shao
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailin Shao, ; Baocheng Chang,
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailin Shao, ; Baocheng Chang,
| |
Collapse
|
26
|
Zhen L, Zhao Q, Lü J, Deng S, Xu Z, Zhang L, Zhang Y, Fan H, Chen X, Liu Z, Gu Y, Yu Z. miR-301a-PTEN-AKT Signaling Induces Cardiomyocyte Proliferation and Promotes Cardiac Repair Post-MI. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:251-262. [PMID: 33230431 PMCID: PMC7515978 DOI: 10.1016/j.omtn.2020.08.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022]
Abstract
Adult hearts are hard to recover after cardiac injury due to the limited proliferative ability of cardiomyocytes. Emerging evidence indicates the induction of cell cycle reentry of cardiomyocytes by special treatment or stimulation, which offers adult heart regenerative potential. Herein, a microRNA (miRNA) screening in cardiomyocytes identified miR-301a enriched specially in the neonatal cardiomyocytes from rats and mice. Overexpression of miR-301a in primary neonatal cardiomyocytes and H9C2 cells induced G1/S transition of the cell cycle, promoted cellular proliferation, and protected cardiomyocytes against hypoxia-induced apoptosis. Adeno-associated virus (AAV)9-mediated cardiac delivery of miR-301a to the mice model with myocardial infarction (MI) dramatically promoted cardiac repair post-MI in vivo. Phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway was confirmed to mediate miR-301a-induced cell proliferation in cardiomyocytes. Loss of function of PTEN mimicked the miR-301a-induced phenotype, while gain of function of PTEN attenuated the miR-301a-induced cell proliferation in cardiomyocytes. Application of RG7440, a small molecule inhibitor of AKT, blocked the function of miR-301a in cardiomyocytes. The current study revealed a miRNA signaling in inducing the cell cycle reentry of cardiomyocytes in the injured heart, and it demonstrated the miR-301a/PTEN/AKT signaling as a potential therapeutic target to reconstitute lost cardiomyocytes in mammals.
Collapse
Affiliation(s)
- Lixiao Zhen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Qian Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Jinhui Lü
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Shengqiong Deng
- Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Zhen Xu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Lin Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Huimin Fan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | - Zhongmin Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Yuying Gu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| |
Collapse
|
27
|
Jiang L, Ren L, Chen H, Pan J, Zhang Z, Kuang X, Chen X, Bao W, Lin C, Zhou Z, Huang D, Yang J, Huang H, Wang L, Hou N, Song L. NCAPG confers trastuzumab resistance via activating SRC/STAT3 signaling pathway in HER2-positive breast cancer. Cell Death Dis 2020; 11:547. [PMID: 32683421 PMCID: PMC7368860 DOI: 10.1038/s41419-020-02753-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
HER2+ breast cancer (BC) is characterized by rapid growth, early recurrence, early metastasis, and chemoresistance. Trastuzumab is the most effective treatment for HER2+ BC and effectively reduces the risk of recurrence and death of patients. Resistance to trastuzumab results in cancer recurrence and metastasis, leading to poor prognosis of HER2+ BC. In the present study, we found that non-structural maintenance of chromosome condensin 1 complex subunit G (NCAPG) expression was highly upregulated in trastuzumab-resistant HER2+ BC. Ectopic NCAPG was positively correlated with tumor relapse and shorter survival in HER2+ BC patients. Moreover, overexpression of NCAPG promoted, while silencing of NCAPG reduced, the proliferative and anti-apoptotic capacity of HER2+ BC cells both in vitro and in vivo, indicating NCAPG reduces the sensitivity of HER2+ BC cells to trastuzumab and may confer trastuzumab resistance. Furthermore, our results suggest that NCAPG triggers a series of biological cascades by phosphorylating SRC and enhancing nuclear localization and activation of STAT3. To summarize, our study explores a crucial role for NCAPG in trastuzumab resistance and its underlying mechanisms in HER2+ BC, and suggests that NCAPG could be both a potential prognostic marker as well as a therapeutic target to effectively overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Lili Jiang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.
| | - Liangliang Ren
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Han Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Jinyuan Pan
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Zhuojun Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiangqin Kuang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xuhong Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Wenhao Bao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Chun Lin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Zhongqiu Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Danping Huang
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Jianan Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
| | - Hongbiao Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Lan Wang
- Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, 511436, Guangzhou, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
28
|
van Elsas MJ, van Hall T, van der Burg SH. Future Challenges in Cancer Resistance to Immunotherapy. Cancers (Basel) 2020; 12:E935. [PMID: 32290124 PMCID: PMC7226490 DOI: 10.3390/cancers12040935] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapies, including checkpoint inhibitors, adoptive T cell transfer and therapeutic cancer vaccines, have shown promising response rates in clinical trials. Unfortunately, there is an increasing number of patients in which initially regressing tumors start to regrow due to an immunotherapy-driven acquired resistance. Studies on the underlying mechanisms reveal that these can be similar to well-known tumor intrinsic and extrinsic primary resistance factors that precluded the majority of patients from responding to immunotherapy in the first place. Here, we discuss primary and secondary immune resistance and point at strategies to identify potential new mechanisms of immune evasion. Ultimately, this may lead to improved immunotherapy strategies with improved clinical outcomes.
Collapse
Affiliation(s)
| | | | - Sjoerd H. van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (M.J.v.E.); (T.v.H.)
| |
Collapse
|
29
|
Shahi Thakuri P, Gupta M, Singh S, Joshi R, Glasgow E, Lekan A, Agarwal S, Luker GD, Tavana H. Phytochemicals inhibit migration of triple negative breast cancer cells by targeting kinase signaling. BMC Cancer 2020; 20:4. [PMID: 31898540 PMCID: PMC6941316 DOI: 10.1186/s12885-019-6479-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. METHODS We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. RESULTS Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. CONCLUSIONS We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Megha Gupta
- Department of Arts and Sciences, The University of Akron, Akron, OH, 44325, USA
| | - Sunil Singh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Eric Glasgow
- Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Alexander Lekan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
30
|
Tuasha N, Petros B. Heterogeneity of Tumors in Breast Cancer: Implications and Prospects for Prognosis and Therapeutics. SCIENTIFICA 2020; 2020:4736091. [PMID: 33133722 PMCID: PMC7568790 DOI: 10.1155/2020/4736091] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 09/28/2020] [Indexed: 05/16/2023]
Abstract
Breast cancer is the most commonly diagnosed form of cancer in women comprising 16% of all female cancers. The disease shows high intertumoral and intratumoral heterogeneity posing diagnostic and therapeutic challenges with unpredictable clinical outcome and response to existing therapy. Mounting evidence is ascertaining that breast cancer stem cells (CSCs) are responsible for tumor initiation, progression, recurrence, evolution, metastasis, and drug resistance. Therapeutics selectively targeting the CSCs based on distinct surface molecular markers and enhanced intracellular activities of these cells continue to evolve and hold significant promise. Having plethora of heterogeneity accompanied with failure of existing conventional therapeutics and poor prognosis, the present review focuses on elucidating the main signaling pathways in breast CSCs as major therapeutic targets. The role of developments in nanomedicine and miRNA as targeted delivery of therapeutic anticancer agents is also highlighted.
Collapse
Affiliation(s)
- Nigatu Tuasha
- Addis Ababa University, College of Natural Science, Department of Microbial, Cellular and Molecular Biology, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Beyene Petros
- Addis Ababa University, College of Natural Science, Department of Microbial, Cellular and Molecular Biology, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
31
|
Lee P, Li X. Expression Profiles of the Phosphatase and Tensin Homolog (PTEN), CDH1, and CDH2 Genes, and the Cell Membrane Protein, CD133, in the Ishikawa Human Endometrial Adenocarcinoma Cell Line. Med Sci Monit 2019; 25:9829-9835. [PMID: 31864232 PMCID: PMC6937906 DOI: 10.12659/msm.918787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to investigate the expression profile of the phosphatase and tensin homolog (PTEN) gene, the cadherin genes, CDH1 and CDH2, and the cell membrane glycoprotein, CD133, in the Ishikawa human endometrial adenocarcinoma cell line. Material/Methods The Ishikawa endometrial carcinoma cell groups included cells transfected with the pLVX-puro lentiviral expression vector (the Ishikawa-puro group) and cells transfected with the pLVX-puro-PTEN lentiviral expression vector (the Ishikawa-PTEN group). The mRNA expression of the cadherin genes, CDH1 and CDH2, was detected by quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The expression levels of the transmembrane glycoprotein CD133, a cancer stem cell marker, was detected by flow cytometry. Results The expression of CDH1 and CDH2 mRNA in the Ishikawa-PTEN cells was lower than in the control cells. CD133 expression was lower in the Ishikawa-PTEN cells compared with the control cells. Conclusions This in vitro study showed that in Ishikawa endometrial carcinoma cells, downregulation of PTEN was associated with the expression of the CDH1 and CDH2 genes and upregulated expression of the cell membrane glycoprotein, CD133, which are associated with epithelial-mesenchymal transition (EMT) in malignancy. These findings support the need for further studies to investigate the potential role of PTEN in invasion and metastasis in endometrial carcinoma.
Collapse
Affiliation(s)
- Pingyin Lee
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Xiaomao Li
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
32
|
Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME, De Maria R. PTEN Tumor-Suppressor: The Dam of Stemness in Cancer. Cancers (Basel) 2019; 11:E1076. [PMID: 31366089 PMCID: PMC6721423 DOI: 10.3390/cancers11081076] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
PTEN is one of the most frequently inactivated tumor suppressor genes in cancer. Loss or variation in PTEN gene/protein levels is commonly observed in a broad spectrum of human cancers, while germline PTEN mutations cause inherited syndromes that lead to increased risk of tumors. PTEN restrains tumorigenesis through different mechanisms ranging from phosphatase-dependent and independent activities, subcellular localization and protein interaction, modulating a broad array of cellular functions including growth, proliferation, survival, DNA repair, and cell motility. The main target of PTEN phosphatase activity is one of the most significant cell growth and pro-survival signaling pathway in cancer: PI3K/AKT/mTOR. Several shreds of evidence shed light on the critical role of PTEN in normal and cancer stem cells (CSCs) homeostasis, with its loss fostering the CSC compartment in both solid and hematologic malignancies. CSCs are responsible for tumor propagation, metastatic spread, resistance to therapy, and relapse. Thus, understanding how alterations of PTEN levels affect CSC hallmarks could be crucial for the development of successful therapeutic approaches. Here, we discuss the most significant findings on PTEN-mediated control of CSC state. We aim to unravel the role of PTEN in the regulation of key mechanisms specific for CSCs, such as self-renewal, quiescence/cell cycle, Epithelial-to-Mesenchymal-Transition (EMT), with a particular focus on PTEN-based therapy resistance mechanisms and their exploitation for novel therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Francesca Luongo
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Colonna
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federica Calapà
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sara Vitale
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Micol E Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Scientific Vice-Direction, Fondazione Policlinico Universitario "A. Gemelli"-I.R.C.C.S., Largo Francesco Vito 1-8, 00168 Rome, Italy.
| |
Collapse
|
33
|
Yamamoto A, Hester J, Macklin PS, Kawai K, Uchiyama M, Biggs D, Bishop T, Bull K, Cheng X, Cawthorne E, Coleman ML, Crockford TL, Davies B, Dow LE, Goldin R, Kranc K, Kudo H, Lawson H, McAuliffe J, Milward K, Scudamore CL, Soilleux E, Issa F, Ratcliffe PJ, Pugh CW. Systemic silencing of PHD2 causes reversible immune regulatory dysfunction. J Clin Invest 2019; 129:3640-3656. [PMID: 31162141 PMCID: PMC6715380 DOI: 10.1172/jci124099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes which regulate HIFs. Genetic interventions on HIF/PHD pathways reveal multiple phenotypes that extend the known biology of hypoxia. Recent studies unexpectedly implicate HIF in aspects of multiple immune and inflammatory pathways. However such studies are often limited by systemic lethal effects and/or use tissue-specific recombination systems, which are inherently irreversible, un-physiologically restricted and difficult to time. To study these processes better we developed recombinant mice which express tetracycline-regulated shRNAs broadly targeting the main components of the HIF/PHD pathway, permitting timed bi-directional intervention. We have shown that stabilization of HIF levels in adult mice through PHD2 enzyme silencing by RNA interference, or inducible recombination of floxed alleles, results in multi-lineage leukocytosis and features of autoimmunity. This phenotype was rapidly normalized on re-establishment of the hypoxia-sensing machinery when shRNA expression was discontinued. In both situations these effects were mediated principally through the Hif2a isoform. Assessment of cells bearing regulatory T cell markers from these mice revealed defective function and pro-inflammatory effects in vivo. We believe our findings have shown a new role for the PHD2/Hif2a couple in the reversible regulation of T cell and immune activity.
Collapse
Affiliation(s)
- Atsushi Yamamoto
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S. Macklin
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kento Kawai
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Masateru Uchiyama
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Daniel Biggs
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tammie Bishop
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine Bull
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiaotong Cheng
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleanor Cawthorne
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mathew L. Coleman
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tanya L. Crockford
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ben Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lukas E. Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Rob Goldin
- Department of Cellular Pathology, Imperial College London, London, United Kingdom
| | - Kamil Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Hiromi Kudo
- Department of Cellular Pathology, Imperial College London, London, United Kingdom
| | - Hannah Lawson
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - James McAuliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kate Milward
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Cheryl L. Scudamore
- Veterinary Pathology, MRC Harwell, Mary Lyon Centre, Harwell Campus, Oxford, United Kingdom
| | - Elizabeth Soilleux
- Department of Pathology, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Peter J. Ratcliffe
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Chris W. Pugh
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Sosa LDV, Petiti JP, Picech F, Chumpen S, Nicola JP, Perez P, De Paul A, Valdez-Taubas J, Gutierrez S, Torres AI. The ERα membrane pool modulates the proliferation of pituitary tumours. J Endocrinol 2019; 240:229-241. [PMID: 30400032 DOI: 10.1530/joe-18-0418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms underlying the ERα nuclear/cytoplasmic pool that modulates pituitary cell proliferation have been widely described, but it is still not clear how ERα is targeted to the plasma membrane. The aim of this study was to analyse ERα palmitoylation and the plasma membrane ERα (mERα) pool, and their participation in E2-triggered membrane-initiated signalling in normal and pituitary tumour cell growth. Cell cultures were prepared from anterior pituitaries of female Wistar rats and tumour GH3 cells, and treated with 10 nM of oestradiol (E2). The basal expression of ERα was higher in tumour GH3 than in normal pituitary cells. Full-length palmitoylated ERα was observed in normal and pituitary tumour cells, demonstrating that E2 stimulation increased both, ERα in plasma membrane and ERα and caveolin-1 interaction after short-term treatment. In addition, the Dhhc7 and Dhhc21 palmitoylases were negatively regulated after sustained stimulation of E2 for 3 h. Although the uptake of BrdU into the nucleus in normal pituitary cells was not modified by E2, a significant increase in the GH3 tumoural cell, as well as ERK1/2 activation, with this effect being mimicked by PPT, a selective antagonist of ERα. These proliferative effects were blocked by ICI 182780 and the global inhibitor of palmitoylation. These findings indicate that ERα palmitoylation modulated the mERα pool and consequently the ERK1/2 pathway, thereby contributing to pituitary tumour cell proliferation. These results suggest that the plasma membrane ERα pool might be related to the proliferative behaviour of prolactinoma and may be a marker of pituitary tumour growth.
Collapse
Affiliation(s)
- Liliana Del V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Juan P Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Florencia Picech
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Sabrina Chumpen
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Juan P Nicola
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIBICI-CONICET, Cordoba, Argentina
| | - Pablo Perez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Ana De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Javier Valdez-Taubas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Silvina Gutierrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| |
Collapse
|
35
|
Lu H, Tan Y, Chen L. A clinical study on the expression of PTEN in renal cell carcinoma in children. Oncol Lett 2019; 17:69-72. [PMID: 30655739 PMCID: PMC6313102 DOI: 10.3892/ol.2018.9571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The expression pattern of tumor suppressor gene phosphatase and tensin homolog deleted on chromosome ten (PTEN) and phosphatase and tensin homolog deleted on chromosome ten/phosphatidylinositol3-kinase/protein kinase B (PTEN/PI3K/AKT) cell signaling pathway in renal cell carcinoma (RCC) were investigated in children. A total of 5 cases of RCC (observation group) in children and 10 cases of benign kidney tumor (control group) diagnosed by pathological examinations were included to obtain tumor samples. Expression of PTEN mRNA was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The protein expression of PTEN, PI3K and AKT was detected by western blotting; relationships between the expression level of PTEN mRNA and the clinical features of RCC were analyzed. It turned out that expression level of PTEN mRNA in the observation group was significantly lower than that in the control group. The protein expression levels of PTEN, PI3K and AKT were significantly lower in the observation group than in the control group (P<0.05). The expression level of PTEN mRNA decreased with the increased clinical stage of RCC (P<0.05), and was not related to sex, age and maximum tumor diameter (P>0.05). The results showed that downregulation of the tumor suppressor gene PTEN expression and the inhibition of PTEN/PI3K/AKT cell signaling pathway may be involved in the occurrence and development of RCC in children.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, Shandong 255029, P.R. China
| | - Yuxia Tan
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, Shandong 255029, P.R. China
| | - Liping Chen
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, Shandong 255029, P.R. China
| |
Collapse
|
36
|
Wu M, Pang JS, Sun Q, Huang Y, Hou JY, Chen G, Zeng JJ, Feng ZB. The clinical significance of CHEK1 in breast cancer: a high-throughput data analysis and immunohistochemical study. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1-20. [PMID: 31933717 PMCID: PMC6944032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 06/10/2023]
Abstract
Breast cancer (BC) is a kind of malignant cancer that seriously threatens women's health. Research scientists have found that BC occurs as the result of multiple effects of the external environment and internal genetic changes. Cell cycle checkpoint kinase 1 (CHEK1) is a crucial speed limit point in the cell cycle. Alterations of CHEK1 have been found in various tumors but are rarely reported or verified in BC. By mining database information, a large amount of mRNA and protein data was collected and meta-analyzed. Also, in-house immunohistochemistry was carried out to validate the results of the CHEK1 expression levels. Relative clinical features of BC patients were calculated with the CHEK1 expression levels to determine their diagnostic value. The mRNA levels of CHEK1 were higher in 1,089 cases of BC tissues than in 291 cases of non-BC tissues. We observed that the mRNA levels of CHEK1 are related to the clinical stages of BC patients (P = 0.008) and are also significant for overall survival (HR = 1.6, P = 0.0081). Using the immunohistochemistry method, we calculated and confirmed, using Fisher's exact test (P < 0.001), that a high-level CHEK1 protein is exhibited in BC tissues. Overexpressed CHEK1 mRNA promotes the occurrence of BC. Also, up-regulated CHEK1 could serve as an independent risk biomarker in BC patients' prognoses.
Collapse
Affiliation(s)
- Mei Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jin-Shu Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qi Sun
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yu Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Traditional Chinese MedicineNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jia-Yin Hou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
37
|
Vellanki SH, Cruz RGB, Jahns H, Hudson L, Sette G, Eramo A, Hopkins AM. Natural compound Tetrocarcin-A downregulates Junctional Adhesion Molecule-A in conjunction with HER2 and inhibitor of apoptosis proteins and inhibits tumor cell growth. Cancer Lett 2018; 440-441:23-34. [PMID: 30312728 DOI: 10.1016/j.canlet.2018.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 01/12/2023]
Abstract
Overexpression of the tight junction protein Junctional Adhesion Molecule-A (JAM-A) has been linked to aggressive disease in breast and other cancers, but JAM-targeting drugs remain elusive. Screening of a natural compound library identified the antibiotic Tetrocarcin-A as a novel downregulator of JAM-A and human epidermal growth factor receptor-2 (HER2) protein expression in breast cancer cells. Lysosomal inhibition partially rescued the downregulation of JAM-A and HER2 caused by Tetrocarcin-A, and attenuated its cytotoxic activity. Tetrocarcin-A treatment or JAM-A silencing reduced AKT and ERK phosphorylation, inhibited c-FOS phosphorylation at Threonine-232 (its transcriptional regulation site), inhibited nuclear localization of c-FOS, and downregulated expression of the inhibitor of apoptosis proteins (IAP). This was accompanied by Tetrocarcin-A-induced caspase-dependent apoptosis. To begin evaluating the potential clinical relevance of our findings, we extended our studies to other models. Encouragingly, Tetrocarcin-A downregulated JAM-A expression and caused cytotoxicity in primary breast cells and lung cancer stem cells, and inhibited the growth of xenografts in a semi-in vivo model involving invasion across the chicken egg chorioallantoic membrane. Taken together, our data suggest that Tetrocarcin-A warrants future evaluation as a novel cancer therapeutic by virtue of its ability to downregulate JAM-A expression, reduce tumorigenic signaling and induce apoptosis.
Collapse
Affiliation(s)
| | - Rodrigo G B Cruz
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Ireland
| | - Lance Hudson
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine - Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine - Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
38
|
Oudenaarden CRL, van de Ven RAH, Derksen PWB. Re-inforcing the cell death army in the fight against breast cancer. J Cell Sci 2018; 131:131/16/jcs212563. [DOI: 10.1242/jcs.212563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT
Metastatic breast cancer is responsible for most breast cancer-related deaths. Disseminated cancer cells have developed an intrinsic ability to resist anchorage-dependent apoptosis (anoikis). Anoikis is caused by the absence of cellular adhesion, a process that underpins lumen formation and maintenance during mammary gland development and homeostasis. In healthy cells, anoikis is mostly governed by B-cell lymphoma-2 (BCL2) protein family members. Metastatic cancer cells, however, have often developed autocrine BCL2-dependent resistance mechanisms to counteract anoikis. In this Review, we discuss how a pro-apoptotic subgroup of the BCL2 protein family, known as the BH3-only proteins, controls apoptosis and anoikis during mammary gland homeostasis and to what extent their inhibition confers tumor suppressive functions in metastatic breast cancer. Specifically, the role of the two pro-apoptotic BH3-only proteins BCL2-modifying factor (BMF) and BCL2-interacting mediator of cell death (BIM) will be discussed here. We assess current developments in treatment that focus on mimicking the function of the BH3-only proteins to induce apoptosis, and consider their applicability to restore normal apoptotic responses in anchorage-independent disseminating tumor cells.
Collapse
Affiliation(s)
- Clara R. L. Oudenaarden
- UMC Utrecht, Department of Pathology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Lund University, Department of Experimental Oncology, Scheelevägen 2, 22363 Lund, Sweden
| | - Robert A. H. van de Ven
- UMC Utrecht, Department of Pathology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Harvard Medical School, Department of Cell Biology, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Patrick W. B. Derksen
- UMC Utrecht, Department of Pathology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| |
Collapse
|
39
|
Livshits G, Alonso-Curbelo D, Morris JP, Koche R, Saborowski M, Wilkinson JE, Lowe SW. Arid1a restrains Kras-dependent changes in acinar cell identity. eLife 2018; 7:35216. [PMID: 30014851 PMCID: PMC6050044 DOI: 10.7554/elife.35216] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations in members of the SWI/SNF chromatin remodeling family are common events in cancer, but the mechanisms whereby disruption of SWI/SNF components alters tumorigenesis remain poorly understood. To model the effect of loss of function mutations in the SWI/SNF subunit Arid1a in pancreatic ductal adenocarcinoma (PDAC) initiation, we directed shRNA triggered, inducible and reversible suppression of Arid1a to the mouse pancreas in the setting of oncogenic KrasG12D. Arid1a cooperates with Kras in the adult pancreas as postnatal silencing of Arid1a following sustained KrasG12D expression induces rapid and irreversible reprogramming of acinar cells into mucinous PDAC precursor lesions. In contrast, Arid1a silencing during embryogenesis, concurrent with KrasG12D activation, leads to retention of acinar cell fate. Together, our results demonstrate Arid1a as a critical modulator of Kras-dependent changes in acinar cell identity, and underscore an unanticipated influence of timing and genetic context on the effects of SWI/SNF complex alterations in epithelial tumorigenesis. The pancreas produces many different hormones, as well as several substances important for digestion. To perform these roles, the pancreas contains different types of cells; for example, acinar cells make digestive enzymes that help to break down food. But, like other cells in the body, pancreatic cells can accumulate mutations in their DNA that cause them to divide, acquire an altered identity and form a cancerous tumor. The DNA of cells is packed into a structure called chromatin. While the DNA sequence is essentially the same across all normal cells of a given individual, chromatin can be more or less compacted in the different cell types that comprise our body tissues. A collection of proteins called the SWI/SNF complex can reorganize the chromatin to change how tightly the DNA is packed. This determines which genes in the DNA are accessible and can be activated, and which ones cannot. Around 25% of pancreatic cancers contain mutations in genes that produce proteins of the SWI/SNF complex. These mutations normally occur with an additional mutation that over-activates the gene that produces a potentially cancer-causing protein called Kras. Livshits et al. have now genetically engineered mice to investigate how one such SWI/SNF complex protein, called Arid1a, affects how pancreatic cancer develops using a genetic approach that made possible to temporarily halt the production of Arid1a in acinar cells by feeding these mice an antibiotic. The gene that produces Kras was also over-activated in the pancreases of the mice, making them more likely to develop cancer. Within just two weeks of stopping the production of Arid1a, the acinar cells stopped producing digestive enzymes and started making other proteins that are typically found in cancerous cells, indicating that Arid1a is involved in maintaining the normal identity and activity of these cells. Restoring the ability of altered acinar cells to produce normal levels of Arid1a (by removing the mice from the antibiotic diet) did not reverse these changes. Biochemical experiments showed that acinar cells with reduced levels of Arid1a have altered chromatin. In particular, the genes that produce digestive enzymes, which are normally active in healthy pancreases, were less accessible in mice who had over-active Kras and reduced levels of Arid1a. The results presented by Livshits et al. provide the first evidence of how alterations to Arid1a can lead to irreversible changes in the identity and activity of pancreatic acinar cells. These results will need to be carefully considered by researchers who are developing treatments for cancer patients with mutations in Arid1a and other SWI/SNF proteins. In particular, methods that attempt to restore the functions of absent SWI/SNF proteins to cancer cells are unlikely to treat the cancer successfully.
Collapse
Affiliation(s)
- Geulah Livshits
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - John P Morris
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Richard Koche
- Center of Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Michael Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Erby Wilkinson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States.,Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
40
|
Wang L, Yang C, Liu XB, Wang L, Kang FB. B7-H4 overexpression contributes to poor prognosis and drug-resistance in triple-negative breast cancer. Cancer Cell Int 2018; 18:100. [PMID: 30008617 PMCID: PMC6044050 DOI: 10.1186/s12935-018-0597-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/06/2018] [Indexed: 11/20/2022] Open
Abstract
Background The expression of the immunoregulatory protein B7-H4 has been reported in many types of cancer, including breast cancer. However, its role in triple-negative breast cancer (TNBC), especially its correlation with patients’ prognosis and chemoresistance remains unclear. Methods The expression of B7-H4 in TNBC tissues and cell lines were measured with Real-Time PCR and western blotting. 65 cases of TNBC tissue samples and adjacent non-tumor tissue samples were analyzed by immunochemistry to demonstrate the correlation between the B7-H4 expression and clinicopathological characteristics. In vitro studies assessed mAb MIH43 alone and in combination with transfecting B7-H4 siRNA on the growth of chemosensitive and chemoresistant TNBC cell lines by CCK-8 and apoptotic enzyme-linked immunosorbent assay (ELISA). Results B7-H4 expression was detected positive in 59 of 65 (90.8%) different stage TNBC patients, especially in the samples of recurrence TNBC patients after receiving neoadjuvant chemotherapy treatment. Survival curves showed that patients with B7-H4 overexpression had significantly shorter survival and recurrence time than those with low B7-H4 expression (p < 0.005). Univariate and multivariate COX regression analysis demonstrated that B7-H4 was an independent predictor for advanced tumor stage. The monoclonal antibody of B7-H4 has the potential anti-proliferative effects on inhibiting the chemoresistant TNBC cell lines and increasing the sensitivity of TNBC cell lines to doxorubicin, paclitaxel or carboplatin. RNAi-mediated silencing of B7-H4 in TNBC cells enhanced drug-induced apoptosis via inhibiting PTEN/PI3K/AKT pathway, whereas reexpression of B7-H4 in B7-H4 knockdown and low B7-H4 expressing cells increased the phosphorylation of PI3K and AKT along with restoration of PETN expression. Conclusions Our data show that B7-H4 is a biomarker indicative of a poor prognosis in TNBC patients and at least partially downregulated in chemoresistance via PTEN/PI3K/AKT pathway. Targeting B7-H4 might provide an attractive therapeutic approach specifically for TNBC patients. Electronic supplementary material The online version of this article (10.1186/s12935-018-0597-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Wang
- 1Department of Orthopedic Oncology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei People's Republic of China
| | - Chao Yang
- 2Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei People's Republic of China
| | - Xin-Bo Liu
- 3Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei People's Republic of China
| | - Li Wang
- Department of Pathology, the Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Fu-Biao Kang
- 5Department of Liver Diseases, Bethune International Peace Hospital, Shijiazhuang, Hebei People's Republic of China
| |
Collapse
|
41
|
Li ZH, Li L, Kang LP, Wang Y. Retracted: MicroRNA-92a promotes tumor growth and suppresses immune function through activation of MAPK/ERK signaling pathway by inhibiting PTEN in mice bearing U14 cervical cancer. Cancer Med 2018; 7:3118-3131. [PMID: 29752775 PMCID: PMC6051186 DOI: 10.1002/cam4.1329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is known as the possible outcome of genital infection, while the molecular mechanisms of initiation, development, and metastasis of cervical cancer have not yet been fully elucidated. Our study aims to investigate the effects of microRNA-92a (miR-92a) on tumor growth and immune function by targeting PTEN via the MAPK/ERK signaling pathway in tumor-bearing mice. C57BL/6 female mice were used for tumor-bearing mouse models and their tumor and adjacent normal tissues were collected, and normal cervical tissues were obtained from normal mice. Serum levels of tumor necrosis factor-α (TNF-α) and soluble interleukin-2 receptor (sIL-2R) were detected by ELISA. The cells were divided into the normal, blank, negative control (NC), miR-92a mimic, miR-92a inhibitor, siRNA-PTEN, and miR-92a inhibitor + siRNA-PTEN groups. Dual-luciferase reporter assay was adopted to determine the relationship between PTEN and miR-92a. Expressions of miR-92a, PTEN, TNF-α, sIL-2R, ERK1, and ERK2 were tested by RT-qPCR and Western blotting. Cell proliferation was detected by cell count kit-8 (CCK-8); cell cycle and apoptosis were detected by flow cytometry. Compared with the normal cervical tissues and adjacent normal tissues, the cervical cancer tissues exhibited increased expressions of miR-92a, p-ERK1/2, and serum levels of TNF-α and sIL-2R while decreased PTEN expression. PTEN was confirmed to be the target gene of miR-92a. As compared with the blank and NC groups, expressions of miR-92a, ERK1 and ERK2 increased, and expressions of PTEN decreased in the miR-92a mimic group. The miR-92a mimic group exhibited increased expression levels of TNF-α and sIL-2R, cell proliferation, and cell number in S phase but decreased cell apoptosis, and cell number in G0/G1 phase, while the miR-92a inhibitor group followed opposite trends. miR-92a promotes tumor growth and suppresses immune function by inhibiting PTEN via activation of the MAPK/ERK signaling pathway in mice bearing U14 cervical cancer.
Collapse
Affiliation(s)
- Zeng-Hui Li
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Lei Li
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Lin-Ping Kang
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Yan Wang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P.R., China
| |
Collapse
|
42
|
Xin X, Wu M, Meng Q, Wang C, Lu Y, Yang Y, Li X, Zheng Q, Pu H, Gui X, Li T, Li J, Jia S, Lu D. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a. Mol Cancer 2018; 17:94. [PMID: 29895332 PMCID: PMC5998602 DOI: 10.1186/s12943-018-0843-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Long noncoding RNA HULC is highly up-regulation in human hepatocellular carcinoma (HCC). However, the functions of HULC in hepatocarcinogenesis remains unclear. METHODS RT-PCR, Western blotting, Chromatin immunoprecipitation (CHIP) assay, RNA Immunoprecipitation (RIP) and tumorignesis test in vitro and in vivo were performed. RESULTS HULC is negatively associated with expression of PTEN or miR15a in patients of human liver cancer. Moreover, HULC accelerates malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, HULC increasesthe expression of P62 via decreasing mature miR15a. On the other hand, excessive HULC increases the expression of LC3 on the level of transcription and then activates LC3 through Sirt1 (a deacetylase). Notably, HULC enhanced the interplay between LC3 and ATG3. Furthermore, HULC also increases the expression of becline-1(autophagy related gene). Therefore, HULC increases the cellular autophagy by increasing LC3II dependent on Sirt1.Noteworthy, excessive HULC reduces the expression of PTEN, β-catenin and enhances the expression of SAPK/JUNK, PKM2, CDK2, NOTCH1, C-Jun in liver cancer cells. Of significance, our observations also revealed that HULC inhibited PTEN through ubiquitin-proteasome system mediated by autophagy-P62.Ultimately,HULC activates AKT-PI3K-mTOR pathway through inhibiting PTEN in human liver cancer cells. CONCLUSIONS This study elucidates a novel mechanism that lncRNA HULC produces a vital function during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xiaoru Xin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Mengying Wu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qiuyu Meng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Chen Wang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yanan Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yuxin Yang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaonan Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qidi Zheng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Hu Pu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Gui
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Tianming Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dongdong Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China. .,Tongji University School of Life Science and Technology, Shanghai, 200092, China.
| |
Collapse
|
43
|
Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival. Oncogene 2018; 37:4489-4504. [PMID: 29743588 DOI: 10.1038/s41388-018-0251-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
Trastuzumab targets the HER2 receptor on breast cancer cells to attenuate HER2-driven tumor growth. However, resistance to trastuzumab-based therapy remains a major clinical problem for women with HER2+ breast cancer. Breast cancer stem cells (BCSCs) are suggested to be responsible for drug resistance and tumor recurrence. Notch signaling has been shown to promote BCSC survival and self-renewal. Trastuzumab-resistant cells have increased Notch-1 expression. Notch signaling drives cell proliferation in vitro and is required for tumor recurrence in vivo. We demonstrate herein a mechanism by which Notch-1 is required for trastuzumab resistance by repressing PTEN expression to contribute to activation of ERK1/2 signaling. Furthermore, Notch-1-mediated inhibition of PTEN is necessary for BCSC survival in vitro and in vivo. Inhibition of MEK1/2-ERK1/2 signaling in trastuzumab-resistant breast cancer cells mimics effects of Notch-1 knockdown on bulk cell proliferation and BCSC survival. These findings suggest that Notch-1 contributes to trastuzumab resistance by repressing PTEN and this may lead to hyperactivation of ERK1/2 signaling. Furthermore, high Notch-1 and low PTEN mRNA expression may predict poorer overall survival in women with breast cancer. Notch-1 protein expression predicts poorer survival in women with HER2+ breast cancer. These results support a potential future clinical trial combining anti-Notch-1 and anti-MEK/ERK therapy for trastuzumab-resistant breast cancer.
Collapse
|
44
|
Zheng Q, Lin Z, Xu J, Lu Y, Meng Q, Wang C, Yang Y, Xin X, Li X, Pu H, Gui X, Li T, Xiong W, Lu D. Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis 2018; 9:253. [PMID: 29449541 PMCID: PMC5833746 DOI: 10.1038/s41419-018-0305-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Maternally expressed gene 3 (MEG3) encodes an lncRNA which is suggested to function as a tumor suppressor and has been showed to involve in a variety of cancers. Herein, our findings demonstrate that MEG3 inhibits the malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, MEG3 promotes the expression and maturition of miR122 which targets PKM2. Therefore, MEG3 decreases the expression and nuclear location of PKM2 dependent on miR122. Furthermore, MEG3 also inhibits CyclinD1 and C-Myc via PKM2 in liver cancer cells. On the other hand, MEG3 promotes β-catenin degradation through ubiquitin-proteasome system dependent on PTEN. Strikingly, MEG3 inhibits β-catenin activity through PKM2 reduction and PTEN increase. Significantly, we also found that excessive β-catenin abrogated the effect of MEG3 in liver cancer. In conclusion, our study for the first time demonstrates that MEG3 acts as a tumor suppressor by negatively regulating the activity of the PKM2 and β-catenin signaling pathway in hepatocarcinogenesis and could provide potential therapeutic targets for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qidi Zheng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Zhuojia Lin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Jie Xu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yanan Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Qiuyu Meng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Chen Wang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yuxin Yang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaoru Xin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaonan Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Hu Pu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xin Gui
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Tianming Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Wujun Xiong
- Department of Hepatology, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Dongdong Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
45
|
Kurz S, Thieme R, Amberg R, Groth M, Jahnke HG, Pieroh P, Horn LC, Kolb M, Huse K, Platzer M, Volke D, Dehghani F, Buzdin A, Engel K, Robitzki A, Hoffmann R, Gockel I, Birkenmeier G. The anti-tumorigenic activity of A2M-A lesson from the naked mole-rat. PLoS One 2017; 12:e0189514. [PMID: 29281661 PMCID: PMC5744951 DOI: 10.1371/journal.pone.0189514] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022] Open
Abstract
Cancer resistance is a major cause for longevity of the naked mole-rat. Recent liver transcriptome analysis in this animal compared to wild-derived mice revealed higher expression of alpha2-macroglobulin (A2M) and cell adhesion molecules, which contribute to the naked mole-rat’s cancer resistance. Notably, A2M is known to dramatically decrease with age in humans. We hypothesize that this might facilitate tumour development. Here we found that A2M modulates tumour cell adhesion, migration and growth by inhibition of tumour promoting signalling pathways, e.g. PI3K / AKT, SMAD and up-regulated PTEN via down-regulation of miR-21, in vitro and in tumour xenografts. A2M increases the expression of CD29 and CD44 but did not evoke EMT. Transcriptome analysis of A2M-treated tumour cells, xenografts and mouse liver demonstrated a multifaceted regulation of tumour promoting signalling pathways indicating a less tumorigenic environment mediated by A2M. By virtue of these multiple actions the naturally occurring A2M has strong potential as a novel therapeutic agent.
Collapse
Affiliation(s)
- Susanne Kurz
- Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - René Thieme
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Ronny Amberg
- Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Marco Groth
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, University of Leipzig, Germany
| | - Philipp Pieroh
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, Halle (Saale), Germany
| | - Lars-Christian Horn
- Institute of Pathology, Division of Breast, Gynaecological and Perinatal Pathology, University of Leipzig, Leipzig, Germany
| | - Marlen Kolb
- Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Klaus Huse
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Matthias Platzer
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Daniela Volke
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, Halle (Saale), Germany
| | - Anton Buzdin
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, B301, Baltimore, Maryland, United States of America
- Department of Pathway Engineering for Cancer Research, OmicsWay Corp., Walnut, CA, United States of America
- National Research Centre “Kurchatov Institute”, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, 1, Akademika Kurchatova sq., Moscow, Russia
| | - Kathrin Engel
- Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Andrea Robitzki
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, University of Leipzig, Germany
| | - Ralf Hoffmann
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Gerd Birkenmeier
- Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- * E-mail:
| |
Collapse
|
46
|
Kim C, Lee CK, Chon HJ, Kim JH, Park HS, Heo SJ, Kim HJ, Kim TS, Kwon WS, Chung HC, Rha SY. PTEN loss and level of HER2 amplification is associated with trastuzumab resistance and prognosis in HER2-positive gastric cancer. Oncotarget 2017; 8:113494-113501. [PMID: 29371924 PMCID: PMC5768341 DOI: 10.18632/oncotarget.23054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/13/2017] [Indexed: 01/11/2023] Open
Abstract
Background Trastuzumab is an active agent against human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC). This study aimed to characterize resistance to trastuzumab-based front-line chemotherapy in HER2+ GC patients and to establish factors predictive of this resistance. Results Among 129 HER2+ GC patients, 25% displayed rapid disease progression within 4 months from initiation of therapy. These patients showed a higher rate of signet ring cell histology, bone metastasis, poor performance status, frequent loss of PTEN expression, and low HER2 amplification index compared with patients who were progression-free for at least 4 months. In contrast, there was no significant difference in the frequency of the PIK3R1 variant. Multivariate analyses confirmed two independent molecular predictors for trastuzumab resistance: loss of PTEN expression and low HER2 amplification index (<5). Patients with one or both molecular predictors at diagnosis exhibited worse progression-free and overall survival compared to those without risk factors (p < 0.001 and p = 0.001, respectively). Conclusion In HER2+ GC patients, loss of PTEN expression and low HER2 AI correlated with resistance to trastuzumab-based therapy and dismal prognosis. Since patients harboring these molecular predictors are unlikely to respond to trastuzumab-based therapy, other novel therapeutic targets needed to be considered. Methods HER2+ GC patients who were treated with trastuzumab in combination with either 5-fluorouracil/cisplatin or capecitabine/cisplatin were enrolled. Clinicopathologic features and molecular alterations of HER2, phosphoinositide 3-kinase regulatory subunit 1 (PIK3R1), and phosphatase and tensin homolog (PTEN) were correlated with treatment outcome. Factors predictive of resistance were also explored.
Collapse
Affiliation(s)
- Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Choong-Kun Lee
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Joo Hoon Kim
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Soon Park
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Heo
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | | | - Tae Soo Kim
- Song Dang Institute for Cancer Research, Seoul, Korea
| | - Woo Sun Kwon
- Song Dang Institute for Cancer Research, Seoul, Korea
| | - Hyun Cheol Chung
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,Song Dang Institute for Cancer Research, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Young Rha
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,Song Dang Institute for Cancer Research, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|
48
|
Phosphatases and solid tumors: focus on glioblastoma initiation, progression and recurrences. Biochem J 2017; 474:2903-2924. [PMID: 28801478 DOI: 10.1042/bcj20170112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Phosphatases and cancer have been related for many years now, as these enzymes regulate key cellular functions, including cell survival, migration, differentiation and proliferation. Dysfunctions or mutations affecting these enzymes have been demonstrated to be key factors for oncogenesis. The aim of this review is to shed light on the role of four different phosphatases (PTEN, PP2A, CDC25 and DUSP1) in five different solid tumors (breast cancer, lung cancer, pancreatic cancer, prostate cancer and ovarian cancer), in order to better understand the most frequent and aggressive primary cancer of the central nervous system, glioblastoma.
Collapse
|
49
|
Wang H, Wang W, Xu Y, Yang Y, Chen X, Quan H, Lou L. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci 2017; 108:1458-1468. [PMID: 28388007 PMCID: PMC5497802 DOI: 10.1111/cas.13253] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
Trastuzumab emtansine (T-DM1), an antibody-drug conjugate (ADC) consisting of human epidermal growth factor receptor 2 (HER2)-targeted mAb trastuzumab linked to antimicrotubule agent mertansine (DM1), has been approved for the treatment of HER2-positive metastatic breast cancer. Acquired resistance has been a major obstacle to T-DM1 treatment, and mechanisms remain incompletely understood. In the present study, we established a T-DM1-resistant N87-KR cell line from HER2-positive N87 gastric cancer cells to investigate mechanisms of acquired resistance and develop strategies for overcoming it. Although the kinetics of binding, internalization, and externalization of T-DM1 were the same in N87-KR cells and N87 cells, N87-KR was strongly resistant to T-DM1, but remained sensitive to both trastuzumab and DM1. T-DM1 failed to inhibit microtubule polymerization in N87-KR cells. Consistently, lysine-MCC-DM1, the active T-DM1 metabolite that inhibits microtubule polymerization, accumulated much less in N87-KR cells than in N87 cells. Furthermore, lysosome acidification, achieved by vacuolar H+ -ATPase (V-ATPase), was much diminished in N87-KR cells. Notably, treatment of sensitive N87 cells with the V-ATPase selective inhibitor bafilomycin A1 induced T-DM1 resistance, suggesting that aberrant V-ATPase activity decreases T-DM1 metabolism, leading to T-DM1 resistance in N87-KR cells. Interestingly, HER2-targeted ADCs containing a protease-cleavable linker, such as hertuzumab-vc-monomethyl auristatin E, were capable of efficiently overcoming this resistance. Our results show for the first time that a decrease in T-DM1 metabolites induced by aberrant V-ATPase activity contributes to T-DM1 resistance, which could be overcome by HER2-targeted ADCs containing different linkers, including a protease-cleavable linker. Accordingly, we propose that V-ATPase activity in lysosomes is a novel biomarker for predicting T-DM1 resistance.
Collapse
MESH Headings
- Ado-Trastuzumab Emtansine
- Animals
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Drug Resistance, Neoplasm/physiology
- Humans
- Immunoconjugates/metabolism
- Immunoconjugates/pharmacology
- Maytansine/analogs & derivatives
- Maytansine/metabolism
- Maytansine/pharmacology
- Mice
- Mice, Nude
- Microscopy, Fluorescence
- Receptor, ErbB-2/biosynthesis
- Stomach Neoplasms/metabolism
- Trastuzumab
- Vacuolar Proton-Translocating ATPases/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hongbin Wang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenqian Wang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Yongping Xu
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Yong Yang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Xiaoyan Chen
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Haitian Quan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Liguang Lou
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| |
Collapse
|
50
|
Sato N, Wakabayashi M, Nakatsuji M, Kashiwagura H, Shimoji N, Sakamoto S, Ishida A, Lee J, Lim B, Ueno NT, Ishihara H, Inui T. MEK and PI3K catalytic activity as predictor of the response to molecularly targeted agents in triple-negative breast cancer. Biochem Biophys Res Commun 2017; 489:484-489. [PMID: 28576487 DOI: 10.1016/j.bbrc.2017.05.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 11/16/2022]
Abstract
Hyper-activation of the MAPK and PI3K-AKT pathways is linked to tumour progression in triple-negative breast cancer (TNBC). However, clinically effective predictive markers for drugs targeted against protein kinases involved in these pathways have not been identified. We investigated the ability of MEK and PI3K catalytic activity to predict sensitivity to trametinib and wortmannin in TNBC. MEK and PI3K activities correlated strongly with each other only in cell lines showing wortmannin-specific sensitivity, as shown by a linear regression curve (R = 0.951). Accordingly, we created a new parameter that distinguishes trametinib and wortmannin sensitivity in vitro and in vivo. Our findings suggest that the catalytic activities of MEK and PI3K might predict the response of TNBC to trametinib and wortmannin.
Collapse
Affiliation(s)
- Natsuki Sato
- R&D Department, Nittobo Medical Co., Ltd., 1, Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8091, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Masayuki Wakabayashi
- R&D Department, Nittobo Medical Co., Ltd., 1, Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8091, Japan
| | - Masatoshi Nakatsuji
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Haruka Kashiwagura
- R&D Department, Nittobo Medical Co., Ltd., 1, Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8091, Japan
| | - Naohiro Shimoji
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shiho Sakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsuko Ishida
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Bora Lim
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hideki Ishihara
- R&D Department, Nittobo Medical Co., Ltd., 1, Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8091, Japan.
| | - Takashi Inui
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|