1
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GR, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. J Cell Biol 2025; 224:e202403126. [PMID: 40314454 PMCID: PMC12047185 DOI: 10.1083/jcb.202403126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/08/2024] [Accepted: 10/18/2024] [Indexed: 05/03/2025] Open
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS.
Collapse
Affiliation(s)
- Taylor E. Lange
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ali Naji
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
2
|
Rossignol F, Lamari F, Mitchell GA. Phosphoinositide Metabolism: Biochemistry, Physiology and Genetic Disorders. J Inherit Metab Dis 2025; 48:e70008. [PMID: 40024625 PMCID: PMC11872349 DOI: 10.1002/jimd.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Phosphatidylinositol, a glycerophospholipid with a myo-inositol head group, can form seven different phosphoinositides (PItds) by phosphorylation at inositol carbons 3, 4 and/or 5. Over 50 kinases and phosphatases participate in PItd metabolism, creating an interconnected PItd network that allows for precise temporal and spatial regulation of PItd levels. We review paradigms of PItd action, including (1) the establishment of subcellular organelle identity by the acquisition of specific PItd signatures, permitting regulation of key processes of cell biology including trafficking (exocytosis, clathrin-dependent and -independent endocytosis, formation and function of membrane contact sites, cytoskeletal remodeling), (2) signaling through phospholipase C cleavage of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate and DAG, and (3) roles of PItds in molecular transport at membrane contact sites. To date, variants in 34 genes of PItd metabolism account for at least 41 distinguishable monogenic conditions. Clinical presentations of these disorders produce a broad and often multisystemic spectrum of effects. The nervous system is often involved, and muscular, immunological, skeletal, renal, ophthalmologic and dermatologic features occur in several conditions. Some syndromes involving PItd metabolism can be distinguished clinically, but most diagnoses currently result from broad molecular diagnostic testing performed for the patient's presenting clinical complaint. Genetic disorders of PItd metabolism are a broad, expanding and challenging category of inborn errors. Challenges include improved documentation of the clinical spectra, development of broad biochemical diagnostic methods for these conditions and better understanding of the PItd networks in different cells and subcellular compartments necessary for the development of disease-specific therapies.
Collapse
Affiliation(s)
- Francis Rossignol
- Human Biochemical Genetics Section, Medical Genetics BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
- Medical Genetics Division, Department of PediatricsCHU Sainte Justine and Université de MontréalMontréalCanada
| | - Foudil Lamari
- Metabolic Biochemistry, Neurometabolic and Neurodegenerative Unit—DMU BioGeMH Hôpital Pitié‐SalpêtrièreAP‐HP.Sorbonne UniversitéParisFrance
- Brain Institute—Institut du Cerveau—ICM, Inserm U1127, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Grant A. Mitchell
- Medical Genetics Division, Department of PediatricsCHU Sainte Justine and Université de MontréalMontréalCanada
| |
Collapse
|
3
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GRV, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.22.576612. [PMID: 38328115 PMCID: PMC10849561 DOI: 10.1101/2024.01.22.576612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS. eTOC summary We discovered that silencing the phosphatidylinositol (PI) 3-phosphatase, MTMR , disrupts the PM localization of PtdSer and KRAS. We propose a model, where MTMR loss depletes PM PI needed for PM PI4P synthesis, an essential phospholipid for PM PtdSer enrichment, thereby impairing KRAS PM localization.
Collapse
|
4
|
Anari M, Karimkhanloo H, Nie S, Dong L, Fidelito G, Bayliss J, Keenan SN, Slavin J, Lin S, Cheng Z, Lu J, Miotto PM, De Nardo W, Devereux CJ, Williamson NA, Watt MJ, Montgomery MK. Lipidome profiling in advanced metabolic liver disease identifies phosphatidylserine synthase 1 as a regulator of hepatic lipoprotein metabolism. Cell Rep 2024; 43:115007. [PMID: 39666456 DOI: 10.1016/j.celrep.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by defective lipid metabolism, which causes disease progression. MASH is also linked to various cardiometabolic risk factors, including obesity and type 2 diabetes. The contribution of defective lipid metabolism in MASH to cardiometabolic comorbidities is incompletely understood. Using hepatic lipidome profiling in eight mouse strains that differ in MASH susceptibility and patients with MASH, we show that phosphatidylserine (PS) accumulation and preservation of PS synthase 1 (PSS1) expression is associated with resistance to MASH and hypertriglyceridemia. Mechanistically, hepatocyte-specific PSS1 overexpression remodels the hepatic and very-low-density lipoprotein (VLDL) lipidome in mice with MASH. Specifically, we show an increase in VLDL ceramide that suppresses the expression and activity of lipoprotein lipase in skeletal muscle, thereby reducing VLDL-triglyceride clearance, fatty acid uptake, and lipid accumulation in muscle, overall exacerbating hypertriglyceridemia. Together, the results of this study identify hepatic PSS1 as a regulator of systemic lipoprotein metabolism.
Collapse
Affiliation(s)
- Marziyeh Anari
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hamzeh Karimkhanloo
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Li Dong
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gio Fidelito
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - John Slavin
- St. Vincent's Pathology, St. Vincent's Hospital, Melbourne, VIC 3065, Australia
| | - Sihan Lin
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zhili Cheng
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jie Lu
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paula M Miotto
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - William De Nardo
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Camille J Devereux
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
5
|
Tei R. The dynamic regulatory network of phosphatidic acid metabolism: a spotlight on substrate cycling between phosphatidic acid and diacylglycerol. Biochem Soc Trans 2024; 52:2123-2132. [PMID: 39417337 PMCID: PMC11555698 DOI: 10.1042/bst20231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Mammalian cells utilize over 1000 different lipid species to maintain cell and organelle membrane properties, control cell signaling and processes, and store energy. Lipid synthesis and metabolism are mediated by highly interconnected and spatiotemporally regulated networks of lipid-metabolizing enzymes and supported by vesicle trafficking and lipid-transfer at membrane contact sites. However, the regulatory mechanisms that achieve lipid homeostasis are largely unknown. Phosphatidic acid (PA) serves as the central hub for phospholipid biosynthesis, acting as a key intermediate in both the Kennedy pathway and the CDP-DAG pathway. Additionally, PA is a potent signaling molecule involved in various cellular processes. This dual role of PA, both as a critical intermediate in lipid biosynthesis and as a significant signaling molecule, suggests that it is tightly regulated within cells. This minireview will summarize the functional diversity of PA molecules based on their acyl tail structures and subcellular localization, highlighting recent tools and findings that shed light on how the physical, chemical, and spatial properties of PA species contribute to their differential metabolic fates and functions. Dysfunctional effects of altered PA metabolism as well as the strategies cells employ to maintain PA regulation and homeostasis will also be discussed. Furthermore, this review will explore the differential regulation of PA metabolism across distinct subcellular membranes. Our recent proximity labeling studies highlight the possibility that substrate cycling between PA and DAG may be location-dependent and have functional significance in cell signaling and lipid homeostasis.
Collapse
Affiliation(s)
- Reika Tei
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
6
|
Niu Y, Pemberton JG, Kim YJ, Balla T. Phosphatidylserine enrichment in the nuclear membrane regulates key enzymes of phosphatidylcholine synthesis. EMBO J 2024; 43:3414-3449. [PMID: 38918635 PMCID: PMC11329639 DOI: 10.1038/s44318-024-00151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Phosphatidylserine (PS) is an important anionic phospholipid that is synthesized within the endoplasmic reticulum (ER). While PS shows the highest enrichment and serves important functional roles in the plasma membrane (PM) but its role in the nucleus is poorly explored. Using three orthogonal approaches, we found that PS is also uniquely enriched in the inner nuclear membrane (INM) and the nuclear reticulum (NR). Nuclear PS is critical for supporting the translocation of CCTα and Lipin1α, two key enzymes important for phosphatidylcholine (PC) biosynthesis, from the nuclear matrix to the INM and NR in response to oleic acid treatment. We identified the PS-interacting regions within the M-domain of CCTα and M-Lip domain of Lipin1α, and show that lipid droplet formation is altered by manipulations of nuclear PS availability. Our studies reveal an unrecognized regulatory role of nuclear PS levels in the regulation of key PC synthesizing enzymes within the nucleus.
Collapse
Affiliation(s)
- Yang Niu
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Kim YJ, Pemberton JG, Eisenreichova A, Mandal A, Koukalova A, Rohilla P, Sohn M, Konradi AW, Tang TT, Boura E, Balla T. Non-vesicular phosphatidylinositol transfer plays critical roles in defining organelle lipid composition. EMBO J 2024; 43:2035-2061. [PMID: 38627600 PMCID: PMC11099152 DOI: 10.1038/s44318-024-00096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10, Prague 6, Czech Republic
| | - Amrita Mandal
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alena Koukalova
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mira Sohn
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10, Prague 6, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Nakatsu F, Kawasaki A. Phosphatidylserine turns the gears of phospholipids in B cell lymphoma. J Cell Biol 2024; 223:e202401047. [PMID: 38270920 PMCID: PMC10818062 DOI: 10.1083/jcb.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Phosphatidylserine levels and distribution are tightly controlled by dedicated enzymes at the ER and plasma membrane. Nakatsu and Kawasaki discuss new work by Aoki and colleagues (https://doi.org/10.1083/jcb.202212074), which reveals an acute reliance on phosphatidylserine synthesis in B cell lymphomas needed to prevent aberrant B cell receptor activation and ensuing apoptosis.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
9
|
Omi J, Kato T, Yoshihama Y, Sawada K, Kono N, Aoki J. Phosphatidylserine synthesis controls oncogenic B cell receptor signaling in B cell lymphoma. J Cell Biol 2024; 223:e202212074. [PMID: 38048228 PMCID: PMC10694799 DOI: 10.1083/jcb.202212074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Cancer cells harness lipid metabolism to promote their own survival. We screened 47 cancer cell lines for survival dependency on phosphatidylserine (PS) synthesis using a PS synthase 1 (PTDSS1) inhibitor and found that B cell lymphoma is highly dependent on PS. Inhibition of PTDSS1 in B cell lymphoma cells caused a reduction of PS and phosphatidylethanolamine levels and an increase of phosphoinositide levels. The resulting imbalance of the membrane phospholipidome lowered the activation threshold for B cell receptor (BCR), a B cell-specific survival mechanism. BCR hyperactivation led to aberrant elevation of downstream Ca2+ signaling and subsequent apoptotic cell death. In a mouse xenograft model, PTDSS1 inhibition efficiently suppressed tumor growth and prolonged survival. Our findings suggest that PS synthesis may be a critical vulnerability of malignant B cell lymphomas that can be targeted pharmacologically.
Collapse
Affiliation(s)
- Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Koki Sawada
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Doyle CP, Rectenwald A, Timple L, Hammond GRV. Orthogonal targeting of SAC1 to mitochondria implicates ORP2 as a major player in PM PI4P turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555163. [PMID: 37693626 PMCID: PMC10491111 DOI: 10.1101/2023.08.28.555163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Oxysterol binding protein (OSBP)-related proteins (ORPs) 5 and 8 have been shown to deplete the lipid phosphatidylinositol 4-phosphate (PI4P) at sites of membrane contact between the endoplasmic reticulum (ER) and plasma membrane (PM). This is believed to be caused by transport of PI4P from the PM to the ER, where PI4P is degraded by an ER-localized SAC1 phosphatase. This is proposed to power the anti-port of phosphatidylserine (PS) lipids from ER to PM, up their concentration gradient. Alternatively, ORPs have been proposed to sequester PI4P, dependent on the concentration of their alternative lipid ligand. Here, we aimed to distinguish these possibilities in living cells by orthogonal targeting of PI4P transfer and degradation to PM-mitochondria contact sites. Surprisingly, we found that orthogonal targeting of SAC1 to mitochondria enhanced PM PI4P turnover independent of targeting to contact sites with the PM. This turnover could be slowed by knock-down of soluble ORP2, which also has a major impact on PM PI4P levels even without SAC1 over-expression. The data reveal a role for contact site-independent modulation of PM PI4P levels and lipid antiport.
Collapse
Affiliation(s)
- Colleen P Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Andrew Rectenwald
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Liz Timple
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
11
|
Doyle CP, Rectenwald A, Timple L, Hammond GRV. Orthogonal Targeting of SAC1 to Mitochondria Implicates ORP2 as a Major Player in PM PI4P Turnover. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241229272. [PMID: 38327560 PMCID: PMC10848804 DOI: 10.1177/25152564241229272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) 5 and 8 have been shown to deplete the lipid phosphatidylinositol 4-phosphate (PI4P) at sites of membrane contact between the endoplasmic reticulum (ER) and plasma membrane (PM). This is believed to be caused by transport of PI4P from the PM to the ER, where PI4P is degraded by an ER-localized SAC1 phosphatase. This is proposed to power the anti-port of phosphatidylserine (PS) lipids from ER to PM, up their concentration gradient. Alternatively, ORPs have been proposed to sequester PI4P, dependent on the concentration of their alternative lipid ligand. Here, we aimed to distinguish these possibilities in living cells by orthogonal targeting of PI4P transfer and degradation to PM-mitochondria contact sites. Surprisingly, we found that orthogonal targeting of SAC1 to mitochondria enhanced PM PI4P turnover independent of targeting to contact sites with the PM. This turnover could be slowed by knock-down of soluble ORP2, which also has a major impact on PM PI4P levels even without SAC1 over-expression. The data reveal a role for contact site-independent modulation of PM PI4P levels and lipid antiport.
Collapse
Affiliation(s)
- Colleen P. Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andrew Rectenwald
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Liz Timple
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Sugahara S, Ishino Y, Sawada K, Iwata T, Shimanaka Y, Aoki J, Arai H, Kono N. Disease-related PSS1 mutant impedes the formation and function of osteoclasts. J Lipid Res 2023; 64:100443. [PMID: 37714410 PMCID: PMC10641532 DOI: 10.1016/j.jlr.2023.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
Phosphatidylserine (PS) is an acidic phospholipid that is involved in various cellular events. Heterologous dominant mutations have been identified in the gene encoding PS synthase 1 (PSS1) in patients with a congenital disease called Lenz-Majewski syndrome (LMS). Patients with LMS show various symptoms, including craniofacial/distal-limb bone dysplasia and progressive hyperostosis. The LMS-causing gain-of-function mutants of PSS1 (PSS1LMS) have been shown to synthesize PS without control, but why the uncontrolled synthesis would lead to LMS is unknown. Here we investigated the effect of PSS1LMS on osteoclasts (OCs) to elucidate the causative mechanism of LMS. PSS1LMS did not affect the expression of OC-related genes but inhibited the formation, multinucleation, and activity of OCs. Especially, OCs expressing PSS1LMS showed abnormal patterns and dynamics of actin podosome clusters, which have roles in OC migration and fusion. PSS1LMS did not affect the level of PS but changed the acyl chain compositions of PS and phosphatidylethanolamine, and decreased the level of phosphatidylinositol. The introduction of a catalytically inactive mutation into PSSLMS canceled the changes in phospholipids and the phenotypes observed in OCs expressing PSS1LMS. A gain-of-function mutant of PSS2 (PSS2 R97K) also impaired OC formation and caused changes in phospholipid composition similar to the changes caused by PSS1LMS. Our results suggest that uncontrolled PS synthesis by PSS1LMS causes changes in the quantity or fatty acid composition of certain phospholipid classes, impairing OC formation and function, which might be a cause of osteosclerosis in patients with LMS.
Collapse
Affiliation(s)
- Sari Sugahara
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Ishino
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Koki Sawada
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsumugi Iwata
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Shimanaka
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Fuggetta N, Rigolli N, Magdeleine M, Seminara A, Drin G. Reconstitution of ORP-mediated lipid exchange process coupled to PI(4)P metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551917. [PMID: 37577629 PMCID: PMC10418177 DOI: 10.1101/2023.08.04.551917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Lipid distribution in the eukaryotic cells depends on tight couplings between lipid transfer and lipid metabolism. Yet these couplings remain poorly described. Notably, it is unclear to what extent lipid exchangers of the OSBP-related proteins (ORPs) family, coupled to PI(4)P metabolism, contribute to the formation of sterol and phosphatidylserine gradient between the endoplasmic reticulum (ER) and other cell regions. To address this question, we have examined in vitro the activity of Osh4p, a representative ORP, between Golgi mimetic membranes in which PI(4)P is produced by a PI 4-kinase and ER mimetic membranes in which PI(4)P is hydrolyzed by the phosphatase Sac1p. Using quantitative, real-time assays, we demonstrate that Osh4p creates a sterol gradient between the two membranes by sterol/PI(4)P exchange as soon as a PI(4)P gradient is generated at this interface following ATP addition, and define how much PI(4)P must be synthesized for this process. Then, using a kinetic model supported by our in vitro data, we estimate to what extent PI(4)P metabolism can drive lipid transfer in cells. Finally, we show that Sec14p, by transferring phosphatidylinositol between membranes, can support the synthesis of PI(4)P and the creation of a sterol gradient by Osh4p. These results indicate to what extent ORPs, under the control of PI(4)P metabolism, can distribute lipids in the cell.
Collapse
Affiliation(s)
- Nicolas Fuggetta
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Nicola Rigolli
- Laboratoire de Physique, École Normale Supérieure (LPENS), 75005 Paris, France
| | - Maud Magdeleine
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Agnese Seminara
- Malga, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Villa Cambiaso 1, 16145 Genoa, Italy
| | - Guillaume Drin
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| |
Collapse
|
14
|
Anari M, Montgomery MK. Phospholipid metabolism in the liver - Implications for phosphatidylserine in non-alcoholic fatty liver disease. Biochem Pharmacol 2023; 213:115621. [PMID: 37217141 DOI: 10.1016/j.bcp.2023.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Mammalian cells contain more than a thousand different glycerophospholipid species that are essential membrane components and signalling molecules, with phosphatidylserine (PS) giving membranes their negative surface charge. Depending on the tissue, PS is important in apoptosis, blood clotting, cancer pathogenesis, as well as muscle and brain function, processes that are dependent on the asymmetrical distribution of PS on the plasma membrane and/or the capacity of PS to act as anchorage for various signalling proteins. Recent studies have implicated hepatic PS in the progression of non-alcoholic fatty liver disease (NAFLD), either as beneficial in the context of suppressing hepatic steatosis and fibrosis, or on the other hand as a potential contributor to the progression of liver cancer. This review provides an extensive overview of hepatic phospholipid metabolism, including its biosynthetic pathways, intracellular trafficking and roles in health and disease, further taking a deeper dive into PS metabolism, including associate and causative evidence of the role of PS in advanced liver disease.
Collapse
Affiliation(s)
- Marziyeh Anari
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
15
|
Ivanova A, Atakpa-Adaji P. Phosphatidylinositol 4,5-bisphosphate and calcium at ER-PM junctions - Complex interplay of simple messengers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119475. [PMID: 37098393 DOI: 10.1016/j.bbamcr.2023.119475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Endoplasmic reticulum-plasma membrane contact sites (ER-PM MCS) are a specialised domain involved in the control of Ca2+ dynamics and various Ca2+-dependent cellular processes. Intracellular Ca2+ signals are broadly supported by Ca2+ release from intracellular Ca2+ channels such as inositol 1,4,5-trisphosphate receptors (IP3Rs) and subsequent store-operated Ca2+ entry (SOCE) across the PM to replenish store content. IP3Rs sit in close proximity to the PM where they can easily access newly synthesised IP3, interact with binding partners such as actin, and localise adjacent to ER-PM MCS populated by the SOCE machinery, STIM1-2 and Orai1-3, to possibly form a locally regulated unit of Ca2+ influx. PtdIns(4,5)P2 is a multiplex regulator of Ca2+ signalling at the ER-PM MCS interacting with multiple proteins at these junctions such as actin and STIM1, whilst also being consumed as a substrate for phospholipase C to produce IP3 in response to extracellular stimuli. In this review, we consider the mechanisms regulating the synthesis and turnover of PtdIns(4,5)P2 via the phosphoinositide cycle and its significance for sustained signalling at the ER-PM MCS. Furthermore, we highlight recent insights into the role of PtdIns(4,5)P2 in the spatiotemporal organization of signalling at ER-PM junctions and raise outstanding questions on how this multi-faceted regulation occurs.
Collapse
Affiliation(s)
- Adelina Ivanova
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
16
|
Bergen DJM, Maurizi A, Formosa MM, McDonald GLK, El-Gazzar A, Hassan N, Brandi ML, Riancho JA, Rivadeneira F, Ntzani E, Duncan EL, Gregson CL, Kiel DP, Zillikens MC, Sangiorgi L, Högler W, Duran I, Mäkitie O, Van Hul W, Hendrickx G. High Bone Mass Disorders: New Insights From Connecting the Clinic and the Bench. J Bone Miner Res 2023; 38:229-247. [PMID: 36161343 PMCID: PMC10092806 DOI: 10.1002/jbmr.4715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dylan J M Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.,Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Georgina L K McDonald
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | | | - José A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece.,Center for Evidence Synthesis in Health, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, USA.,Institute of Biosciences, University Research Center of loannina, University of Ioannina, Ioannina, Greece
| | - Emma L Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luca Sangiorgi
- Department of Rare Skeletal Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
17
|
Balla T, Gulyas G, Mandal A, Alvarez-Prats A, Niu Y, Kim YJ, Pemberton J. Roles of Phosphatidylinositol 4-Phosphorylation in Non-vesicular Cholesterol Trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:327-352. [PMID: 36988887 PMCID: PMC11135459 DOI: 10.1007/978-3-031-21547-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cholesterol (Chol) is an essential component of all eukaryotic cell membranes that affects the function of numerous peripheral as well as integral membrane proteins. Chol is synthesized in the ER, but it is selectively enriched within the plasma membrane (PM) and other endomembranes, which requires Chol to cross the aqueous phase of the cytoplasm. In addition to the classical vesicular trafficking pathways that are known to facilitate the bulk transport of membrane intermediates, Chol is also transported via non-vesicular lipid transfer proteins that work primarily within specialized membrane contact sites. Some of these transport pathways work against established concentration gradients and hence require energy. Recent studies highlight the unique role of phosphoinositides (PPIns), and phosphatidylinositol 4-phosphate (PI4P) in particular, for the control of non-vesicular Chol transport. In this chapter, we will review the emerging connection between Chol, PPIns, and lipid transfer proteins that include the important family of oxysterol-binding protein related proteins, or ORPs.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA.
| | | | - Amrita Mandal
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | | | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Chen LJ, Tu ZY, Wang Y, He YH, Wang X, Tao SZ, Xu YY, Li CR, Wang RL, Yang ZX, Sun J, Ma X, Zhang D. ATP5O Hypo-crotonylation Caused by HDAC2 Hyper-Phosphorylation Is a Primary Detrimental Factor for Downregulated Phospholipid Metabolism under Chronic Stress. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9834963. [PMID: 38645677 PMCID: PMC11030818 DOI: 10.34133/2022/9834963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/03/2022] [Indexed: 04/23/2024]
Abstract
Objective. Chronic stress (CS)-induced abnormal metabolism and other subsequent aspects of abnormality are threatening human health. Little is known regarding whether and how protein post-translational-modifications (PTMs) correlate with abnormal metabolism under CS. The aim of this study was to address this issue and also identify novel key protein PTM. Methods. First, we screened which pan-PTM had significant change between control and CS female mice and whether clinical CS females had similar pan-PTM change. Second, we performed quantitative PTM-omics and metabolomics to verify the correlation between abnormal protein PTMs and atypical metabolism. Third, we performed quantitative phospho-omics to identify the key PTM-regulating enzyme and investigate the interaction between PTM protein and PTM-regulating enzyme. Fourth, we attempted to rectify the abnormal metabolism by correcting the activity of the PTM-regulating enzyme. Finally, we examined whether the selected key protein was also correlated with stress scores and atypical metabolism in clinical women. Results. We initially found that multiple tissues of CS female mice have downregulated pan-crotonylation, and verified that the plasma of clinical CS females also had downregulated pan-crotonylation. Then we determined that ATP5O-K51 crotonylation decreased the most and also caused gross ATP5O decrement, whereas the plasma of CS mice had downregulated phospholipids. Next, downregulating ATP5O crotonylation partially recapitulated the downregulated phospholipid metabolism in CS mice. Next, we verified that HDAC2-S424 phosphorylation determined its decrotonylation activity on ATP5O-K51. Furthermore, correcting HDAC2 hyper-phosphorylation recovered the gross ATP5O level and partially rescued the downregulated phospholipid metabolism in CS mice. Finally, the ATP5O level was also significantly lower and correlated with high stress scores and downregulated phospholipid metabolism in clinical female plasma. Conclusion. This study discovered a novel PTM mechanism involving two distinct types of PTM in CS and provided a novel reference for the clinical precautions and treatments of CS.
Collapse
Affiliation(s)
- Liang-Jian Chen
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
- Department of Obstetrics and Gynecology,
Reproductive Medicine Center,
The First Affiliated Hospital of Anhui Medical University,
Hefei 230022,
China
| | - Zhi-Yuan Tu
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
- State Key Laboratory of Reproductive Medicine,
the Center for Clinical Reproductive Medicine,
The First Affiliated Hospital of Nanjing Medical University,
Nanjing,
210029,
China
| | - Yang Wang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Yu-Hao He
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Xin Wang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Shu-Zhen Tao
- State Key Laboratory of Reproductive Medicine,
the Center for Clinical Reproductive Medicine,
The First Affiliated Hospital of Nanjing Medical University,
Nanjing,
210029,
China
| | - Yang-Yang Xu
- State Key Laboratory of Reproductive Medicine,
the Center for Clinical Reproductive Medicine,
The First Affiliated Hospital of Nanjing Medical University,
Nanjing,
210029,
China
| | - Cong-Rong Li
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Ruo-Lei Wang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Zhi-Xia Yang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Jing Sun
- Department of Psychiatry,
Nanjing Brain Hospital affiliated to Nanjing Medical University,
Nanjing,
210029 Jiangsu,
China
| | - Xiang Ma
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
| | - Dong Zhang
- State Key Lab of Reproductive Medicine,
Nanjing Medical University,
Nanjing,
211166 Jiangsu,
China
- Animal Core Facility,
Nanjing Medical University,
Nanjing,
211166,
Jiangsu,
P .R.,
China
| |
Collapse
|
19
|
Creating and sensing asymmetric lipid distributions throughout the cell. Emerg Top Life Sci 2022; 7:7-19. [PMID: 36373850 DOI: 10.1042/etls20220028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
A key feature of eukaryotic cells is the asymmetric distribution of lipids along their secretory pathway. Because of the biological significance of these asymmetries, it is crucial to define the mechanisms which create them. Extensive studies have led to the identification of lipid transfer proteins (LTPs) that work with lipid-synthesizing enzymes to carry lipids between two distinct membranes in a directional manner, and are thus able to create asymmetries in lipid distribution throughout the cell. These networks are often in contact sites where two organelle membranes are in close proximity for reasons we have only recently started to understand. A question is whether these networks transfer lipids en masse within the cells or adjust the lipid composition of organelle membranes. Finally, recent data have confirmed that some networks organized around LTPs do not generate lipid asymmetries between membranes but sense them and rectify the lipid content of the cell.
Collapse
|
20
|
Chung GHC, Lorvellec M, Gissen P, Pichaud F, Burden JJ, Stefan CJ. The ultrastructural organization of endoplasmic reticulum-plasma membrane contacts is conserved in epithelial cells. Mol Biol Cell 2022; 33:ar113. [PMID: 35947498 PMCID: PMC9635291 DOI: 10.1091/mbc.e21-11-0534-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Contacts between the endoplasmic reticulum and the plasma membrane (ER-PM contacts) have important roles in membrane lipid and calcium dynamics, yet their organization in polarized epithelial cells has not been thoroughly described. Here we examine ER-PM contacts in hepatocytes in mouse liver using electron microscopy, providing the first comprehensive ultrastructural study of ER-PM contacts in a mammalian epithelial tissue. Our quantitative analyses reveal strikingly distinct ER-PM contact architectures spatially linked to apical, lateral, and basal PM domains. Notably, we find that an extensive network of ER-PM contacts exists at lateral PM domains that form intercellular junctions between hepatocytes. Moreover, the spatial organization of ER-PM contacts is conserved in epithelial spheroids, suggesting that ER-PM contacts may serve conserved roles in epithelial cell architecture. Consistent with this notion, we show that ORP5 activity at ER-PM contacts modulates the apical-basolateral aspect ratio in HepG2 cells. Thus ER-PM contacts have a conserved distribution and crucial roles in PM domain architecture across epithelial cell types.
Collapse
Affiliation(s)
- Gary Hong Chun Chung
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Maëlle Lorvellec
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Franck Pichaud
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J. Burden
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Christopher J. Stefan
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
21
|
Gulyas G, Korzeniowski MK, Eugenio CEB, Vaca L, Kim YJ, Balla T. LIPID transfer proteins regulate store-operated calcium entry via control of plasma membrane phosphoinositides. Cell Calcium 2022; 106:102631. [PMID: 35853265 PMCID: PMC9444960 DOI: 10.1016/j.ceca.2022.102631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
The ER-resident proteins STIM1 together with the plasma membrane (PM)-localized Orai1 channels constitute the molecular components of the store-operated Ca2+ entry (SOCE) pathway. Prepositioning of STIM1 to the peripheral ER close to the PM ensures its efficient interaction with Orai1 upon a decrease in the ER luminal Ca2+ concentration. The C-terminal polybasic domain of STIM1 has been identified as mediating the interaction with PM phosphoinositides and hence positions the molecule to ER-PM contact sites. Here we show that STIM1 requires PM phosphatidylinositol 4-phosphate (PI4P) for efficient PM interaction. Accordingly, oxysterol binding protein related proteins (ORPs) that work at ER-PM junctions and consume PI4P gradients exert important control over the Ca2+ entry process. These studies reveal an important connection between non-vesicular lipid transport at ER-PM contact sites and regulation of ER Ca2+store refilling.
Collapse
Affiliation(s)
- Gergo Gulyas
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marek K Korzeniowski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Carlos Ernesto Bastián Eugenio
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Mochizuki S, Miki H, Zhou R, Noda Y. The involvement of oxysterol-binding protein related protein (ORP) 6 in the counter-transport of phosphatidylinositol-4-phosphate (PI4P) and phosphatidylserine (PS) in neurons. Biochem Biophys Rep 2022; 30:101257. [PMID: 35518199 PMCID: PMC9061615 DOI: 10.1016/j.bbrep.2022.101257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Oxysterol-binding protein (OSBP)-related protein (ORP) 6, a member of subfamily III in the ORP family, localizes to membrane contact sites between the endoplasmic reticulum (ER) and other organelles and functions in non-vesicular exchange of lipids including phosphatidylinositol-4-phosphate (PI4P) in neurons. In this study, we searched for the lipid counter-transported in exchange for PI4P by using molecular cell biology techniques. Deconvolution microscopy revealed that knockdown of ORP6 partially shifted localization of a phosphatidylserine (PS) marker but not filipin in primary cultured cerebellar neurons. Overexpression of ORP6 constructs lacking the OSBP-related ligand binding domain (ORD) resulted in the same shift of the PS marker. A PI4KⅢα inhibitor specifically inhibiting the synthesis and plasma membrane (PM) localization of PI4P, suppressed the localization of ORP6 and the PS marker at the PM. Overexpression of mutant PS synthase 1 (PSS1) inhibited transport of the PS marker to the PM and relocated the PI4P marker to the PM in Neuro-2A cells. Introduction of ORP6 but not the dominant negative ORP6 constructs, shifted the localization of PS back to the PM. These data collectively suggest the involvement of ORP6 in the counter-transport of PI4P and PS. Knockdown of ORP6 changed localization of PS marker. Localization of PS marker and ORP6 at the PM was suppressed by PI4K inhibitor. ORP6 restored PS from the ER to PM when mutant PSS1 is expressed.
Collapse
|
23
|
Gracie S, Sengupta N, Ferreira C, Pemberton J, Anderson I, Wang X, Rhodes L, Brown K, Balla T, Larson A. De novo loss-of-function variant in PTDSS1 is associated with developmental delay. Am J Med Genet A 2022; 188:1739-1745. [PMID: 35224839 DOI: 10.1002/ajmg.a.62695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022]
Abstract
Heterozygous de novo missense pathogenic variants in PTDSS1 that result in gain-of-function of phosphatidylserine synthase 1 are associated with Lenz-Majewski hyperostotic dwarfism (LMHD). We identified the novel heterozygous de novo variant p.(Leu137Phe) in PTDSS1 in a child with mild-to-moderate developmental delay. Skeletal survey revealed no evidence of LMHD in this patient. Functional assessment of the p.Leu137Phe variant was performed by overexpressing the mutant protein into HEK293 cells. Following C14 -serine labeling and TLC analysis of lipids, we observed that the p.(Leu137Phe) variant displayed no catalytic activity compared to the wild-type enzyme. We conclude that p.(Leu137Phe) variant has decreased enzymatic activity and that is likely to be the etiology of the patient's symptoms given the gene's constraint in the population. This is the first report of the clinical phenotype seen in an individual with a heterozygous loss-of-function variant in PTDSS1. This phenotype is distinct from LMHD, which results from gain-of-function pathogenic variants in the same gene. Evaluation of the neurodevelopmental phenotype of additional individuals with loss-of-function variants in PTDSS1 is indicated to determine the spectrum of associated phenotypes.
Collapse
Affiliation(s)
- Sara Gracie
- Department of Pediatrics, Section of Genetics and Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Carlos Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ilse Anderson
- University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, USA
| | - Xin Wang
- GeneDx, Gaithersburg, Maryland, USA
| | | | - Kathleen Brown
- Department of Pediatrics, Section of Genetics and Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Austin Larson
- Department of Pediatrics, Section of Genetics and Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
24
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
25
|
Components of the phosphatidylserine endoplasmic reticulum to plasma membrane transport mechanism as targets for KRAS inhibition in pancreatic cancer. Proc Natl Acad Sci U S A 2021; 118:2114126118. [PMID: 34903667 DOI: 10.1073/pnas.2114126118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
KRAS is mutated in 90% of human pancreatic ductal adenocarcinomas (PDACs). To function, KRAS must localize to the plasma membrane (PM) via a C-terminal membrane anchor that specifically engages phosphatidylserine (PtdSer). This anchor-binding specificity renders KRAS-PM localization and signaling capacity critically dependent on PM PtdSer content. We now show that the PtdSer lipid transport proteins, ORP5 and ORP8, which are essential for maintaining PM PtdSer levels and hence KRAS PM localization, are required for KRAS oncogenesis. Knockdown of either protein, separately or simultaneously, abrogated growth of KRAS-mutant but not KRAS-wild-type pancreatic cancer cell xenografts. ORP5 or ORP8 knockout also abrogated tumor growth in an immune-competent orthotopic pancreatic cancer mouse model. Analysis of human datasets revealed that all components of this PtdSer transport mechanism, including the PM-localized EFR3A-PI4KIIIα complex that generates phosphatidylinositol-4-phosphate (PI4P), and endoplasmic reticulum (ER)-localized SAC1 phosphatase that hydrolyzes counter transported PI4P, are significantly up-regulated in pancreatic tumors compared to normal tissue. Taken together, these results support targeting PI4KIIIα in KRAS-mutant cancers to deplete the PM-to-ER PI4P gradient, reducing PM PtdSer content. We therefore repurposed the US Food and Drug Administration-approved hepatitis C antiviral agent, simeprevir, as a PI4KIIIα inhibitor In a PDAC setting. Simeprevir potently mislocalized KRAS from the PM, reduced the clonogenic potential of pancreatic cancer cell lines in vitro, and abrogated the growth of KRAS-dependent tumors in vivo with enhanced efficacy when combined with MAPK and PI3K inhibitors. We conclude that the cellular ER-to-PM PtdSer transport mechanism is essential for KRAS PM localization and oncogenesis and is accessible to therapeutic intervention.
Collapse
|
26
|
Verdura E, Rodríguez-Palmero A, Vélez-Santamaria V, Planas-Serra L, de la Calle I, Raspall-Chaure M, Roubertie A, Benkirane M, Saettini F, Pavinato L, Mandrile G, O'Leary M, O'Heir E, Barredo E, Chacón A, Michaud V, Goizet C, Ruiz M, Schlüter A, Rouvet I, Sala-Coromina J, Fossati C, Iascone M, Canonico F, Marcé-Grau A, de Souza P, Adams DR, Casasnovas C, Rehm HL, Mefford HC, González Gutierrez-Solana L, Brusco A, Koenig M, Macaya A, Pujol A. Biallelic PI4KA variants cause a novel neurodevelopmental syndrome with hypomyelinating leukodystrophy. Brain 2021; 144:2659-2669. [PMID: 34415322 PMCID: PMC8557332 DOI: 10.1093/brain/awab124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients’ fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.
Collapse
Affiliation(s)
- Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Valentina Vélez-Santamaria
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Irene de la Calle
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Miquel Raspall-Chaure
- Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Paediatric Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Agathe Roubertie
- Département de Neuropédiatrie, Hôpital Gui de Chauliac Pôle Neurosciences Tête et Cou, Montpellier, France.,INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Mehdi Benkirane
- Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Francesco Saettini
- Paediatric Hematology Department, Fondazione MBBM, University of Milano Bicocca, Monza, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Giorgia Mandrile
- Thalassemia Centre and Medical Genetics Unit, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Melanie O'Leary
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O'Heir
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Estibaliz Barredo
- Neuropediatric Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Almudena Chacón
- Neuropediatric Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Vincent Michaud
- Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, Aquitaine, France.,INSERM U1211, Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Talence, Aquitaine, France
| | - Cyril Goizet
- INSERM U1211, Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Talence, Aquitaine, France.,Reference Center for Rare Neurogenetic Diseases, Department of Medical Genetics, University Hospital Centre Bordeaux Pellegrin Hospital Group, Bordeaux, Aquitaine, France
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Isabelle Rouvet
- Cellular Biotechnology Department and Biobank, Hospices Civils de Lyon, CHU de Lyon, Lyon, France
| | - Julia Sala-Coromina
- Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Paediatric Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Chiara Fossati
- Department of Paediatrics, Fondazione MBBM, Monza, Italy
| | - Maria Iascone
- Molecular Genetics Laboratory, USSD LGM, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Canonico
- Department of Neuroradiology, University of Milan-Bicocca, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Anna Marcé-Grau
- Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Precilla de Souza
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - David R Adams
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, USA.,Undiagnosed Diseases Program, The Common Fund, NIH, Bethesda, MD, USA
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Heidi L Rehm
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Paediatrics, University of Washington, Seattle, WA 98195, USA
| | - Luis González Gutierrez-Solana
- Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Pediatric Neurology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy.,Medical Genetics Unit, Città della Salute e della Scienza, University Hospital, 10126 Turin, Italy
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Alfons Macaya
- Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Paediatric Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.,Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
27
|
Zhou Y, Hancock JF. Lipid Profiles of RAS Nanoclusters Regulate RAS Function. Biomolecules 2021; 11:biom11101439. [PMID: 34680072 PMCID: PMC8533076 DOI: 10.3390/biom11101439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
The lipid-anchored RAS (Rat sarcoma) small GTPases (guanosine triphosphate hydrolases) are highly prevalent in human cancer. Traditional strategies of targeting the enzymatic activities of RAS have been shown to be difficult. Alternatively, RAS function and pathology are mostly restricted to nanoclusters on the plasma membrane (PM). Lipids are important structural components of these signaling platforms on the PM. However, how RAS nanoclusters selectively enrich distinct lipids in the PM, how different lipids contribute to RAS signaling and oncogenesis and whether the selective lipid sorting of RAS nanoclusters can be targeted have not been well-understood. Latest advances in quantitative super-resolution imaging and molecular dynamic simulations have allowed detailed characterization RAS/lipid interactions. In this review, we discuss the latest findings on the select lipid composition (with headgroup and acyl chain specificities) within RAS nanoclusters, the specific mechanisms for the select lipid sorting of RAS nanoclusters on the PM and how perturbing lipid compositions within RAS nanoclusters impacts RAS function and pathology. We also describe different strategies of manipulating lipid composition within RAS nanoclusters on the PM.
Collapse
|
28
|
Lenoir G, D'Ambrosio JM, Dieudonné T, Čopič A. Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Front Cell Dev Biol 2021; 9:737907. [PMID: 34540851 PMCID: PMC8440936 DOI: 10.3389/fcell.2021.737907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly uneven distribution within cellular membranes, essential for establishment of cell polarity and other processes. In this review, we discuss how combined action of PS biosynthesis enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within membrane contact sites (MCS) between the ER and other compartments, and lipid flippases and scramblases that mediate PS flip-flop between membrane leaflets controls the cellular distribution of PS. Enrichment of PS in specific compartments, in particular in the cytosolic leaflet of the plasma membrane (PM), requires input of energy, which can be supplied in the form of ATP or by phosphoinositides. Conversely, coupling between PS synthesis or degradation, PS flip-flop and PS transfer may enable PS transfer by passive flow. Such scenario is best documented by recent work on the formation of autophagosomes. The existence of lateral PS nanodomains, which is well-documented in the case of the PM and postulated for other compartments, can change the steepness or direction of PS gradients between compartments. Improvements in cellular imaging of lipids and membranes, lipidomic analysis of complex cellular samples, reconstitution of cellular lipid transport reactions and high-resolution structural data have greatly increased our understanding of cellular PS homeostasis. Our review also highlights how budding yeast has been instrumental for our understanding of the organization and transport of PS in cells.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Juan Martín D'Ambrosio
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Thibaud Dieudonné
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
29
|
Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity. Nat Commun 2021; 12:5248. [PMID: 34504076 PMCID: PMC8429657 DOI: 10.1038/s41467-021-25523-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/10/2021] [Indexed: 11/15/2022] Open
Abstract
The HRAS, NRAS, and KRAS genes are collectively mutated in a fifth of all human cancers. These mutations render RAS GTP-bound and active, constitutively binding effector proteins to promote signaling conducive to tumorigenic growth. To further elucidate how RAS oncoproteins signal, we mined RAS interactomes for potential vulnerabilities. Here we identify EFR3A, an adapter protein for the phosphatidylinositol kinase PI4KA, to preferentially bind oncogenic KRAS. Disrupting EFR3A or PI4KA reduces phosphatidylinositol-4-phosphate, phosphatidylserine, and KRAS levels at the plasma membrane, as well as oncogenic signaling and tumorigenesis, phenotypes rescued by tethering PI4KA to the plasma membrane. Finally, we show that a selective PI4KA inhibitor augments the antineoplastic activity of the KRASG12C inhibitor sotorasib, suggesting a clinical path to exploit this pathway. In sum, we have discovered a distinct KRAS signaling axis with actionable therapeutic potential for the treatment of KRAS-mutant cancers. The lipid composition of the plasma membrane defines the localisation of KRAS and its oncogenic function. Here the authors show that EFR3A binds to active KRAS to recruit PI4KA and alters the lipid composition of the plasma membrane to promote KRAS oncogenic signalling and tumorigenesis.
Collapse
|
30
|
Ferreira CR, Martinelli D, Blau N. Clinical and biochemical footprints of inherited metabolic diseases. VI. Metabolic dermatoses. Mol Genet Metab 2021; 134:87-95. [PMID: 34304991 PMCID: PMC8578301 DOI: 10.1016/j.ymgme.2021.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Cutaneous signs and symptoms may facilitate the diagnosis or can help in identifying complications or side effects of overtreatment of inherited metabolic diseases. The principal manifestations can be grouped into vascular lesions, ichthyosis, papular and nodular skin lesions, abnormal pigmentation, photosensitivity, skin laxity, hair shaft involvement, and nail abnormalities. We have summarized associations of these cutaneous signs and symptoms in 252 inherited metabolic diseases. This represents the sixth of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
31
|
Salter CG, Cai Y, Lo B, Helman G, Taylor H, McCartney A, Leslie JS, Accogoli A, Zara F, Traverso M, Fasham J, Lees JA, Ferla M, Chioza BA, Wenger O, Scott E, Cross HE, Crawford J, Warshawsky I, Keisling M, Agamanolis D, Melver CW, Cox H, Elawad M, Marton T, Wakeling M, Holzinger D, Tippelt S, Munteanu M, Valcheva D, Deal C, Van Meerbeke S, Vockley CW, Butte MJ, Acar U, van der Knaap MS, Korenke GC, Kotzaeridou U, Balla T, Simons C, Uhlig HH, Crosby AH, De Camilli P, Wolf NI, Baple EL. Biallelic PI4KA variants cause neurological, intestinal and immunological disease. Brain 2021; 144:3597-3610. [PMID: 34415310 PMCID: PMC8719846 DOI: 10.1093/brain/awab313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα’s role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.
Collapse
Affiliation(s)
- Claire G Salter
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Yiying Cai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Guy Helman
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Henry Taylor
- Department of surgery and Cancer, Imperial College London, London, UK
| | - Amber McCartney
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | | | | | - James Fasham
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Joshua A Lees
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Matteo Ferla
- Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Barry A Chioza
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | | | - Harold E Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Joanna Crawford
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia
| | | | | | | | | | - Helen Cox
- West Midlands Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, UK
| | - Mamoun Elawad
- Department of Gastroenterology, Sidra Medicine, Doha, Qatar
| | - Tamas Marton
- West Midlands Perinatal Pathology, Birmingham Women's Hospital, Edgbaston, Birmingham, UK
| | - Matthew Wakeling
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Dirk Holzinger
- Department of Pediatric Haematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Stephan Tippelt
- Department of Pediatric Haematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Martin Munteanu
- Institute for Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Christin Deal
- Children's Hospital of Pittsburgh, UPMC, Division of Pediatric Allergy and Immunology, Pittsburgh, USA
| | - Sara Van Meerbeke
- Children's Hospital of Pittsburgh, UPMC, Division of Pediatric Allergy and Immunology, Pittsburgh, USA
| | - Catherine Walsh Vockley
- Children's Hospital of Pittsburgh, UPMC, Division of Genetic and Genomic Medicine, Pittsburgh, USA
| | - Manish J Butte
- Department of Paediatrics, Division of Immunology, Allergy, and Rheumatology, UCLA, Los Angeles, CA, USA
| | - Utkucan Acar
- Department of Paediatrics, Division of Immunology, Allergy, and Rheumatology, UCLA, Los Angeles, CA, USA
| | - Marjo S van der Knaap
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, 26133 Oldenburg, Germany
| | - Urania Kotzaeridou
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxfordshire, UK.,Department of Paediatrics, University of Oxford, Oxfordshire, UK.,Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| |
Collapse
|
32
|
Xiao C, Rossignol F, Vaz FM, Ferreira CR. Inherited disorders of complex lipid metabolism: A clinical review. J Inherit Metab Dis 2021; 44:809-825. [PMID: 33594685 DOI: 10.1002/jimd.12369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Over 80 human diseases have been attributed to defects in complex lipid metabolism. A majority of them have been reported recently in the setting of rapid advances in genomic technology and their increased use in clinical settings. Lipids are ubiquitous in human biology and play roles in many cellular and intercellular processes. While inborn errors in lipid metabolism can affect every organ system with many examples of genetic heterogeneity and pleiotropy, the clinical manifestations of many of these disorders can be explained based on the disruption of the metabolic pathway involved. In this review, we will discuss the physiological function of major pathways in complex lipid metabolism, including nonlysosomal sphingolipid metabolism, acylceramide metabolism, de novo phospholipid synthesis, phospholipid remodeling, phosphatidylinositol metabolism, mitochondrial cardiolipin synthesis and remodeling, and ether lipid metabolism as well as common clinical phenotypes associated with each.
Collapse
Affiliation(s)
- Changrui Xiao
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Rossignol
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Nakatsu F, Kawasaki A. Functions of Oxysterol-Binding Proteins at Membrane Contact Sites and Their Control by Phosphoinositide Metabolism. Front Cell Dev Biol 2021; 9:664788. [PMID: 34249917 PMCID: PMC8264513 DOI: 10.3389/fcell.2021.664788] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
Lipids must be correctly transported within the cell to the right place at the right time in order to be fully functional. Non-vesicular lipid transport is mediated by so-called lipid transfer proteins (LTPs), which contain a hydrophobic cavity that sequesters lipid molecules. Oxysterol-binding protein (OSBP)-related proteins (ORPs) are a family of LTPs known to harbor lipid ligands, such as cholesterol and phospholipids. ORPs act as a sensor or transporter of those lipid ligands at membrane contact sites (MCSs) where two different cellular membranes are closely apposed. In particular, a characteristic functional property of ORPs is their role as a lipid exchanger. ORPs mediate counter-directional transport of two different lipid ligands at MCSs. Several, but not all, ORPs transport their lipid ligand from the endoplasmic reticulum (ER) in exchange for phosphatidylinositol 4-phosphate (PI4P), the other ligand, on apposed membranes. This ORP-mediated lipid “countertransport” is driven by the concentration gradient of PI4P between membranes, which is generated by its kinases and phosphatases. In this review, we will discuss how ORP function is tightly coupled to metabolism of phosphoinositides such as PI4P. Recent progress on the role of ORP-mediated lipid transport/countertransport at multiple MCSs in cellular functions will be also discussed.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
34
|
Wang YT, Lin MR, Chen WC, Wu WH, Wang FS. Optimization of a modeling platform to predict oncogenes from genome-scale metabolic networks of non-small-cell lung cancers. FEBS Open Bio 2021. [PMID: 34137202 PMCID: PMC8329960 DOI: 10.1002/2211-5463.13231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer cell dysregulations result in the abnormal regulation of cellular metabolic pathways. By simulating this metabolic reprogramming using constraint-based modeling approaches, oncogenes can be predicted, and this knowledge can be used in prognosis and treatment. We introduced a trilevel optimization problem describing metabolic reprogramming for inferring oncogenes. First, this study used RNA-Seq expression data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples and their healthy counterparts to reconstruct tissue-specific genome-scale metabolic models and subsequently build the flux distribution pattern that provided a measure for the oncogene inference optimization problem for determining tumorigenesis. The platform detected 45 genes for LUAD and 84 genes for LUSC that lead to tumorigenesis. A high level of differentially expressed genes was not an essential factor for determining tumorigenesis. The platform indicated that pyruvate kinase (PKM), a well-known oncogene with a low level of differential gene expression in LUAD and LUSC, had the highest fitness among the predicted oncogenes based on computation. By contrast, pyruvate kinase L/R (PKLR), an isozyme of PKM, had a high level of differential gene expression in both cancers. Phosphatidylserine synthase 1 (PTDSS1), an oncogene in LUAD, was inferred to have a low level of differential gene expression, and overexpression could significantly reduce survival probability. According to the factor analysis, PTDSS1 characteristics were close to those of the template, but they were unobvious in LUSC. Angiotensin-converting enzyme 2 (ACE2) has recently garnered widespread interest as the SARS-CoV-2 virus receptor. Moreover, we determined that ACE2 is an oncogene of LUSC but not of LUAD. The platform developed in this study can identify oncogenes with low levels of differential expression and be used to identify potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- You-Tyun Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Min-Ru Lin
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wei-Chen Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wu-Hsiung Wu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
35
|
Zhou Y, Gorfe AA, Hancock JF. RAS Nanoclusters Selectively Sort Distinct Lipid Headgroups and Acyl Chains. Front Mol Biosci 2021; 8:686338. [PMID: 34222339 PMCID: PMC8245699 DOI: 10.3389/fmolb.2021.686338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
RAS proteins are lipid-anchored small GTPases that switch between the GTP-bound active and GDP-bound inactive states. RAS isoforms, including HRAS, NRAS and splice variants KRAS4A and KRAS4B, are some of the most frequently mutated proteins in cancer. In particular, constitutively active mutants of KRAS comprise ∼80% of all RAS oncogenic mutations and are found in 98% of pancreatic, 45% of colorectal and 31% of lung tumors. Plasma membrane (PM) is the primary location of RAS signaling in biology and pathology. Thus, a better understanding of how RAS proteins localize to and distribute on the PM is critical to better comprehend RAS biology and to develop new strategies to treat RAS pathology. In this review, we discuss recent findings on how RAS proteins sort lipids as they undergo macromolecular assembly on the PM. We also discuss how RAS/lipid nanoclusters serve as signaling platforms for the efficient recruitment of effectors and signal transduction, and how perturbing the PM biophysical properties affect the spatial distribution of RAS isoforms and their functions.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
36
|
Dubois GA, Jaillais Y. Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network. PLANT PHYSIOLOGY 2021; 185:577-592. [PMID: 33793905 PMCID: PMC8133617 DOI: 10.1093/plphys/kiaa056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 05/19/2023]
Abstract
Anionic phospholipids include phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylinositol (PI), and its phosphorylated derivatives the phosphoinositides (e.g. phosphatidylinositol-4-phosphate [PI4P] and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]). Although anionic phospholipids are low-abundant lipids, they are particularly important for membrane functions. In particular, anionic lipids act as biochemical and biophysical landmarks that contribute to the establishment of membrane identity, signaling activities, and compartment morphodynamics. Each anionic lipid accumulates in different endomembranes according to a unique subcellular pattern, where they locally provide docking platforms for proteins. As such, they are mostly believed to act in the compartments in which they accumulate. However, mounting evidence throughout eukaryotes suggests that anionic lipids are not as compartment-specific as initially thought and that they are instead organized as concentration gradients across different organelles. In this update, we review the evidence for the existence of anionic lipid gradients in plants. We then discuss the possible implication of these gradients in lipid dynamics and homeostasis, and also in coordinating subcellular activities. Finally, we introduce the notion that anionic lipid gradients at the cellular scale may translate into gradients at the tissue level, which could have implications for plant development.
Collapse
Affiliation(s)
- Gwennogan A Dubois
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
- Author for communication:
| |
Collapse
|
37
|
Baba T, Balla T. Emerging roles of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate as regulators of multiple steps in autophagy. J Biochem 2021; 168:329-336. [PMID: 32745205 DOI: 10.1093/jb/mvaa089] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Inositol phospholipids are low-abundance regulatory lipids that orchestrate diverse cellular functions in eukaryotic organisms. Recent studies have uncovered involvement of the lipids in multiple steps in autophagy. The late endosome-lysosome compartment plays critical roles in cellular nutrient sensing and in the control of both the initiation of autophagy and the late stage of eventual degradation of cytosolic materials destined for elimination. It is particularly notable that inositol lipids are involved in almost all steps of the autophagic process. In this review, we summarize how inositol lipids regulate and contribute to autophagy through the endomembrane compartments, primarily focusing on PI4P and PI(4,5)P2.
Collapse
Affiliation(s)
- Takashi Baba
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan.,Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, 35A Convent Drive, Bethesda, MD 20892-3752, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, 35A Convent Drive, Bethesda, MD 20892-3752, USA
| |
Collapse
|
38
|
Xu J, Taubert S. Beyond Proteostasis: Lipid Metabolism as a New Player in ER Homeostasis. Metabolites 2021; 11:52. [PMID: 33466824 PMCID: PMC7830277 DOI: 10.3390/metabo11010052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Biological membranes are not only essential barriers that separate cellular and subcellular structures, but also perform other critical functions such as the initiation and propagation of intra- and intercellular signals. Each membrane-delineated organelle has a tightly regulated and custom-made membrane lipid composition that is critical for its normal function. The endoplasmic reticulum (ER) consists of a dynamic membrane network that is required for the synthesis and modification of proteins and lipids. The accumulation of unfolded proteins in the ER lumen activates an adaptive stress response known as the unfolded protein response (UPR-ER). Interestingly, recent findings show that lipid perturbation is also a direct activator of the UPR-ER, independent of protein misfolding. Here, we review proteostasis-independent UPR-ER activation in the genetically tractable model organism Caenorhabditis elegans. We review the current knowledge on the membrane lipid composition of the ER, its impact on organelle function and UPR-ER activation, and its potential role in human metabolic diseases. Further, we summarize the bi-directional interplay between lipid metabolism and the UPR-ER. We discuss recent progress identifying the different respective mechanisms by which disturbed proteostasis and lipid bilayer stress activate the UPR-ER. Finally, we consider how genetic and metabolic disturbances may disrupt ER homeostasis and activate the UPR and discuss how using -omics-type analyses will lead to more comprehensive insights into these processes.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
39
|
Uchida N, Shimizu Y, Fujimaki M, Horibata Y, Nakamura Y, Horigane Y, Chibana K, Takemasa A, Sugimoto H, Niho S. Metabolic changes induced by TGF-β1 via reduced expression of phosphatidylserine decarboxylase during myofibroblast transition. J Clin Biochem Nutr 2021; 70:108-116. [PMID: 35400823 PMCID: PMC8921729 DOI: 10.3164/jcbn.21-121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Metabolic alteration is increasingly recognized as an important pathogenic process that underlies fibrosis across many organ types, and metabolically targeted therapies could become important strategies for reducing fibrosis. In present study, target enzymes that are involved in changes in phospholipid metabolism during fibroblast-to-myofibroblast transition induced by transforming growth factor beta 1 (TGF-β1) were examined. Different amounts of phospholipids were found in the 2 groups. In response to TGF-β1 stimulation, 17 lipids decreased and 17 increased. The latter included the phospholipids phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE). Furthermore, among the rate-limiting enzymes that regulate these phospholipids, phosphatidylserine decarboxylase (PISD), which controls conversion of PS to PE and is localized in mitochondria, decreased in response to TGF-β1. Knockdown of PISD alone without TGF-β1 stimulation increased expression of α-smooth muscle actin mRNA and production of total collagen. Taken together, these results indicate that PISD is involved in the mechanism of fibrogenesis by regulating phospholipid metabolism.
Collapse
Affiliation(s)
- Nobuhiko Uchida
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Mio Fujimaki
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine
| | - Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Yukiko Horigane
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| |
Collapse
|
40
|
Kimura AK, Kimura T. Phosphatidylserine biosynthesis pathways in lipid homeostasis: Toward resolution of the pending central issue for decades. FASEB J 2020; 35:e21177. [PMID: 33205488 DOI: 10.1096/fj.202001802r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Enzymatic control of lipid homeostasis in the cell is a vital element in the complex organization of life. Phosphatidylserine (PS) is an essential anionic phospholipid of cell membranes, and conducts numerous roles for their structural and functional integrity. In mammalian cells, two distinct enzymes phosphatidylserine synthases-1 (PSS1) and -2 (PSS2) in the mitochondria-associated membrane (MAM) in the ER perform de novo synthesis of PS. It is based on base-exchange reactions of the preexisting dominant phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). While PSS2 specifically catalyzes the reaction "PE → PS," whether or not PSS1 is responsible for the same reaction along with the reaction "PC → PS" remains unsettled despite its fundamental impact on the major stoichiometry. We propose here that a key but the only report that appeared to have put scientists on hold for decades in answering to this issue may be viewed consistently with other available research reports; PSS1 utilizes the two dominant phospholipid classes at a similar intrinsic rate. In this review, we discuss the issue in view of the current information for the enzyme machineries, membrane structure and dynamics, intracellular network of lipid transport, and PS synthesis in health and disease. Resolution of the pending issue is thus critical in advancing our understanding of roles of the essential anionic lipid in biology, health, and disease.
Collapse
Affiliation(s)
- Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Tomohiro Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
41
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
42
|
Kattan WE, Hancock JF. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem J 2020; 477:2893-2919. [PMID: 32797215 PMCID: PMC7891675 DOI: 10.1042/bcj20190839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
The three human RAS proteins are mutated and constitutively activated in ∼20% of cancers leading to cell growth and proliferation. For the past three decades, many attempts have been made to inhibit these proteins with little success. Recently; however, multiple methods have emerged to inhibit KRAS, the most prevalently mutated isoform. These methods and the underlying biology will be discussed in this review with a special focus on KRAS-plasma membrane interactions.
Collapse
Affiliation(s)
- Walaa E. Kattan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
43
|
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Front Cell Dev Biol 2020; 8:663. [PMID: 32793602 PMCID: PMC7385082 DOI: 10.3389/fcell.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Lipids are amphiphilic molecules that self-assemble to form biological membranes. Thousands of lipid species coexist in the cell and, once combined, define organelle identity. Due to recent progress in lipidomic analysis, we now know how lipid composition is finely tuned in different subcellular regions. Along with lipid synthesis, remodeling and flip-flop, lipid transfer is one of the active processes that regulates this intracellular lipid distribution. It is mediated by Lipid Transfer Proteins (LTPs) that precisely move certain lipid species across the cytosol and between the organelles. A particular subset of LTPs from three families (Sec14, PITP, OSBP/ORP/Osh) act as lipid exchangers. A striking feature of these exchangers is that they use phosphatidylinositol or phosphoinositides (PIPs) as a lipid ligand and thereby have specific links with PIP metabolism and are thus able to both control the lipid composition of cellular membranes and their signaling capacity. As a result, they play pivotal roles in cellular processes such as vesicular trafficking and signal transduction at the plasma membrane. Recent data have shown that some PIPs are used as energy by lipid exchangers to generate lipid gradients between organelles. Here we describe the importance of lipid counter-exchange in the cell, its structural basis, and presumed links with pathologies.
Collapse
Affiliation(s)
- Nicolas-Frédéric Lipp
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Souade Ikhlef
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Julie Milanini
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
44
|
ORP5 and ORP8: Sterol Sensors and Phospholipid Transfer Proteins at Membrane Contact Sites? Biomolecules 2020; 10:biom10060928. [PMID: 32570981 PMCID: PMC7356933 DOI: 10.3390/biom10060928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Oxysterol binding related proteins 5 and 8 (ORP5 and ORP8) are two close homologs of the larger oxysterol binding protein (OSBP) family of sterol sensors and lipid transfer proteins (LTP). Early studies indicated these transmembrane proteins, anchored to the endoplasmic reticulum (ER), bound and sensed cholesterol and oxysterols. They were identified as important for diverse cellular functions including sterol homeostasis, vesicular trafficking, proliferation and migration. In addition, they were implicated in lipid-related diseases such as atherosclerosis and diabetes, but also cancer, although their mechanisms of action remained poorly understood. Then, alongside the increasing recognition that membrane contact sites (MCS) serve as hubs for non-vesicular lipid transfer, added to their structural similarity to other LTPs, came discoveries showing that ORP5 and 8 were in fact phospholipid transfer proteins that rather sense and exchange phosphatidylserine (PS) for phosphoinositides, including phosphatidylinositol-4-phosphate (PI(4)P) and potentially phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2). Evidence now points to their action at MCS between the ER and various organelles including the plasma membrane, lysosomes, mitochondria, and lipid droplets. Dissecting exactly how this unexpected phospholipid transfer function connects with sterol regulation in health or disease remains a challenge for future studies.
Collapse
|
45
|
D'Ambrosio JM, Albanèse V, Lipp NF, Fleuriot L, Debayle D, Drin G, Čopič A. Osh6 requires Ist2 for localization to ER-PM contacts and efficient phosphatidylserine transport in budding yeast. J Cell Sci 2020; 133:jcs.243733. [PMID: 32327560 DOI: 10.1242/jcs.243733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
Osh6 and Osh7 are lipid transfer proteins (LTPs) that move phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM). High PS levels at the PM are key for many cellular functions. Intriguingly, Osh6 and Osh7 localize to ER-PM contact sites, although they lack membrane-targeting motifs, in contrast to multidomain LTPs that both bridge membranes and convey lipids. We show that Osh6 localization to contact sites depends on its interaction with the cytosolic tail of the ER-PM tether Ist2, a homolog of TMEM16 proteins. We identify a motif in the Ist2 tail, conserved in yeasts, as the Osh6-binding region, and we map an Ist2-binding surface on Osh6. Mutations in the Ist2 tail phenocopy osh6Δ osh7Δ deletion: they decrease cellular PS levels and block PS transport to the PM. Our study unveils an unexpected partnership between a TMEM16-like protein and a soluble LTP, which together mediate lipid transport at contact sites.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Véronique Albanèse
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Nicolas-Frédéric Lipp
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université Côte d'Azur, 06560 Valbonne, France
| | - Lucile Fleuriot
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université Côte d'Azur, 06560 Valbonne, France
| | - Delphine Debayle
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université Côte d'Azur, 06560 Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université Côte d'Azur, 06560 Valbonne, France
| | - Alenka Čopič
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| |
Collapse
|
46
|
Sasvari Z, Lin W, Inaba JI, Xu K, Kovalev N, Nagy PD. Co-opted Cellular Sac1 Lipid Phosphatase and PI(4)P Phosphoinositide Are Key Host Factors during the Biogenesis of the Tombusvirus Replication Compartment. J Virol 2020; 94:e01979-19. [PMID: 32269127 PMCID: PMC7307105 DOI: 10.1128/jvi.01979-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-Ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
47
|
Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annu Rev Cell Dev Biol 2020; 35:85-109. [PMID: 31590585 DOI: 10.1146/annurev-cellbio-100818-125251] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
48
|
Omnus DJ, Cadou A, Thomas FB, Bader JM, Soh N, Chung GHC, Vaughan AN, Stefan CJ. A heat-sensitive Osh protein controls PI4P polarity. BMC Biol 2020; 18:28. [PMID: 32169085 PMCID: PMC7071650 DOI: 10.1186/s12915-020-0758-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Phosphoinositide lipids provide spatial landmarks during polarized cell growth and migration. Yet how phosphoinositide gradients are oriented in response to extracellular cues and environmental conditions is not well understood. Here, we elucidate an unexpected mode of phosphatidylinositol 4-phosphate (PI4P) regulation in the control of polarized secretion. RESULTS We show that PI4P is highly enriched at the plasma membrane of growing daughter cells in budding yeast where polarized secretion occurs. However, upon heat stress conditions that redirect secretory traffic, PI4P rapidly increases at the plasma membrane in mother cells resulting in a more uniform PI4P distribution. Precise control of PI4P distribution is mediated through the Osh (oxysterol-binding protein homology) proteins that bind and present PI4P to a phosphoinositide phosphatase. Interestingly, Osh3 undergoes a phase transition upon heat stress conditions, resulting in intracellular aggregates and reduced cortical localization. Both the Osh3 GOLD and ORD domains are sufficient to form heat stress-induced aggregates, indicating that Osh3 is highly tuned to heat stress conditions. Upon loss of Osh3 function, the polarized distribution of both PI4P and the exocyst component Exo70 are impaired. Thus, an intrinsically heat stress-sensitive PI4P regulatory protein controls the spatial distribution of phosphoinositide lipid metabolism to direct secretory trafficking as needed. CONCLUSIONS Our results suggest that control of PI4P metabolism by Osh proteins is a key determinant in the control of polarized growth and secretion.
Collapse
Affiliation(s)
- Deike J Omnus
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Present address: Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Angela Cadou
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ffion B Thomas
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jakob M Bader
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Present address: Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nathaniel Soh
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gary H C Chung
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Andrew N Vaughan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
49
|
Endoplasmic reticulum-plasma membrane contacts: Principals of phosphoinositide and calcium signaling. Curr Opin Cell Biol 2020; 63:125-134. [PMID: 32088611 DOI: 10.1016/j.ceb.2020.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
The endoplasmic reticulum (ER) forms an extensive network of membrane contact sites with intra-cellular organelles and the plasma membrane (PM). Interorganelle contacts have vital roles in membrane lipid and ion dynamics. In particular, ER-PM contacts are integral to numerous inter-cellular and intra-cellular signaling pathways including phosphoinositide lipid and calcium signaling, mechanotransduction, metabolic regulation, and cell stress responses. Accordingly, ER-PM contacts serve important signaling functions in excitable cells including neurons and muscle and endocrine cells. This review highlights recent advances in our understanding of the vital roles for ER-PM contacts in phosphoinositide and calcium signaling and how signaling pathways in turn regulate proteins that form and function at ER-PM contacts.
Collapse
|
50
|
Somerharju P, Virtanen JA, Hermansson M. Hypothesis: Chemical activity regulates and coordinates the processes maintaining glycerophospholipid homeostasis in mammalian cells. FASEB Bioadv 2020; 2:182-187. [PMID: 32161907 PMCID: PMC7059623 DOI: 10.1096/fba.2019-00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/19/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Mammalian cells maintain the complex glycerophospholipid (GPL) class compositions of their various membranes within close limits because this is essential to their well‐being or viability. Surprisingly, however, it is still not understood how those compositions are maintained except that GPL synthesis and degradation are closely coordinated. Here, we hypothesize that abrupt changes in the chemical activity of the individual GPL classes coordinate synthesis and degradation as well other the homeostatic processes. We have previously proposed that only a limited number of “allowed” or “optimal” GPL class compositions exist in cellular membranes because those compositions are energetically more favorable than others, that is, they represent local free energy minima (Somerharju et al 2009, Biochim. Biophys. Acta 1788, 12‐23). This model, however, could not satisfactorily explain how the “optimal” compositions are sensed by the key homeostatic enzymes, that is, rate‐limiting synthetizing enzymes and homeostatic phospholipases. We now hypothesize that when the mole fraction of a GPL class exceeds an optimal value, its chemical activity abruptly increases which (a) increases its propensity to efflux from the membrane thus making it susceptible for hydrolysis by homeostatic phospholipases; (b) increases its potency to inhibit its own biosynthesis via a feedback mechanism; (c) enhances its conversion to another glycerophospholipid class via a novel process termed “head group remodeling” or (d) enhances its translocation to other subcellular membranes. In summary, abrupt change in the chemical activity of the individual GPL classes is proposed to regulate and coordinate those four processes maintaining GPL class homeostasis in mammalian cells.
Collapse
Affiliation(s)
| | - Jorma A Virtanen
- Medicum Faculty of Medicine University of Helsinki Helsinki Finland
| | | |
Collapse
|